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SUMMARY 

We estimate the determinants of utilisation of physician and hospital services in Belgium using four 

different regression techniques. We apply a one- and two-part panel count data model, and a one- 

and two part cross-section count data model. We conclude that the two-part panel count data model 

is most appropriate as it controls for unobserved heterogeneity and allows for a two-part decision 

making process. The estimates of the determinants of utilisation of health care are then used to 

calculate indices of horizontal inequity. We find that there is little difference between the indices 

based on cross-section and the indices based on panel estimators. We further present longitudinal 

evidence on equity in Belgian health care and find that all indices are stable across years. We also 

find that general practitioner and hospital care are pro-poor distributed, while horizontal equity 

applies to specialist care. We further show that the inequity might be different for (i) the probability 

to contact the health care sector, (ii) the conditional number of visits, and (iii) the unconditional 

number of visits. 
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INTRODUCTION 

The index of Horizontal Inequity (HI) is commonly used to measure horizontal inequity in health 

care [1,2]. It compares actual usage of health care with estimates of the need for health care. If a 

difference is observed between use and need for health care and if this difference is systematically 

related to the income of the individuals, it is said that health care is inequitable distributed across 

income groups. It follows that the measurement of horizontal inequity crucially depends upon - 

among other things - the definition of need for health care. In the empirical literature, the concept of 

need has been defined as mean health care use, conditional on some covariates and is typically 

estimated using regression analysis. In the empirical literature on the demand for health care, it has 

been shown that unobserved heterogeneity is important if one is explaining the conditional mean of 

health care use. Panel data, rather than cross-section data, are advocated to control for this 

unobserved heterogeneity as it allows to control for individual specific effects [3]. The existing 

studies on equity in health care have exclusively used cross-section data, mainly because of 

problems with data availability. This paper complements the existing evidence on equity in health 

care by providing estimates of HI where the need for medical care has been estimated on Belgian 

panel data. 

 

On the one hand, regression analysis of panel data is known to be more efficient than regression 

analysis of cross-section data. Especially its ability to control for unobserved individual 

heterogeneity makes it a powerful tool for analysing longitudinal data. Panel data techniques are 

also likely to be more efficient in terms of precision. Several examples of panel data analyses of 

health expenditures are available, including Manning et al. [4], and Wolfe and Goddeeris [5]. On 

the other hand, regression analysis of count data is particularly popular in the estimation of demand 

functions for medical care (e.g. Cameron et al. [6]). Count data methods are used since 

consumption of medical care is often recorded as the number of visits during a given time period. 

However, count data methods are rarely combined with panel techniques. A notable exception is 
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Schellhorn et al. [3] who use a one equation random effects model. In this paper random effects 

count data models are used to estimate the determinants of health care utilisation. 

 

There have been serious advances in the methodology to measure horizontal inequity in health care. 

To my knowledge, Le Grand [7] was the first to study the distribution of health care. He examined 

the British case and concluded that the poor tend to make less use of the National Health Service for 

a given illness. O'Donnell and Propper [8] refined Le Grand's methodology and, given these 

refinements, found that the National Health Service is slightly favouring the lower income groups, 

in the sense that they consume more than they need vis-à-vis the richer income groups. Next, 

Wagstaff et al. [9] and Wagstaff and van Doorslaer [10] compared various methodologies and 

proposed HI that is based on concentration curves. This index has a firm grounding in the income 

inequality literature [11] and allows for a straightforward implementation of need for medical care. 

Need for medical care is defined as mean health care use, conditional on some covariates reflecting 

need (e.g. health status). Van Ourti [12] and Gravelle [13] discuss the procedure to estimate need 

for health care. They argue that additional covariates - not necessarily reflecting need - should be 

used to predict need for medical care. Finally, Koolman and van Doorslaer [14,15] propose a new 

interpretation and framework for measuring equity in health care. They argue that the concentration 

index - and thus HI - can be given a straightforward and simple interpretation. Moreover, they show 

that additional information is revealed if HI is calculated for the probability to contact the health 

care sector and for the number of visits (conditional on a positive contact probability), rather than 

calculating HI for the unconditional number of visits. 

 

van Doorslaer et al. [1,2] report evidence on horizontal equity in health care in eleven European 

countries (including Belgium) and the United States. They find that the poor use medical care more 

intensively. However, the poor are also in higher need for medical care and overall there seems to 

be no serious problem with respect to horizontal equity. Results for single medical care services are 
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also obtained: visits to the general practitioner and inpatient care days are more or less in line with 

horizontal equity, while specialists are more often visited by the richer income groups than one 

would expect on the basis of estimates of need. 

Belgium appears to be an outlier with respect to some of these findings. Horizontal equity does not 

apply for general practitioner visits and inpatient care days since lower income groups make more 

use of these services than one would expect on the basis of their needs. van Doorslaer et al. [2] 

argue that differences in out-of-pocket price might explain this deviation from other European 

countries. In Belgium, all medical services are subject to co-payments, but the population at large 

faces higher out-of-pocket prices than a specific group of low-income families because they have 

lower co-insurance rates. Therefore, these lower out-of-pocket prices might trigger additional 

consumption of medical care.  

 

The main objective of this paper is threefold. First, estimates of the determinants of utilisation of 

physician and hospital services are derived using a two-part panel count data model (2PM-P). These 

estimates are compared with estimates based on (i) a one-part panel count data model (1PM-P), (ii) 

a two-part cross-section count data model (2PM-C), and (iii) a one-part cross-section count data 

model (1PM-C). These comparisons shed light on the (ir)relevance of the two-part structure and the 

(ir)relevance of controlling for unobserved heterogeneity. Second, the estimates of the determinants 

of utilisation of physician and hospital services allow for calculation of HI’s. HI’s based on panel 

and cross-section estimates are presented and possible differences are explained reverting to the 

regression technique. Third, the panel nature of the data allows us to present longitudinal evidence 

on equity in Belgian health care. The results supplement the evidence in van Doorslaer et al. [2] that 

is based on cross-section data and cross-country variation. However, longitudinal variation might 

make clear whether Belgium is truly an outlier as it comes to equity in health care. For these three 

purposes, we explore the unique panel characteristics of the Panel Study of Belgian Households 

(PSBH) [16]. 
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The rest of the paper contains three sections. In the second section, we discuss the econometric 

techniques to estimate the determinants of health care utilisation and techniques to calculate HI. The 

third section describes the data. Results and comparisons of the various techniques are presented in 

section four. In section five, some conclusions are formulated. 
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METHODS 

Consequently, we discuss the techniques and model selection criteria for estimating the 

determinants of health care when utilisation of health care is measured as a count variable. Next, the 

calculation of need for health care, based on these estimates is discussed. Finally, we discuss the 

technique to estimate HI. 

ECONOMETRIC TECHNIQUES AND MODEL SELECTION CRITERIA 

Four techniques are dealt with, namely cross-section negative binomial regression (1PM-C), a two-

part cross-section count data model (2PM-C), random effects negative binomial regression (1PM-

P), and a two-part panel count data model (2PM-P). Both 2PM-C and 2PM-P consist of a logit and 

log-linear model. In order to ease matters, we start with the least complex model. The discussion is 

based on Cameron and Trivedi [17], Pohlmeier and Ulrich [18], Jones [19], Hausman, Hall and 

Griliches [20], and Greene [21]. 

 

Consider the number of visits to a health service of individual , . Suppose  is Poisson 

distributed with intensity rate 

i im im

iλ . Next, if one lets the intensity rate (exponentially) depend on a 

vector of observable explanatory variables, , one gets the Poisson regression model with density: ix

 ( )
!i

m
i

ii m
e

xmf
ii λλ ⋅

=
−

         (1) 

where  and  denotes ‘cross-section’. This model imposes that the conditional 

mean should equal to the conditional variance, i.e. 

( C
ii x βλ 'exp= ) C

( ) ( ) iiiii xmVxmE λ== . The negative binomial 

regression relaxes this condition by including individual heterogeneity, v , in the intensity rate 

(

i

iivi µλ =  & ) and assuming that  is gamma distributed with parameters ( ix β' )C
iµ exp= iv

( )αα 1,1 . This assumption allows one to integrate out  from the density function. The resulting 

negative binomial density is given by: 

iv
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where ( )Γ  denotes the gamma function. This model, abbreviated 1PM-C, can be estimated by 

maximum likelihood and reduces to the Poisson model if 0=α . We use a simple t-test on α  to 

discriminate between the negative binomial and Poisson regression model. This test always rejected 

the Poisson model. 

 

Grootendorst [22], and Pohlmeier and Ulrich [18], among others, have demonstrated that two-part 

models (2PM-C) might be a better alternative than one-part models (1PM-C) if the dependent 

variable contains a large proportion of zeroes and if the dependent variable results from two 

separate decision-making processes. It is assumed that the (individual’s) decision to contact the 

medical sector is generated separately from the (physician’s) decision on successive utilisation of 

health services. The independence assumption between the two decision-processes enables one to 

estimate each decision process in turn, rather than estimating the two processes jointly. We model 

the contact decision by a logit model, namely ( ) ( ) ( )C,I'I
i

C,I'I
i

I
ii xexpxexpxmP ββ +=> 10  where I  

denotes ‘Part I’. The decision on the number of visits, conditional on at least one visit 

( )II
iii xmmE ,0>  where II  denotes ‘Part II’ and  may be different from , is modelled by the 

estimation strategy proposed by Manning and Mullahy [23]. This procedure is used, rather than a 

truncated at zero count model, since panel truncated at zero count models are rather complicated 

and since we intend to use identical cross-section and panel estimators. During the discussion of 

2PM-P, we come back to this point and discuss why a truncated at zero panel count data model was 

not considered. 

II
ix I

ix

 

Manning and Mullahy [23] consider ordinary least squares models with a log transformation of the 

dependent variable and generalised linear models, assuming that the dependent variable (which 

might be a count or continuous variable) is strictly positive. They examine the bias and precision of 
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these estimators under various data problems that are likely to be present in utilisation data, namely 

skweness, heavy tails, montonically declining and bell-shaped density functions, heteroskedasticity, 

etc. They show that none of the estimators is best under all data problems that were examined, but 

provide an algorithm for choosing the most appropriate estimator. This algoritm is applied in this 

research since “even if the estimators considered are consistent, there can be major losses in 

precision from selecting a less appropriate estimator” [23, p.461]. 

The considered least squares estimators are OLS on a log transformed dependent variable with (i) a 

homoscedastic and (ii) a heteroskedastic retransformation (see also Manning [24] and Mullahy [25] 

for additional discussion). For both models the regression model is ln  where 

 and 

( ) i
C,II'II

ii xm εβ +=

0>im iε  is an error term. The first estimator uses the non-parametric homoscedastic smearing 

factor ( )iE( )εexp , to retransform from ‘log-scale’, while the second estimator uses a 

heteroskedastic smearing factor, which is a non-parametric estimate of the variance function 

( )( )II

+

ii xε

i
C xfχ= 0

E exp

( )iE ε 2

. The heteroskedastic smearing factor is empirically implemented estimating 

, where  can be any function. ( C,II'II χ ) ( )f

The authors also consider three GLM estimators which all impose an exponentional conditional 

mean ( ( ) ( C,II'II
i

II
ii xexpxmE β= )), but differ in the variance structure. The homoscedastic nonlinear 

regression imposes that the conditional variance is not related to the explanatory variables. The 

“Poisson-like” GLM imposes that the conditional variance is proportional to the conditional mean, 

while the “Gamma-like” GLM assumes a proportional relation between the conditional standard 

deviation and the conditional mean. 

The authors propose an algorithm for choosing the most appropriate estimator based on evidence 

resulting from simulations and analyses on real data. The authors recommend to begin with an 

analysis of the log-scale residuals resulting from one of the consistent GLM-models (we always 

preferred the “Gamma-like” over the other two GLM’s based on Park tests [23, p.471-472]). If the 

log-scale residuals have a coefficient of kurtosis smaller than three, one should stick to GLM. 
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However, a coefficient of kurtosis higher than three, points to the appropriateness of the OLS-

models. Finally, a heteroskedasticity test on the log-scale residuals will allow one to discriminate 

between a homoskedastic or a heteroskedastic retransformation. We use a Breusch-Pagan test for 

heteroskedasticity. The test statistic is here computed as the number of observations multiplied by 

the ²R  of an auxiliary regression of  upon a constant and (a function of) . The statistic is 

asymptotically  distributed with degrees of freedom equal to the number of variables in . 

This auxiliary regression is also used as starting point for the heteroskedastic smearing estimator 

(see above). 

2
iε IIx

2χ IIx

 

Next, we discuss the panel analogs of the above models. Both the 1PM-P and 2PM-P result from 

the inclusion of individual effects which allow to control for unobserved individual heterogeneity. 

Either the effects are assumed deterministic resulting in a fixed effect model, or they are assumed 

stochastic, resulting in random effects. In general, random effects are preferred because such 

models are more efficient and identify time-invariant regressors. The major drawback, however, 

consists of the uncorrelatedness assumption between the regressors and the random effects. We 

tested for this assumption using Hausman tests in both the 1PM-P and 2PM-P. The resulting test 

statistics were always negative and the coefficients on the time-varying variables took implausible 

values in the fixed effects models. Since Schellhorn et al. [3] report similar findings and since the 

time-varying variables took implausible values, we stick to random effects and do not discuss fixed 

effect estimation. 

 

To end up with the random effects negative binomial regression model (1PM-P), we start from 

equation (1) and add a time subscript t . Assuming that itλ  is gamma distributed with parameters 

( )δµ ,it , enables one to show that: 
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This density implies heterogeneity because of the gamma distributed itλ , but random effects are not 

implemented yet. We replace δ  by iδ  to include individual effects. It is now sufficient to choose a 

distribution for iδ  to end up with a random effects specification. In order to find an analytically 

tractable solution, we follow Hausman et al. [20] and impose that ( i )i δδ +1  is beta distributed 

with parameters . We now have sufficient information to define the joint density function of 

the 1PM-P which can be used for maximum likelihood estimation: 

( s, )r
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Unlike in the case of the cross-sectional variant, the Poisson random effects model is not nested in 

the negative binomial random effects model. Therefore, we use the Akaike and Bayesian 

Information Criteria (AIC & BIC) which unanimously favoured the negative binomial specification. 

 

Finally, we discuss the 2PM-P which consists of a random effect binary choice model (Part I) and a 

random effect generalisation of the estimation strategy proposed by Manning and Mullahy [23] 

(Part II). Part I is estimated using a random effect logit model. We assume that the random effects, 

iα , are normally distributed with parameters  such that the joint density equals: ( 2,0 ασ )
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where P  refers to panel data. Equation (5) is the basis for maximum likelihood estimation. The 

integral is approximated using a 12-point Gauss-Hermite quadrature using available routines in 
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STATA 7.0. Following StataCorp [26], we evaluate the quality of the quadrature by checking the 

coefficient stability for an 8 and 16-point quadrature. 

In the context of a cross-section, Part II is usually estimated using a truncated at zero negative 

binomial model. As noted before, this model is not easily generalised to a panel context. Therefore, 

we first discuss the intractability of estimating a truncated at zero random effects negative binomial 

model. Next, we deal with the estimation strategy of Manning and Mullahy [23]. 

To derive the joint density for the truncated at zero random effect negative binomial model, we start 

from equation (3) to find the corresponding truncated at zero density: 
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If one replaces the expression in square brackets in equation (4) by equation (6), one can derive 

(after some algebra) the joint denisty for the truncated at zero random effect negative binomial: 
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where iiiy δδ += 1 . From equation (7), it is clear that the log likelihood function will involve an 

integral, which cannot be approximated by readily available techniques such as Gauss-Hermite or 

Gauss-Laguerre quadrature. The less flexible random effect Poisson model neither offers an escape, 

as it can be shown that its log likelihood will also involve an integral which does not fit in the 

mentioned approximation techniques. It results that we prefer the estimation strategy proposed by 

Manning and Mullahy [23], rather than to revert into inegral approximation techniques. 

This strategy can be applied to panel data without major adjustments. We use the same algorithm 

for choosing the most appropriate estimator, but replace the cross-section estimators by their panel 

counterparts. More exactly, we start with an analysis of the log-scale residuals resulting from a 

“Gamma-like” population averaged panel data model. We use log  as an estimate of the ( itit m̂m − )
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log-scale errors. If these log-scale errors have a coefficient of kurtosis smaller than three, we stick 

to the population averaged panel data model, while a coefficient higher than three points to the 

appropriateness of OLS-models. Instead of the cross-section OLS model, we use a linear random 

effects model on a log transformed dependent variable. Finally, the same Breusch-Pagan test on  

- where 

2
itξ

itξ  results from  - is a valid tool to discriminatie between the 

homoskedastic and heteroskedastic smearing factor (see e.g. Verbeek [27, p. 325]). 

( ) iti
PIIII

itit xm ξαβ ++= ,'ln

 

In the results section, we discuss estimates resulting from the four regression techniques. In order to 

select the most approporiate technique, we use the following strategy. First, we start with the 2PM-

P including all available regressors. Likelihood Ratio and Wald tests are preformed to exclude 

redundant variables, while Likelihood Ratio and Lagrange Multiplier tests are used to test for the 

significance of unobserved individual heterogeneity. Second, we estimate the 2PM-C where only 

the non-redundant variables from the panel model are included. We discriminate between 2PM-P 

and 2PM-C using the log likelihood (evaluated at the estimates), AIC and BIC of the ‘full model’. 

‘Full model’ refers to the sum of ‘Part1’ and ‘Part2’ in case of the 2PM-P and 2PM-C, but for the 

latter we also sum across time periods [28]. Third, we estimate the 1PM-P and 1PM-C and use the 

same strategy to discriminate between both. Finally, we compare the ‘best’ 1PM-model with the 

‘best’ 2PM-model using the log likelihood, AIC and BIC. 

The comparisons between the panel and cross-section estimators might appear inappropriate as 

these comparisons focus on both the relevance of unobservedl heterogeneity and the relevance of 

time-varying coeffcients. It results that our model selection strategy in itself favours the cross-

section estimators. However, if our strategy points to the appropriateness of panel estimators (as it 

does) we have a more powerful argument to prefer the panel estimators. 

CALCULATION OF NEED FOR HEALTH CARE 

The estimates of the determinants of utilisation of physician and hospital services can be used to 

calculate the need for health care. In turn, need for health care is a prerequisite for calculating the 
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index of horizontal inequity (HI). In this section, we discuss the calculation of need for each of the 

four regression techniques. 

 

Until recently, estimates of the determinants of utilisation were not considered to calculate need for 

health care. Rather, need for health care was defined as the predicted value of a regression of health 

care utilisation upon a set of variables reflecting need (i.e. sex, age and health status). Determinants 

of utilisation that are not considered to reflect need (e.g. education, income, etc.) were explicitely 

excluded from the regression analysis [10]. 

Following Schokkaert et al. [29], Van Ourti [12] and Gravelle [13] argue that the omission of these 

latter determinants might result in omitted variables bias. Therefore, they argue to include these 

determinants in the regression analysis. Need for health care is then defined as the predicted value 

of this regression, but the variables that do not reflect need are kept fixed across individuals. 

Gravelle [13] argues that the mean is the most obvious choice for the fixed value, but shows that in 

general the chosen value does matter for the calculation of HI if the underlying regression model 

imposes interaction (effects) between the variables reflecting and those not reflecting need. 

 

We now deal with the calculation of need for health care in terms of the four regression techniques. 

We stress that need is always calculated for each time period , but skip the subscript for the cross-

section techniques. Suppose that the explanatory variables  are decomposed in  and , 

where  and  correspond to variables reflecting need and variables not reflecting need. 

Calculation of need based on the 1PM-C proceeds then as follows: 

t
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where an upper bar refers to an average across individuals, and  stands for need based on 

1PM-C. Starting from 1PM-P results in a slightly modified formula: 
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where we take an average across individuals for one time period since HI is calculated for each time 

period separately. Since iδ  is a random variable, we replace it by its expected value, namely 

( ) srE i =δ . It results that unobserved individual heterogeneity is not reflected in the need for 

health care. 

 

Calculation of need is less straightforward using a two-part model. Following Koolman and van 

Doorslaer [15], we calculate need for health care for ‘Part 1’ and for ‘Part 2’, but not for the ‘full 

model’. It results that we calculate HI for ‘Part 1’ (the contact decision) and an index for ‘Part 2’ 

(the decision on the number of visits, conditional on a contact), but not an index for the ‘full model’ 

(the unconditional number of visits). Starting from 2PM-C gives the following formulas for need 

for health care: 
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where the last term in eqution (10b) is the heteroskedastic smearing factor, conditional on the mean 

value of the -variables. The formulas for the 2PM-P are: NN
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where iα  is replaced by ( ) 0=iE α , because of its stochastic nature. 

THE INDEX OF HORIZONTAL INEQUITY 

We calculate HI for each period t  according to the methods proposed by Wagstaff and van 

Doorslaer [10]. To simplify things, we neglect the  subscript, and assume a unique estimate of 

need  throughout the discussion. 

t

iN
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HI is based on a concentration curve for health care utilisation and one for need. The concentration 

curve for utilisation/need is obtained by plotting the cumulative proportion of utilisation/need 

against the cumulative proportion of the individuals, ranked by socio-economic status  

(beginning with the least advantaged). HI is then defined as twice the surface between the need and 

utilisation of health care concentration curve: 

iy

       (12) ( ) ( )[ ] NMMN CCdppLpLHI −=−= ∫
1

0
2

where  stands for the concentration curve, ( )L p  for the cumulative proportion of the individuals, 

 for the concentration index of health care use, and C  for the concentration index of need. HI 

takes values between -2 and +2. A positive (negative) valued indicates pro-rich (pro-poor) inequity, 

i.e. the rich (poor) use more health care than one would expect on the basis of their needs. An index 

of zero indicates horizontal equity. Kakwani et al. [30] and Wagstaff and van Doorslaer [10] show 

that HI can be calculated using OLS-regression: 
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where  is the fractional rank of ,  is the variance of , and an upper bar indicates an 

average. It can be shown that 

yiR , iy 2
yRσ yiR ,

1κ  equals HI. The OLS-approach has several advantages relative to 

other calculation methods (e.g. integral approximation, discrete formulas). First, equation (13) is 

easily generalised for weighted data. Second, the standard error of 1κ  can be interpreted as a 

standard error for HI. Finally, the standard error can be corrected for autocorrelation [31] and for 

clustering at the household level [26]. 
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DATA 

We base our analysis on data from the Panel Study of Belgian Households (PSBH) [16]. The PSBH 

includes information on utilisation of health care and self-reported health of all members (over 15 

years) of the participating households, but is essentially a household survey collecting socio-

economic information. We do prefer the PSBH to the recently released first Belgian Health 

Interview Survey [32], since the Health Interview Survey lacks the panel dimension which is 

essential for the purposes of this paper. The PSBH started in 1991, has a yearly time dimension, and 

is a representative sample of the Belgian, non-institutionalised population. This is ensured by the 

sampling framework, and by using yearly weighting factors which correct for non-random attrition. 

We analyse data covering 1994-1997, and use information of 1993 for constructing some variables 

(see below). Data for 1991-1993 was not considered for analysis as it lacks information on 

utilisation of health care. After deleting missing observations, we end up with an unbalanced panel 

data set with 21290 observations. The variable definitions and descriptives statistics are summarised 

in tables 1 and 2. 

 

[table 1] 

 

We consider utilisation of three health care services (measured in counts). The PSBH informs on 

the number of visits during a year to a general practitioner ( ), the number of visits during a year 

to a specialist ( ), and the number of nights spent at a hosptial during the past twelve months 

( ). The suffixes ‘ ’ and ‘ ’ refer to ‘Part 1’ and ‘Part 2’ of a two-part regression model. 

gp

spec

hosp 1P 2P

 

Four sets of socio-economic variables are used. First, individuals were asked to give their highest 

education degree ever obtained. It is represented by a set of four dummies, namely university 

degree (univ ), higher education ( ), higher secondary school ( ), lower secondary 

school ( lowsec ), and primary school or no degree (the excluded category). 

highedu highsec
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Second, we constructed a set of dummies for monthly disposable net household income ( ). 

The dummy for household income above 200.000 BEF (+/- 4958 euro) is excluded. Although the 

estimation of the determinants of health care is carried out at the individual level, we believe that 

the specific Belgian situation provides justification for a measure at the household level as each 

household faces a co-payment ceiling determined by yearly household income. The economies of 

scale argument behind equivalence scales is met by including variables reflecting household 

structure (see below). We also did not explicitely correct for inflation. Instead we include time 

dummies and note that the dummies correspond to income ranges of at least 20.000 BEF. 

71−hinc

Third, we constructed a continous measure of monthly disposable net household income 

( ). This measure is not used in the estimation of the determinants of utilisation of health 

care since the set of dummies allows for more flexibility. Rather, we use the continuous measure for 

calculting HI. First, we use the set of income dummies ( ) to predict a continous measure 

for all households using interval regression. Since some, but not all households did report a 

continous income measure, we replace the predicted value of these households by the actual value. 

Appendix A gives additional information. 

hincrank

81−hinc

Fourth, all individuals are classified into three mutually exclusive occupational groups, namely the 

self-employed or professionals ( ), the employees ( ), and individuals working less than 15 

hours a week or not working at all (the excluded category). We choose this partitioning for two 

reasons. On the one hand, Belgian self-employed are likely to have a higher value of time, ceteris 

paribus, since they receive, relative to employees, less favourable replacement incomes during 

episodes of illness. In turn, employees typically have a higher value of time than those working less 

than 15 hours or not working. On the other hand, self-employed, relative to employees and those 

not working, have a limited public insurance package, which might result in a negative effect on 

demand. The effect is likely to be modest for those buying additional private insurance, but 

evidence shows that only 60% of the self-employed has additional insurance [33]. Besides  and 

, we also include two dummies at the household level (  & emphh ). These are included 

self emp

self

emp selfhh

 17



to reflect the fact that not working members of the household (or working less than 15 hours a 

week) receive the same public insurance package and the same replacement incomes as the working 

members. Households without working individuals are the excluded category. 

 

[Table 2] 

 

Four demographic variables are considered. Sex is represented by a dummy variable ( ) and 

age is measured continuously ( ). The number of household members under 16 year is denoted 

by , while adult  measures the number of household members older than 15 year. These latter 

two variables are included to correct household income for household composition (see e.g. 

Gerdtham [34]). 

male

age

child

 

We include four sets of dummies reflecting health status. First,  measures chronic illness or 

handicap. Second, self-assessed health ( ) is measured on a five-point categorical scale 

ranging from very good to very bad (very good is excluded). The two lasting measures are also 

measured on a five-point categorical scale, but refer to the last three months before the interview. 

The first refers to depressive feelings ( deprese ), while the second refers to physical 

symptoms ( ). In both cases, we excluded the category ‘never’. 

chron

sahvbsahg −

− deprefr

phsymfrphsymse −

Health status is likely to be an endogenous covariate. Several strategies are available for dealing 

with this possible endogeneity. First, one could estimate a structural simultaneous equation model 

(e.g. Van de Ven and Van der Gaag [35]). Second, one could use the GMM-framework on the 

condition that suitable instruments are available (e.g. Mullahy [36] and Windmeijer and Santos 

Silva [37]). We follow a simpler strategy. Since information on health status is available in 1993, all 

four sets of dummies refer to the situation in the preceding year. As such, we avoid that utilisation 

of health care in year t  is correlated with health status in year . We do however not avoid that 

health status in year t  is correlated with health care in year , , etc. 

t

21− −t 3−t
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Two dummies reflect the federal structure of Belgium, namely the Walloons ( ), Brussels 

( ), and Flanders (the excluded category). 

wall

bruss

 

Finally, we turn to variables not (explicitely) included in the estimation of the determinants of 

health care. First, we only have limited information on insurance status (see emp  & ), which in 

Belgium typically determines the out-of-pocket price. Moreover, insurance (price) effects might 

also be reflected in the low income dummies ( hinc ), since low-income households face lower 

co-payment levels in general. Second, information on the supply of medical care is not included. In 

principle we should be able to link supply information (which is available on municipality level 

[38]) with the residence of the individuals, but - because of privacy regulation - the PSBH provides 

no residence information (except for the federal dummies). 

self

21−
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RESULTS 

We start this section by discussing estimation results and model selection. Next, we deal with the 

indices of horizontal inequity. 

ESTIMATION RESULTS AND MODEL SELECTION 

We use STATA 7.0. to obtain estimates of the determinants of health care, resulting from the four 

techniques. All models are estimated by maximum likelihood, except for ‘Part 2’ of 2PM-P (C) that 

is estimated by GLS (OLS). 

We estimate separate models for ,  and . We start from specifications including all 

variables (except for ) discussed in the data section. Rather than including , we 

include a fourth order polynomial of age to pick up non-linearities. We also add interaction effects 

between this polynomial and . The panel models are also supplemented with time dummies. 

We discriminate between the four regression techniques using AIC and BIC. The summary statistics 

in table 3 are based on the more parsimonious models (i.e. after excluding redundant variables). In 

all cases the panel estimators are preferred to the cross-section estimators and 2PM is always 

preferred to 1PM. With respect to general practitioner care, the latter is different from the findings 

of Schellhorn et al. [3], who argue that two-part models are not needed if the proportion of zeroes is 

modest. 

gp spec hosp

hincrank

male

age

 

[Table 3] 

 

Since 2PM-P emerges as the most appropriate model, we mainly discuss the estimates resulting 

from this model. Remember, however, that the estimates are not exclusively intended to present 

evidence on the determinants of utilisation of physican and hopsital services in Belgium. The 

estimates are also used to assess the relevance of the four regression techniques in calculating HI. 

Therefore, we present the estimates resulting from the other regression techniques in appendix B. 

Table 4 shows the estimation results of 2PM-P. As shown by the Lagrange Multiplier test, it is 
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necessary to control for unobserved individual heterogeneity. Table 4 and 5 show that the 

heteroskedastic retransformation is appropriate. 

 

[Table 4 & 5] 

 

Males are less likely to visit any of the three types of health services. The age profile is always 

nonlinear, except for the conditional number of overnight visits at the hospital. Interaction effects 

between the  polynomial and  are primarily relevant for the number of visits to the 

specialist because of pregnancy consultations. 

age male

The health dummies always take the expected sign. A less favourable health status results in a 

higher contact probability and a higher conditional number of visits. Not all sets of health dummies 

are, however, equally important in ‘Part 1’ and ‘Part 2’ and across type of health service. Most 

striking are the differences in significance of the health dummies reflecting depressive feelings and 

physical symptoms, and the differences across type of health care in the proportional increase of the 

contact probability (and conditional number of visits) resulting from a worsening health status. 

The educational dummies reveal that the higher educated (relative to the lower educated) tend to 

visit the general practitioner and hospital less and the specialist more often. The dummies reflecting 

the federal structure of Belgium reveal a higher number of visits for the Walloons relative to 

Flanders. Brussels has a lower number of visits to the general practitioner, but a higher number of 

specialist visits. The composition of the households only affects the contact probability for the 

general practitioner, while the occupational dummies mainly affect the conditional number of visits 

to the general practitioner. Finally, the set of income dummies is always jointly significant, but few 

dummies are significant. We find a positive effect of low income for hospital care and specialist 

care, while the middle income groups are more likely to visit the general practitioner. 

RESULTS FOR INDICES OF HORIZONTAL INEQUITY 
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The previous section dealt with the first objective of this paper, namely estimation of the 

determinants of health care utilisation. We checked for the importance of the panel characteristics 

and two-part structure. This section handles the second and third objective. The second objective is 

a continuation of the first and amounts to a sensitivity analysis of the calculation of HI. The third 

objective is to present longitudinal evidence on horizontal equity in Belgian health care. 

 

The need for health care is calculated using equations (8)-(11). , the polynomial of age , the 

four sets of health dummies, the interaction effects between the polynomial of age  and , and 

the time dummies are included in the set of variables reflecting need ( ). The individuals are 

ranked by continuous household income ( ), corrected for household composition. We 

apply the same equivalence scale as van Doorslaer et al. [2], namely 

Male

male

RN
ix

hincrank

childadult + 5.0 . The 

resulting indices based on the panel estimators are shown in table 6, while those based on the cross-

section estimators are shown in table 7 (in appendix C, we show the concentration indices of health 

care utilisation). We present three indices per year per type of health service [15]. The first 

( ) is based on the first part of 2PM. The second (( 1=MP ) (ME )0> ) is based on the second part of 

the 2PM. The last is based on the 1PM ( ). (ME )

 

[Table 6 & 7] 

 

In order to concretize the second goal of this paper, we use the new interpretation of the 

concentration index proposed by Koolman and van Doorslaer [14]. The authors show that three 

quarters of the value of the concentration index equals the proportion of the total number of visits 

that needs redistributing from the richest to the poorest half of the population to reach horizontal 

equity. Since we aim to compare two HI’s which are based on concentration curves, one can say 

that the difference between two HI’s is equal to 75 percent of the proportion of health care that 
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should be redistributed. This gives us a nice benchmark to assess the difference between the HI’s 

based on panel and cross-section data. 

In general, one observes that the differences between the indices based on panel and cross-section 

estimators are fairly small. For instance the difference between the HI of general practitioner 

( ( 0>ME )) for 1994 amounts to -0.001, which means that in order to reach horizontal equity 

according to the panel estimator requires an additional redistribution of 0.075% of all visits 

(compared with the index based on the cross-section estimator). There are however a few 

differences that are larger. First, the indices for general practitioner care based on  differ 

between 0.02 and 0.03, implying a difference of 1.5% to 2.25% in total health care that needs 

redistributed. Second, the difference between indices for hospital care in 1996 and 1997 also 

amounts to about 0.03. 

gp

)(ME

We conclude that in general the choice for the cross-section versus panel estimator does not matter 

a great deal. We guess this reflects - among other things - the negelect of the random effects in 

predicting need for health care (see equations (8)-(11)). In some cases, however, there are 

differences that cannot be neglected. A quick look at table 4 and the tables in appendix B shows that 

time-variation in the parameters is driving these differences. Based on the information criteria in 

table 3, we prefer the HI’s based on the panel estimators. 

 

With respect to the third goal of the paper, we can say the following. First, the split up between 

inequity in the contact probability and inequity in the conditional number of visits is very clarifying. 

For instance, it shows that the inequity in the total number of visits to the general practitioner is 

mainly driven by inequity in the conditional number of visits. Second, the indices are fairly stable 

across time. Third, the results are in line with the results presented in van Doorslaer et al. [2]. Given 

the stability of the indices, this indicates that - as noted in the introduction - there is additional 

evidence that Belgium is an outlier in comparison with other European countries. 

 23



DISCUSSION 

In this paper, we adressed three issues. First, we compared four regression techniques for estimating 

the determinants of utilisation of Belgian health care. We considered a panel and cross-section 

count data two-part model, and a panel and cross-section one equation count data model. These 

estimators differ in terms of their capability of controlling for unobserved individual heterogeneity, 

in terms of the assumed (two-part or one-part) underlying decision process, and in terms of 

precision and parameter stability across time periods. We estimated all four models on Belgian 

panel data and conclude that the panel count data two-part model is most appropriate for estimating 

the determinants of Belgian health care. 

Second, we used the estimates resulting from the four models to calculate indices of horizontal 

inequity in Belgian health care. We found that the choice between the various estimators does not 

matter a great deal. 

Third, we find that inequity in the number of visits to the general practitioner is favouring the less 

advantaged, meaning that they have more visits than expected on the basis of their needs. It is 

shown that inequity in the conditional number of visits, rather than inequity in the probability to 

contact the general practitioner, is the main driving factor. With respect to specialist care, we found 

the opposite. The rich have a higher probability to contact the medical sector than one would expect 

on the basis of their needs, but this does not lead to inequity in the conditional number of visits, nor 

in the unconditional number of visits. Compared to visits to the general practitioner and specialist, 

the number of nights spent at the hospital is characterised by the highest inequity. However, only 

two out of four indices are statiscally significant for the conditional and unconditional number of 

nights spent. 

Across years, all indices are fairly stable. It follows that extrapolation of the results from previous to 

later years might be feasible. Furthermore, the stability of the indices could be a very useful finding 

for countries that do lack (good) panel data since such countries can still resort to cross-section data 

to get robust estimates of equity in health care utilisation. 
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Finally, we explore some routes for future research. First, it would be interesting to consider 

additional variables to explain health car utilisation in Belgium that were not available in our data. 

We think that information on the supply of medical care, better information on the insurance status 

of the individuals and more detailed information on health status is likely to improve the policy 

relevance of this analysis. Probably, policy makers are more interested in the effect of insurance 

status than in the effect of education. Moreover, the set of dependent variables did not cover all 

categories of medical care. Drug consumption, dentist care, eye doctors, physiotherapists and 

alternative medical care were not considered. A better data set is, however, the sole solution. 

Second, we should look for factors explaining violations of horizontal equity: ‘measuring inequity 

is one exercise, finding possible explanations another’. One way to proceed would be to apply the 

decomposition methods developed by Wagstaff et al. [39]. This method has been shown to be a 

very powerful tool for explaining inequities within a year, across years and across countries. 
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APPENDIX A: A CONTINOUS INCOME MEASURE 

The results of the interval regression are presented in table A.1. Besides data for 1994-1997, we use 

data for 1993 since information on monthly disposable net household income is collected from 1993 

onwards. We do not use panel techniques since the composition of households is time-varying. 

Instead, cross-section methods are applied on the pooled data. Contrary to the estimation of the 

determinants of utilisation of health care, the household is the unit of analysis.  

 

[table A.1] 
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APPENDIX B: ESTIMATION RESULTS FOR 2PM-C, 1PM-P AND 1PM-C 

[table B.1-B.4] 
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APPENDIX C: CONCENTRATION INDICES OF HEALTH CARE UTILISATION 

[table C.1] 
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