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Abstract

We have compared three graphica design techniques, OMT, ADL, and PARSE,
on their suitability for the development of parallel/distributed applications. Our
method has been to use all three of them in modeling one, existing, application:
a backup facility running within the Andrew File System as described in [2].
We compare and analyze the outcomes on a number of important design aspects.
Based onthis, wedraw conclusionson each individual technique and on graphical
design techniques for parallel/distributed software in general.

1 Introduction

With the increasing availability of hardware platforms, suitableto run parallel, distri-
buted software, we can expect to observe an increase in the production of this kind
of software. One obstacle to thisis, that its development is found to be much more
complex than that of ‘conventional’ software: sharing of resources, replication, com-
muni cationin absence of shared memory, etc. al add to the complexity of (thedynamic
behavior of) software components. Graphical design techniques, having proved their
value in the development of conventional software, seem to be an answer.

A well-known one is the Object Modeling Technique (oMT) by Rumbaugh et al.
[8]. Because this method is object-oriented, it could be argued that, through the
natural concurrency of objects, it would be fit for parallel, distributed software as
well. However, it is the question how well oMT deas with the communication and
synchronizationissuesthat are so importantin parallel, distributed application: perhaps
OMT needs some adaptations here.

Our approach to seeif thisisthe case, isavery pragmatic one. Wetake an existing
problem, we consider anumber of graphica modeling techniques (among which omT),
and apply all of them to this problem. After that, we analyze the differences between
the outcomes, and see if we can pinpoint some of the methods' weaknesses or strong
pointswith regard to parallelism and distributed-ness.

Of course, we want the testcase to be agood discriminator, i.e. it must be complex
enough to highlight the differences in the examined methods. On the other hand, it
should be simple enough to render three models that are somehow comparable. One
application that seems to have these propertiesis a backup facility in the Andrew File
System (AFs), which has been described and implemented by Gorlen et . [2]. In the
next two sections, we will describe the essential features of the AFs and of this backup
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application. We will illustrate the workings of the application by giving an outline
of Gorlen's implementation. In our own models we will for the greater part adopt
Gorlen's approach with a few modifications, which we explain below.

In Section 4, we will list some aspects of the application, which are of specia
interest to us. Distributed-nessand parallelism will play an important role here.

Then, in sections 5, 6 and 7, we model the application using our three modeling
techniques, which areomT (Object Modeing Technique) [8], ADL (Application Design
Language) [11, 10, 9], and PARSE (PARallel Software Engineering) [3, 4]. About these
methods we can aready say that oMT is explicitly object-oriented, PARSE primarily
designsin terms of communication flow diagrams, and ADL combinessimilar diagrams
with state transition diagrams (STDS) per process. All this, however, renders a very
unsubtle classification, and we will try to do all of the methods more justice in the
course of thisreport.

In Section 8, we compare the resulting models and analyze their differences. We
then draw our conclusions, being alist of positive and negative properties of all three
techniquesfollowing from our experiences, and suggestionsfor combinationsof strong
points.

We would like to emphasi ze that we do not need very detailed models to compare
our three techniques. All three techniques are, from some point onwards, based on
refinement of models using decomposition and textual additions. Thus, we can keep
the diagrams that we produce at afairly high leve of abstraction.

Also, it may well bepossiblethat therearevariouswaysof modeling thisapplication
and till getting it to work correctly. However, our primary intention was to come up
with three model sthat were somehow comparable, while still showingwhere the three
techniques differ. The adopted solution seems the best to usin this respect.

2 Theafs

As was mentioned before, our application is based on a case study in [2]. Here, the
requirements specifications are given for a backup system within the Andrew File
System (AFS) [6]. The AFs isadistributed file system based on the caching of files on
harddisksof workstations. Globally, the organizationisasfollows: client workstations
are grouped in clusters, each of which is assigned a file server, which is, in turn,
connected to other file servers. Whenever a process on a client workstation opens a
file, the system makes sure that alocal copy of thefileis present on the workstation’s
local harddisk. Subseguent reads and writes are then performed on thislocal copy. On
closing, thefileis copied back onto thefile server’s harddisk. Thisscheme isentirely
transparent to the user.

In the AFs, the notion of a volume exists, which is globally a (part of a) directory
tree, that can be manipulated as a whole. We have, for example, one volume per
user, containing the entire set of files of a user. Now, the AFs includes a number of
volume-based operations. One of these concerns the possibility of copying volumes
from onefile server to another in one atomic operation. In order to accomplish this, the
possibility exists to produce a read-only snapshot of avolume, called a clonevolume.
It isthiskind of volumethat is used by our backup application.

To our application, the volume-aspect and the fact, that we have a number of file




servers, each managing a group of volumes, is most important. Therefore, we will
not go any deeper into the specifics of the AFs than necessary. For a more complete
description we refer to [6].

3 TheBackup Application

In essence, our application is expected to do al kinds of backups (weekly, monthly,
full, incremental) of volumes to tape. Besidesthat, it should, of course, keep track of
where volumes are backed up. Therefore, it also updates a databases containing this
information.

Now, Gorlen et a. have already modeled and implemented the systemin an object-
oriented way, without using (we conclude thisfrom the book) aformal design method.
Their approach seems to be based on the application’s functionality itself aswell as on
the existence of the NIH class library, which is a C++ library of object-classes with,
among others, varioustypes of data containers and light-weight process-classes. Here,
we will give a short description of the outcome.

The application Gorlen developed utilizes a database in which backup requests
of various kinds are placed by the request manager object. This request manager
determines for each volume what its backup stateis, and subsequently which backup
is to be performed next. The backup requests are distributed by the request manager
over severa server managers (one server manager per file server).

A server manager receives the reguests for those volumes that reside on the file
server that it is attached to. Server managers prepare the backup activities to be
performed. Thisimplies, among others, the reserving of astaging disk for the backup
requests of afile server. The staging disk isused as abuffer storagefor volumes before
they are copied onto tape.

When a staging disk is available, a server manager will passit on, along with its
reguests, to a backup manager, who performs the actual staging and taping. In order
to perform the taping, it is also necessary to reserve a tgpe drive. During the staging
and taping, the backup manager will hold on to both staging disk and tape drive.
Afterwards, these resources are rel eased.

In the mean time, a database is maintained, which records where volumes are
backed up, and what the backup state of each volumeis. Every timeabackup operation
completes, the database is updated.

In our models, which will start in Section 5, we have only diverged from this
approach in two ways:

o Firstly, we have transferred the reservation of atape driveto an earlier stage. It
will be done by the server manager (or an equivalent process).

¢ Secondly, we have modeled the ‘managers’ as non-terminating, i.e. they iterate
over some sequence of actions continuously. This means that we have various
parts of the system wait for events to happen, after which they become active:
they are not started up explicitly.

Both modeling decisions were taken to come up with easy to understand, comparable
modelsin al three techniques.



4 Our Interests

Now that we know what our application is expected to do, we can identify the aspects
that are particularly interesting to us. Naturaly, these all have to do with the parallel,
distributed nature of this application. At thisstage, we can directly identify three such

aspects:

e The backup requests, in Gorlen's implementation generated by the request
manager, will ultimately set the file servers in the AFs to work. Now, in or-
der to improve performance, it appears [2] that a file server should only be
handling one request a a time. This implies that requests should be handed
to the file servers in a controlled manner: some form of synchronization or
sequencing is required.

e Backing up a volume is done in two steps. First, volumes are copied onto a
staging disk, and from there onto tape. During this entire operation, the staging
disk and the tape drive should be dedicated to this backupreguest only. In other
words, exclusive access to the staging disk is required throughout the operation.
Thisimplies more synchronization.

¢ While backing up volumes, a common database has to be maintained, part of
which describeswhi ch backup volumeresideswhere, and part of which describes
what the backup state of each volumeis. Both parts are updated by the backup
managers, several of which can be activeat any time. So, again, synchronization

iS necessary.

Thecomplexity of all thissynchronization, together with the passing of information
(requests, staging disks, tape drives) between the application’s components, calls out
for abstraction, which, in our case, will be mostly graphical. In the next sections, we
will model our application using the techniques of OMT, ADL, and PARSE.

5 OMT

5.1 Introduction

Our first modeling technigqueisomT (Object Modeling Technique), an object-oriented
design method which combines an enhanced entity-relation diagram of objects (the
object model) in the application with anumber of sTDs (one for each object) and some
dataflow diagrams (DFDS) of processesthat can be distinguishedwithintheapplication’s
functionality.

Theobject model describesstaticinformation onan application. In an object model
weseewhat an applicationconsistsof. Itisthemost important model inomT. ThesTDs
describe the dynamic behaviour of objects, and provide operationsto the abjects. The
DFDs provide us with afunctiona overview of the application, and provide operations
aswell.

Using oMmT, a designer starts with identifying objects from the requirements spe-
cifications. By identifying the relations between these objects, a global object model
can be produced. Then, in a process of constant iteration, this model is adapted and
refined right to the point where we have an actual program which can be compiled and
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run. Thisrefining is supported by the other two oMT diagramming techniques, which
provide objects with operations and which also provide the designer with a new look
on inter-object relations.

Inthissection,wewill first ook at the global object model of the AFs, theapplication
domain. Then, weintroduce the objects that are specific to our applicationin a second
object model. After that we will consider the most important STDs in the dynamic
model and the DFDs in the functional model.

5.2 The Object Modél
Notation

In theentity-relation diagram, objectsare given by rectanglesin which the object class
characteristicsarelisted. Relationsare denoted by |abeled lines between object classes.
The multiplicity of one side of arelation is indicated by open dots (zero or one), or
closed dots (zero or more). The default is one. Other notations we will use in our
diagramswill bediscussed |later on. However, not all symbolsavailablein oMT will be
used. An overview of the entire set of notational possibilities can of course be found
in[8].

Global object diagram

Our first object model is given in Figure 1, and provides an overview of the essentia
objectsinthe AFs and therelations between them. In the upper part of the diagram, the
meaning of the used symbolsisgiven.

Globally, the diagram can be divided into four parts: the user part, thefile part, the
hardware part, and the volume part. We will describe each of them separately:

user objects On thelower right of the figure the user objects are given. Here we see
that a user can run multiple processes, served by the same server stub. This
stub handles the open and cl ose calls of user processes; it makes sure that
the corresponding files are copied from the file server to the local harddisk and
viceversa. Thisisaccomplished by communication with the file server, serving
the corresponding cluster. The file serversin the AFs run a system called vice,
which enables them to communicate with each other and with their clients, in
order to providefor the right volumes at the right places.

From the relation between users and client stations, we can seethat users can be
logged in on several machines at the same time, and that several users can use
the same machine simultaneously.

file objects Theupper right part of the diagram describesthe objects concerningfilesin
the AFs. Here, we seethat of every file thereisaprimary copy (residing at some
file server) which can be cached at several workstations' local harddisks. On
some of these copiesacallback existswhichimpliesthat the copy is* recognized’
by thefileserver. Thelatter will then notify the clientinthe case of certain events.
We see, that not dl local copies have callbacks. Thisisindicated by the subset
constraint.
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Figure 1: Global object diagram of the application domain




The global cache state of a primary copy describes where it is cached, and is
maintained by the file server. The local cache state is maintained by the client
stubs, and contains information on, for example, callbacks. Global and local
cache state are objects describing relations. Therefore, they are called link
attributes.

hardware In our diagram, we distinguish three different machines: the file servers,
the staging machines, and the client workstations. Each of these contains one
or severa harddisks. Every file server machine handles the file operations of a
cluster of client workstations.

volumes AFS volumes come in three kinds: primary volumes, which reside on afile
server’s harddisk; clone volumes, which reside there as well, but which are
also copied on staging machines’ harddisks in the backup process; and backup
volumes, which reside on tapes. Therelation between clonevolumesand backup
volumes gives us the backup state, describing how a volume is backed up (full,
incremental, weekly, etc.). The relation between backup volumes and their tapes
gives us the storage state, specifying where avolume is backed up.

Two symbolsappearing inthemodel havenot been described yet: thespecialization
and the aggregation. Specializations are denoted by triangles. They indicate an ‘is
a relation, eg. adisk is aserver disk, a staging disk, or a user disk. Aggregations,
represented by diamonds, describe ‘part of’ relations: a primary file is a part of a
volume.

Application specific objects

So far, we have just modeled the application domain in terms of objects. Of course,
this is not enough to model the entire application. What we need is a set of objects
implementing the activities described before. To be more specific, we need objectsto
carry out the process of building a backup request table, of scheduling the requeststo
be performed, of synchronization among processes to make correct and efficient use
of resources such as tapes, staging disks and file servers, and of performing the actual
staging and backing up. Furthermore, we need objectsto contain the data used by the
above operations.

Let’'sfirst look at the objects we need and how they fit in our model so far. Their
placement can be observed from Figure 2. From this figure, we have, for clarity,
stripped some objects and relations that we consider not entirely relevant for our
application: most importantly, the ‘user part’ has been left out.

As one can see from this figure, we have introduced a number of object classes
specific for our application. Firstly, we need server managers. They shield afileserver
from concurrent read requests for different staging operations. This ([2]) appears to
be necessary from an efficiency point of view: concurrent read requests are bad for
performance.

One instance of the server manager object class is associated to each file server.
Each server manager getsitsown local request table, consisting of requestsfor backups
of volumes that reside at its corresponding file server.
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There are two more object classes besides file servers with respect to which other
objectswill haveto synchronize. These are the staging disksand the tapedrives. They
can be involved in only one backup ‘operation’ at atime. To this end, they will be
reserved by a server manager for the time needed to process the backup requests of
the server manager. In our diagram the available disks and drives are put into bags.
Associated with abag isamanager object responsiblefor the distribution of resources
over waiting clients, in this case, the server managers.

Theactua staging and taping of volumesis performed by abackup manager, which
also updates the backup and storage states of the backed up volumes. These states are
saved in the backup and storage state tables, residing on some file server machine's
harddisk. After a backup manager has processed its backup request table, it releases
the staging disk and tape drive that were reserved for it.

5.3 TheDynamic Mode
Notation

In the oMT the dynamic behaviour of an application is specified on an aobject class
basis by sTDs in the form of state charts ([5]). The diagramming technique includes
symbols for states (rounded boxes) and transitions (arrows between boxes). Usualy,
transitionsfrom one state to another are triggered by internal or external events, which
appear in text near the arrows. Other notationswill be discussed after the application’s
diagrams.

States of objects, in which the object is performing some activity, can often be
decomposed into a collection of substates with transitionsin between them. Thiscan
be very easily donein omT, globally, by making sure that the incoming and outgoing
transitions of the subdiagram of a state match those of the original diagram.

In this paper, we will only consider three ‘manager objects': the request manager,
the backup manager and the server manager, for they display the most interesting
behaviour. Decompositionsof states will not be shown. The subject of decomposition
will come up again in PARSE, whereit is most important.

The request manager

The dynamic behaviour of the request manager can be observed from Figure 3. The
righthand-sideof the diagram givesan inventory of used symbols. Globally, the request
manager actsasfollows: first, the backup request tableis constructed from the existing
volumesin the system and the backup state table. After that, the server managers are
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provided with the backup requestsfor their corresponding file servers. Thisismodeled
by a so-called external event, send requests, to the server manager class. An externa
event isan event triggered by one object class, and affecting another object class. Itis
denoted by a dashed, labeled arrow to the receiving object.

Finally, the request manager sleepsfor some time and returns to the state where it
builds up a new request table.

The server manager

The dynamic behaviour of aserver manager isgivenin Figure4. It startsout by waiting
for itslocal request tableto arrive from the request manager. Notice, that theincoming
event receive requests correspondswith the external event send requestsby the request
manager. Hence, we have modeled communication between these two classes.

When thelocal request table arrives, a server manager enqueuesitself towait for a
staging disk and atapedrive. Tothisend, it will generate external eventsto the staging
disk manager and the tape drive manager, who manage the resource bags.

When staging disk and tape drive are both available, the server manager will pass
them on to the backup manager, together with itslocal request table.

The backup manager

The most interesting dynamic behaviour comes from the backup managers in the
system. It can be seenin Figure 5. Assoon asdata(i.e. thelocal request table) comes
in, the backup manager will get the first backup request and start staging. Then it
proceeds with the next and so on, until either the staging disk is full or there are no
more requests. In either case, the taping begins. After performing al the required
backups, the backup manager will update the database containing the backup data and
release the staging disk and the tape drive. External eventswill be sent to the resource
managers (the disk and drive are returned).

Obvioudly, after taping some volumes, a backup manager will only resume staging
if there are still some requestsleft. So, if taping has succeeded, we have a conditional
transition either to staging or to updating. This is denoted by a statement between
square brackets over the event name (e.g. the condition ‘ no more requests’).
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5.4 TheFunctional Modd
Notation

Thefunctiona mode in oMT consists of diagrams specifying the flow of data between
processes within the application. In these models, a process is denoted by an dlipsis,
while a dataflow is represented by an arrow with alabel indicating the sort of data that
‘flows’. Often, datais obtained from, or sent to, an object where no further processing
isdone. For thiswe usethe normal object notation (i.e. arectangular box). Also, there
are entitieswhich merely serveto store dataand intermediate results, the so-called data
stores. These are denoted by two horizontal lineswith the data store’s name in between
them. Examples of these are typically files and other containers such as lists/tables.

Global functional model

For now, we will only consider a very high-level DFD. Later on we will discuss the
problems with its refinement. The diagram is given in Figure 6. In the diagram, we
have model ed our application as consisting of two processes, namely onein which the
backup request tableis generated, and onein which the backup requests are processed.
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The processes communicate by means of the backup request table and (backwards) by
the backup state table. The generation of adata store (or and object) isindicated by an
open arrow to it (instead of afilled one). Other data storesrelevant for our application
are the backup and storage state table. The diagram does not show any objects as data
sources or sinks.

6 ADL

6.1 Introduction

The next modeling technique we'll discuss is ADL (Application Design Language).
ADL is a process-based graphica design language, which combines communication
flow diagrams on various levels of decomposition with sTbs for each process. Aswe
will see, the notations used are quite different from what we have seen above, which
resultsin some desirable features of the language, especialy with regard to replication
and types and semantics of communication.

We will first present the global communication flow diagram of the application,
followed by sTDs for three processes with interesting dynamic behaviour.

6.2 TheFlow of Communication
Notation

Theflow of interprocess communication in ADL modelsisgiven in so-called structure
diagrams. Here, processes are represented by circles. These processes communicate
to each other through input and output gates (small circles and squares on the edge
of a process symbol) via communication channels. The channels are represented by
medium-sized circles containing a symbol for the type of communication that goes on
between the processes: synchronous, asynchronous (queued) or by semaphores.

An important feature in ADL communication flow notationis replication. Replica-
tion of entire substructures of amodel can be represented by connecting a number of
process and channel symbolsto the replication symbol (a diamond).

In ADL it is aso possible to decompose a process into severa sub-processes with
communication channels between them. In the subdiagram, communication to and
from the high-level (composite) process will be denoted by rectangles, indicating
external gates. In this paper, we will not go into decomposition of processes any
further, until, as stated before, we arrive at the PARSE process notation.

Other notational features of ADL will be discussed along with the application’s
diagrams, which are discussed next.

Global Communication Diagram

In Figure 7, we have modeled the flow of communication between our application’s
processes.

Thecore of the application consistsof threeprocesses. Thefirst of these, therequest
manager, is responsiblefor generating the backup request table, using information on
volumes and the backup state (notice that these are also modeled as processes). The
backup request tableis split up and each part is communicated to the (replicated, see
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below) server manager, preparing the backup activities over a synchronous channel
(indicated by the ‘=" symbol). This process reserves a staging disk and a tape drive
from the disk manager and the drive manager, respectively. The disk and drive as
well as the request table are then passed on synchronously to the third process, which
actually performs the backups. Afterwards it releases its resources and updates the
relevant data (backup and storage state) asynchronously (the queue symbol indicates
this). Notice, that the three processes behave just like the request-, server-, and backup
manager in OMT.

Now, every process involved in some communication is prepared to block until
communication completes. Thisis indicated by filling the gate symbols. In the case
of non-blocking communication the gate symbolswould be left open. Another option
in ADL is timed communication, indicating that a process is willing to block only for
a certain amount of time for communication to take place. Thisis denoted by a‘+’-
symbol within the gate, and an annotation concerning the maximum amount of time
spent blocking.

Another observation about thismodel concernsthe fact, that the entire structure of
preparing and backing up is replicated: we have one such structure for each file server
inthe system. The intended meaning of al this, isthat the request manager sends parts
of itsrequest tableto anumber of server managers processes, which all communicateto
their own backup managers. However, thereisabit moretothis. AbL’'scommunication
flow diagrams support replication of channelsonly if the connected processes are also
replicated. In thisway, replication of parts of the design does not change the interface
of any process. The consequence of thisis that a request manager can only send its
tablepartsover onechannel. Now, theADL semanticsof these sendsare, that any server
manager ready to receive them, can pick them up. However, wewanted to model that

13



processing
state

input

¢ state

I A - ! (blocked)

i i output

| ! | state

! : | (blocked

| ! r |

| - e |

! 1 info ! [conditional] transition
! ! ‘ —_—
1| state ! T

| info j 1

! total

select

””” T state

! single !
| oselect |
| state

Figure 8: Dynamic model for request manager

specific parts of the table were intended for specific server managers, implying that
server managers should be individually addressabl e by the request manager. Thus, we
reveal a shortcomingin ADL’S modeling possibilities. Possible solutionsare currently
being worked on.

6.3 Dynamic Behaviour
Notation

The dynamics of the processes in an ADL model are specified using STDS. ADL
distinguishestwo different states: processing states in which a process is processing
data, and communication states in which a process is communicating or trying to
communicate. Thelatter can befurther dividedintoinput and output states. Transitions
from communication states are triggered by the success or failure of communication
(in blocking communication only success, of course). Transitions from processing
states are dependent on the outcome of the ‘processing’ itself; they can be annotated
with bool ean expressions. Processing states are denoted by rectangles, communication
states ook like processing states with one side bended to the outside or inside for
output or input states, respectively. They are named after the communication channel
they correspond with. In the lower left corner of a communication state symbol,
the kind (i.e. blocking, non-blocking or timed) of communication is copied from the
corresponding gate in the structure diagram.

Therequest manager process

From Figure 8 we can observe the dynamic behaviour of the request manager process.

Initially it will be in one of two input states: it is either trying to receive volume
information or backup state information. Thisis denoted by a so-called single select
state, which takes the form of a dashed box surrounding the states that can be selected.
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In the following processing state the process generates the backup requests. From
there it either returns to the initial state (if more information is to be received), or
proceeds to sending the request tabl e to the next process. By thelast transition back to
the original state, we can see that the process is modeled as ongoing.

The server manager process

Figure 9 showsthe dynamics of the server manager process. This process starts out by
waiting for itsrequest table to come in. When this happens, it triesto reserve a staging
disk and atape drive. By the total select state, denoted by a double box, we indicate
that it does not matter which of the two resources becomes available first. However,
both states must have been entered before proceeding to thelast. Thisisthe statewhere
the request table and the resources are sent to the backup manager process.

The backup manager process

Consider Figure 10. Here, we have the behaviour of the process actually performing
the backups, the backup manager. Initialy, it waits for its data to come in. Then, it
will aternately be staging or taping, until all requests are processed. Afterwards, the
backup and storage state tabl es are updated, and the resources released. The latter two
states are again total select states, both containing two substates.

7 _PARSE

7.1 Introduction

Just like ADL, the PARSE (PARa&llel Software Engineering) method concentrates on
the communi cation between the various processes that can be distinguished within an
application. However, PARSE doesnot include sTDsto specify their dynamic behaviour.
Ontheother hand, the notationto specify theflow of communicationissomewhat richer
than ADL’s.

Againwewill start out by considering avery global process communication model,
which will be refined in subsequent ‘ sub’-models.
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7.2 ThePARSE mod€
Notation

Processesin PARSE comeinfour kinds, namely dataservers, control processes, functions
and external interfaces. Every kind has its own symbol: a rectangle, rounded box,
ellipsisand filled rectangle, respectively. Communication between these processes can
be synchronous, asynchronous, bi-directional synchronous and by broadcast, where
every one of these has a timed variant as well. This communication is indicated
by lines connecting the processes, where an additional symbol indicates the type of
communication.

PARSE a'so includes a notion called the path constructor, which concerns the way
a collection of incoming paths to a process is handled. The constructor symbol
used determines whether the communication through the paths should be handled
deterministically (sometimes prioritized), nondeterministically or concurrently. The
corresponding symbols will be discussed aong with the PARSE application model.

Now, PARSE does not include explicit graphical means of showing behaviour in
time: for a description of a process that cannot be decomposed (a primitive process),
atextua descriptionisassumed. To get to these primitive processes a designer hasto
perform process decompositions. ThisdecompositioninPARSE hastwo aspects. Firstly,
we have decomposition of the processes themselves, which will render a collection of
subprocesses. Secondly, we have a decomposition of the incoming communication to
the composed process involving primarily the path constructors attached to it. For this
latter decomposition, aset of well-defined rulesapply, e.g. aconcurrent path constructor
of two incoming paths should be split up at thelowest level over two different primitive
processes.

Finally, PARSE, just like ADL, includes replication notations. This is done by
annotating the replicated process by the number of instances. All incoming and
outgoing paths of a replicated process are assumed to be replicated as well, but this
may be overruled by the designer using textual additions.
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Figure 11: a Global PARSE model; b: Decomposition of second process

Global PARSE modd

InFigure11a, wehave given avery global PARSE model of our application. The process
generating the request table, the request manager, will get information about volumes
and their backup states by bi-directional synchronous communication with the data
servers ‘volumes' and ‘backup state table’. To show how external interface processes
are used, we have model ed the data servers as communicating viaan external interface
to, say, a database management system, managing information on volumes and states.

Therequest tableis forwarded synchronously to the process responsiblefor hand-
ling the requests after which the database updates take place. Attached to the state
tables are path constructors (the open rectangles). Theseindicate that updates on these
tables are performed nondeterministically and sequential. Thisisbecausethe ‘ process
requests’ process contains multiple subprocesses (see bel ow), which all issue updates.
The order in which these come in is not specified. The nondeterministic path con-
structor is one of four path constructors. The PARSE designer can also use a concurrent
and a deterministic constructor, as well as leave the order of processing unspecified.
The corresponding notations can be found in the symbols overview at the right of the
figure.
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PARSE Decompasition

Now, the process handling the requests can be decomposed, as we seein Figure 11b.

Notice, that the combination of this model with the higher level mode from
Figure 11arevedsalot of similarity with the globa AbL mode.

L et’sseewhat our decompositionisabout. It containstwo replicated processes: the
server manager and the backup manager process. Now, since, by default, there would
be a ‘table+resources’ path from every server manager to every backup manager, we
will haveto overrulethat. After all, we want a server manager to communicate to one
only backup manager. This resultsin the path restriction from the diagram, where it
says that table plus resources from the i** preparer are sent to the :*” backup manager.

Furthermore, it is crucia that the server managers are individually addressable
by the request manager. Fortunately (in this case), the default semantics in PARSE
of communication from one to many, is that the port on the ‘on€ -side is vectored.
However, in other situations, this might not be desirable at al, aswe will discuss|ater.

Another important observation to make is that the returns of disks and drives to
their managers will come in from multiple backup managers. These, again, have to
be processed sequentially and non-deterministically. Hence, we get the corresponding
path constructor to the managers. The returns of resources are modeled here as
asynchronous.

Dynamic behaviour

Aswas mentioned before, PARSE includes no graphical means of specifying behaviour
in time for processes. Initialy, it was intended to use Petri-nets for this. With these,
correctness proofs could be given, if needed. Later in the development of PARSE, the
decision for only Petri-nets was dropped to give the designer the opportunity to use a
technique of his’lhew own choice. So, it should be noted, that the PARSE method does
include specification of dynamic behaviour of processes as part of the design process.

8 Analysisof Models

In the previous sections, we have modeled the application graphically, using our three
modeling techniques. Because of the fact that we took one model (as proposed by
Gorlen) as a basis and tried to express thisin al three techniques, we ended up with
three models that can be very well compared to each other, which we will do in this
section.

Here, we will start with a discussion on the key concepts in a design technique.
After that, we look at our three techniques and see how well they dea with these
concepts. Along with this comes a list of several strong points and weaknesses of
the techniques, and suggestionsfor the combination of strong features. Of course, we
will frequently return to our application to illustrate the discussion and to motivate our
beliefs.
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8.1 Important Concepts

What areimportant issuesto keep in mind, when looking for useful stuff to incorporate
into a graphica design technique for paralel, distributed applications? We list a
number of them below:

Data

In software engineering, we observe agrowing interest in object-oriented design. This
technique is essentially data driven: it focuses on the application domain first (i.e. the
datato manipulate) and buildsfunctionality on top of it. Thisfunctionality can then be
easily changed in the future, which lowers software maintenance costs.

To capture data aspects in an application adequately, we concentrate on:

e Datamodeling, i.e. describing the structureof data.
e When and how datais used in the application.

In our application, for example, we would want to model exactly, what a request
table consists of, aswell as when and how it is used by the request manager.

Communication

One of the reasons, that the development of parallel, distributed software differs from
that of other software, isthat communication gets much more complicated as synchro-
nization with regard to shared software components comes in. Hence, we want to
be able to model the following communication/synchronization aspectsin a clear and
well-defined manner.

e Firstly, we have communication structure; we want to model which software
component communicates to which others.

e Secondly, the dynamic aspects of communication deserve attention. We want to
be able to indicate when communication takes place.

e Communication semantics are equaly important. We want to define exactly
what, for example, acommunication line between two processes stands for.

¢ Finaly, we areinterested in the contents of communication.

So, we're interested in who communi cates, when this happens, how it is done and
what datais communicated. The latter of the four has, of course, a significant link to
data modeling.

In modeling the backup facility, we would like to express, for example, that a
request manager sends a specific part of its request table to each individual server
manager waiting for it. Thisaone already involves all aspects mentioned above.
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Parallelism and replication

Parallelism occursin application model s for two main reasons: firstly, because often it
isjust natural to model a part of an application as a number of parallel processes, and
secondly, because we can gain speed of execution by having activities performed in
paralle. For example, in our applicationitisvery natura to set al file servers to work
in paralel. Besidesthat, we expect that it will give us a significant speedup.

In the discussion on the support of parallelism by our three techniques, we con-
centrate on replication of software components. Basically, we want to be able to
handle:

e Existency constraints, indicating whether a processis replicated, and if so, how
many times, dynamically or staticaly, etc.

¢ Replication structure: if parts of adesign are replicated, how does that influence
the communication channels between them? What kind of complex communi-
cation/replication structures can we handle?

In the backup application, we want to model that there is a server and a backup
manager for each file server. Besidesthat, we want to know exactly what replication of
server managers means for the communication with the request manager. Thesituation
that replicated objects/processes have communication between themselves (in, for
example, a pipeline or grid structure) does not occur in our application. However, in
other applications, this might well be the case. Hence, we want to be able to model
that aswell.

Orthogonality and Decomposition

Of course, the purpose of any graphical modeling technique is to get a grip on the
complexity of an application. This is usualy done through a divide and conquer
approach: we split up the application into separate parts, model the individual pieces
and glue them back together. Now, three issues are important here:

o Firstly, we havetheissueof orthogonality of notations. Globally, thismeans that
used symbols represent clearly separated modeling concepts. Thus, we get a set
of basic building blocks able to constitute higher level concepts. An orthogonal
notation has advantageswith regard to, for example, flexibility, code generation,
and reasoning about functionality.

e Secondly, there is orthogonality of techniques, meaning that different diagram-
ming techniques within the same method can be used independently with remai-
ning links as well-defined as possible.

e Asathirdissue, we mention decomposition of diagramsto reach higher levelsof
detail, keeping thelinksbetween adiagram and its decompositionswel l-defined.

To illustrate notational orthogonality, we return to communication modeling. In

communication modeling, we can use the message queue (with capacity ranging from
zero to infinity) to model an (a)synchronous communication channel. After that we
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can connect senders/receivers to this channel by (timed) ports/gates, without atering
the kind of communication: here, ports and queues are orthogonal concepts.

An example of orthogonal techniques can be found in the separation of commu-
nication flow modeling and dynamic behaviour modeling: one aspect can be modeled
separately from the other.

Decomposition can be appliedto, for example, processes. |n thedecompositionwe
then have to make sure, that every connection to/from the high-level process returns
on alower-level process.

Automated code generation

Itisclaimedthat omT, if properly used, will takeadesigner from requirements specifica
tions to implementation in a seamless refinement process. In particular, implementing
adesign in some obj ect-oriented |anguage should be no more than a rather mechanical
step. This indicates that this final step could be (partly) automated. Now, al three
groups working on OMT, ADL and PARSE are interested in automated code generation,
and, in some cases, have partially succeeded.

We will concentrate on three requirements for significant code generation from a
graphical design:

e We need clear, unambiguous semantics of al our notations.
e We need adescription of dynamic behaviour of objects/processes.
e Orthogonality of notations and techniques eases automated code generation.

Clearly, if we don’t know for sure what a notation exactly means, we can generate
no code for it whatsoever. Also, if wewant to generate more code from a design than
just some skeleton code (header files, configuration files, object definitions, etc.), we
need a specification of dynamic behaviour of software components. Finally, the more
orthogonal different techniques and notations are, the easier it becomes to generate
code per symbol/model, which gives us more flexibility.

Design Method

Asafinal important aspect to graphical design techniqueswewould liketo mention the
design method, a series of guidelinesto let adesigner use atechnique optimally, taking
him/her from analysisall the way to implementation. Often, agraphica technique and
amethod for using it are closely linked together. For example, it is hard not to design
in terms of functional decomposition, if task graphs are the models which are used to
visualize matters.

8.2 Comparingthe Three Techniques

Now that we haveidentified some of theimportant designissuesfor paralel, distributed
software, wewill seehow well oMT, ADL and PARSE perform on each of them. Indoing
so, we will maintain the order in which they were discussed above.
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Data

Clearly, data modeling is best supported by omT. In our application’s design, all
data(structures) needed for the state mai ntenance and the reservation of resources can
be modeled adequately in oMT. Some of the classes introduced can be refined even
further. We could, for example, derivetablesand bagsfromageneral ‘ container’ class,
or provide manager classes with a queue to help sequentialize requests.

The use of datain oMT ismodeled in sTDs and DFDs. Here, the operations on data
are described and the way data travel s through the application.

Primarily focusing on the way data travels through an application, ADL and PARSE
do very little on data structuring, apart from a possibility (we did not show this
in our models) to annotate communication channels with types (ADL) or protocols
(PARSE). Here, some of the structure of communicated data is revealed. About the
data(structures) internal to processes nothing is specified. In PARSE, thereis the notion
of adataserver, which isused for processes showing the kind of behaviour we would
expect from a ‘container’ classin oMT. Thisis, of course, positive from an intuitive
point of view, but it has a disadvantage as well, as we will see |ater.

We conclude that oMT is the only one of our design techniques supporting data
structuring in an adequate manner. Both other techniques concentrate on the active
processesin an application, while ignoring to alarge extent the (structure of the) data
that these processes use.

Communication

Communication structure in oMT is modeled in the object model. However, this
is primarily on a class level. To model structure between objects, we have to
use textua constraints in the form of relation keys. For example, to mode the
fact that every server manager object communicates to one backup manager, we
can annotate the communication relation between these classes by something like
{server — manager.index, backup — manager.index }. However, thismay not be
powerful enough to grasp more complex communication structures.

The moment of communication as well asits contentsare modeled in OMT's STDS.
Objects only send/receive messages when they reach a state that alows this. For
example, in Figure 3, the request manager only sends the local request tables if the
request table is completed; a server manager will then only receive its local request
tableif itiswaiting for it (Figure 4).

The contents of these messages are usually operation names and parameters'. On
the subject of DFDs (where communi cation contents are described as well) we come to
speak later.

Serious problems arise with the semantics of communication, since OMT specifies
nothing in that area. Hence, we have no means other than (textual) circumscriptionin
STDs (such asthe‘waitingfor requests’ state of aserver manager in Figure 4) to describe
if communication is synchronous/asynchronous or blocked/non-blocked/timed. Fur-
thermore, the semantics of, for example, the one-to-many communication relation

'We did not show operation namesin our models. Of course, in later design stages, these would have
to be added to the objects.
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between the request manager and the server managers in Figure 2 could be anything
between a send to one of the objects on the ‘ many’ -side and a broadcast.

As an aside, we mention here, that OOD ([1]), which is another object-oriented
design technique, does incorporate some explicit communication notations in its di-
agrams. For example, synchronous vs. asynchronous, timed etc. However, the
semantics of these are still largely undetermined and the notation is not orthogonal .
The improvement over oMT’s notationsis therefore not so evident.

ADL and PARSE, on the other hand, are very rigid in their approach to communi-
cation. The structure of communication, its semantics and its contents (see previous
paragraph) are al described in one diagram. Also, in ADL's STDS, the moment of
communication by a process can be found. PARSE supports this dynamic behavior
aspect only to some extent.

Both techniques have the means to describe complex communication structures
with multiple senders and/or receivers. They support this through their explicit re-
plication notations, by which parts of a system can be replicated. In PARSE, we can
only replicate processes, which has default implications for the communication paths
between them. These can then be overruled textualy. In our application’s design, for
example (Figure 11b), we had to annotate the channels between server managers and
backup managers. In ADL, we can explicitly replicate the channels, but not without re-
plicating the processes connected by them aswell. Again, thisreplication of processes
has well-defined consequences for the semantics of communication.

However, aswasdiscoveredinthemodeling of communication between the request
manager and the server managers, not al complex structures can be models in ADL
and PARSE. Also, we revedled a difference in their modeling possibilities (see, for
example, the discussion on vectored ports/gates in Sections 6 and 7). This latter
observation comes primarily from a difference in ADL’s and PARSE’S viewpoints as to
what determines communication: ports(asin PARSE) or channels(asin AbL). We will
further discuss this below.

We conclude for now, that ADL and PARSE are superior to OMT in describing the
semantics of communication by using very explicit notations and assuming very rigid
semantics for these. One option for improvement in oMT in this is to introduce a
separate inter-object communication diagram to describe communication. Here, ADL
and PARSE ideas can be used.

Parallelism and replication

OMT has no ways of explicitly indicating how many instances of an object class there
are in an application, although a lot can be specified by the use of one-to-one and
one-to-many relations. In Figure 2, for example, thereisaone-to-onerelation between
file servers and server managers, which is probably sufficient. Both PARSE and ADL
have explicit replication features, making it possible to exactly specify the number of
instances.

Now, some of the problems with complex communication structures among multi-
ple senders and receivers were already discussed in the previous paragraph. However,
one issue has not been addressed yet. Thisisthe situationin which aprocessis repli-
cated and the instances communicate with each other, for example in a pipelineor grid
structure. In ADL these areindeed the two possible structures: areplicated process can
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be supplied with gates in four directionsto communicate to other instances, rendering
pipesor grids. In PARSE we can accomplish the same things by annotating paths with
expressions. However, for more complex replication structures, for example, trees,
neither of the two techniquesis adequate. OMT does not explicitly support replication
structures. However, a notation using generalizations and relation keys might be a
promising possibility to denote these structures. Of course, the semantics of commu-
nication would then have to be determined, which, as we saw earlier, isnot the casein
OMT.

Orthogonality and decompaosition

The most prominent example of notational orthogonality can be found in ADL. Here,
communication channels are based on the notion of aqueue. Whichever process wants
to listen to the channel, should be given a gate to it. At the gate level, we can then
describe how communication is timed. Thistiming and the semantics of the channel
are completey decoupled: they are orthogona concepts. Clearly, orthogonality in
notations has been an important point to the devel opers of ADL, rendering avery clean,
concise notation.

In PARSE, we have less orthogonality of notations. For example, timed commu-
nication issues are located on the path level, making it impossible to indicate how a
processwantsto communi cate without specifying wherecommunication goes. Besides
this, separate notations are introduced for various kinds of processes (i.e. data stores,
interfaces, etc.), also not based on orthogonal concepts.

As to orthogonality of techniques, we can say that, of course, PARSE has none
since only one kind of diagram is supported. In oMT and ADL the relation resp.
communication structure is orthogonal to the description of dynamic behaviour per
object/process. OMT's third technique, the bFD playsasomewhat different role. There
is significant overlap with both the object diagram and the STD. Its primary purpose
seems to be supplementary, i.e. providing a different look upon an application to help
construct the other diagrams.

In conclusion, we can say that ADL has accomplished quite alot in orthogonality.
This makes the technique clean and simple, semantically very clear and thus (see aso
below) easier to generate code from.

Automated code generation

If welook at the requirementsfor code generation from graphical designs, we see, that
ADL fulfils al of them to a large extent: its notations are simple, semantically well-
defined, unambiguous and orthogonal. Also, ADL contains a description of dynamic
behaviour. Code generation from oMT ismostly limited to class frames, incorporating
to some extent specializationsand aggregations. With the communications part of oMT
in the sTDs we can do fairly little. Code generation from PARSE seems amore difficult
task than from ADL, because dynamic behaviour is only specified to some extent, and
communication notations are less orthogonal .
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Design Method

ADL has, in contrast to oMT and PARSE, ho real design method. The techniqueis there
and has even been implemented in a graphica environment, but guidelinesasto how it
should be used to design successfully arefew to none. OMT hasavery explicit method
of using the availabl etechniques, especially in the analysisand initial modeling phases.
PaRsE has this as well, which reflects precisdly the difference in the approaches that
the makers of ADL and PaRSE have taken. ADL was intended to be a clean technique
with asmall number of basic concepts, making it semantically well-defined and easier
to generate code from. PARSE was developed from a software engineering point of
view. Itsnotationsare based on an inventory of intuitively more appealing notionsthat
designerswork with in practice.

9 Conclusions

Now we come to draw some conclusions regarding graphical design techniques for
parallel, distributed software. One of the main points we want to make, isthat oMT’s
suitability for developing this kind of software is limited: while excelling in data
modeling, its representation of communication (especialy the semantics thereof) is
incomplete. Now, thisis probably not a big issue in the devel opment of conventional
software. However, in parald distributed software, we consider it important for
various reasons given above.

ADL is probably the most concise, orthogonal technique of the three. Therefore,
it has been able to remain well-defined and thus an excellent candidate for automated
code generation. However, this does put some pressure on the extent to which ADL is
intuitively appealing, ashortcoming that is strengthened by the fact that thereisnorea
method provided for using ADL.

The presence of amethod and intuitive modeling are precisely the strong points of
PARSE. Besides that, PARSE has found a way (via path constructors) to determine on
higher levels of design the sequencing of incoming communication. However, being
based on practical, intuitive software engineering concepts, PARSE is semantically far
less well-defined than ADL. Also, it has no specification of dynamic behaviour. All
this makes code generation and (formal) analysis of designs difficult.

Neither of thethreetechniqueshasvery sophisticated means to expressgeometrical
communication structures of areplicated process. ADL and PARSE have some explicit
notations, which are, however, of limited power (primarily pipes and grids). The
OMT notations perhaps have the potential to describe these structures (by the use of
generalization structures and relation keys) but lack theformal semanticsfor this.

If weareto devel op agenera techniquefor designing paralel, distributed software,
we need to combine the strong pointsof al three (and may be some other onesaswell)
techniquesused here. Thequestionis, whether the modeling features within the object-
oriented and the process-based paradigms are easy to merge. A study on combining
OMT with PARSE has aready been conductedin[7]. A particular interesting questionis
whether a new technique (or an extension of an old one) should be essentialy object-
oriented or process-based. Whereasfor flexibility of software, object-orientation claims
to bethesolution, PARSE and ADL have chosen the approach of message passing between
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processes, because thismaps naturally onto most target hardware models. Our research
right now aimsat taking ADL asthetechniquefor communication modeling, whileusing
OMT notationsfor data modeling. To accomplish this, we have to investigate to what
extent data modeling and communication modeling are orthogonal concepts.

Also, we ask oursalves the question whether the communication media in ADL
are high-level enough. We have, for example, no explicit means for modeling re-
mote procedure call (rpc) behavior, other than circumscription by multiple channelsin
combination with sTDs. Our approach here would be to introduce only higher level
concepts that can be captured by combining lowel level onesaswell. Inthissense, we
can speak of a kernel ADL with only the low-level concepts and an extended ADL with
more el aborate constructions.

After that, we will come to a set of rules to trandate graphica designs into pro-
gramming code for distributed systems, for example, a network of workstations. One
thing that has to be taken into account hereis the limited power of ADL’S STDS. Here,
nothing is specified about what goes on in a processing state. In order to generate code
for these, they need to be decomposed.
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