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Abstract

We have compared three graphical design techniques, OMT, ADL, and PARSE,
on their suitability for the development of parallel/distributed applications. Our
method has been to use all three of them in modeling one, existing, application:
a backup facility running within the Andrew File System as described in [2].
We compare and analyze the outcomes on a number of important design aspects.
Based on this, we draw conclusions on each individual technique and on graphical
design techniques for parallel/distributed software in general.

1 Introduction

With the increasing availability of hardware platforms, suitable to run parallel, distri-
buted software, we can expect to observe an increase in the production of this kind
of software. One obstacle to this is, that its development is found to be much more
complex than that of ‘conventional’ software: sharing of resources, replication, com-
munication in absence of shared memory, etc. all add to the complexity of (the dynamic
behavior of) software components. Graphical design techniques, having proved their
value in the development of conventional software, seem to be an answer.

A well-known one is the Object Modeling Technique (OMT) by Rumbaugh et al.
[8]. Because this method is object-oriented, it could be argued that, through the
natural concurrency of objects, it would be fit for parallel, distributed software as
well. However, it is the question how well OMT deals with the communication and
synchronization issues that are so important in parallel, distributedapplication: perhaps
OMT needs some adaptations here.

Our approach to see if this is the case, is a very pragmatic one. We take an existing
problem, we consider a number of graphical modeling techniques (among which OMT),
and apply all of them to this problem. After that, we analyze the differences between
the outcomes, and see if we can pinpoint some of the methods’ weaknesses or strong
points with regard to parallelism and distributed-ness.

Of course, we want the testcase to be a good discriminator, i.e. it must be complex
enough to highlight the differences in the examined methods. On the other hand, it
should be simple enough to render three models that are somehow comparable. One
application that seems to have these properties is a backup facility in the Andrew File
System (AFS), which has been described and implemented by Gorlen et al. [2]. In the
next two sections, we will describe the essential features of the AFS and of this backup
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application. We will illustrate the workings of the application by giving an outline
of Gorlen’s implementation. In our own models we will for the greater part adopt
Gorlen’s approach with a few modifications, which we explain below.

In Section 4, we will list some aspects of the application, which are of special
interest to us. Distributed-ness and parallelism will play an important role here.

Then, in sections 5, 6 and 7, we model the application using our three modeling
techniques, which are OMT (Object Modeling Technique) [8], ADL (Application Design
Language) [11, 10, 9], and PARSE (PARallel Software Engineering) [3, 4]. About these
methods we can already say that OMT is explicitly object-oriented, PARSE primarily
designs in terms of communication flow diagrams, and ADL combines similar diagrams
with state transition diagrams (STDs) per process. All this, however, renders a very
unsubtle classification, and we will try to do all of the methods more justice in the
course of this report.

In Section 8, we compare the resulting models and analyze their differences. We
then draw our conclusions, being a list of positive and negative properties of all three
techniques following from our experiences, and suggestions for combinations of strong
points.

We would like to emphasize that we do not need very detailed models to compare
our three techniques. All three techniques are, from some point onwards, based on
refinement of models using decomposition and textual additions. Thus, we can keep
the diagrams that we produce at a fairly high level of abstraction.

Also, it may well be possible that there are various ways of modeling this application
and still getting it to work correctly. However, our primary intention was to come up
with three models that were somehow comparable, while still showing where the three
techniques differ. The adopted solution seems the best to us in this respect.

2 The afs

As was mentioned before, our application is based on a case study in [2]. Here, the
requirements specifications are given for a backup system within the Andrew File
System (AFS) [6]. The AFS is a distributed file system based on the caching of files on
harddisks of workstations. Globally, the organization is as follows: client workstations
are grouped in clusters, each of which is assigned a file server, which is, in turn,
connected to other file servers. Whenever a process on a client workstation opens a
file, the system makes sure that a local copy of the file is present on the workstation’s
local harddisk. Subsequent reads and writes are then performed on this local copy. On
closing, the file is copied back onto the file server’s harddisk. This scheme is entirely
transparent to the user.

In the AFS, the notion of a volume exists, which is globally a (part of a) directory
tree, that can be manipulated as a whole. We have, for example, one volume per
user, containing the entire set of files of a user. Now, the AFS includes a number of
volume-based operations. One of these concerns the possibility of copying volumes
from one file server to another in one atomic operation. In order to accomplish this, the
possibility exists to produce a read-only snapshot of a volume, called a clone volume.
It is this kind of volume that is used by our backup application.

To our application, the volume-aspect and the fact, that we have a number of file
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servers, each managing a group of volumes, is most important. Therefore, we will
not go any deeper into the specifics of the AFS than necessary. For a more complete
description we refer to [6].

3 The Backup Application

In essence, our application is expected to do all kinds of backups (weekly, monthly,
full, incremental) of volumes to tape. Besides that, it should, of course, keep track of
where volumes are backed up. Therefore, it also updates a databases containing this
information.

Now, Gorlen et al. have already modeled and implemented the system in an object-
oriented way, without using (we conclude this from the book) a formal design method.
Their approach seems to be based on the application’s functionality itself as well as on
the existence of the NIH class library, which is a C++ library of object-classes with,
among others, various types of data containers and light-weight process-classes. Here,
we will give a short description of the outcome.

The application Gorlen developed utilizes a database in which backup requests
of various kinds are placed by the request manager object. This request manager
determines for each volume what its backup state is, and subsequently which backup
is to be performed next. The backup requests are distributed by the request manager
over several server managers (one server manager per file server).

A server manager receives the requests for those volumes that reside on the file
server that it is attached to. Server managers prepare the backup activities to be
performed. This implies, among others, the reserving of a staging disk for the backup
requests of a file server. The staging disk is used as a buffer storage for volumes before
they are copied onto tape.

When a staging disk is available, a server manager will pass it on, along with its
requests, to a backup manager, who performs the actual staging and taping. In order
to perform the taping, it is also necessary to reserve a tape drive. During the staging
and taping, the backup manager will hold on to both staging disk and tape drive.
Afterwards, these resources are released.

In the mean time, a database is maintained, which records where volumes are
backed up, and what the backup state of each volume is. Every time a backup operation
completes, the database is updated.

In our models, which will start in Section 5, we have only diverged from this
approach in two ways:

� Firstly, we have transferred the reservation of a tape drive to an earlier stage. It
will be done by the server manager (or an equivalent process).

� Secondly, we have modeled the ‘managers’ as non-terminating, i.e. they iterate
over some sequence of actions continuously. This means that we have various
parts of the system wait for events to happen, after which they become active:
they are not started up explicitly.

Both modeling decisions were taken to come up with easy to understand, comparable
models in all three techniques.
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4 Our Interests

Now that we know what our application is expected to do, we can identify the aspects
that are particularly interesting to us. Naturally, these all have to do with the parallel,
distributed nature of this application. At this stage, we can directly identify three such
aspects:

� The backup requests, in Gorlen’s implementation generated by the request
manager, will ultimately set the file servers in the AFS to work. Now, in or-
der to improve performance, it appears [2] that a file server should only be
handling one request at a time. This implies that requests should be handed
to the file servers in a controlled manner: some form of synchronization or
sequencing is required.

� Backing up a volume is done in two steps. First, volumes are copied onto a
staging disk, and from there onto tape. During this entire operation, the staging
disk and the tape drive should be dedicated to this backuprequest only. In other
words, exclusive access to the staging disk is required throughout the operation.
This implies more synchronization.

� While backing up volumes, a common database has to be maintained, part of
which describes which backup volume resides where, and part of which describes
what the backup state of each volume is. Both parts are updated by the backup
managers, several of which can be active at any time. So, again, synchronization
is necessary.

The complexity of all this synchronization, together with the passing of information
(requests, staging disks, tape drives) between the application’s components, calls out
for abstraction, which, in our case, will be mostly graphical. In the next sections, we
will model our application using the techniques of OMT, ADL, and PARSE.

5 OMT

5.1 Introduction

Our first modeling technique is OMT (Object Modeling Technique), an object-oriented
design method which combines an enhanced entity-relation diagram of objects (the
object model) in the application with a number of STDs (one for each object) and some
dataflow diagrams (DFDs) of processes that can be distinguishedwithin the application’s
functionality.

The object model describes static information on an application. In an object model
we see what an application consists of. It is the most important model in OMT. The STDs
describe the dynamic behaviour of objects, and provide operations to the objects. The
DFDs provide us with a functional overview of the application, and provide operations
as well.

Using OMT, a designer starts with identifying objects from the requirements spe-
cifications. By identifying the relations between these objects, a global object model
can be produced. Then, in a process of constant iteration, this model is adapted and
refined right to the point where we have an actual program which can be compiled and
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run. This refining is supported by the other two OMT diagramming techniques, which
provide objects with operations and which also provide the designer with a new look
on inter-object relations.

In this section,we will first look at the global object model of the AFS, the application
domain. Then, we introduce the objects that are specific to our application in a second
object model. After that we will consider the most important STDs in the dynamic
model and the DFDs in the functional model.

5.2 The Object Model

Notation

In the entity-relation diagram, objects are given by rectangles in which the object class’
characteristics are listed. Relations are denoted by labeled lines between object classes.
The multiplicity of one side of a relation is indicated by open dots (zero or one), or
closed dots (zero or more). The default is one. Other notations we will use in our
diagrams will be discussed later on. However, not all symbols available in OMT will be
used. An overview of the entire set of notational possibilities can of course be found
in [8].

Global object diagram

Our first object model is given in Figure 1, and provides an overview of the essential
objects in the AFS and the relations between them. In the upper part of the diagram, the
meaning of the used symbols is given.

Globally, the diagram can be divided into four parts: the user part, the file part, the
hardware part, and the volume part. We will describe each of them separately:

user objects On the lower right of the figure the user objects are given. Here we see
that a user can run multiple processes, served by the same server stub. This
stub handles the open and close calls of user processes; it makes sure that
the corresponding files are copied from the file server to the local harddisk and
vice versa. This is accomplished by communication with the file server, serving
the corresponding cluster. The file servers in the AFS run a system called vice,
which enables them to communicate with each other and with their clients, in
order to provide for the right volumes at the right places.

From the relation between users and client stations, we can see that users can be
logged in on several machines at the same time, and that several users can use
the same machine simultaneously.

file objects The upper right part of the diagram describes the objects concerning files in
the AFS. Here, we see that of every file there is a primary copy (residing at some
file server) which can be cached at several workstations’ local harddisks. On
some of these copies a callback exists which implies that the copy is ‘recognized’
by the file server. The latter will then notify the client in the case of certain events.
We see, that not all local copies have callbacks. This is indicated by the subset
constraint.
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Figure 1: Global object diagram of the application domain
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The global cache state of a primary copy describes where it is cached, and is
maintained by the file server. The local cache state is maintained by the client
stubs, and contains information on, for example, callbacks. Global and local
cache state are objects describing relations. Therefore, they are called link
attributes.

hardware In our diagram, we distinguish three different machines: the file servers,
the staging machines, and the client workstations. Each of these contains one
or several harddisks. Every file server machine handles the file operations of a
cluster of client workstations.

volumes AFS volumes come in three kinds: primary volumes, which reside on a file
server’s harddisk; clone volumes, which reside there as well, but which are
also copied on staging machines’ harddisks in the backup process; and backup
volumes, which reside on tapes. The relation between clone volumes and backup
volumes gives us the backup state, describing how a volume is backed up (full,
incremental, weekly, etc.). The relation between backup volumes and their tapes
gives us the storage state, specifying where a volume is backed up.

Two symbols appearing in the model have not been described yet: the specialization
and the aggregation. Specializations are denoted by triangles. They indicate an ‘is
a’ relation, e.g. a disk is a server disk, a staging disk, or a user disk. Aggregations,
represented by diamonds, describe ‘part of’ relations: a primary file is a part of a
volume.

Application specific objects

So far, we have just modeled the application domain in terms of objects. Of course,
this is not enough to model the entire application. What we need is a set of objects
implementing the activities described before. To be more specific, we need objects to
carry out the process of building a backup request table, of scheduling the requests to
be performed, of synchronization among processes to make correct and efficient use
of resources such as tapes, staging disks and file servers, and of performing the actual
staging and backing up. Furthermore, we need objects to contain the data used by the
above operations.

Let’s first look at the objects we need and how they fit in our model so far. Their
placement can be observed from Figure 2. From this figure, we have, for clarity,
stripped some objects and relations that we consider not entirely relevant for our
application: most importantly, the ‘user part’ has been left out.

As one can see from this figure, we have introduced a number of object classes
specific for our application. Firstly, we need server managers. They shield a fileserver
from concurrent read requests for different staging operations. This ([2]) appears to
be necessary from an efficiency point of view: concurrent read requests are bad for
performance.

One instance of the server manager object class is associated to each file server.
Each server manager gets its own local request table, consisting of requests for backups
of volumes that reside at its corresponding file server.
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Figure 3: Request manager: STD

There are two more object classes besides file servers with respect to which other
objects will have to synchronize. These are the staging disks and the tape drives. They
can be involved in only one backup ‘operation’ at a time. To this end, they will be
reserved by a server manager for the time needed to process the backup requests of
the server manager. In our diagram the available disks and drives are put into bags.
Associated with a bag is a manager object responsible for the distribution of resources
over waiting clients, in this case, the server managers.

The actual staging and taping of volumes is performed by a backup manager, which
also updates the backup and storage states of the backed up volumes. These states are
saved in the backup and storage state tables, residing on some file server machine’s
harddisk. After a backup manager has processed its backup request table, it releases
the staging disk and tape drive that were reserved for it.

5.3 The Dynamic Model

Notation

In the OMT the dynamic behaviour of an application is specified on an object class
basis by STDs in the form of state charts ([5]). The diagramming technique includes
symbols for states (rounded boxes) and transitions (arrows between boxes). Usually,
transitions from one state to another are triggered by internal or external events, which
appear in text near the arrows. Other notations will be discussed after the application’s
diagrams.

States of objects, in which the object is performing some activity, can often be
decomposed into a collection of substates with transitions in between them. This can
be very easily done in OMT, globally, by making sure that the incoming and outgoing
transitions of the subdiagram of a state match those of the original diagram.

In this paper, we will only consider three ‘manager objects’: the request manager,
the backup manager and the server manager, for they display the most interesting
behaviour. Decompositions of states will not be shown. The subject of decomposition
will come up again in PARSE, where it is most important.

The request manager

The dynamic behaviour of the request manager can be observed from Figure 3. The
righthand-side of the diagram gives an inventory of used symbols. Globally, the request
manager acts as follows: first, the backup request table is constructed from the existing
volumes in the system and the backup state table. After that, the server managers are
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provided with the backup requests for their corresponding file servers. This is modeled
by a so-called external event, send requests, to the server manager class. An external
event is an event triggered by one object class, and affecting another object class. It is
denoted by a dashed, labeled arrow to the receiving object.

Finally, the request manager sleeps for some time and returns to the state where it
builds up a new request table.

The server manager

The dynamic behaviour of a server manager is given in Figure 4. It starts out by waiting
for its local request table to arrive from the request manager. Notice, that the incoming
event receive requests corresponds with the external event send requests by the request
manager. Hence, we have modeled communication between these two classes.

When the local request table arrives, a server manager enqueues itself to wait for a
staging disk and a tape drive. To this end, it will generate external events to the staging
disk manager and the tape drive manager, who manage the resource bags.

When staging disk and tape drive are both available, the server manager will pass
them on to the backup manager, together with its local request table.

The backup manager

The most interesting dynamic behaviour comes from the backup managers in the
system. It can be seen in Figure 5. As soon as data (i.e. the local request table) comes
in, the backup manager will get the first backup request and start staging. Then it
proceeds with the next and so on, until either the staging disk is full or there are no
more requests. In either case, the taping begins. After performing all the required
backups, the backup manager will update the database containing the backup data and
release the staging disk and the tape drive. External events will be sent to the resource
managers (the disk and drive are returned).

Obviously, after taping some volumes, a backup manager will only resume staging
if there are still some requests left. So, if taping has succeeded, we have a conditional
transition either to staging or to updating. This is denoted by a statement between
square brackets over the event name (e.g. the condition ‘no more requests’).
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5.4 The Functional Model

Notation

The functional model in OMT consists of diagrams specifying the flow of data between
processes within the application. In these models, a process is denoted by an ellipsis,
while a dataflow is represented by an arrow with a label indicating the sort of data that
‘flows’. Often, data is obtained from, or sent to, an object where no further processing
is done. For this we use the normal object notation (i.e. a rectangular box). Also, there
are entities which merely serve to store data and intermediate results, the so-called data
stores. These are denoted by two horizontal lines with the data store’s name in between
them. Examples of these are typically files and other containers such as lists/tables.

Global functional model

For now, we will only consider a very high-level DFD. Later on we will discuss the
problems with its refinement. The diagram is given in Figure 6. In the diagram, we
have modeled our application as consisting of two processes, namely one in which the
backup request table is generated, and one in which the backup requests are processed.
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The processes communicate by means of the backup request table and (backwards) by
the backup state table. The generation of a data store (or and object) is indicated by an
open arrow to it (instead of a filled one). Other data stores relevant for our application
are the backup and storage state table. The diagram does not show any objects as data
sources or sinks.

6 ADL

6.1 Introduction

The next modeling technique we’ll discuss is ADL (Application Design Language).
ADL is a process-based graphical design language, which combines communication
flow diagrams on various levels of decomposition with STDs for each process. As we
will see, the notations used are quite different from what we have seen above, which
results in some desirable features of the language, especially with regard to replication
and types and semantics of communication.

We will first present the global communication flow diagram of the application,
followed by STDs for three processes with interesting dynamic behaviour.

6.2 The Flow of Communication

Notation

The flow of interprocess communication in ADL models is given in so-called structure
diagrams. Here, processes are represented by circles. These processes communicate
to each other through input and output gates (small circles and squares on the edge
of a process symbol) via communication channels. The channels are represented by
medium-sized circles containing a symbol for the type of communication that goes on
between the processes: synchronous, asynchronous (queued) or by semaphores.

An important feature in ADL communication flow notation is replication. Replica-
tion of entire substructures of a model can be represented by connecting a number of
process and channel symbols to the replication symbol (a diamond).

In ADL it is also possible to decompose a process into several sub-processes with
communication channels between them. In the subdiagram, communication to and
from the high-level (composite) process will be denoted by rectangles, indicating
external gates. In this paper, we will not go into decomposition of processes any
further, until, as stated before, we arrive at the PARSE process notation.

Other notational features of ADL will be discussed along with the application’s
diagrams, which are discussed next.

Global Communication Diagram

In Figure 7, we have modeled the flow of communication between our application’s
processes.

The core of the applicationconsists of three processes. The first of these, the request
manager, is responsible for generating the backup request table, using information on
volumes and the backup state (notice that these are also modeled as processes). The
backup request table is split up and each part is communicated to the (replicated, see
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Figure 7: Global ADL structure diagram

below) server manager, preparing the backup activities over a synchronous channel
(indicated by the ‘=’ symbol). This process reserves a staging disk and a tape drive
from the disk manager and the drive manager, respectively. The disk and drive as
well as the request table are then passed on synchronously to the third process, which
actually performs the backups. Afterwards it releases its resources and updates the
relevant data (backup and storage state) asynchronously (the queue symbol indicates
this). Notice, that the three processes behave just like the request-, server-, and backup
manager in OMT.

Now, every process involved in some communication is prepared to block until
communication completes. This is indicated by filling the gate symbols. In the case
of non-blocking communication the gate symbols would be left open. Another option
in ADL is timed communication, indicating that a process is willing to block only for
a certain amount of time for communication to take place. This is denoted by a ‘+’-
symbol within the gate, and an annotation concerning the maximum amount of time
spent blocking.

Another observation about this model concerns the fact, that the entire structure of
preparing and backing up is replicated: we have one such structure for each file server
in the system. The intended meaning of all this, is that the request manager sends parts
of its request table to a number of server managers processes, which all communicate to
their own backup managers. However, there is a bit more to this. ADL’s communication
flow diagrams support replication of channels only if the connected processes are also
replicated. In this way, replication of parts of the design does not change the interface
of any process. The consequence of this is that a request manager can only send its
table parts over one channel. Now, the ADL semantics of these sends are, that any server
manager ready to receive them, can pick them up. However, we wanted to model that

13



state
select
total

process request
tableinfo

state
info

info
volume

processing
state

input 
state
(blocked)

output
state
(blocked)

[conditional] transition

state

single
select 

Figure 8: Dynamic model for request manager

specific parts of the table were intended for specific server managers, implying that
server managers should be individually addressable by the request manager. Thus, we
reveal a shortcoming in ADL’s modeling possibilities. Possible solutions are currently
being worked on.

6.3 Dynamic Behaviour

Notation

The dynamics of the processes in an ADL model are specified using STDs. ADL

distinguishes two different states: processing states in which a process is processing
data, and communication states in which a process is communicating or trying to
communicate. The latter can be further divided into input and output states. Transitions
from communication states are triggered by the success or failure of communication
(in blocking communication only success, of course). Transitions from processing
states are dependent on the outcome of the ‘processing’ itself; they can be annotated
with boolean expressions. Processing states are denoted by rectangles, communication
states look like processing states with one side bended to the outside or inside for
output or input states, respectively. They are named after the communication channel
they correspond with. In the lower left corner of a communication state symbol,
the kind (i.e. blocking, non-blocking or timed) of communication is copied from the
corresponding gate in the structure diagram.

The request manager process

From Figure 8 we can observe the dynamic behaviour of the request manager process.
Initially it will be in one of two input states: it is either trying to receive volume

information or backup state information. This is denoted by a so-called single select
state, which takes the form of a dashed box surrounding the states that can be selected.
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In the following processing state the process generates the backup requests. From
there it either returns to the initial state (if more information is to be received), or
proceeds to sending the request table to the next process. By the last transition back to
the original state, we can see that the process is modeled as ongoing.

The server manager process

Figure 9 shows the dynamics of the server manager process. This process starts out by
waiting for its request table to come in. When this happens, it tries to reserve a staging
disk and a tape drive. By the total select state, denoted by a double box, we indicate
that it does not matter which of the two resources becomes available first. However,
both states must have been entered before proceeding to the last. This is the state where
the request table and the resources are sent to the backup manager process.

The backup manager process

Consider Figure 10. Here, we have the behaviour of the process actually performing
the backups, the backup manager. Initially, it waits for its data to come in. Then, it
will alternately be staging or taping, until all requests are processed. Afterwards, the
backup and storage state tables are updated, and the resources released. The latter two
states are again total select states, both containing two substates.

7 PARSE

7.1 Introduction

Just like ADL, the PARSE (PARallel Software Engineering) method concentrates on
the communication between the various processes that can be distinguished within an
application. However, PARSE does not include STDs to specify their dynamic behaviour.
On the other hand, the notation to specify the flow of communication is somewhat richer
than ADL’s.

Again we will start out by considering a very global process communication model,
which will be refined in subsequent ‘sub’-models.
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7.2 The PARSE model

Notation

Processes in PARSE come in four kinds,namely data servers, control processes, functions
and external interfaces. Every kind has its own symbol: a rectangle, rounded box,
ellipsis and filled rectangle, respectively. Communication between these processes can
be synchronous, asynchronous, bi-directional synchronous and by broadcast, where
every one of these has a timed variant as well. This communication is indicated
by lines connecting the processes, where an additional symbol indicates the type of
communication.

PARSE also includes a notion called the path constructor, which concerns the way
a collection of incoming paths to a process is handled. The constructor symbol
used determines whether the communication through the paths should be handled
deterministically (sometimes prioritized), nondeterministically or concurrently. The
corresponding symbols will be discussed along with the PARSE application model.

Now, PARSE does not include explicit graphical means of showing behaviour in
time: for a description of a process that cannot be decomposed (a primitive process),
a textual description is assumed. To get to these primitive processes a designer has to
perform process decompositions. This decomposition in PARSE has two aspects. Firstly,
we have decomposition of the processes themselves, which will render a collection of
subprocesses. Secondly, we have a decomposition of the incoming communication to
the composed process involving primarily the path constructors attached to it. For this
latter decomposition, a set of well-defined rules apply, e.g. a concurrent path constructor
of two incoming paths should be split up at the lowest level over two different primitive
processes.

Finally, PARSE, just like ADL, includes replication notations. This is done by
annotating the replicated process by the number of instances. All incoming and
outgoing paths of a replicated process are assumed to be replicated as well, but this
may be overruled by the designer using textual additions.
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Global PARSE model

In Figure 11a, we have given a very global PARSE model of our application. The process
generating the request table, the request manager, will get information about volumes
and their backup states by bi-directional synchronous communication with the data
servers ‘volumes’ and ‘backup state table’. To show how external interface processes
are used, we have modeled the data servers as communicating via an external interface
to, say, a database management system, managing information on volumes and states.

The request table is forwarded synchronously to the process responsible for hand-
ling the requests after which the database updates take place. Attached to the state
tables are path constructors (the open rectangles). These indicate that updates on these
tables are performed nondeterministically and sequential. This is because the ‘process
requests’ process contains multiple subprocesses (see below), which all issue updates.
The order in which these come in is not specified. The nondeterministic path con-
structor is one of four path constructors. The PARSE designer can also use a concurrent
and a deterministic constructor, as well as leave the order of processing unspecified.
The corresponding notations can be found in the symbols overview at the right of the
figure.
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PARSE Decomposition

Now, the process handling the requests can be decomposed, as we see in Figure 11b.
Notice, that the combination of this model with the higher level model from

Figure 11a reveals a lot of similarity with the global ADL model.
Let’s see what our decomposition is about. It contains two replicated processes: the

server manager and the backup manager process. Now, since, by default, there would
be a ‘table+resources’ path from every server manager to every backup manager, we
will have to overrule that. After all, we want a server manager to communicate to one
only backup manager. This results in the path restriction from the diagram, where it
says that table plus resources from the ith preparer are sent to the ith backup manager.

Furthermore, it is crucial that the server managers are individually addressable
by the request manager. Fortunately (in this case), the default semantics in PARSE

of communication from one to many, is that the port on the ‘one’-side is vectored.
However, in other situations, this might not be desirable at all, as we will discuss later.

Another important observation to make is that the returns of disks and drives to
their managers will come in from multiple backup managers. These, again, have to
be processed sequentially and non-deterministically. Hence, we get the corresponding
path constructor to the managers. The returns of resources are modeled here as
asynchronous.

Dynamic behaviour

As was mentioned before, PARSE includes no graphical means of specifying behaviour
in time for processes. Initially, it was intended to use Petri-nets for this. With these,
correctness proofs could be given, if needed. Later in the development of PARSE, the
decision for only Petri-nets was dropped to give the designer the opportunity to use a
technique of his/hew own choice. So, it should be noted, that the PARSE method does
include specification of dynamic behaviour of processes as part of the design process.

8 Analysis of Models

In the previous sections, we have modeled the application graphically, using our three
modeling techniques. Because of the fact that we took one model (as proposed by
Gorlen) as a basis and tried to express this in all three techniques, we ended up with
three models that can be very well compared to each other, which we will do in this
section.

Here, we will start with a discussion on the key concepts in a design technique.
After that, we look at our three techniques and see how well they deal with these
concepts. Along with this comes a list of several strong points and weaknesses of
the techniques, and suggestions for the combination of strong features. Of course, we
will frequently return to our application to illustrate the discussion and to motivate our
beliefs.
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8.1 Important Concepts

What are important issues to keep in mind, when looking for useful stuff to incorporate
into a graphical design technique for parallel, distributed applications? We list a
number of them below:

Data

In software engineering, we observe a growing interest in object-oriented design. This
technique is essentially data driven: it focuses on the application domain first (i.e. the
data to manipulate) and builds functionality on top of it. This functionality can then be
easily changed in the future, which lowers software maintenance costs.

To capture data aspects in an application adequately, we concentrate on:

� Data modeling, i.e. describing the structure of data.

� When and how data is used in the application.

In our application, for example, we would want to model exactly, what a request
table consists of, as well as when and how it is used by the request manager.

Communication

One of the reasons, that the development of parallel, distributed software differs from
that of other software, is that communication gets much more complicated as synchro-
nization with regard to shared software components comes in. Hence, we want to
be able to model the following communication/synchronization aspects in a clear and
well-defined manner.

� Firstly, we have communication structure; we want to model which software
component communicates to which others.

� Secondly, the dynamic aspects of communication deserve attention. We want to
be able to indicate when communication takes place.

� Communication semantics are equally important. We want to define exactly
what, for example, a communication line between two processes stands for.

� Finally, we are interested in the contents of communication.

So, we’re interested in who communicates, when this happens, how it is done and
what data is communicated. The latter of the four has, of course, a significant link to
data modeling.

In modeling the backup facility, we would like to express, for example, that a
request manager sends a specific part of its request table to each individual server
manager waiting for it. This alone already involves all aspects mentioned above.
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Parallelism and replication

Parallelism occurs in application models for two main reasons: firstly, because often it
is just natural to model a part of an application as a number of parallel processes, and
secondly, because we can gain speed of execution by having activities performed in
parallel. For example, in our application it is very natural to set all file servers to work
in parallel. Besides that, we expect that it will give us a significant speedup.

In the discussion on the support of parallelism by our three techniques, we con-
centrate on replication of software components. Basically, we want to be able to
handle:

� Existency constraints, indicating whether a process is replicated, and if so, how
many times, dynamically or statically, etc.

� Replication structure: if parts of a design are replicated, how does that influence
the communication channels between them? What kind of complex communi-
cation/replication structures can we handle?

In the backup application, we want to model that there is a server and a backup
manager for each file server. Besides that, we want to know exactly what replication of
server managers means for the communication with the request manager. The situation
that replicated objects/processes have communication between themselves (in, for
example, a pipeline or grid structure) does not occur in our application. However, in
other applications, this might well be the case. Hence, we want to be able to model
that as well.

Orthogonality and Decomposition

Of course, the purpose of any graphical modeling technique is to get a grip on the
complexity of an application. This is usually done through a divide and conquer
approach: we split up the application into separate parts, model the individual pieces
and glue them back together. Now, three issues are important here:

� Firstly, we have the issue of orthogonality of notations. Globally, this means that
used symbols represent clearly separated modeling concepts. Thus, we get a set
of basic building blocks able to constitute higher level concepts. An orthogonal
notation has advantages with regard to, for example, flexibility, code generation,
and reasoning about functionality.

� Secondly, there is orthogonality of techniques, meaning that different diagram-
ming techniques within the same method can be used independently with remai-
ning links as well-defined as possible.

� As a third issue, we mention decomposition of diagrams to reach higher levels of
detail, keeping the links between a diagram and its decompositions well-defined.

To illustrate notational orthogonality, we return to communication modeling. In
communication modeling, we can use the message queue (with capacity ranging from
zero to infinity) to model an (a)synchronous communication channel. After that we
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can connect senders/receivers to this channel by (timed) ports/gates, without altering
the kind of communication: here, ports and queues are orthogonal concepts.

An example of orthogonal techniques can be found in the separation of commu-
nication flow modeling and dynamic behaviour modeling: one aspect can be modeled
separately from the other.

Decomposition can be applied to, for example, processes. In the decomposition we
then have to make sure, that every connection to/from the high-level process returns
on a lower-level process.

Automated code generation

It is claimed that OMT, if properly used,will take a designer from requirements specifica-
tions to implementation in a seamless refinement process. In particular, implementing
a design in some object-oriented language should be no more than a rather mechanical
step. This indicates that this final step could be (partly) automated. Now, all three
groups working on OMT, ADL and PARSE are interested in automated code generation,
and, in some cases, have partially succeeded.

We will concentrate on three requirements for significant code generation from a
graphical design:

� We need clear, unambiguous semantics of all our notations.

� We need a description of dynamic behaviour of objects/processes.

� Orthogonality of notations and techniques eases automated code generation.

Clearly, if we don’t know for sure what a notation exactly means, we can generate
no code for it whatsoever. Also, if we want to generate more code from a design than
just some skeleton code (header files, configuration files, object definitions, etc.), we
need a specification of dynamic behaviour of software components. Finally, the more
orthogonal different techniques and notations are, the easier it becomes to generate
code per symbol/model, which gives us more flexibility.

Design Method

As a final important aspect to graphical design techniques we would like to mention the
design method, a series of guidelines to let a designer use a technique optimally, taking
him/her from analysis all the way to implementation. Often, a graphical technique and
a method for using it are closely linked together. For example, it is hard not to design
in terms of functional decomposition, if task graphs are the models which are used to
visualize matters.

8.2 Comparing the Three Techniques

Now that we have identified some of the important design issues for parallel, distributed
software, we will see how well OMT, ADL and PARSE perform on each of them. In doing
so, we will maintain the order in which they were discussed above.
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Data

Clearly, data modeling is best supported by OMT. In our application’s design, all
data(structures) needed for the state maintenance and the reservation of resources can
be modeled adequately in OMT. Some of the classes introduced can be refined even
further. We could, for example, derive tables and bags from a general ‘container’ class,
or provide manager classes with a queue to help sequentialize requests.

The use of data in OMT is modeled in STDs and DFDs. Here, the operations on data
are described and the way data travels through the application.

Primarily focusing on the way data travels through an application, ADL and PARSE

do very little on data structuring, apart from a possibility (we did not show this
in our models) to annotate communication channels with types (ADL) or protocols
(PARSE). Here, some of the structure of communicated data is revealed. About the
data(structures) internal to processes nothing is specified. In PARSE, there is the notion
of a data server, which is used for processes showing the kind of behaviour we would
expect from a ‘container’ class in OMT. This is, of course, positive from an intuitive
point of view, but it has a disadvantage as well, as we will see later.

We conclude that OMT is the only one of our design techniques supporting data
structuring in an adequate manner. Both other techniques concentrate on the active
processes in an application, while ignoring to a large extent the (structure of the) data
that these processes use.

Communication

Communication structure in OMT is modeled in the object model. However, this
is primarily on a class level. To model structure between objects, we have to
use textual constraints in the form of relation keys. For example, to model the
fact that every server manager object communicates to one backup manager, we
can annotate the communication relation between these classes by something like
fserver �manager:index; backup�manager:indexg. However, this may not be
powerful enough to grasp more complex communication structures.

The moment of communication as well as its contents are modeled in OMT’s STDs.
Objects only send/receive messages when they reach a state that allows this. For
example, in Figure 3, the request manager only sends the local request tables if the
request table is completed; a server manager will then only receive its local request
table if it is waiting for it (Figure 4).

The contents of these messages are usually operation names and parameters 1. On
the subject of DFDs (where communication contents are described as well) we come to
speak later.

Serious problems arise with the semantics of communication, since OMT specifies
nothing in that area. Hence, we have no means other than (textual) circumscription in
STDs (such as the ‘waiting for requests’ state of a server manager in Figure 4) to describe
if communication is synchronous/asynchronous or blocked/non-blocked/timed. Fur-
thermore, the semantics of, for example, the one-to-many communication relation

1We did not show operation names in our models. Of course, in later design stages, these would have
to be added to the objects.
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between the request manager and the server managers in Figure 2 could be anything
between a send to one of the objects on the ‘many’-side and a broadcast.

As an aside, we mention here, that OOD ([1]), which is another object-oriented
design technique, does incorporate some explicit communication notations in its di-
agrams. For example, synchronous vs. asynchronous, timed etc. However, the
semantics of these are still largely undetermined and the notation is not orthogonal.
The improvement over OMT’s notations is therefore not so evident.

ADL and PARSE, on the other hand, are very rigid in their approach to communi-
cation. The structure of communication, its semantics and its contents (see previous
paragraph) are all described in one diagram. Also, in ADL’s STDs, the moment of
communication by a process can be found. PARSE supports this dynamic behavior
aspect only to some extent.

Both techniques have the means to describe complex communication structures
with multiple senders and/or receivers. They support this through their explicit re-
plication notations, by which parts of a system can be replicated. In PARSE, we can
only replicate processes, which has default implications for the communication paths
between them. These can then be overruled textually. In our application’s design, for
example (Figure 11b), we had to annotate the channels between server managers and
backup managers. In ADL, we can explicitly replicate the channels, but not without re-
plicating the processes connected by them as well. Again, this replication of processes
has well-defined consequences for the semantics of communication.

However, as was discovered in the modeling of communication between the request
manager and the server managers, not all complex structures can be models in ADL

and PARSE. Also, we revealed a difference in their modeling possibilities (see, for
example, the discussion on vectored ports/gates in Sections 6 and 7). This latter
observation comes primarily from a difference in ADL’s and PARSE’s viewpoints as to
what determines communication: ports (as in PARSE) or channels (as in ADL). We will
further discuss this below.

We conclude for now, that ADL and PARSE are superior to OMT in describing the
semantics of communication by using very explicit notations and assuming very rigid
semantics for these. One option for improvement in OMT in this is to introduce a
separate inter-object communication diagram to describe communication. Here, ADL

and PARSE ideas can be used.

Parallelism and replication

OMT has no ways of explicitly indicating how many instances of an object class there
are in an application, although a lot can be specified by the use of one-to-one and
one-to-many relations. In Figure 2, for example, there is a one-to-one relation between
file servers and server managers, which is probably sufficient. Both PARSE and ADL

have explicit replication features, making it possible to exactly specify the number of
instances.

Now, some of the problems with complex communication structures among multi-
ple senders and receivers were already discussed in the previous paragraph. However,
one issue has not been addressed yet. This is the situation in which a process is repli-
cated and the instances communicate with each other, for example in a pipeline or grid
structure. In ADL these are indeed the two possible structures: a replicated process can
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be supplied with gates in four directions to communicate to other instances, rendering
pipes or grids. In PARSE we can accomplish the same things by annotating paths with
expressions. However, for more complex replication structures, for example, trees,
neither of the two techniques is adequate. OMT does not explicitly support replication
structures. However, a notation using generalizations and relation keys might be a
promising possibility to denote these structures. Of course, the semantics of commu-
nication would then have to be determined, which, as we saw earlier, is not the case in
OMT.

Orthogonality and decomposition

The most prominent example of notational orthogonality can be found in ADL. Here,
communication channels are based on the notion of a queue. Whichever process wants
to listen to the channel, should be given a gate to it. At the gate level, we can then
describe how communication is timed. This timing and the semantics of the channel
are completey decoupled: they are orthogonal concepts. Clearly, orthogonality in
notations has been an important point to the developers of ADL, rendering a very clean,
concise notation.

In PARSE, we have less orthogonality of notations. For example, timed commu-
nication issues are located on the path level, making it impossible to indicate how a
process wants to communicate without specifying where communication goes. Besides
this, separate notations are introduced for various kinds of processes (i.e. data stores,
interfaces, etc.), also not based on orthogonal concepts.

As to orthogonality of techniques, we can say that, of course, PARSE has none
since only one kind of diagram is supported. In OMT and ADL the relation resp.
communication structure is orthogonal to the description of dynamic behaviour per
object/process. OMT’s third technique, the DFD plays a somewhat different role. There
is significant overlap with both the object diagram and the STD. Its primary purpose
seems to be supplementary, i.e. providing a different look upon an application to help
construct the other diagrams.

In conclusion, we can say that ADL has accomplished quite a lot in orthogonality.
This makes the technique clean and simple, semantically very clear and thus (see also
below) easier to generate code from.

Automated code generation

If we look at the requirements for code generation from graphical designs, we see, that
ADL fulfils all of them to a large extent: its notations are simple, semantically well-
defined, unambiguous and orthogonal. Also, ADL contains a description of dynamic
behaviour. Code generation from OMT is mostly limited to class frames, incorporating
to some extent specializations and aggregations. With the communications part of OMT

in the STDs we can do fairly little. Code generation from PARSE seems a more difficult
task than from ADL, because dynamic behaviour is only specified to some extent, and
communication notations are less orthogonal.
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Design Method

ADL has, in contrast to OMT and PARSE, no real design method. The technique is there
and has even been implemented in a graphical environment, but guidelines as to how it
should be used to design successfully are few to none. OMT has a very explicit method
of using the available techniques, especially in the analysis and initial modeling phases.
PARSE has this as well, which reflects precisely the difference in the approaches that
the makers of ADL and PARSE have taken. ADL was intended to be a clean technique
with a small number of basic concepts, making it semantically well-defined and easier
to generate code from. PARSE was developed from a software engineering point of
view. Its notations are based on an inventory of intuitively more appealing notions that
designers work with in practice.

9 Conclusions

Now we come to draw some conclusions regarding graphical design techniques for
parallel, distributed software. One of the main points we want to make, is that OMT’s
suitability for developing this kind of software is limited: while excelling in data
modeling, its representation of communication (especially the semantics thereof) is
incomplete. Now, this is probably not a big issue in the development of conventional
software. However, in parallel distributed software, we consider it important for
various reasons given above.

ADL is probably the most concise, orthogonal technique of the three. Therefore,
it has been able to remain well-defined and thus an excellent candidate for automated
code generation. However, this does put some pressure on the extent to which ADL is
intuitively appealing, a shortcoming that is strengthened by the fact that there is no real
method provided for using ADL.

The presence of a method and intuitive modeling are precisely the strong points of
PARSE. Besides that, PARSE has found a way (via path constructors) to determine on
higher levels of design the sequencing of incoming communication. However, being
based on practical, intuitive software engineering concepts, PARSE is semantically far
less well-defined than ADL. Also, it has no specification of dynamic behaviour. All
this makes code generation and (formal) analysis of designs difficult.

Neither of the three techniques has very sophisticated means to express geometrical
communication structures of a replicated process. ADL and PARSE have some explicit
notations, which are, however, of limited power (primarily pipes and grids). The
OMT notations perhaps have the potential to describe these structures (by the use of
generalization structures and relation keys) but lack the formal semantics for this.

If we are to develop a general technique for designing parallel, distributed software,
we need to combine the strong points of all three (and may be some other ones as well)
techniques used here. The question is, whether the modeling features within the object-
oriented and the process-based paradigms are easy to merge. A study on combining
OMT with PARSE has already been conducted in [7]. A particular interesting question is
whether a new technique (or an extension of an old one) should be essentially object-
oriented or process-based. Whereas for flexibility of software,object-orientation claims
to be the solution, PARSE and ADL have chosen the approach of message passing between
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processes, because this maps naturally onto most target hardware models. Our research
right now aims at taking ADL as the technique for communication modeling, while using
OMT notations for data modeling. To accomplish this, we have to investigate to what
extent data modeling and communication modeling are orthogonal concepts.

Also, we ask ourselves the question whether the communication media in ADL

are high-level enough. We have, for example, no explicit means for modeling re-
mote procedure call (rpc) behavior, other than circumscription by multiple channels in
combination with STDs. Our approach here would be to introduce only higher level
concepts that can be captured by combining lowel level ones as well. In this sense, we
can speak of a kernel ADL with only the low-level concepts and an extended ADL with
more elaborate constructions.

After that, we will come to a set of rules to translate graphical designs into pro-
gramming code for distributed systems, for example, a network of workstations. One
thing that has to be taken into account here is the limited power of ADL’s STDs. Here,
nothing is specified about what goes on in a processing state. In order to generate code
for these, they need to be decomposed.
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