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ABSTRACT

Malignant tumors are characterized by invasive
growth and metastasis. To facilitate this invasive behavior,
the enzymatic breakdown of the extracellular matrix
(ECM) is a prerequisite. Many human tumors are charac-
terized by locally increased concentrations of matrix met-
alloproteinases (MMPs), enzymes that are able to degrade
this ECM. A vast number of matrix metalloproteinase
inhibitors (MMPIs) have been developed in recent years

and after extensive preclinical testing, the results of the
first clinical studies with several of these compounds have
recently been presented. In this review we will describe
some of the basic concepts of the degradation of the ECM,
with special emphasis on the role of MMPs in the progres-
sion of cancer. Furthermore we will review the results of
preclinical and clinical studies with MMPIs and discuss
their future perspective. The Oncologist 2001;6:415-427

The Oncologist 2001;6:415-427 www.TheOncologist.com

Correspondence: Ronald Hoekstra, M.D., Department of Medical Oncology, University Hospital Rotterdam, P.O. Box 2040,
3000 CA Rotterdam, The Netherlands. Fax: 31-10-463-4627; e-mail: hoekstra@oncd.azr.nl Received May 25, 2001;
accepted for publication August 7, 2001. ©AlphaMed Press 1083-7159/2001/$5.00/0

INTRODUCTION

The importance of proteinases in tumor invasion was
first recognized in 1925 when Fischer found that a lytic sub-
stance from sarcoma cells could degrade the fibrin stroma.
Later it was found that the serine proteinase plasminogen
activator (PA) played an important role in activating plas-
minogen to plasmin. Apart from PAs, proteinases such as
serine, cysteine, and metalloproteinases have been associated
with cancer [1]. It is important to realize that high levels of
extracellular proteolytic activity are not restricted to the
malignant phenotype, but are also seen in a number of phys-
iological processes such as embryo implantation, wound
healing, and angiogenesis. A common feature in these
processes is the breaching of histological barriers with the
degradation of the extracellular matrix (ECM) composed of
basement membrane and extracellular stroma.

Matrix metalloproteinases (MMPs) are enzymes able to
degrade most components of the ECM such as collagens,
laminins, fibronectins, elastins, and the protein core of pro-
teoglycans. At this moment more than 20 different MMPs
have been identified and classified. They show a consistent
sequence homology and in general share a pre-domain,
which is a signal peptide for secretion, a pro-domain, impor-
tant for maintaining latency, a catalytic domain with a highly

conserved zinc-binding site, and a hemopexin-like domain.
Most MMPs are secreted in the latent form, however, a few
MMPs have a transmembrane domain and remain attached to
the cell membrane (membrane-type MMPs or MT-MMPs).
Based on sequence homology and substrate specificity,
MMPs can be classified in five subgroups (Table 1). The
classification is somewhat arbitrary, since the true physio-
logical substrates are a matter of debate. In situ hybridization
techniques showed that most MMPs are not produced by
tumor cells but by adjacent stromal cells. It is suggested that
tumor cells produce a stimulatory factor (extracellular matrix
metalloproteinase inducer, EMMPRIN) that induces stromal
fibroblasts to produce MMPs [2, 3]. In addition, various
growth factors, hormones, oncogenes, and tumor promoters
are thought to play important roles in the regulation of MMP
gene transcription. After translation, the MMPs are secreted
in a latent form. Following proteolytic cleavage of the NH2
terminal pro-domain by other MMPs or other proteases, acti-
vated MMPs are being formed. Inhibition of MMPs is
obtained through protease inhibitors such as α2-macroglob-
ulin and by a group of specific tissue inhibitors of metallo-
proteinases (TIMPs). It is thought that an imbalance between
the activation and inhibition of MMP activity in favor of the
MMP activity plays an important role in the pathophysiology
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of cancer by facilitating the invasion of tumor cells through
the ECM. In addition, it is suggested that MMPs affect
growth of primary tumors and metastases by stimulating
release and activation of latent growth factors from the ECM
such as basic fibroblast growth factor (bFGF), vascular
endothelial growth factor (VEGF), and insulin-like growth
factor [4]. Furthermore, degradation of the ECM is also an
essential step in the process of angiogenesis, which is
required for tumor growth beyond a few millimeters in size
and for metastasis [5].

There is extensive literature demonstrating the associa-
tion of MMP activity and tumor progression. With regard to
this association, several generalizations can be made [6, 7]:

• MMPs are detected in a large variety of tumors.

• The number of different MMP family members
detected tends to increase with progression of the tumor.

• The relative levels of any individual MMP family
member tend to increase with increasing tumor stage.

• MMPs can be made either by tumor cells themselves
or as a host response to the tumor.

• The MMPs most frequently encountered are MMP-2,
MMP-3, MMP-7, MMP-9, MMP-11, MMP-13, and
MMP-14.

Evidence for the role of MMPs in the process of metas-
tasis comes from several experiments using animal tumor
models. Intraperitoneal injection of recombinant TIMP-1, a
naturally occurring MMP inhibitor (MMPI), reduced lung

colonization of intravenously injected B16F10 melanoma
cells [8]. Transfecting an expression vector encoding for
MMP-9 into a tumorigenic but non-metastatic rat embryo
cell line resulted in increased metastatic capacity [9]. In
addition, preclinical studies using synthetic MMPIs support
the important role of MMP activity in the process of tumor
progression, as discussed below.

Since there is a correlation between MMP expression in
the tumor and tumor stage, it is suggested that MMP expres-
sion can be used as a diagnostic or prognostic tool. Indeed it
was found that serum MMP-2 levels were increased in
patients with prostate cancer compared with healthy controls
or patients with benign prostate hyperplasia [10]. For colon
cancer it was shown that high MMP-1 expression within the
tumor correlated with hematogenous metastasis independent
of other established histopathological factors [11]. This
inverse relationship between increased MMP expression and
clinical outcome was also found for gastric cancer (MMP-2
and MMP-9), small cell lung cancer (MMP-3, MMP-11, and
MMP-14), esophageal cancer (MMP-7), and breast cancer
(MMP-11) [12-15].

BASIC ASPECTS

As the inverse relationship between MMP expression and
clinical outcome in cancer became more and more obvious,
inhibiting the function of the MMP cascade became a target
for the development of new anticancer drugs. In theory, ther-
apeutic intervention in the MMP cascade is possible at the
induction, production, secretion, activation, or catalytic part,
but thus far, most research has focused on inhibition of the

Table 1. The matrix metalloproteinase family

Group Descriptive name n Principal substrate

Collagenases Interstitial collagenase MMP-1 Fibrillar collagen types I, II, III
Neutrophil collagenase MMP-8 Fibrillar collagen types I, II, III
Collagenase-3 MMP-13 Fibrillar collagen types I, II, III
Collagenase-4 MMP-18

Stromelysins Stromelysin-1 MMP-3 Proteoglycans, laminin, fibronectin, nonfibrillar collagen
Stromelysin-2 MMP-10 Proteoglycans, laminin, fibronectin, nonfibrillar collagen
Matrilysin MMP-7 Proteoglycans, laminin, fibronectin, nonfibrillar collagen

Gelatinases Gelatinase A (72 kDa) MMP-2 Gelatins, nonfibrillar collagen types IV, V
Gelatinase B (92 kDa) MMP-9 Gelatins, nonfibrillar collagen types IV, V

Membrane type MT1-MMP MMP-14 Progelatinase A, procollagenase-3
MT2-MMP MMP-15 Progelatinase A
MT3-MMP MMP-16 Progelatinase A
MT4-MMP MMP-17
MT5-MMP MMP-21

Others Stromelysin-3 MMP-11 Serine protease inhibitor
Metalloelastase MMP-12 Elastin, nonfibrillar collagen
Enamelysin MMP-20

MMP-19
MMP-23
MMP-24

 by on November 20, 2006 www.TheOncologist.comDownloaded from 

http://theoncologist.alphamedpress.org


417 MMPIs: Current Developments and Future Perspectives

MMP activity itself. TIMPs have been shown to have
inhibitory activity in both in vitro and in vivo tumor models,
but their clinical use has been hampered by low oral bioavail-
ability. The most interesting agents are the synthetic inhibitors
of the enzyme activity. The majority of these MMPIs have
been developed through the application of structure-based
design rather than through conventional screening technolo-
gies [16-18]. Based on the structure of the collagen molecule
at the site of the initial cleavage, peptide and peptide-like
compounds were developed that were able to interact with the
active site of the enzyme and chelate the zinc ion at the cat-
alytic site. The majority of these inhibitors contain a hydrox-
amic acid group as zinc chelator. The catalytic domains of
most MMPs have a high degree of homology and therefore
many of the early MMPIs exhibit a broad-spectrum inhibition
profile. In order to create more specificity in binding of
MMPs thought to be important in the process of tumor pro-
gression, and in order to augment oral bioavailability,
research has moved to the development of peptide com-
pounds with alternative chelators to the ubiquitous hydrox-
amic acid group and to nonpeptide compounds with a
hydroxamate chelating group. A special group of MMPIs is
formed by the tetracycline derivatives that not only inhibit
MMPs by chelation of the zinc ion, but are also able to down-
regulate the production, inhibit the activation, and increase the
degradation of MMPs [19]. MMPIs investigated in clinical
trials are shown in Table 2.

PRECLINICAL EXPERIENCE

MMPIs have been extensively studied in numerous
tumor models. The first and most extensively studied MMPI
is batimastat, a low molecular weight broad spectrum MMPI
with a hydroxamate group as a zinc chelator. In in vitro
experiments no cytotoxic activity was found [20-22],
whereas in studies with various human xenograft models a
significant reduction of tumor growth rate was seen when
batimastat was administered shortly after tumor inoculation

[20, 23, 24]. Administration shortly after tumor inoculation
in pancreatic, orthotopic colon, and orthotopic liver tumor
models showed reduced growth of the primary tumor, 
a reduction in the onset of distant metastases, and even 
prolongation of survival [22, 25, 26].

Although a significant reduction in tumor growth was
seen when batimastat was administered shortly after tumor
inoculation, treatment in a more advanced tumor stage did
not result in a significant growth reduction in a B16-BL6
murine melanoma tumor model [23]. The issue of the
growth inhibitory effect of MMPIs in the minimal residual
disease state is particularly addressed in the studies mimic-
king the adjuvant setting. Using orthotopic human breast
cancer models (MDA-MB-435 and HOSP.1P) it was shown
that administration of batimastat shortly after resection of
the tumor significantly inhibited local regrowth, decreased
the number and volume of pulmonary metastases, and
improved survival [27, 28]. While treatment with batimas-
tat for a short period of time did not result in reduction of
regional lymph node metastases, prolonged treatment did.
It was suggested that batimastat was not able to prevent
invasion of lymphatic channels (which lack a basement
membrane), but that prolonged treatment was able to inhibit
subsequent growth of nodal metastases [28].

AG3340 is a selective, nonpeptide inhibitor of MMP-2,
MMP-3, MMP-9, MMP-13, and MMP-14. Activity has been
explored in a wide range of human tumor xenograft models
[29]. Oral AG3340 given twice daily, started shortly after
tumor implantation, resulted in a profound delay of tumor
growth in a human colon, an androgen independent human
prostate, and a human non-small cell lung cancer (NSCLC)
tumor model. A similar inhibition of growth was seen when
AG3340 was initiated after growth of established tumors of
a human breast cancer xenograft (MDA-MB-435). AG3340
was the first MMPI tested in a human glioma tumor model
(U87), where it was administered intraperitoneally starting 
3 weeks after subcutaneous tumor implantation. It caused

Table 2. Matrix metalloproteinase inhibitors in clinical development

Agent Class MMP Inhibition Remarks

Batimastat Peptido-mimetic MMP-1, 2, 3, 7, 9 Only parenterally available

Marimastat Peptido-mimetic MMP-1, 2, 3, 7, 9, 12

AG3340 (prinomastat) Nonpeptido-mimetic MMP-2, 3, 9, 13, 14

BAY 12-9566 Nonpeptido-mimetic MMP-2, 3, 9

MMI270 Nonpeptido-mimetic MMP-1, 2, 3, 9, 13, 14

COL-3 (metastat) Tetracycline derivative MMP-2, 9 Multiple mechanisms of action

BMS-275291 Nonpeptido-mimetic MMP-2, 9

CP-471,358 Nonpeptido-mimetic MMP-2, 3, 8, 9, 12, 13, 14

AE-941(neovastat) Shark cartilage extract MMP-1, 2, 7, 9, 12, 13 Multiple mechanisms of action
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profound inhibition of tumor growth, decreasing tumor size
by 78% compared with controls after 31 days, resulting in a
two to three times increased survival [30].

Apart from the role of MMPIs as inhibitors of the remod-
eling of the ECM surrounding the tumor, there is also evi-
dence that MMPIs inhibit tumor-induced angiogenesis.
Analyzing angiogenesis using antibodies to CD-31, an
endothelial marker that is almost exclusively expressed on
newly formed vessels, revealed that AG3340 decreased
angiogenesis in three of the four tumor models studied [29].
Furthermore, using murine endothelioma cells transformed
by a polyoma middle-T oncogene, which forms tumors that
are constituted of recruited host cells for more than 95%, it
was shown that batimastat was able to induce a significant
growth reduction [21].

MMPIs have been tested in combination with cytotoxic
chemotherapy. In a murine Lewis lung cancer model
CT1746, an inhibitor of MMP-2 and MMP-9, combined
with either cisplatin or cyclophosphamide was significantly
more active than single agent therapy in delaying local
tumor growth and reducing number and size of pulmonary
metastases [31]. The effect was most obvious when
CT1746 was started shortly after tumor implantation, again
suggesting that MMPIs are more active when administered
under conditions of low tumor volume. AG3340 was stud-
ied in combination with carboplatin or paclitaxel using a
lung colonization model after i.v. injection of B16-F10
melanoma cells in mice [32]. Neither AG3340 nor carbo-
platin started 1 day after injection of tumor cells decreased
the number of lung lesions (>1 mm3) significantly.
However, the combination produced a significant decrease
in the number of lung lesions. AG3340 and paclitaxel, at
single agent doses not able to reduce the number of lung
lesions, in combination caused a significant decrease in the
number of lung lesions. In an MV522 NSCLC model pacli-
taxel given at suboptimal dose was able to potentiate the
activity of AG3340 resulting in enhanced tumor growth
inhibition [33]. Finally in a human gastric KKLS tumor
model, AG3340 not active as a single agent potentiated the
activity of paclitaxel [29].

Giavazzi et al. studied the effects of batimastat in com-
bination with cisplatin in two human ovarian carcinoma
xenografts (HOC22 and HOC8) inoculated in the peritoneal
cavity of nude mice [34]. In the HOC22 model the early
treatment with a combination of batimastat and cisplatin
significantly prolonged survival compared with either sin-
gle agent. In the HOC8 model, only moderately sensitive to
cisplatin and not responsive to batimastat, the combination
therapy resulted in a prolonged disease-free survival. When
treatment was started in the advanced or late stage,
monotherapy with cisplatin or batimastat was not effective

in the HOC22 model, but the combination resulted in an
increased survival.

MMPIS IN CLINICAL TRIALS

Phase I Studies
Several MMPIs have been tested in phase I/II trials. These

studies are summarized in Table 3. Batimastat showed a poor
oral bioavailability and also could not be given intravenously
due to its limited solubility. Therefore clinical studies were
performed using intraperitoneal or intrapleural administration
[35-38]. Following intraperitoneal administration, rapid sys-
temic absorption was seen with serum levels exceeding con-
centrations causing 50% inhibition (IC50) of major MMPs for
prolonged periods of time. Side effects considered to be drug
related included abdominal discomfort, nausea, vomiting, and
fever. Although response is difficult to assess in patients with
ascites, patient benefits consisting of decreases in weight,
abdominal girth, or frequency of drainage were observed [36,
37]. In a study performed in patients with malignant pleural
effusions, batimastat was administered in the pleural cavity
following pleural drainage [38]. Peak plasma levels were
detected between 4 hours and 1 week after administration
and in patients with doses ≥60 mg/m2, plasma levels were
detectable for 9 to 12 weeks. Side effects were comparable
to those previously mentioned, with the exception of non-
symptomatic elevation of liver enzymes occurring in 44% of
the patients. There were no clear relationships between the
elevated liver enzymes and the batimastat dose or the peak
plasma levels. Peak values of liver enzymes were generally
seen in the second week and in some patients elevations per-
sisted for up to 5 months after batimastat administration. 
A partial response, with a significant reduction in the need
for pleural reaspiration, was achieved in 7 of 16 evaluable
patients. The reason for this activity is not clear and it can-
not be ruled out that batimistat acted simply as a sclerosing
agent, especially since no experimental data existed on MMP
inhibition in vivo. Because batimastat could only be admin-
istered intraperitoneally or intrapleurally, further clinical
development was halted.

Marimastat (BB-2516) was the first oral MMPI tested in
clinical trials. It is a low molecular weight peptido-mimetic
agent with a hydroxamate group closely related to batimastat.
Marimastat is a potent and reversible MMPI with IC50s in the
nanomolar range against MMP-1, MMP-2, MMP-3, MMP-7,
MMP-9, and MMP-12. The first phase I study was performed
with healthy volunteers [39]. Marimastat was rapidly absorbed
and well tolerated, with pharmacokinetic data indicating that a
total daily dose of 50 to 100 mg can achieve trough levels
exceeding 40 ng/ml which is six times the IC50 for the major
MMPs. Since it was anticipated that no tumor regressions

 by on November 20, 2006 www.TheOncologist.comDownloaded from 

http://theoncologist.alphamedpress.org


419 MMPIs: Current Developments and Future Perspectives

would be seen and that chronic administration would be nec-
essary to exert optimal antitumor activity, a number of phase
I/II studies were initiated where early information about activ-
ity was based on the rate of rise of serum tumor marker levels
[40-45]. A combined analysis of these studies including 415
patients with advanced colorectal, ovarian, pancreatic, and
prostate cancer using the serum tumor markers carcinoembry-
onic antigen (CEA), CA-125, CA 19-9, and prostate specific
antigen (PSA), respectively, was published [46]. All patients
studied had serum tumor marker levels rising by 25% or more
above prespecified levels in a predefined period of 4 or 12
weeks. Marimastat doses studied varied from 2 mg once daily
to 75 mg twice daily. Pharmacokinetic analysis showed that
mean trough levels increased almost linearly with dose and
that these levels for a given dose were substantially higher
compared with healthy volunteers with mean trough levels
greater than 40 ng/ml observed at total daily doses of 20 mg
and above. The principal toxicity of marimastat was found to
be reversible musculoskeletal events (myalgia, arthralgia, and
tendinitis, predominantly in the upper limbs) with frequency
and severity increasing with higher doses. Musculoskeletal

events severe enough to reduce the dose occurred mostly after
the first month of treatment and particularly at doses of 25 mg
twice daily or higher, resulting in dose modification or with-
drawal in more than one-third of the patients. Other infrequent
severe side effects involved the gastrointestinal system and a
few episodes of elevated liver enzymes. Evaluation of serum
tumor marker levels following 4-12 weeks of treatment
showed that the proportion of patients showing a rise in their
tumor marker at the end of the study period of <0% or from
0%-25% increased with dose and was significant only in
patients receiving doses of 20 mg daily or higher. This single
evaluation point led to major discussion and is likely to over-
estimate clinical potential of the agent. Because the rate of rise
in tumor marker levels is not yet validated as a marker of
tumor response, the authors compared the survival of the
patients with a tumor marker rise of <0% or from 0%-25%
(“responders”) with the patients with a tumor marker rise
>25% (“non-responders”), and found that survival was signif-
icantly different in favor of the responders, thereby suggesting
that these marker level changes could be a valid surrogate end-
point. However, due to the limited number of patients and the

Table 3. Clinical phase I/II studies of MMPIs: side effects at recommended dose levels

MMPI [reference] Schedule* Tumor type Patient n Recommended dose Side effects at recommended dose

Batimastat [35] Intraperitoneal All 9 1,200 mg/m2 Abdominal pain
Batimastat [36] Intraperitoneal All 9 600 mg/m2 Mild abdominal pain
Batimastat [37] Intraperitoneal All 23
Batimastat [38] Intrapleural All 18 300 mg/m2 Fever, elevated liver enzymes

Marimastat [40] 5 mg od-50 mg bid Colon 70 20 mg od-25 mg bid Musculoskeletal
Marimastat [41] 5 mg od-50 mg bid Ovary 66 10-25 mg bid Musculoskeletal
Marimastat [42] 10 mg od-75 mg bid Pancreas 64 5-25 mg bid Musculoskeletal
Marimastat [43] 5 mg od-50 mg bid Colon 61
Marimastat [44] 2 mg od-50 mg bid Prostate 88
Marimastat [45] 5 mg od-75 mg bid Ovary 66
Marimastat [47] 25-100 mg bid NSCLC 12
Marimastat [48] 25 mg od-50 mg bid Gastric 35 25 mg od Musculoskeletal 
Marimastat [82] 25 mg Pancreas 34
Marimastat [83] 10-100 mg bid Melanoma 26 

AG3340 [49] 2-100 mg bid All 45

BAY 12-9566 [55] 100 mg od-800 mg bid All 26 800 mg bid Mild thrombocytopenia, transaminase 
elevation

BAY 12-9566 [56] 400 mg od-800 mg bid All 13 800 mg bid
BAY 12-9566 [57] 100 mg od-800 mg bid All 29 800 mg bid Mild thrombocytopenia, transaminase 

elevation
BAY 12-9566 [59] 100 mg od-800 mg bid All 21 800 mg bid Mild thrombocytopenia, transaminase 

elevation, hypophosphatemia

MMI270 [62] 150 mg bid-600 mg tds All 92 300 mg bid Maculopapular skin rash, 
musculoskeletal

COL-3 [19] 36-98 mg/m2/day All 35 36 mg/m2 Cutaneous phototoxicity
COL-3 [63] 36-98 mg/m2/day All 26

BMS-275291 [66] 150-1,200 mg od Healthy males 40
BMS-275291 [68] 600-2,400 mg od All 44 1,200 mg od No DLTs

CP-471,358 Ongoing All

*All oral intake, except for batimastat. Abbreviations: od = once daily; bid = twice daily; tds = three times daily.
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larger number of variables, this suggestion will have to be fur-
ther tested in large-sized trials. Based on the combined analy-
sis of the biological activity, the pharmacokinetic data, and the
dose-related musculoskeletal pain, the recommended dose
range for further studies was 10-25 mg twice daily.

A study in patients with advanced lung cancer using
marimastat at three different dose levels (25 mg, 50 mg, and
100 mg all twice daily) was performed [47]. Dose-limiting
toxicity consisting of inflammatory polyarthritis, which
occurred within 3 weeks from the start of treatment, was seen
in the first three patients in the 100 mg twice daily group. The
next three patients at this dose level received prophylactic
nonsteroidal anti-inflammatory drugs, but these drugs could
not prevent the development of the inflammatory polyarthri-
tis. In the 50 mg group similar though less severe toxicity
was seen. Two out of three patients in this group did not com-
plete the 8-week study period because of early progression,
so no reliable recommendations could be made about the
optimal dose for further studies.

Trying to find evidence of biological activity based on
endoscopic appearance and tumor histology, marimastat was
also studied in patients with advanced gastric or gastro-
esophageal cancer [48]. Initially 50 mg twice daily was used
based on data of the healthy volunteers study. After five out
of six patients developed side effects (gastrointestinal or mus-
culoskeletal), and based on pharmacokinetic data from this
and other studies, it was decided to continue the study using a
lower dose of 25 mg once daily in 29 additional patients.
Again the principal side effect was related to the muscu-
loskeletal system. Eventually 37% of the patients experienced
this reversible side effect, the frequency of which increased
following prolonged therapy. Additionally, in four patients
using marimastat for more than 3 months, a subcutaneous
skin thickening of the palmar surface of the hands resembling
Dupuytren’s disease developed. These side effects were also
reversible to a large extent. Activity of the drug, studied by
endoscopic changes of the tumor with respect to hemorrhage,
fibrous cover, and tumor size, showed a definite increase in
fibrous cover in three of six patients in the 50 mg twice daily
group and 7 of 29 of the patients in the 25 mg once daily
group. Although in three patients an endoscopic reduction in
tumor size was suggested, this should be interpreted with cau-
tion given the difficulties of endoscopic response assessment.
Microscopic assessment of tumor tissue samples did not show
major histological changes after 28 days of treatment in all but
two patients where an increase in fibrous stroma was seen.

AG3340 is a selective inhibitor of MMP-2, MMP-3,
MMP-9, MMP-13, and MMP-14, but not MMP-1 (collage-
nase-1) thought to be associated with the joint-related toxic-
ities. In a phase I study doses from 2 to 100 mg orally twice
daily were studied [49]. Reversible joint-related complaints

typically beginning in the shoulders, knees, or hands
occurred in a dose- and time-dependent manner. Symptoms
were manageable with a drug holiday of 2-4 weeks and a
subsequent dose reduction. Drug holidays were necessary in
a significant number of patients using doses of 25 mg twice
daily and higher for more than 4 weeks. Preliminary data
showed that AG3340 was rapidly absorbed and pharmaco-
kinetics were linear with a plasma half-life (t1/2) of 2-3
hours. Plasma levels reached were in the active dose range
determined in preclinical tumor models [50].

BAY 12-9566 is an orally bioavailable biphenyl com-
pound with inhibitory activity against MMP-2, MMP-3, and
MMP-9. In preclinical studies, growth inhibitory activity and
reduction in the number of metastases were shown in various
tumor models, with elevation of transaminase levels and mild
depression of erythropoiesis as the principal toxic effects in
animals [51-54]. Four phase I studies including a total of 89
patients have been performed [55-59]. Dose levels studied
ranged from 100-1,600 mg/day. The main dose-related toxi-
cities were mild anemia and thrombocytopenia, elevated
transaminase levels, and occasionally reversible bilirubin
elevations. Other toxicities were mild nausea and vomiting,
fatigue, and headache. Musculoskeletal effects did not occur.
Pharmacokinetic analysis showed a rapid absorption and a
less-than-proportionate increase in plasma steady-state levels
(Css) with doses exceeding 100 mg/day suggesting saturable
drug absorption. Since Css levels seemed to reach a plateau at
the higher dose levels (Css 122 µg/ml at doses of 1,600
mg/day), which exceeded biologically active concentrations
by at least two or three orders of magnitude, no further dose
escalation was performed and therefore the maximum toler-
ated dose could not be determined. Despite achieving rele-
vant plasma concentrations, no consistent effects were found
on plasma levels of MMP-2 and MMP-9. For TIMP-2 levels
a small increase was found in the higher dose range [59].
Also, for other surrogate markers, like plasma levels of
VEGF, bFGF, and urinary pyridinoline and deoxypyridoline
cross-links, no obvious relationship with dosing was found
[56]. With regard to efficacy, no responses were reported, but
about one-third of the patients remained in the study for more
than 3 months and about 6% of patients were studied for
more than 1 year. Based on the results of these four phase I
studies, the recommended dose for further studies is 800 mg
twice daily.

MMI270 (previously CGS27023A) is an orally bioavail-
able broad spectrum synthetic hydroxamic acid derivative
able to inhibit a wide range of MMPs at nanomolar concen-
trations in vitro (MMP-1, MMP-2, MMP-3, MMP-9, and
MMP-13). Reduced tumor growth in a breast and endometrial
rat tumor model and inhibition of hematogenic metastasis of
B16 melanoma cells in an experimental and spontaneous
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metastasis model were seen [60, 61]. In a phase I study with
doses ranging from 50 mg once daily to 600 mg three times
daily the main toxicities were a self-limiting maculopapular
rash at higher dose levels and mild to moderate myalgia and
arthralgia that were not dose related [62]. The recommended
phase II dose was determined to be 300 mg twice daily, as at
higher dose levels a marked increase in both incidence and
severity of rash were seen. Pharmacokinetic analysis showed
a rapid absorption and rapid elimination from the plasma with
a t1/2 of 1.6 hours. At the recommended dose the plasma lev-
els of MMI270 were ≥5 times IC50 of the target MMPs for
more than 10 hours a day.

COL-3 is an orally available tetracycline analogue.
Unlike the other MMPIs, tetracycline derivatives not only
inhibit collagenase activity but also downregulate its pro-
duction, inhibit its activation, and increase the degradation
of the proenzyme. A phase I study was performed with
doses escalating from 36 mg to 98 mg/m2/day [19].
Cutaneous phototoxicity was dose limiting and occurred
already at the first dose level. With sun avoidance, protec-
tive clothing, and the prophylactic use of sunblock, the max-
imum tolerated dose (MTD) was 70 mg/m2/day. Three out
of 35 patients developed a drug-induced systemic lupus ery-
thematosus with arthralgia and fever. In four patients there
was unexplained anemia, while bone marrow examinations
in three of these patients revealed ringed sideroblasts. Other
toxicities included fatigue, anorexia, nausea, vomiting, and
elevated liver enzymes. Pharmacokinetic analysis revealed
that peak plasma levels (Cmax) were reached after a median
of 6 hours and that in the higher dose ranges the increase in
Cmax was not dose proportional suggesting a saturable
absorption. The median single-dose t1/2 of 56 hours could
potentially lead to accumulation. No information was given
about trough levels throughout the study. Three patients, all
with a nonepithelial malignancy, had stable disease for more
than 6 months. The authors recommend a dose of 36 mg/m2

for further studies and higher doses when diligent sun pre-
cautions are used. In another study with COL-3, preliminary
results indicate an MTD of 50 mg/m2/day, with photosensi-
tivity of the skin and asthenia as principal toxicities [63]. In
addition, it was found that plasma MMP-2 and MMP-9 lev-
els were considerably decreased in a number of patients, pos-
sibly reflecting a decreased production, since in peripheral
blood mononuclear cells the expression of MMP-9 was also
decreased. The recommended doses of both studies yielded
COL-3 plasma concentrations within the dose that in pre-
clinical models resulted in growth inhibition of primary and
metastatic tumors [64]. At this moment a phase I/II study
with COL-3 is ongoing in patients with high grade gliomas.

BMS-275291 is a novel orally available nonhydroxam-
ate MMPI with potent inhibitory activity against MMP-2

and MMP-9, which in an animal model did not cause joint-
related toxicity [65]. In a double-blind placebo-controlled
study with healthy volunteers using doses from 150 to
1,200 mg once daily for 14 days, the agent was very well
tolerated and no dose-limiting toxicity was found [66]. A
phase I study was performed in 44 patients with advanced
cancer with doses from 600 to 2,400 mg once daily [67, 68].
Again the agent was well tolerated and a maximum toler-
ated dose was not reached. Grade 1 and 2 arthralgia and
myalgia were seen in a significant number of patients, but
no frank arthritis and only one case of grade 2 tenosynovi-
tis was observed. Based on pharmacokinetic data, showing
trough levels at steady state at least 20-fold the IC50 values
for MMP-2 and MMP-9 at a dose of 1,200 mg once daily,
this dose was recommended for further clinical studies.

Phase I Studies of MMPIs in Combination with
Chemotherapy

As MMPIs should be regarded as cytostatic drugs that
inhibit tumor growth but do not induce tumor regressions, it is
theoretically attractive to combine MMPIs with cytotoxic reg-
imens to augment their effectiveness. In preclinical models
MMPIs were shown to have synergistic activity with cytotoxic
regimens [27, 31-34]. Several phase I studies have been per-
formed combining a wide range of commonly used cytotoxic
regimens with several MMPIs (Table 4). Marimastat was
tested in a number of phase I studies using doses varying from
2-20 mg twice daily, which is within the range of the recom-
mended dose for further evaluation determined in single-agent
studies. In general, the combinations were well tolerated
without indication of additional toxicity. Of some concern
are pharmacokinetic data from a study combining carbo-
platin and paclitaxel with marimastat 10 or 20 mg twice
daily, which show trough levels of marimastat of 19.2 and 61
ng/ml that are substantially lower than in the single-agent
studies and which for the 10 mg twice daily group are below
the target trough levels of 40 ng/ml [73].

AG3340 25 mg twice daily was tested in combination
with carboplatin/paclitaxel in patients with advanced
tumors and with mitoxantrone/prednisone in patients with
hormone refractory prostate cancer [75, 76]. In both studies
the combination seemed safe and well tolerated, but no
pharmacokinetic data were given.

BAY 12-9566 was tested in a number of phase I studies in
combination with carboplatin/paclitaxel, 5-fluorouracil (5-
FU)/folinic acid, carboplatin/etoposide, and doxorubicin/doc-
etaxel [77-80]. Preliminary data suggest that, in general,
toxicity of these combinations is acceptable and that no signif-
icant pharmacological interactions occur. In the study with 5-
FU 350 mg/m2 and folinic acid 20 mg/m2 × 5 days q 28 days
with BAY 12-9566 starting on day 13, 400 mg twice daily was
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well tolerated, while 800 mg twice daily, the recommended
dose in single-agent studies, was not feasible due to occurrence
of grade 2/3 thrombocytopenia.

MMI270 was also tested in combination with 5-
FU/folinic acid administered according to the Gramont
scheme [81]. MMI270 was added from the second cycle
onward. At 300 mg twice daily, preliminary pharmacokinetic
analysis did not indicate a marked effect of MMI270 on 5-
FU levels. The toxicity related to MMI270 was comparable
with the toxicity seen in the single-agent study.

Phase II/III Studies with MMPIs
Two randomized phase II studies with marimastat have

been performed in patients with pancreatic carcinoma and
malignant melanoma, respectively, but mature results from
these studies have not yet been published [82, 83]. A random-
ized phase II study in patients with glioblastoma multiforme
comparing oral temozolomide from day 1-5 every 28 days plus
AG3340 or placebo daily until unacceptable toxicity or disease
progression is ongoing.

Randomized phase III studies with MMPIs have been
performed in a range of tumor types and a range of strategies
[7]. In general, phase III study strategies include those com-
paring an MMPI with conventional cytotoxic chemotherapy,
those comparing chemotherapy with an MMPI versus
chemotherapy alone, and those comparing an MMPI with
placebo in patients with minimal residual disease.

In 369 patients with inoperable gastric cancer, marimastat
10 mg twice daily was compared with placebo [84]. Pretreat-
ment with chemotherapy was allowed if patients had
responded or had stable disease. Progression-free survival
was significantly increased in the patients using marimastat,
but overall survival was not improved. In subgroups of
patients with prior chemotherapy and of patients without 

distant metastases, overall survival was significantly better in
the marimastat-treated group. About 10% of the patients in
the marimastat group stopped their treatment due to side
effects, mostly musculoskeletal complaints. This study is cur-
rently the only one suggesting a benefit of an MMPI, but one
must realize that this suggestion is only based on subgroup
analysis in small cohorts of patients.

In patients with advanced pancreatic cancer, marimastat
(5, 10, or 25 mg twice daily) was tested as first-line treat-
ment and compared with gemcitabine 1,000 mg/m2 weekly
for 7 out of 8 weeks [85]. Time to progression and overall
survival were significantly better in the gemcitabine group,
with no major differences in the marimastat subgroups.
Therefore, there is no reason to suggest that the difference
was caused by subtherapeutic marimastat dose levels.
Preliminary data from a randomized trial testing the addition
of marimastat 20 mg twice daily to gemcitabine in 239
patients with advanced pancreatic cancer without prior
chemotherapy did not show an advantage of the combina-
tion in terms of survival, time to progression, and quality of
life. A study comparing marimastat with placebo in an adju-
vant setting in patients after surgery for pancreatic cancer is
currently ongoing. A randomized study comparing marima-
stat 10 mg twice daily with placebo in patients with glioblas-
toma multiforme or gliosarcoma following completion of
surgery and radiotherapy did not show a survival benefit for
the marimastat group [86]. In addition, studies with mari-
mastat are being performed in other tumor types with mini-
mal disease, for example, non-small cell lung cancer
(NSCLC) stage IIIA/IIIB with minimal disease after optimal
cytoreductive treatment, small cell lung cancer in partial or
complete remission after first-line chemotherapy, and
metastatic breast cancer with stable disease or response after
first-line chemotherapy.

Table 4. Phase I/II studies combining MMPIs with cytotoxic drugs

MMPI [reference] Schedule of MMPI* Cytotoxic regimen Tumor type Patient n

Marimastat [69] 10 mg bid Doxorubicin/cyclophosphamide Breast 9
Marimastat [70] 5-10 mg bid 5-Fluorouracil continuous/bolus All 13
Marimastat [71] 2-20 mg bid Carboplatin Ovarian 31
Marimastat [72] 5-20 mg bid Gemcitabine Pancreatic 31
Marimastat [73] 10-20 mg bid Paclitaxel/carboplatin NSCLC 22
Marimastat [74] 20 mg bid Doxorubicin/docetaxel Breast 11

AG3340 [75] 25 mg bid Paclitaxel/carboplatin All 15
AG3340 [76] 25 mg bid Mitoxantrone/prednisone Prostate 15

BAY 12-9566 [77] 800 mg bid Paclitaxel/carboplatin 19
BAY 12-9566 [78] 400-800 mg bid 5-Fluorouracil/folinic acid 17
BAY 12-9566 [79] 400 mg od-400 mg bid Doxorubicin/docetaxel All 7
BAY 12-9566 [80] 800 mg bid Carboplatin/etoposide All 8

MMI270 [81] 150 mg tds-300 mg bid 5-Fluorouracil/folinic acid Colorectal 18

*Oral intake for all MMPIs. Abbreviations: od = once daily; bid = twice daily; tds = three times daily.
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Two large phase III studies are currently ongoing in
patients with NSCLC (686 patients) and hormone refractory
prostate cancer (553 patients) studying the addition of
AG3340 (5, 10, or 15 mg bid) or placebo to a regimen of car-
boplatin/paclitaxel or mitoxantrone/prednisone respectively
[87, 88]. Interim results of both studies, including the major-
ity of the included patients, thus far revealed no differences
in response rate, progression-free survival, or overall survival
in the treatment arms.

BAY 12-9566 was tested in several phase III trials in
which this MMPI was compared with placebo in patients
with small cell lung cancer, NSCLC, and ovarian cancer with
partial or complete remission after primary treatment. An
interim analysis of the study in patients with small cell lung
cancer showed inferior survival in the patients treated with
BAY 12-9566 [89]. In another phase III trial BAY 12-9566
was compared with gemcitabine in patients with advanced
pancreatic carcinoma [90]. An interim analysis, after includ-
ing 277 patients, showed inferior progression-free survival
and overall survival in the BAY 12-9566 group, after which
the accrual has been closed. Based on these negative results,
clinical development of BAY 12-9566 has been suspended.

Several other compounds like BMS-275291 and AE-
941 have entered phase III trials, but it is too early to report
on any data.

DISCUSSION

The important role of MMPs in the process of tumor
growth and metastasis has led to the development of specific
inhibitors of these enzymes. Several of these inhibitors have
entered clinical trials, and results of these studies have recently
been presented. Results from preclinical studies and the cur-
rently available data from clinical studies make clear that
MMPIs will have to be regarded as antiproliferative instead of
cytotoxic agents. The development of clinical trials that can
optimally assess the role of these new agents forms a major
challenge for oncologists, similar to the situation of angio-
genesis inhibitors, farnesyl transferase inhibitors, and tyrosine
kinase inhibitors [91]. In contrast to cytotoxic agents, where
phase I studies are being performed to define dose-limiting
toxicities (DLTs) and to determine the recommended dose for
phase II studies, defining the recommended dose for antipro-
liferative or cytostatic agents is more complicated because
often DLTs do not occur. As cytostatic agents will have to be
administered for prolonged periods of time in order to exert
optimal antitumor activity, knowledge of toxicities following
this prolonged administration is important for defining an
optimal dose. Furthermore, as some cytostatic agents are
completely devoid of side effects, it might not even be possi-
ble at all to define one single recommended phase II dose, and
instead the optimal biological effective dose must be defined

based on other endpoints. Examples of these endpoints are
threshold plasma levels known to inhibit tumor growth in
preclinical models, threshold plasma levels exceeding IC50 of
target MMPs, or inhibition of target enzymes within tumors.
The last option is often practically impossible since this
requires multiple tumor biopsies. Measurement of MMP lev-
els in plasma and other body fluids can give insight into the
activity of the MMPI, but thus far such correlative studies
have been disappointing [47, 59]. Perhaps this is reflecting
the fact that MMPIs in general inhibit enzyme activity rather
than their secretion. Measurement of surrogate markers of
target inhibition can also give insight into biological activity,
for example, changes in tumor marker levels (CEA, CA 15.3,
CA 19.9, and PSA) or changes in blood flow assessed by
positron emission tomography scanning or dynamic mag-
netic resonance imaging. However, these methods have not
yet been validated.

Classic single-agent phase II studies using tumor regres-
sion as an endpoint of activity will almost certainly lead to
underestimation of potential antitumor activity of cytostatic
agents. Therefore, in order to select agents for further testing
in large randomized phase III trials, it may make sense to
perform properly designed phase II trials that should prefer-
ably be randomized [92]. In these studies tumor regression
should be replaced by surrogate endpoints of antitumor
activity, for example, time to progression, tumor marker
inhibition, and survival rate at a certain predefined time-
point. In order to avoid a bias in patient selection, the study
design should be randomized, for example, using the “ran-
domized discontinuation” design, in which all included
patients are being treated with the cytostatic agent for a pre-
defined period of time. Patients not showing disease pro-
gression during or at the end of this period could then be
randomized to either continue treatment or to receive no
drug or placebo. Although these trials can never be powered
to detect significant differences, performing them could pre-
vent too early rejection of a potentially active agent or pre-
vent performing large, time-consuming phase III trials with
inactive agents. Until now, no results of such randomized
phase II trials with MMPIs have been published.

As mentioned, the results of the few randomized phase
III trials with MMPIs that have been presented so far are dis-
appointing. However, in view of the mechanisms of action of
MMPIs one can argue whether the patient population studied
is the most likely to benefit from growth inhibitory and anti-
invasive agents such as MMPIs. Usually patients in these
kinds of studies have a large tumor load, often with multiple
metastases. Therefore, a more realistic approach should be to
perform studies with MMPIs in patients in whom the tumor
load has been optimally reduced either following surgery or
optimal cytoreductive, cytotoxic treatment. Such an adjuvant
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study using marimastat in optimally operated pancreatic
carcinoma is currently ongoing.

In these situations, once again, one has to bear in mind,
however, that toxicity occurring after prolonged periods of
drug administration becomes important and thus, even tox-
icity regarded as mild in studies with only short-lasting drug
administration can turn into a serious problem following
prolonged treatment.

One of the most intriguing toxicities related to treatment
with MMPIs is musculoskeletal toxicity. The clinical spectrum
varies from mild myalgia and arthralgia to frank tendonitis and
arthritis. This toxicity occurs in almost all broad-spectrum
MMPIs especially after a prolonged period of treatment, with
symptoms occurring earlier and being more severe at the
higher dose ranges, although in the study with MMI270 mus-
culoskeletal complaints were dose independent [62]. It is sug-
gested that inhibition of MMP-1 is associated with the
joint-related problems and therefore MMPIs that do not inhibit
MMP-1 have been developed. BAY 12-9566 is such an
MMPI, and in clinical studies with this compound indeed no
musculoskeletal side effects were seen, whereas with AG3340,
which only inhibits MMP-1 in the nanomolar range compared
with inhibition of other MMPs in the picomolar range, muscu-
loskeletal toxicity was only seen at the higher dose levels. The
exact role of MMP-1 in the pathogenesis of the musculoskele-
tal side effects is still a matter of debate. Another possible
explanation for the differences in musculoskeletal side effects
reported could be the differences in inhibition of tumor necro-
sis factor-α (TNF-α)-converting enzyme (TACE), an enzyme
belonging to the reprolysin family of Zn2+ metalloproteinases.
TACE acts as a sheddase and is held responsible for the release

of soluble TNF-α from its membrane-bound precursors, while
TNF-α is associated with inflammatory arthritis [93]. In an
animal tendinitis model it was found that a broad spectrum
MMPI with anti-sheddase activity was active in a mouse B16
melanoma model without inducing a tendinitis, while a com-
parable broad-spectrum MMPI without anti-sheddase activity
was also active in the cancer model but did induce develop-
ment of tendinitis [94]. In the same experiments it was shown
that small spectrum MMPIs did not cause development of ten-
dinitis but were not active either in reducing tumor growth.
Although these findings may not be generalized, these data
show that changes in MMP specificity can influence antitumor
effects and toxicity profile and that, therefore, further research
is needed to characterize the exact role of individual MMPs in
different tumor types.

CONCLUSION

The recognition of the concept of MMPs being involved
in the process of tumor growth and metastasis and the subse-
quent development of a large number of agents able to inhibit
the enzyme activity has led to the evaluation of several of
these new agents in early clinical trials and randomized clin-
ical trials for which the first results are now available. The
initial enthusiasm on the possible use of MMPIs in the treat-
ment of cancer has clearly been dampened. We seem to be in
a period of considerable concern whether a balance between
required activity and avoidance of toxicity, based on focused
targeting of specific MMPIs, can ever be achieved. We believe
that the concept of MMPIs is too intriguing to completely
reject their development, but that at the current stage focus
should again be on preclinical research.
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