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Abstract It is shown that in many instances the fixed point property for nonexpansive mappings actually
implies the fixed point property for a strictly larger family of mappings. This paper is largely expository, but
some of the observations are not readily available, and some appear here for the first time. Several related
open questions in are discussed. The emphasis is on accessible problems, especially those that require little
background. The problems themselves have been given little thought and may be trivial or difficult.
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1 Introduction

Elementary problems are not necessarily easy problems. Often quite the opposite is true. Basic problems which
are easy to formulate can inspire curiosity, but often there are there few tools available to suggest a viable
approach. Also, as always, there is the real possibility that only a counterexample will solve the problem,
and it seems that often people prefer proving theorems over looking for examples. However, as we shall see,
examples are often helpful to a full understanding of the theory.

The central theme of these remarks is to illustrate the following fact: the fixed point property for nonex-
pansive mappings often implies the fixed point property for a strictly broader class of mappings. Examples
help reveal the limitations.
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2 The fixed point property for nonexpansive mappings

The study of nonexpansive mappings originated in a Banach space framework. Let K be a closed convex
subset of a Banach space (X, ‖·‖). A mapping T : K → K is said to be nonexpansive if

‖T x − T y‖ ≤ ‖x − y‖ for all x, y ∈ K .

We say that K has the fixed point property (fpp for short) if every nonexpansive T : K → K has at least one
fixed point. We say that the space X has the FPP if every bounded closed convex subset K of X has the fpp.
In studying the fpp in Banach spaces it is typical to assume the set K is weakly compact, although it is known
that this condition alone is neither necessary nor sufficient. For the FPP one typically assumes that the space
is reflexive. However, to this day, it remains unknown whether reflexivity (or even super-reflexivity) alone is
sufficient for the FPP. For much of what is currently known about the fixed point theory for nonexpansive
mappings we refer to the Handbook [35], and especially in the survey articles [25] and [17].

Three papers (Browder [6], Göhde [30], and Kirk [34]), published by coincidence in 1965, provided the
foundation for the theory. In [6] and [30], it was shown that a uniformly convex Banach space has the FPP; in
[34], it was shown that the same conclusion follows under the weaker assumptions that X is reflexive and the
bounded convex subsets of X posses a geometric condition called ‘normal structure’. (We recall that a convex
subset K of X has normal structure if every bounded convex subset H of K which contains more than one
point contains a nondiametral point, that is, a point y0 such that

sup {‖y0 − x‖ : x ∈ H} < sup {‖y − x‖ : x, y ∈ H}.)
It was discovered later that if X is uniformly convex, then in fact the bounded closed convex subsets of X

have the fixed point property for a broader class of mappings. Let K be a bounded closed convex subset of a
uniformly convex space; suppose T : K → K is uniformly lipschitzian in the sense that

∥
∥T nx − T n y

∥
∥ ≤ k ‖x − y‖

for all x, y ∈ K and n = 1, 2, . . .. It was shown in [22] that if k > 1 is sufficiently near 1 (how near depends
on the modulus of convexity), then T always has a fixed point. This prompted further the study of ‘stability’
of the fpp and it is the starting point of the following remarks.

3 The Lifšic constant and uniformly lipschitzian mappings

Let (M, ρ) be a metric space. A mapping T : M → M is said to be lipschitzian if there exists k > 0 such that
for each x, y ∈ M,

ρ (T x, T y) ≤ kρ (x, y). (1)

We will use k(T ) to denote the smallest number for which (1) holds. The mapping T : M → M is said to be
k-uniformly lipschitzian if for each x, y ∈ M and all n ∈ N,

ρ
(

T nx, T n y
) ≤ kρ (x, y). (2)

The smallest number for which (2) holds is called the uniform Lipschitz constant of T and denoted ku(T ).
Obviously for any nonexpansive mapping T, ku(T ) ≤ 1.

The result of [22] was subsequently refined in [27] using the following concept due to Goebel:

Definition 3.1 [18] The characteristic of convexity of a Banach space X is defined to be the number

ε0 (X) := sup {ε ∈ [0, 2] : δX (ε) = 0},
where δX is the usual modulus of convexity of X

δ (ε) = inf

{

1 −
∥
∥
∥
∥

x + y

2

∥
∥
∥
∥

: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x − y‖ ≥ ε

}

.
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Observe that if γ satisfies

γ (1 − δX (1/γ )) = 1

then γ ≥ 1. Moreover, γ > 1 ⇔ ε0 (X) < 1, in which case 1 < γ < 1/ε0 (X).

Theorem 3.2 [22,27] Let X be a Banach space with ε0(X) < 1 and let γ > 1 satisfy γ (1 − δX (1/γ )) = 1.
If K is a nonempty closed, bounded convex subset of a Banach space, and if for some k < γ, T : K → K
satisfies

∥
∥T nx − T n y

∥
∥ ≤ k ‖x − y‖

for n = 1, 2, . . . , then T has a fixed point.

Theorem 3.2 was subsequently extended to a purely metric setting by Lifšic [38]. We turn now to this
extension. Let (M, ρ) be a complete metric space. The balls in M are said to be c-regular if for each k < c
there exist μ, α ∈ (0, 1) such that ∀x, y ∈ M and r > 0 there exists z ∈ M such that

B (x; (1 + μ) r) ∩ B (y; k (1 + μ) r) ⊂ B (z; αr).

The balls in M are always 1-regular. To see this, suppose k < 1. Then it is possible to choose μ so near 0
that

k (1 + μ) := α < 1.

in which case ∀x, y ∈ M and r > 0,

B (x; (1 + μ) r) ∩ B (y; k (1 + μ) r) ⊂ B (y;αr).

The Lifšic constant of M is the number

κ (M) = sup {c ≥ 1 : the balls in M are c-regular}.
Theorem 3.3 (Lifšic) If (M, ρ) is a bounded complete metric space, and if for some k < κ(M), T : M → M
satisfies

ρ
(

T nx, T n y
) ≤ kρ (x, y) (3)

for n = 1, 2, . . . , then T has a fixed point.

For most metric spaces M, κ(M) = 1 and for such spaces Lifšic’s theorem is equivalent to the Banach
Contraction Principle. However, as we observe below there are spaces for which κ(M) > 1.

Now let X be a Banach space. We define the uniform Lifšic constant, κ0(X), of X as follows:

κ0 (X) = sup

{

c ≥ 1 : ∃α < 1 such that ∀x, ‖x‖ ≤ 1, ∃λ ∈ [0, 1]
such that B (0; 1) ∩ B (x; c) ⊂ B (λx;α)

}

.

infimum of κ(C) where C ranges over all nonempty bounded closed convex subsets of X . Lifšic proved that
κ0(H) ≥ √

2 if H is a Hilbert space, and this estimate is sharp. It is noted in [27] that in Hilbert space
γ = √

5/2 is the solution to γ (1 − δX (1/γ )) = 1. Therefore, for a Hilbert space Lifšic’s estimate on k is
better than that given in Theorem 3.2.

The next fact shows that while Lifšic’s result sometimes gives a better estimate for k, qualitatively Theorems
3.2 and 3.3 are equivalent.

Theorem 3.4 [14] Let X be a Banach space. Then ε0(X) < 1 if and only if κ0(X) > 1.
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Mappings satisfying (3) are said to be k-uniformly lipschitzian. Such mappings are also characterized by
the following observation: recall that two metrics ρ and μ on a space M are said to be uniformly equivalent if
there exist constants b ≥ a > 0 such that

aμ (x, y) ≤ ρ (x, y) ≤ bμ (x, y) (4)

for all x, y ∈ M . If μ satisfies (4) and if T : M → M is μ-nonexpansive—thus μ(T x, T y) ≤ μ(x, y) for all
x, y ∈ M– then T satisfies (3) with k = b

a . On the other hand, if T satisfies (3), then T is μ-nonexpansive
with respect to the metric

μ (x, y) = sup
{

ρ (x, y) , ρ (T x, T y) , ρ
(

T 2x, T 2 y
)

, . . .
}

x, y ∈ M.

Clearly, the two metrics ρ and μ are equivalent: ρ(x, y) ≤ μ(x, y) ≤ kρ(x, y) for all x, y ∈ M . Thus we
have the following kind of stability. Once it is known that a metric space (M, ρ) has the fpp for nonexpansive
mappings and that κ(M) > 1, then all metric spaces (M, μ) satisfying (4) for b

a < κ(M) also have the fpp
for nonexpansive mappings.

The following remark follows from an examination of the proof of Lifšic’s Theorem (see, e.g., [24,
p. 172]).

Remark 3.5 Lifšic’s Theorem actually holds under weaker assumptions. It is enough to assume that M is a
complete metric space and that T : M → M has bounded orbits and satisfies

ρ
(

T nx, T n y
) ≤ knρ (x, y)

for all x, y ∈ M with lim supn→∞ kn < κ (M).

Remark 3.6 See [33] for an extension of Lifšic’s Theorem to multivalued mappings.

It is not known if k < κ0(X) is the best estimate for the fixed point property for k-uniformly lipschitzian
mappings defined on closed bounded convex subsets of X . Thus it is natural to define the constant

γ0 (X) = sup

{

k : any closed bounded convex subset K ⊂ X
has the fpp for k-uniformly lipschitzian mappings

}

.

Clearly for any Banach space X,

γ0 (X) ≥ κ0 (X). (5)

Exact values for κ0(X) are difficult to find, even for standard uniformly convex spaces. As we have seen, for
a Hilbert space H, κ0(H) = √

2, so γ0(H) ≥ √
2. An estimate for γ0(H) from above is also known. There is

an example, due to Baillon ([2]; also see [24, p. 174]) of a fixed-point free k-uniformly lipschitzian mapping
T defined on the positive part of the unit sphere of 	2 for k = π/2. This shows that

√
2 ≤ γ0 (H) ≤ π

2
.

There are other estimates for γ0(X) which are independent of and, in some instances, better than κ0(X).
Recall that for any bounded closed convex set K ⊂ X, the Chebyshev radius of K is the number

r (K ) = inf
x∈K

{sup {‖x − y‖ : y ∈ K }}.

Obviously, r(K ) ≤ diam(K ). The normal structure coefficient N (X) is defined to be

inf

{
diam (K )

r (K )
: K ⊂ X is bounded, convex, with diam (K ) > 0

}

.

All the spaces with N (X) > 1 are said to have uniform normal structure. Among such spaces are the uniformly
convex spaces, and spaces X for which ε0(X) < 1. In the latter case,

N (X) ≥ 1

1 − δ (1)
> 1.

123



Arab J Math (2012) 1:417–430 421

However, it may happen that the first inequality is sharp. This happens in the case of a Hilbert space H where

κ (H) = N (H) = √
2 > (1 − δH (1)) =

√
5

2
.

The first result using N (X) to evaluate γ0(X) is due to Casini and Maluta [11] who proved that for any
Banach space X,

γ0 (X) ≥ √

N (X). (6)

This raises the following question: which estimate (5) or (6) is better for a given space, especially since
there are spaces X for which N (X) > κ0(X). An example of such a space is the space X = R× H where H is a
Hilbert space and the norm is taken to be ‖(t, x)‖X = max {|t | , ‖x‖} for (t, x) ∈ R× H . For (0, 0), (0, 1) ∈ X
the intersection

B ((0, 0) ; 1) ∩ B ((0, 1) ; 1)

cannot be covered by a ball of diameter less than 1. This shows that κ0(X) = 1 and N (X) ≥ 1. On the
other hand, the normal structure coefficient of the product of two spaces is infimum of their respective normal
structure coefficients (see [3] ). Thus the normal structure coefficient of X is

√
2.

4 Renorming

Another approach to stability is connected with renormings of Banach spaces. Recall that two norms ‖·‖ , ‖·‖0

on a Banach space X are equivalent if they generate uniformly equivalent metrics. Thus ‖·‖ and ‖·‖0 are
equivalent if there exist constants a > 0, b > 0 such that for all x ∈ X,

a ‖x‖0 ≤ ‖x‖ ≤ b ‖x‖0 . (7)

Obviously, any mapping that is nonexpansive with respect to one of these norms is k-uniformly lipschitzian
with respect to the other, with k = b

a .
Now suppose (X, ‖·‖) has the FPP. Restricting our considerations only to metrics generated by norms

equivalent to ‖·‖, we can introduce the stability constant, γN (X), of X as follows:

γN (X) = sup

{

γ : any Banach space
(

X, ‖·‖0) , with ‖·‖0 satisfying
(7), such that k = b

a < γ has the FPP.

}

Obviously,

γN (X) ≥ γ0 (X).

It is known that for some spaces this inequality is strict. The most well-known result is due to Pei-Kee Lin,
who showed in [39] that for Hilbert space H

γN (H) ≥
√

5 + √
13

2
≈ 2.07 >

π

2
≥ γ0 (H) .

Subsequently, this result was improved by Mazcuñán-Navarro, [42] who obtained the estimate

γN (H) ≥
√

5 + √
17

2
≈ 2.135.

As far as we know, until now the question of whether a bounded set K in a Banach space may have the fpp,
yet be completely unstable relative to k -uniformly lipschitzian mappings has not been addressed. Specifically,
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Problem 4.1 Does there exist a convex, closed and bounded set K in a Banach space such that all nonexpan-
sive mappings T : K → K have fixed points, but for any ε > 0, there exists a uniformly lipschitzian fixed
point free mapping G : C → C satisfying

∥
∥Gnx − Gn y

∥
∥ ≤ k ‖x − y‖

for all x, y ∈ K and n ∈ N, with k < 1 + ε?

There seem to be no obvious examples. However, a remarkable space discovered by Pei-Kee Lin provides
an affirmative answer. It is well known that the space l1 of absolutely summable sequences x = (xk) with its
classical norm ‖x‖ = ∑∞

k=1 |xk | lacks the FPP. Indeed, the positive part of the unit sphere

S+ = {x = (xk) : ‖x‖ = 1 and xk ≥ 0 for k = 1, 2, . . .}
is invariant under the shift operator

V x = V (x1, x2, x3, . . .) = (0, x1, x2, x3, . . .),

and clearly this mapping is nonexpansive (in fact an isometry) but fixed point free.
It therefore came as a surprise to many when Pei-Kee Lin [40] showed that l1 can be given a new equivalent

norm ‖·‖0 for which
(

l1, ‖·‖0) has the FPP. Lin’s norm is given by

‖x‖0 = max

{

γn

∞
∑

k=n

|xk | : n = 1, 2, . . .

}

,

where γn = 8n

8n+1 .
In connection with this, Dowling et al. [13] have shown that if X is a Banach space containing an isometric

copy of l1, and if ε > 0, then there exists a closed convex bounded subset C of X and a fixed point free
uniformly lipschitzian mapping T : C → C with uniform Lipschitz constant less than 1 + ε. Consequently,
l1 cannot be renormed to have the fixed point property for uniformly lipschitzian mappings.

Example The shift operator V is not nonexpansive with respect to Lin’s norm ‖·‖0. It is easy to check that
with respect to ‖·‖0 we have

k (V ) = γ2

γ1
, k

(

V 2) = γ3

γ1
, k

(

V 3) = γ4

γ1

and in general

k
(

V k
)

= γk+1

γ1
, k = 1, 2, 3, . . . .

This implies ku (V ) = 1

γ1
.

In view of the observations of the preceding section, since V is uniformly lipschitzian with respect to ‖·‖0

it is nonexpansive with respect to the norm ‖·‖00 defined by

‖x‖00 = sup

{∥
∥
∥V k x

∥
∥
∥

0 : k = 0, 1, 2, . . .

}

,

but it is easy to check that this is just the classical norm ‖·‖ on l1, and

γ1 ‖x‖ ≤ ‖x‖0 ≤ ‖x‖00 = ‖x‖
for all x ∈ l1.

Similar facts are valid for the sequence of mappings Vp, p = 1, 2, 3, . . . defined by

Vpx = V (x1, x2, . . .) = (

x1, x2, . . . , x p, 0, x p+1, x p+2, . . .
)
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For any k ≥ 1

V k
p x = V k

p (x1, x2, . . .) =
⎛

⎝x1, x2, . . . , x p,

k-times
︷ ︸︸ ︷

0, 0, . . . , 0, x p+1, x p+2, . . .

⎞

⎠ .

Now, as above, we have

k
(

V k
p

)

= γp+k

γp
and ku

(

Vp
) = 1

γp
.

Thus all the mappings Vp are uniformly lipschitzian, with

lim
p→∞ ku

(

Vp
) = lim

p→∞
1

γp
= lim

p→∞

(

1 + 1

8p

)

= 1.

As above for the straight shift V, each Vp is nonexpansive relative to the norm

‖x‖00
p = sup

{∥
∥
∥V k

p x
∥
∥
∥

0 : k = 0, 1, 2, . . .

}

for x ∈ l1. This norm coincides with the classical norm ‖·‖ on l1, for all x with x1 = x2 = · · · = x p = 0 and
satisfies

γp ‖x‖ ≤ ‖x‖0 ≤ ‖x‖00 ≤ ‖x‖,

for x ∈ li .
Now consider the closed convex subset K of S+ defined by

K =
{

x = (x1, x2, x3, . . .) ∈ S+ :
∞
∑

i=k

xk ≥ 1

2k−1

}

.

The set K is nonempty, and for each p = 1, 2, 3, . . . , Vp : K → K . Moreover, each Vp is fixed point free,
because Vpx = x implies

(

x1, x2, . . . , x p, x p+1, . . .
) = (

x1, x2, . . . , x p, 0, x p+1, . . .
)

and this is only possible if

x p+1 = x p+2 = x p+3 = · · · = 0.

However, this contradicts

∞
∑

i=p+1

xk ≥ 1

2p
.

Therefore, the FPP for X = (

l1, ‖·‖0) is completely unstable, and

γN (X) = γ0 (X) = 1.

We remark that very recently in [31] the authors have obtained new families of renormings of l1 satis-
fying FPP. They also show that the property of failing FPP is not stable for any norm p(·) of l1 satisfying
lim supn p(x + xn) = p(x) + lim supn(xn) for every w∗-null sequence (xn) and x in l1.
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5 Mean nonexpansive mappings

First we observe that if K is a bounded closed convex subset of a Banach space and T : K → K is nonex-
pansive, then a standard argument shows that T always has “approximate fixed points” in the sense that

inf {‖x − T x‖ : x ∈ K } = 0.

One can then ask whether this fact extends to the more general class of mappings satisfying

min
{‖T x − T y‖ ,

∥
∥T 2x − T 2 y

∥
∥
} ≤ ‖x − y‖ (8)

for all x, y ∈ K . The answer is “no”. The following example is given in [21]:
Let K = [0, 1] ⊂ R. Let ϕ : [ 1

4 , 1
2 ) → [ 3

4 , 1] be an arbitrary one-to-one surjective function and define
T : [0, 1] → [0, 1] by setting

T x =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x + 1
2 for x ∈ [0, 1

4 )

ϕ (x) for x ∈ [ 1
4 , 1

2 )

x − 1
2 for x ∈ [ 1

2 , 3
4 )

ϕ−1 (x) for x ∈ [ 3
4 , 1]

This function is obviously discontinuous. However, T 2x = x for all x ∈ [0, 1] so T satisfies (8). On the other
hand, |x − T x | ≥ 1

4 for all x ∈ [0, 1] , so T fails to have approximate fixed points.
This example is a little surprising in view of the fact that the slightly stronger condition

min
{

ρ (T x, T y) , ρ
(

T 2x, T 2 y
)} ≤ kρ (x, y) (9)

for all x, y ∈ M actually implies that T has a fixed point in any complete metric space. Condition (9) is just
the Generalized Banach Contraction Conjecture (GBBC) of [32] for the case n = 2. (The GBBC was first
fully solved in [43]. For more on the GBBC we refer to the discussion in [19].) Such mappings always have
unique fixed points despite the fact that they may be discontinuous. Also, in addition to (9), if T is uniformly
continuous, then convergence of the Picard iterates follows from a recent result of Reich and Zaslavski [48].

In looking to strengthen (8) to obtain a mapping with better properties, one might immediately think of the
condition

max
{‖T x − T y‖ ,

∥
∥T 2x − T 2 y

∥
∥
} ≤ ‖x − y‖ (10)

for each x, y ∈ K . However, this is just another way of saying T is nonexpansive. On the other hand, there
are conditions that are formally between (8) and (10). The simplest which might come to mind is

‖T x − T y‖ + ∥
∥T 2x − T 2 y

∥
∥

2
≤ ‖x − y‖ (11)

for each x, y ∈ K . This observation motivated the further study in [21].
Condition (11) immediately implies that both the mappings T and T 2 are 2-lipschitzian. In fact, applying

(11) to points T x and T y and adding 2
∥
∥T 2x − T 2 y

∥
∥ to both sides of the inequality, we obtain

3
∥
∥T 2x − T 2 y

∥
∥ + ∥

∥T 3x − T 3 y
∥
∥ ≤ 2

(‖T x − T y‖ + ∥
∥T 2x − T 2 y

∥
∥
) ≤ 4 ‖x − y‖,

and this implies that T 2 is
4

3
-lipschitzian.

Does a mapping satisfying Condition (11) have approximate fixed points? The answer now is “yes”. Let

F := T + T 2

2
. Then for all x, y ∈ K ,

‖Fx − Fy‖ =
∥
∥T x + T 2x − (

T y + T 2 y
)∥
∥

2

≤ ‖T x − T y‖ + ∥
∥T 2x − T 2 y

∥
∥

2
≤ ‖x − y‖.
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Therefore, F is nonexpansive, so given ε > 0 there exists xε ∈ K such that ‖xε − Fxε‖ < ε. Now, putting
y = T xε in (11), we have

∥
∥T xε − T 2xε

∥
∥ + ∥

∥T 2xε − T 3xε

∥
∥

2
≤ ‖xε − T xε‖
≤ ‖xε − Fxε‖ + ‖Fxε − T xε‖
< ‖Fxε − T xε‖ + ε

=
∥
∥
∥
∥

T xε + T 2xε

2
− T xε

∥
∥
∥
∥

+ ε

≤
∥
∥
∥
∥

T 2xε − T xε

2

∥
∥
∥
∥

+ ε.

This implies
∥
∥T 2xε − T 3xε

∥
∥ < 2ε, and since ε > 0 is arbitrary

inf {‖x − T x‖ : x ∈ K } = 0.

Returning to Condition (11), if a closed convex subset K of a Banach space has the fixed point property for
mappings satisfying this condition, then it must also have the fixed point property for nonexpansive mappings.

So we suppose K has the fpp, and suppose T : K → K satisfies (11). Then the mapping F := T + T 2

2
has

at least one fixed point, say x0. Putting y = T x0 in (11) we have
∥
∥T x0 − T 2x0

∥
∥ + ∥

∥T 2x0 − T 3x0
∥
∥

2
≤ ‖x0 − T x0‖ =

∥
∥
∥
∥

T 2x0 − T x0

2

∥
∥
∥
∥

.

Consequently,
∥
∥T 2x0 − T 3x0

∥
∥ ≤ 0, so T 2x0 is a fixed point of T . Thus we have the following:

Theorem 5.1 If a convex subset of a Banach space K has the fixed point property for nonexpansive mappings,
then it has the fixed point property for mappings satisfying (11).

Indeed, we have the following situation: T 2 ( f i x (F)) ⊆ f i x (T ) ⊆ f i x (F).

Question 1 Are there mappings for which the above inclusions are strict?

The answer to this question is "no" if the Lipschitz constant, k(T ), of T is strictly less than 2.

Theorem 5.2 Suppose a convex subset of a Banach space K has the fixed point property for nonexpansive
mappings, and suppose T : K → K satisfies (i ) F := 1

2

(

T + T 2
)

is nonexpansive and ( ii) k (T ) < 2. Then
f i x (T ) = f i x (F) �= ∅.

Proof If F (x) = x then
∥
∥T x − T 2x

∥
∥ = 2 ‖x − T x‖. Since k (T ) < 2, it must be the case that x = T x . ��

Condition (i) alone in the above theorem implies neither the continuity of T nor the existence of a fixed
point. The simplest example is the following. Define T : [0, 1] → [0, 1] as follows:

T x =
{

1 for x ∈ [

0, 1
2

]

0 for x ∈ ( 1
2 , 1].

Then

T 2x =
{

0 for x ∈ [

0, 1
2

]

1 for x ∈ ( 1
2 , 1],

so

Fx = T x + T 2x

2
≡ 1

2
.

The preceding simple discussion gives rise to several questions. While the mean (11) is elegant, one could
also consider weighted averages:
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Question 2 Can Condition (11) in Theorem 5.1 be replaced by the assumption that for some α ∈ (0, 1) T
satisfies

α ‖T x − T y‖ + (1 − α)
∥
∥T 2x − T 2 y

∥
∥ ≤ ‖x − y‖

for each x, y ∈ K ?

An argument similar to the one given above shows that the answer is affirmative if α ≥ 1
2 . In fact this

is a special case of the following more general result. For n ≥ 2, let α = (α1, α2, . . . , αn) be a multiindex
satisfying

α1 > 0, αn > 0, αi ≥ 0, i = 1, 2, . . . , n, and
n

∑

i=1

αi = 1.

A mapping T : K → K is called α-nonexpansive if

n
∑

i=1

αi

∥
∥
∥T i x − T i x

∥
∥
∥ ≤ ‖x − y‖ (12)

for each x, y ∈ K . It can be shown that this condition implies that the mapping

Tαx := α1T x + α2T 2x + · · · + αnT nx

for x ∈ K is nonexpansive, and a further technical argument yields the following:

Theorem 5.3 [21] If a convex subset of a Banach space K has the fixed point property for nonexpansive

mappings, then it has the fixed point property for α-nonexpansive mappings when α1 ≥ 1

2
1

n−1

.

The justification of the fact that the above result is a kind of stability comes from the following two
observations:

First, following [28], put

d (x, y) =
n

∑

j=1

⎛

⎝

n
∑

i= j

αi

⎞

⎠

∥
∥
∥T j−1x − T j−1 y

∥
∥
∥

and notice that d (x, y) is a metric equivalent to the one defined by the norm. Now, (12) means exactly that

d (T x, T y) ≤ d (x, y).

Hence all nonexpansive mappings, as nonexpansive with respect to equivalent metric, are uniformly lipschitz-
ian. Thus the fixed point property for nonexpansive mappings is stable with respect to special changes of
metrics. However, it was also observed in [28] that there are uniformly lipschitzian mappings which are not
α-nonexpansive for any α.

The second observation comes from the very recent Ph.D. thesis of Piasecki [45] (see also [46]). Obviously,
for any α the class of α- nonexpansive mappings contain all nonexpansive ones. However, on any convex set
of positive diameter and for any α there are mappings which are α-nonexpansive but not nonexpansive. Some
of them can even satisfy k (T n) > 1 for n = 1, 2, 3, . . .. Thus the notion of mean nonexpansiveness is not
only a formal but also a proper generalization of nonexpansiveness

The estimate α1 ≥ 1

2
1

n−1

from the last theorem does not give complete information about all α-nonexpansive

mappings having fixed points. Even in case n = 2 it is not known if the condition α1 ≥ 1
2 is the best possible.

Also, it was observed in [21] that in case n = 3, if we consider only monotone α = (α1, α2, α3) , α1 ≥ α2 ≥ α3,

the sufficient condition can be relaxed from α1 ≥ 1√
2

to α1 ≥ 1
2 .

Question 3 Given n = 2, 3, 4, . . ., is it possible to describe completely, or at least give partial information,
about the set An consisting of all α′s of length n, such that fpp for nonexpansive mappings implies fpp for α
-nonexpansive ones?
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6 Uniformly lipschitzian mappings in geodesic spaces

It is possible to at least partially extend the results described in the previous two sections to certain geodesic
spaces. A metric space (X, ρ) is a geodesic space if each two points p, q ∈ X can be joined by a geodesic, that
is, by a path γ : [a, b] → X where [a, b] is a real line interval, γ is an isometry, and γ (a) = p, γ (b) = q .

We first consider a special class of geodesic spaces called the CAT(κ) spaces, and we consider only the
case κ ≤ 0. A geodesic space (X, d) is said to be a CAT(κ) space (the term is due to M. Gromov– see, e.g.,
[4], p. 159) if it is geodesically connected and has constant curvature bounded above by κ . More precisely,
every geodesic triangle in X is at least as ‘thin’ as its comparison triangle in M2

κ , where for κ < 0M2
κ is the

real hyperbolic space H
2 with the distance function scaled by a factor of 1/

√−κ , and if κ = 0, M2
κ is the

Euclidean plane. For precise definitions and a thorough discussion of these spaces and of the fundamental role
they play in various branches of mathematics, see Bridson and Haefliger [4] or Burago et al. [10]. We note in
particular that the complex Hilbert ball with a hyperbolic metric (see [29]; also inequality (4.3) of [47] and
subsequent comments) is a CAT(0) space.

There are interesting spaces which are CAT(κ) for all κ ≤ 0.

Definition 6.1 An R-tree (or metric tree) is a metric space M such that

(i) there is a unique geodesic (metric) segment denoted by [x, y] joining each pair of points x and y in M ;
and

(ii) [y, x] ∩ [x, z] = {x} ⇒ [y, x] ∪ [x, z] = [y, z].

In [12], it was proved that the Lifšic constant κ (X) for any CAT(κ) space X with κ ≤ 0 satisfies κ (X) ≥√
2, and κ (X) = 2 if X is an R-tree. It was conjectured there that the Lifšic constant of a CAT(κ) space for

κ < 0 is a continuous decreasing function of κ which takes values in the interval (
√

2, 2). The authors have
informed us that an affirmative answer to this conjecture given in [15] is only partially correct.

In view of these observations and Lifšic’s theorem (and Remark 3.5), we have the following:

Theorem 6.2 Let X complete CAT(0) space and suppose T : K → K has bounded orbits and satisfies

d
(

T nx, T n y
) ≤ knd (x, y)

for each x, y ∈ K , where lim supn→∞ kn <
√

2. Then T has a fixed point.

For an R-tree we have the following result due to Aksoy and Khamsi [1].

Theorem 6.3 Let X be a complete R-tree, and suppose T : X → X has bounded orbits, and suppose there
exists n0 such that for n ≥ n0T and satisfies

d
(

T nx, T n y
) ≤ knd (x, y)

for each x, y ∈ X, where lim supn→∞ kn < 2. Then T has a fixed point.

7 Mean nonexpansive mappings in geodesic spaces

We now turn to a more general class of geodesic spaces. A Busemann space (we adopt the terminology of
[44]) is a geodesic metric space X such that for any two geodesics γ : [a, b] → X and γ ′ : [a′, b′] → X, the
map from Dγ,γ ′ : [a, b] × [

a′, b′] → R defined by

Dγ,γ ′
(

t, t ′
) → d

(

γ (t) , γ ′ (t ′
))

is convex. Equivalently, let [x0, x1] and
[

x ′
0, x ′

1

]

be two geodesic segments in X . For every t ∈ [0, 1] let
xt be the point on [x0, x1] satisfying d (x0, xt ) = td (x0, x1)and let x ′

t be the point on
[

x ′
0, x ′

1

]

satisfying
d
(

x ′
0, x ′

t

) = td
(

x ′
0, x ′

1

)

. Then,

d
(

xt , x ′
t

) ≤ (1 − t) d
(

x0, x ′
0

) − td
(

x1, x ′
1

)

. (13)

The following two conditions are necessary and sufficient conditions for a geodesic metric space X to be a
Busemann space. The second follow immediately from the first by two applications of the triangle inequality.
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(i) Let [x0, x1] and
[

x ′
0, x ′

1

]

be two geodesic segments in X, and let m and m′ be there respective midpoints.
Then

d
(

m, m′) ≤ 1

2

(

d (x0, x1) + d
(

x ′
0, x ′

1

))

. (14)

In a Busemann space the geodesic joining any two points is unique. To see this let [x0, x1] and
[

x ′
0, x ′

1

]

be two
geodesic segments in X . For every t ∈ [0, 1] let xt be the point on [x0, x1] satisfying d (x0, xt ) = td (x0, x1)and
let x ′

t be the point on
[

x ′
0, x ′

1

]

satisfying d
(

x ′
0, x ′

t

) = td
(

x ′
0, x ′

1

)

. Then

d
(

xt , x ′
t

) ≤ (1 − t) d
(

x0, x ′
0

) − td
(

x1, x ′
1

)

.

From this we see that if x0 = x ′
0 and x1 = x ′

1 then it follows that xt = x ′
t for all t ∈ [0, 1]. Thus these spaces

are precisely spaces which are said to be of hyperbolic type in the terminology of [23].

The key observation to extending the results of Sect. 5 to geodesic spaces is the Busemann space inequality
(14). It is known that bounded closed convex subsets of complete CAT(0) spaces have the fixed point property
for nonexpansive mappings, as do bounded hyperconvex metric space spaces. These spaces are also Busemann
spaces. As a result, we immediately have the following extension of Theorem 5.1.

Theorem 7.1 If (X, ρ) is a Busemann convex space which has the fixed point property for nonexpansive
mappings, then X has the fixed point property for mappings T : X → X satisfying

ρ (T x, T y) + ρ
(

T 2x, T 2 y
)

2
≤ ρ (x, y) (15)

for each x, y ∈ X.

Proof For each x ∈ X, let Fx denote the unique midpoint of the geodesic joining T x and T 2x . It is immediate
from (14) that F is nonexpansive. Letting x0 denote a fixed point of F, and putting y = T x0 in (15), we have

ρ
(

T x0, T 2x0
) + ρ

(

T 2x0, T 3x0
)

2
≤ ρ (x0, T x0) = ρ

(

T x0, T 2x0
)

2

from which ρ
(

T 2x0, T 3x0
) = 0. ��

The question might naturally arise whether there is an analog of Theorem 5.3 for Busemann spaces. The
answer to this is not so clear because the definition of higher order convex combinations of points in Busemann
spaces is not as straight forward as in normed linear spaces. We propose to take up this matter in more detail
elsewhere.

8 Uniform normal structure

Let (M, d) be a metric space. A nonempty subset A of M is said to be admissible if A is an intersec-
tion of closed balls of M . Let A (M) denote the collection of all nonempty admissible subsets of M . Thus
A ∈ A (M) ⇔ A �= ∅ and

A = ∩i∈I B (xi ; ri )

where xi ∈ M, ri ≥ 0, and i ∈ I for some index set I .
For D ∈ A (M) , let

r (D) = inf {ρ > 0 : D ⊆ B (x; ρ) for some x ∈ M}
and let

C (D) = {x ∈ M : D ⊆ B (x; r (D))}.
The number r (D) is called the Chebyshev radius of D, and C (D) is called the Chebyshev center of D. The
family A (M) is said to be normal if r (D) < diam(D) whenever diam (D) > 0, and A (M) is said to be
compact if every descending chain of nonempty subsets of A (M) has nonempty intersection. A (M) is said to
be countably compact if every descending sequence of nonempty subsets ofA (M) has nonempty intersection.

We first observe that if A (M) is compact, then C (D) �= ∅ for each nonempty set D in A (M).
The following is an abstract version of the original theorem of [34].

123



Arab J Math (2012) 1:417–430 429

Theorem 8.1 Let (M, ρ) be a metric space for which the admissible sets are countably compact and normal.
Then M has the fpp for nonexpansive mappings.

Suppose (M, d) is a metric space. The admissible sets A (X) of a metric space (X, d) are said to be uni-
formly normal with constant c < 1 if for any D ∈ A (X) with diam (D) > 0, r (D) /diam (D) ≤ c. In a
Banach space, uniform normal structure is known to imply reflexivity, see [41]. Also, in a uniformly convex
Banach space, the admissible sets are uniformly normal in the sense described here.

The following example shows that uniform normal structure completely unstable under small perturbations
of the original metric. (This example corrects a slight flaw in the example described in [36].) Therefore, despite
the fact that Banach spaces for which ε0 (X) < 1 have uniform normal structure, it seems unlikely that one
could obtain results similar to those of Casini and Maluta [11] in this more abstract setting. However, the
question remains open.

Example We remetrize the unit ball X in R
2∞. Let p = (1, 0) ; q = (−1, 0) ; u = (0,−1) ; v = (0, 1) in R

2∞.
Let 0 denote the origin and let ε > 0. Let 0′ be a point in R

3 on a line passing through 0 and perpendicular
to the plane R

2 such that the (euclidean) distance between 0 and 0′ is ε. Let X ′ be the surface in R
3 formed

by taking the union of the segments
[

w, 0′] where w is on the boundary of X . For each x ∈ X, let x ′ be the
point of X ′ which is directly above X, and let 	 (x) denote the length of the segment

[

x, x ′]. Now assign a
new metric ρ to X by taking

ρ (x, y) = (

(d∞ (x, y))2 + |	 (x) − 	 (y)|2)
1
2 .

Clearly ρ is a metric on X . Also for any x, y ∈ X,

d∞ (x, y) ≤ ρ (x, y) ≤ kd∞ (x, y)

where k = √
1 + ε2. However, since ρ = d∞ on the boundary of X ,

ρ (p, v) = ρ (q, v) = ρ (p, u) = ρ (q, u) = 1.

On the other hand, ρ (p, w) = ρ (q, w) = (

1 + (	 (w))2)
1
2 > 1 for any point w in the open segment (u, v).

Therefore, Bρ (p; 1) ∩ Bρ (q; 1) = {u, v} , so Bρ (p; 1) ∩ Bρ (q; 1) is an example of an admissible set whose
intersection consists of precisely two diametral points. Thus, not only does (X, ρ) not have uniform normal
structure; it does not even have normal structure. We also note that X has uniform normal structure with
constant 1/2 (the best possible!) because R

2∞ is hyperconvex.
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