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Quand une situation, de la plus humble à la plus vaste, a été comprise dans les aspects

essentiels, la démonstration de ce qui est compris (et du reste) tombe comme un fruit mûr à

point. [. . . ]

When a situation, from the most humble to the most immense, has been understood in
the essential aspects, the proof of what is understood (and of the remainder) falls like a
fruit that is just ripe. [. . . ]

A. Grothendieck

Abstract.

Our aim is to give a simple view on the basics and applications of convex analysis. The essential
feature of this account is the systematic use of the possibility to associate to each convex object—such
as a convex set, a convex function or a convex extremal problem)—a cone, without loss of information.
The core of convex analysis is the possibility of the dual description of convex objects, geometrical
and algebraical, based on the duality of vector spaces; for each type of convex objects, this property is
encoded in an operator of duality, and the name of the game is how to calculate these operators. The
core of this paper is a unified presentation, for each type of convex objects, of the duality theorem
and the complete list of calculus rules.

Now we enumerate the advantages of the ‘cone’-approach. It gives a unified and transparent
view on the subject. The intricate rules of the convex calculus all flow naturally from one common
source. We have included for each rule a precise description of the weakest convenient assumption
under which it is valid. This appears to be useful for applications; however, these assumptions are
usually not given. We explain why certain convex objects have to be excluded in the definition of the
operators of duality: the collections of associated cones of the target of an operator of duality need
not be closed (here ‘closed’ is meant in an algebraic sense). This makes clear that the remedy is to
take the closure of the target. As a byproduct of the cone approach, we have found the solution of
the open problem of how to use the polar operator to give a dual description of arbitrary convex sets.

The approach given can be extended to the infinite-dimensional case.
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1 Introduction

For many analytical problems, it is the convexity rather than the differentiability that is the vital
property. Then it is natural to replace the methods of differential analysis by those of convex analysis.

In convex analysis, one studies convex sets, convex functions and convex extremal problems. The
subject represents great geometrical beauty and analytical power; there are extremely many applica-
tions of the methods of convex analysis. The central property of convex objects is the possibility of
their dual description, geometrical and algebraical, based on the duality of vector spaces. The official
moment of birth of the subject is the publication of the monograph Convex Analysis by R.T. Rock-
afellar, but its origins can be traced back, for example to work of W. Fenchel on the dual description
of convex functions, and even further back, to the work of H. Minkowski who started the systematic
study of convexity. The earliest trace of it is the well-known observation that each statement in plane
geometry about inclusion of points in lines has a dual statement, where the role of points and lines is
interchanged. We recall the simplest example: the dual statement of ‘through two different points runs
precisely one line’ is ‘two different, non-parallel lines have precisely one point in common’. The need
to add ‘non-parallel’ here, illustrates that the transition to the dual is not completely straightforward.
The transition to the dual is the main subject of the present paper.

The operators of duality such as the subdifferential, the polar operator, the conjugate function
operator (or Young-Fenchel transformation) and many others, allow a transition from one description
to the other; the calculation of these operators can be carried out using certain rules of the convex
calculus such as the theorems of Moreau-Rockafellar, Fenchel-Moreau, Dubovitskii-Milyutin and many
others.

There is a parallel with differential analysis. There the calculation of the operator of differentiation,
the derivative, can be carried out using the rules of the differential calculus such as the chain rule and
the product rule. The explanation of this parallel is that the idea behind the operators of duality is
the same as the one behind the operator of differentiation: in both cases one wants to profit from the
available structure, convexity in one case and differentiability in the other one, in order to approximate
a nonlinear object by a linear one.

This paper is organized as follows.
• Section 2: enumeration of all convex objects to be considered and the main binary operations

on these convex objects.

• Section 3: presentation, for one type of convex objects, cones, of the theorem of duality and the
four basic calculus rules for the operator of duality, the conjugate cone operator: for sum and
intersection, and, more generally, for image and inverse image under a linear operator. Novel
presentation of the proof of the main theorem of convex analysis in a geometrical spirit.

• Section 4: enumeration, for each type of convex object, of the duality theorem and the calculus
rules for the operator of duality.

• Section 5: presentation of a systematic ‘cone-approach’, which gives automatically, for each type
of convex objects, the duality theorem and the calculus rules for the operator of duality.

We conclude the paper by giving a selection of applications to various basic topics.

• Section 6: the calculus rules for the subdifferential of convex functions at a point are formulated;
these rules are derived by localization from the calculus rules for sublinear functions.
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• Section 7: a problem on the polar operator is settled: how to use this operator to give the dual
description of a convex set that does not contain zero.

• Section 8: the results of separation of convex sets are given ((strict) separation, Hahn-Banach
theorem, Farkas’ lemma).

• Section 9: the multiplier theory for convex extremal problems is presented (convex Lagrange
multiplier rule, theory of primal and dual problems, shadow price interpretation of multipliers
and of solutions of dual problems).

• Section 10: for most types of convex objects, one application is given illustrating the duality
theorem and the calculation of the operator of duality.

2 Basic concepts: convex objects and binary operations

We enumerate the main types of convex objects and the main binary operations on these types of
convex objects. Let X be a vector space; in this paper, this will mean that X = Rn, the space
of n-dimensional column vectors. However, as we will explain, almost all results extend to the
infinite dimensional case.

A set A ⊆ X is called convex, if along with each two points xi, i = 1, 2, it contains the whole
segment

[x1, x2] = {x ∈ X : x = α1x1 + α2x2, αi ≥ 0, i = 1, 2, α1 + α2 = 1}.

We denote the collection of all convex sets by Co(X). We single out the following subcollections of
Co(X):

• the linear subspaces Lin(X), that is, the nonempty sets containing with each two points x1 and
x2 all linear combinations α1x1 + α2x2, αi ∈ R, i = 1, 2;

• the affine subspaces Aff(X), that is, the translates of linear subspaces;

• the convex cones, or just cones, Cone(X), that is, the convex sets that are invariant under each
homothety (multiplication by a positive scalar), and that contain zero (‘the origin’);

• the convex zero-sets Co0(X), that is, the convex sets containing zero.

Some types of convex sets are special cases of other types of convex sets. Explicitly, one has the
following inclusions:

Lin(X) ⊆ Aff(X) ⊆ Co(X) ⊇ Co0(X) ⊇ Cone(X) ⊇ Lin(X).

One can make from two convex sets a new convex set by means of the following binary operations
on Co(X):

• sum: A1 + A2 = {a1 + a2 : a1 ∈ A1, a2 ∈ A2};

• intersection: A1 ∩A2;
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• convex hull of the union: A1co ∪A2 = {αa1 + (1− α)a2, a1 ∈ A1, a2 ∈ A2, 0 ≤ α ≤ 1}.

These three operations preserve the types listed above. Moreover, these operations—and other
ones—can be viewed as special cases of the operations image and inverse image of convex sets under
a linear operator. That is, the importance of these operations, to be defined now, is that these are
the source of all operations.

Image and inverse image of convex sets. Let Y = Rm be another vector space and Λ : X → Y
a linear operator. We recall that a linear operator is essentially a matrix: for each linear operator
Rn → Rm there is a unique m × n-matrix M such that Λ(x) = Mx for all x ∈ Rn. By ΛA ∈ Co(Y )
we denote the image of the set A ∈ Co(X), that is,

ΛA = {Λx : x ∈ A};

by BΛ ∈ Co(X) we denote the inverse image of the set B ∈ Co(Y ), that is,

BΛ = {x ∈ X : Λx ∈ B}.

For example, A1+A2 is the image of the product A1×A2 under the addition mapping + : X×X →
X and A1 ∩ A2 is the inverse image of A1 × A2 under the diagonal embedding d : X → X ×X. The
convex hull of the union requires an additional idea, the reduction of convex sets to convex cones, to
be given later.

A function f : X → R ∪ {±∞} is called convex if its epigraph

epif = {(x, α) : x ∈ X, α ∈ R, α ≥ f(x)}

is a convex set in X × R. We denote the collection of all convex functions by Cof (X). To each
subcollection of Co(X) there corresponds a subcollection of Cof (X). We single out the following
subcollections of Cof (X) (we make a slightly different choice here than for Co(X): we do not consider
the type corresponding to Co0(X), and we choose the type Norm(X), although we have not chosen
the corresponding subcollection of Co(X)):

• the linear functionals Linf (X);

• the affine functions Afff (X), that is, the functions x 7→ a(x) = 〈x′, x〉+ α (where x′ is a linear
functional on X, 〈x′, x〉 denotes its action on the element x, and α ∈ R);

• the sublinear functions Conef (X), that is, the functions p : X → R ∪ {±∞} for which the
epigraph is a cone, and p(0) = 0. To be more explicit, these are the convex functions p(·) on X
with p(αx) = αp(x), α > 0, x ∈ X, and p(0) = 0;

• the norms Norm(X), that is, the sublinear functions N that are positive real valued and sym-
metric, that is,

N(x) ∈ (0,+∞) ∀x ∈ X \ {0};
N(−x) = N(x) ∀x ∈ X.

4



Some types of convex functions are special cases of other types of convex functions. Explicitly, one
has the following inclusions:

Linf (X) ⊆ Afff (X) ⊆ Cof (X) ⊇ Conef (X) ⊇ Linf (X),

and Norm(X) ⊆ Conef (X).

One can make from two convex functions a new convex function by means of the following binary
operations on Cof (X):

• sum: (f1 + f2)(x) = f1(x) + f2(x);

• maximum: (f1 ∧ f2)(x) = max(f1(x), f2(x));

• convex hull of minimum (f1co∨f2)(x) = inf{(1−α)f1(x1)+αf2(x2) : x = (1−α)x1 +αx2, 0 ≤
α ≤ 1};

These three operations preserve the types listed above. Moreover, these operations—and other
ones—can be viewed as special cases of the operations image and inverse image of convex functions
under a linear operator.

Image and inverse image of convex functions. Let X, Y be vector spaces and Λ : X → Y
a linear operator. By fΛ ∈ Cof (X) we denote the inverse image of the function f ∈ Cof (Y ), that is,

fΛ(x) = f(Λx));

by Λf ∈ Cof (Y ) we denote the image of the function f ∈ Cof (X), that is,

Λf(y) = inf{f(x) : Λx = y}.

An extremal problem (or optimization problem)

f(x) → min, x ∈ X,

is called convex, if f : X → R ∪ {±∞} is a convex function. This includes the class of convex
programming problems

f0(x) → min, fi(x) ≤ 0, 1 ≤ i ≤ m, x ∈ A, (Q)

where fi ∈ Cof (X), 0 ≤ i ≤ m, and A ⊆ Co(X).
We single out the following subcollections of convex programming problems:

• If X = Rn, fi ∈ Afff (X), 0 ≤ i ≤ m, and A = Rn
+, the first orthant, then problem (Q) is called

a linear programming problem.

• If X is the space of hermitian n × n-matrices M (‘hermitian’ means complex matrix with
mlk = m̄kl ∀k, l), fi ∈ Afff (X), 0 ≤ i ≤ m, and A is the set of positive definite matrices in X
(‘positive definite’ means v̄T Mv > 0 for all nonzero vectors v ∈ Cn), then problem (Q) is called
a semi-definite programming problem.
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3 Duality and calculus rules for convex cones

The aim of this section is to present the calculus for the operator of duality of one type of convex
objects, cones. This paper is based on the idea that the easiest access to convex analysis is by means
of this type of convex objects.

Let X be a vector space. By X ′ we denote its conjugate vector space, that is, the collection
Linf (X) of all linear functionals on X. By 〈·, ·〉 : X ′ × X → R we denote the bilinear form where
〈x′, x〉 is the action of the linear functional x′ ∈ X ′ on the element x ∈ X. Explicitly, for X = Rn we
have X ′ = (Rn)T and 〈x′, x〉 =

∑n
i=1 x′ixi is the standard inner product of the column-vectors (x′)T

and x. Note that X ′′ = X if X = Rn.

Operator of duality. We introduce the operator of duality for cones, associating to a cone
C ⊆ X a cone C ′ ⊆ X ′, called the conjugate cone of C:

C ′ = {x′ ∈ X ′ : 〈x′, x〉 ≥ 0 ∀x ∈ C}. (∗)

When it is not clear from the context that we view C as a cone in the vector space X, we will use the
more precise notation (C,X)′ for the conjugate cone.

Geometrical interpretation. A hyperplane through zero in X is defined to be a linear subspace
M in X of codimension one, that is, with dim X/M = 1. Equivalently, a hyperplane through zero in
X is a set of the form

Mx′ = {x ∈ X : 〈x′, x〉 = 0}

for some nonzero x′ ∈ X ′. For each nonzero x′ ∈ C ′, the hyperplane Mx′ has the cone C completely
on one of its two sides (where it is allowed that C has points in common with the hyperplane; C is
even allowed to be contained entirely in the hyperplane). Conversely, a hyperplane through zero that
has C completely on one of its sides—this side has to be chosen if C is contained in the hyperplane—
determines a nonzero element of C ′ up to a nonzero positive scalar multiple.

− C C ′

− C

C ′

Figure 1: Conjugate cones.

The definition of conjugate cones is illustrated in Figure 1 for X = R2 and X = R3 (note that
(Rn)′ can be identified with Rn: each a ∈ Rn can be viewed as the linear functional on Rn given by
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x 7→
∑n

i=1 aixi; therefore, a cone in Rn can be viewed as lying in the same space as its conjugate cone).

For later use we record the geometrical interpretation formally. For each set S in a vector space,
the linear span spS of S is the smallest linear subspace in X containing S. For each set S in a vector
space X the interior intS is the largest open set contained in S.

Proposition 1 For a cone C ∈ Cone(X), the following cases can be distinguished:

1. Degenerate case: spC 6= X. Then there exists a hyperplane through zero in X that contains
C. Such a hyperplane, together with a choice of one of its two sides, corresponds to a nonzero
element of C ′, up to a positive scalar multiple.

2. Nondegenerate case: spC = X. Then a hyperplane through zero that is disjoint from int(C)
corresponds to a nonzero element of C ′, up to a positive scalar multiple. Moreover, the following
criterion holds true for an element c̄ ∈ intC:

C 6= X ⇔ −c̄ 6∈ C.

Duality theory. We single out in Cone(X) the subcollection of the closed cones, denoted by
ClCone(X).

The conjugate of a linear operator Λ : X → Y is the linear operator Λ′ : Y ′ → X ′ defined by

Λ′(y′)(x) = y′(Λx) ∀x ∈ X ∀y′ ∈ Y ′.

We define for each set S in X its relative interior riS to be the largest open subset of the affine hull
of S that is contained in S. Note that for each C ∈ Cone(X), the cone C ′′ lies in the same space as
C as X ′′ = X.

Theorem 1 Duality theorem and basic rules for cones.

1. C ′′ = C ⇔ C ∈ ClCone(X) ,

2. (C1 + C2)′ = C ′
1 ∩ C ′

2,

3. (C1 ∩ C2)′ = C ′
1 + C ′

2 if riC1 ∩ riC2 6= ∅,

4. (ΛC)′ = C ′Λ′,

5. (CΛ)′ = Λ′C ′ if riC ∩ ΛX 6= ∅.

Remark 1. The following weak looking property of cones follows readily from statement 1 of
theorem 1:

C ∈ Cone(X), C 6= X ⇒ C ′ 6= 0.

However, this is in fact the key property of cones; below it will be formally presented as theorem
2, it will be proved and then all statements of theorem 1 will be derived as consequences.
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Remark 2. Statement 1 of theorem 1 gives the dual description of a closed cone C: the duality
operator ′ is an involution on the collection of closed cones, that is, if C ∈ ClCone(X) and D ∈
ClCone(X ′), then the following implication holds true:

D = C ′ ⇒ C = D′.

In geometrical terms, each closed cone C is the intersection of the following collection of closed half-
spaces

Hx′ = {x ∈ X : 〈x′, x〉 ≥ 0}, x′ ∈ C ′ \ {0}.

Statement 1 of theorem 1 can be formulated in the following alternative form:

C ′′ = clC for all C ∈ Cone(X).

Remark 3. Now we explain the relevance of theorem 1. A main task of the convex analysis is the
explicit calculation of the operator of duality for convex objects. Convex analysis runs parallel to dif-
ferential analysis. The operators of duality correspond to the operator of differentiation. The convex
calculus rules for convex objects have a similar purpose as the well-known differential calculus rules for
differentiable functions, such as the chain rule (resp. the product rule) for the derivative of a composi-
tion (resp. a product) of functions: in both cases the rules make it possible to calculate the operators.
For cones, the convex objects under discussion in this section, the convex calculus rules consist of the
statements 2.–5. of theorem 1. Note that the statements 2 and 3 are special cases of the statements
4 and 5 respectively. For other convex objects, all convex calculus rules will be derived from theorem 1.

Now we give a quick and novel presentation, in a geometrical spirit, of the proof of theorem 1. We
will derive theorem 1 from the following result.

Theorem 2 Main theorem of the convex analysis. For each cone C ∈ Cone(X) for which
C 6= X, the conjugate cone C ′ contains nonzero elements,

C ′ 6= 0.

Proof. It suffices to give the proof in the nondegenerate case, clearly. The strategy of the proof
is to show that the following set contains among its elements a hyperplane in X:

the set S of linear subspaces in X that are disjoint from intC.

Such a hyperplane must have the cone C on one of its sides, and so its existence proves the theorem.
We make two observations on the set S.

1. The set S contains at least one nontrivial linear subspace, provided dim X > 1.

Indeed, if dim X > 1, then we can choose a two dimensional linear subspace (‘plane through
zero’) L in X that contains at least one point c̄ from intC and so one point that is not in C, for
example −c̄. Then, by applying the—easy—classification of cones in a plane to the intersection
C ∩L, it follows that there exists a one dimensional linear subspace (‘line through zero’) in the
plane L that is disjoint from intC.
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2. The space X itself is not an element of S.

This follows from the assumption that intC is nonempty.

Now we can finish the proof. Take an element M of S of maximal dimension. Let X/M be
the quotient space and let i : X → X/M be the natural mapping x 7→ x + M . Consider the cone
i(C) ⊆ X/M . Use the following fact from linear algebra: the set of linear subspaces L ⊆ X containing
M corresponds bijectively to the set of linear subspaces L̃ ⊆ X/M :

L corresponds to L̃ precisely if i(L) = L̃.

Therefore, it follows from the maximality property of M , that there are no nontrivial linear sub-
spaces of the quotient space X/M that are disjoint from int(i(C)) = i(intC). Therefore, by the first
observation above, applied to the cone i(C) in the vector space X/M , it follows that dim X/M ≤ 1.
Moreover, by the second observation above, the case dim X/M = 0 has to be excluded, and so
dim X/M = 1. That is, M is a hyperplane in X, as required.

Remark 4. It is remarkable that there is a completely different proof for this basic result. We
give a sketch of this alternative.

Identify X with Rn—and so also X ′ with Rn, using the natural identification between (Rn)′ =
(Rn)T and Rn given by taking the transpose—and apply then the existence theorem of Weierstrass to
show that the shortest distance problem for the set clC, and a point p 6∈ clC, has a solution ĉ ∈ clC.
Writing out the optimality property of ĉ explicitly, gives that the nonzero vector ĉ− p, viewed as an
element of X ′, is a nonzero element of C ′.

Now we give a relative version of theorem 2.

Corollary 1 Main theorem of the convex analysis (relative version). For a vector space X,
a convex cone C in X, and a linear subspace L in X with riC ∩ L 6= ∅, the restriction mapping

(C,X)′ → (L ∩ C,L)′,

defined by restricting linear functionals from X to L, is surjective.

Proof. To prove the corollary, it suffices to show that each nonzero y′ ∈ (L ∩ C,L)′ can be
extended to an element of (C,X)′.

1. Nondegenerate case: spC = X. Then intC = riC and so it is nonempty. One can repeat the
proof of theorem 2 in the nondegenerate case, with the set S replaced by the set Sy′ of linear
subspaces of X that are disjoint from intC and contain ker y′ = {l ∈ L : 〈y′, l〉 = 0}.

2. Degenerate case: spC 6= X. Restrict y′ to the linear subspace L ∩ spC—this is an element of

(L ∩ C,L ∩ spC)′

—and extend the resulting functional to an element z′ of (C, spC)′; this is possible as the natural
mapping

(C, spC)′ → (L ∩ C,L ∩ spC)′
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is surjective by theorem 2 in the nondegenerate case, which has been established above. Let w′

be the linear functional on L + spC for which the restriction to spC equals z′ and for which the
restriction to L equals y′. This is possible as the linear functionals z′ : spC → R and y′ : L → R
agree on L ∩ spC by the choice of z′. Note that

w′ ∈ (C,L ∩ spC)′.

Choose an extension of w′ to a linear functional on X; this is an extension of y′ to an element
of (C,X)′, as required.

Now we are ready to prove theorem 1.

Proof.

1. To prove this statement, it suffices to show that C ′′ ⊆ C if C ∈ ClCone(X). To establish this
inclusion, it suffices to show that for all x ∈ X \C there exists x′ ∈ C ′ with 〈x′, x〉 < 0. Choose
x ∈ X \ C. We distinguish two cases.

• x 6∈ spC.
Take the linear functional on Rx + spC that takes value zero on spC and value −1 on
x. Then extend this functional to a linear functional x′ on X. This has the required
properties.

• x ∈ spC.
Choose a point v ∈ riC and a point y on the open interval (v, x) that does not belong to
C. Then apply theorem 2 to the smallest cone containing C and −y in the vector space
spC: this is allowed as this cone cannot equal spC by the choice of y: in particular, it does
not contain the point y. Then extend the resulting nonzero element of

(C + R+ · y, spC)′

to a linear functional x′ on X. Note that

x′ ∈ C ′, 〈x′, y〉 ≤ 0, 〈x′, v〉 > 0,

(the last inequality holds as v ∈ riC and x′ 6= 0). It follows that 〈x′, x〉 < 0, taking into
account that the point y lies on the open interval with endpoints v and x.

2. By the definitions.

3. Let ∆ be the diagonal subspace {(x, x) : x ∈ X} in X × X. It suffices to prove that the
restriction mapping

(C1 × C2, X ×X)′ → ((C1 × C2) ∩∆,∆)′,

given by restriction of functionals from X × X to ∆, is surjective, as ((C1 × C2) ∩ ∆,∆)′ is
isomorphic to (C1∩C2, X)′ by the definitions, and as this restriction mapping factorizes by way
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of the inclusion mapping from (C1, X)′ + (C2, X)′ into (C1 ∩ C2, X)′. The desired surjectivity
follows from corollary 1 with

X := X ×X, C := C1 × C2, L := ∆.

Indeed, choose c ∈ riC1 ∩ riC2, then

(c, c) ∈ ri(C1 × C2) ∩∆,

so ri(C1 × C2) ∩∆ 6= ∅, and so corollary 1 can be applied.

4. By definition.

5. This is a formal consequence of what we have proved already. To be more precise, it follows
from the following chain of equalities and natural isomorphisms:

(CΛ)′
(i)
= (CΛ + kerΛ)′

(ii)
= (CΛ)′ ∩ (ker Λ)′

(iii)
' (C ∩ ΛX, ΛX)′

(iv)
' (C, Y )′/(ΛX, Y )′

(v)
' Λ′C ′,

((i): by the inclusion ker Λ ⊆ CΛ; (ii): by statement 2 of theorem 1; (iii): apply the operator Λ
and use the definitions; (iv): by corollary 1; (v): apply the operator Λ′ and use the definitions.)

4 Duality theorem and calculus rules for convex objects

Plan. In this section we will do for all types of convex objects what we have done for cones in
the previous section: we define an operator of duality, we present a duality theorem, and the calculus
rules for the image and the inverse image and for all binary operations. This involves a lot of technical
looking definitions. In the next section, we will see that everything including these definitions flows
naturally from the cone approach.

We begin by enumerating the definitions of the set of regular objects O(X)r for each type of convex
objects O for which some elements have to be excluded in the definition of the operator of duality.

• M ∈ Aff(X)r ⇔ 0 6∈ M ,

• A ∈ Co(X)r ⇔ A 6= ∅,

• f ∈ Cof (X)r ⇔f(x) > −∞ ∀x ∈ X, and ∃x ∈ X : f(x) < ∞ (f is proper),

• p ∈ Conef (X)r ⇔ p(x) > −∞ ∀x ∈ X.

Then we enumerate the operators of duality for each type of convex objects.

• annihilator of L ∈ Lin(X):

L⊥ = {x′ ∈ X ′ : 〈x′, x〉 = 0 ∀x ∈ L} ∈ Lin(X ′);

• dual of M ∈ Aff(X)r:

M• = {x′ ∈ X ′ : 〈x′, x〉 = 1 ∀x ∈ M} ∈ Aff(X ′)r;
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• support function of A ∈ Co(X)r:

(x′ 7→ sA(x′) = sup{〈x′, x〉 : x ∈ A}) ∈ Conef (X ′);

• polar of B ∈ Co0(X):

B◦ = {x′ ∈ X ′ : 〈x′, x〉 ≤ 1 ∀x ∈ B} ∈ Co0(X ′);

• conjugate function or transformation of Young-Fenchel of f ∈ Cof (X)r:

(x′ 7→ f∗(x′) = sup
x∈X

(〈x′, x〉 − f(x))) ∈ Cof (X ′)r;

• subdifferential of p ∈ Conef (X)r:

∂p = {x′ : 〈x′, x〉 ≤ p(x) ∀x ∈ X} ∈ Co(X ′)r;

• dual norm of N ∈ Norm(X):

(x′ 7→ N∗(x′) = sup
N(x)=1

〈x′, x〉) ∈ Norm(X ′).

Closed convex objects. The collection of closed convex objects of some type will be denoted by
the prefix Cl: for example we will write ClCo(X) for the collection of closed convex sets in X.

Theorem 3 Duality theorem and calculus rules for convex objects.

We enumerate the duality theorem and the calculus rules for all types of convex objects.

1. Linear subspaces:

(a) L⊥⊥ = L ⇔ L ∈ Lin(X),

(b) (L1 + L2)⊥ = L⊥1 ∩ L⊥2 ,

(c) (L1 ∩ L2)⊥ = L⊥1 + L⊥2 ,

(d) (ΛL)⊥ = L⊥Λ′,

(e) (LΛ)⊥ = Λ′L⊥;

2. Affine subspaces:

(a) M•• = M ⇔ M ∈ Aff(X)r,

(b) (M1co
⋃

M2)• = M•
1 ∩M•

2 ,

(c) (M1 ∩M2)• = M•
1 co

⋃
M•

2 if M1 ∩M2 6= ∅,
(d) (ΛM)• = M•Λ′,

(e) (MΛ)• = Λ′M• if M ∩ ΛX 6= ∅;
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3. Convex sets:

(a) ∂sA = A ⇔ A ∈ ClCo(X)r,

(b) s(A1co
⋃

A2) = sA1 ∧ sA2,

(c) s(A1 ∩A2) = sA1co ∨ sA2 if riA1 ∩ riA2 6= ∅,
(d) s(ΛA) = sAΛ′,

(e) s(AΛ) = Λ′sA if riA ∩ ΛX 6= ∅;

4. Cones:

(a) C ′′ = C ⇔ C ∈ ClCone(X)r,

(b) (C1 + C2)′ = C ′
1 ∩ C ′

2,

(c) (C1 ∩ C2)′ = C ′
1 + C ′

2 if riC1 ∩ riC2 6= ∅,
(d) (ΛC)′ = C ′Λ′,

(e) (CΛ)′ = Λ′C ′ if riC ∩ ΛX 6= ∅;

5. Convex zero-sets:

(a) B◦◦ = B ⇔ B ∈ ClCo0(X),

(b) (B1co ∪B2)◦ = B◦
1 ∩B◦

2 ,

(c) (B1 ∩B2)◦ = B◦
1co ∪B◦

2 if riB1 ∩ riB2 6= ∅,
(d) (ΛB)◦ = B◦Λ′,

(e) (BΛ)◦ = Λ′B◦ if riC ∩ ΛX 6= ∅;

6. Convex functions:

(a) f∗∗ = f ⇔ f ∈ ClCof (X)r,

(b) (f1co ∨ f2)∗ = f∗1 ∧ f∗2 ,

(c) (f1 ∧ f2)∗ = f∗1 co ∨ f∗2 if ridomf1 ∩ ridomf1 6= ∅,
(d) (Λf)∗ = f∗Λ′,

(e) (fΛ)∗ = Λ′f∗ if ri domf ∩ ΛX 6= ∅;

7. Sublinear functions:

(a) s∂p = p ⇔ p ∈ ClConef (X)r,

(b) ∂(p1co ∨ p2) = ∂p1 ∩ ∂p2,

(c) ∂(p1 ∧ p2) = ∂p1co ∨ p2 if ridomp1 ∩ ridomp1 6= ∅,
(d) ∂(pΛ) = Λ′∂p,

(e) ∂(Λp) = ∂pΛ′, if ri domp ∩ ΛX 6= ∅;
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8. Norms:

(a) N∗∗ = N ⇔ N ∈ Norm(X),

(b) (N1co ∨N2)∗ = N∗
1 ∧N∗

2 ,

(c) (N1 ∧N2)∗ = N∗
1 co ∨N∗

2 ,

(d) (ΛN)∗ = N∗Λ′,

(e) (NΛ)∗ = Λ′N∗.

Three statements of this list have names: 5(a) is called the theorem on the bipolar, 6(c) is called
the theorem of Fenchel-Moreau and 7(c) is called the theorem of Dubovitskii-Milyutin.

We emphasize again that the theorems of duality reflect the possibility of a dual (geometrical and
algebraical) description. For example:

- a closed convex set A is the closed convex hull of a family of points, and, from the other side,
the solution set of a family of nonhomogeneous linear inequalities in x of the form 〈x′, x〉 ≤ α.

- a convex function has a convex set as epigraph, and, from the other side, it is the upperbound
of a family of affine functions.

Finally we note that the theorems of duality implies non-triviality of the image of convex objects
under the operator of duality. For example, ‘the polar of a convex zero-set 6= X contains nonzero
elements’, and ‘the subdifferential of a sublinear function is nonempty’.

5 Unified approach to the duality theorem and the calculus rules for convex
objects

We will present a simple unified ‘cone approach’ to the relatively vast and complicated looking
subject that has been presented in the last section. The main point is to derive all results of convex
analysis from one result, theorem 2, which is possible by virtue of the following remarkable phe-
nomenon:

Each result of the convex analysis can be reformulated as the statement that the conjugate of a
suitable cone contains a nonzero element.

All results in this paper are examples of this phenomenon. For an explicit illustration see the proof
of theorem 9 (Farkas’ lemma).

To begin with, we will sketch this approach. For each type of convex objects O and each vector
space X, we will proceed in the following systematic way.

1. We show how to turn an element O ∈ O(X) into a cone K(O) in a suitable vector space, the
associated cone of O, without loss of information.

2. We will calculate for all O1, O2 ∈ O, the cones K(O1) + K(O2) and K(O1) ∩K(O2), and this
will lead to the formulas

K(O1) + K(O2) = K(O1 � O2)
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and
K(O1) ∩K(O2) = K(O1 e O2)

for suitable binary operations � (‘addition-like’) and e (’intersection-like’). The binary opera-
tions that arise in this way will in each case turn out to be well-known ones.

3. We will reformulate the condition riK(O1) ∩ riK(O2) 6= ∅ in terms of O1 and O2.

4. We will calculate the conjugate cone K(O)′ and this will lead to the following result. For each
type O there is a type Õ, such that for all—or almost all– O ∈ O(X), there exists a—necessarily
unique—element D(O) ∈ Õ(X ′) for which

K(O)′ = K(D(O)). (∗)

Let O(X)r denote the set of O ∈ O(X) for which D(O) is defined. It will be called the set of
regular elements. It turns out that for each regular O ∈ O(X) its dual object D(O) ∈ Õ(X ′) is
regular as well. That is, we get an operator of duality

D : O(X)r → Õ(X ′)r.

This operator will in each case turn out to be a well-known one.

5. The statements of the duality theorem

D(D(O)) = O,

for closed objects O, and the rules

D(O1 � O2) = D(O1) e D(O2),

and
D(O1 e O2) = D(O1) � D(O2),

under suitable assumptions on O1 and O2, will then follow immediately from theorem 1, as well
as rules for the dual of image and inverse image of a convex object under a linear operator. We
emphasize that in this way the duality theorems and the basic rules for each type of convex
objects are revealed to have one common source, theorem 2.

Associated cone. The main ideas of turning a convex object into a cone, called its associated
cone are as follows (the details are given in theorem 4). It suffices to show how to turn a convex
set into a cone: a convex function can be turned into a convex set without loss of information by
virtue of the concept epigraph, and a convex optimization problem is given by a convex function. The
geometrical idea of turning a convex set A ∈ Co(X) into a cone is illustrated in Figure 2: add a
‘vertical’ dimension to the space X, lift up A0 = A× 0 to A1 = A× 1, that is, to height one, and then
take the cone K(A) ∈ Cone(X × R) consisting of the rays from the origin through a point of A1.

From an analytical point of view, this construction is also very natural. It is essentially homoge-
nization: for example, homogenizing the polynomial f(x1, x2) = x2 − x2

1 gives

g(x1, x2, x3) = x2
3f(

x1

x3
,
x2

x3
) = x2x3 − x2

1,
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0

A1

A0 = A × 0

K(A)

Figure 2: Associating a convex cone K(A) to a convex set A.

and the associated cone of the convex set A = {x ∈ R2 : x2 − x2
1 ≥ 0} is the cone

K(A) = {x ∈ R3 : x2x3 − x2
1, x3 ≥ 0}.

For some types of convex objects, one can replace this way of associating cones to convex sets and
functions by a simpler one, and then we will do so: for example, the simplest way to turn a sublinear
function into a cone is by taking its epigraph, which is a cone.

Need to enumerate. In order to display the results of the calculations, we have to enumerate,
for all types of convex objects O, the definitions of the following concepts: the set of regular elements
O(X)r, the operator of duality D : O(X)r → Õ(X ′)r and the binary operations � and e. We will
use the notation and terminology for the operators of duality and the binary operations which arise
from the sum and intersection of associated cones that are well-established in the literature, instead
of the notation D, � and e. This will lead to the appearance of minus-signs in some of the formulas
in theorem 4. The main point of the following theorem is that all the complicated looking definitions
of the dual operators and the main binary operations for convex objects arise naturally from the cone
approach.

We let i denote the involution on X defined by i(x) = −x ∀x ∈ X, and j the involution on X×R2

defined by j(x, α, β) = (x, β, α) ∀x ∈ X, ∀α, β ∈ R.

Theorem 4 The operator of duality and the two basic binary operations for associated
cones of convex objects. We enumerate, for each type of convex objects, the definition of the
associated cone and the result of the calculation of the following cones:

• the conjugate of the associated cone,

• the sum of two associated cones,

• the intersection of two associated cones.
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1. Linear subspaces:

(a) K(L) = L

(b) K(L)′ = L⊥,

(c) K(L1) + K(L2) = K(L1 + L2),

(d) K(L1) ∩K(L2) = K(L1 ∩ L2);

2. Affine subspaces:

(a) K(M) = sp(M × 1),

(b) K(M)′ = K((−M)•),

(c) K(M1) + K(M2) = K(M1co
⋃

M2),

(d) K(M1) ∩K(M2) = K(M1 ∩M2);

3. Convex sets:

(a) K(A) = cone(A× 1),

(b) K(A)′ = K(s(−A)),

(c) K(A1) + K(A2) = K(A1co
⋃

A2),

(d) K(A1) ∩K(A2) = K(A1 ∩A2);

4. Convex zero-sets

(a) K(B) = cone(B × 1),

(b) K(B)′ = K((−B)◦),

(c) K(B1) + K(B2) = K(B1co
⋃

B2),

(d) K(B1) ∩K(B2) = K(B1 ∩B2);

5. Linear functions

(a) K(l) = graph l,

(b) K(l)′ = l ∈ X ′;

6. Affine functions

(a) K(a) = cone((graph a)× 1),

(b) K(a)′ = (a− a(0), a(0)) ∈ X ′ × R;

7. Convex functions

(a) K(f) = cone((epif)× 1),

(b) K(f)′ = j(K(f∗ ◦ i)),

(c) K(f1) + K(f2) = K(f1co ∨ f2),

(d) K(f1) ∩K(f2) = K(f1 ∧ f2);
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8. Sublinear functions

(a) K(p) = epi p,

(b) K(p)′ = K(−∂p),

(c) K(p1) + K(p2) = K(p1co ∨ p2),

(d) K(f1) ∩K(f2) = K(f1 ∧ f2);

9. Norms

(a) K(N) = epi N,

(b) K(N)′ = K(N∗ ◦ i),

(c) K(N1) + K(N2) = K(N1co ∨N2),

(d) K(N1) ∩K(N2) = K(N1 ∧N2).

This result, in combination with theorem 1, will give the duality theorem and the basic rules for convex
objects.

Completion of a type of convex objects O(X). Now we present a solution for the technical
problem considered above, which is the reason that D(O) can only be defined for regular O ∈ O(X).
This solution is based on the following fact:

it turns out that for each C ∈ ClK(O(X)), one has that C ′ ∈ ClK(Õ(X ′)).

This suggests to ‘complete’ each type of convex objects O(X) to O(X)c by ‘taking the closure’:
to be more precise, we go over from K(O(X)) (resp. K(Õ(X ′))) to clK(O(X)) (resp. clK(Õ(X ′))).
Then the conjugate cone operator gives an operator of duality

D : O(X)c → Õ(X)c,

which extends the operator D : O(X)r → Õ(X)r, defined above. If we carry out this strategy for a
concrete type O, then calculations lead to explicit descriptions for the added elements and for their
dual objects. We will restrict attention here to the following characteristic examples.

1. We enumerate the outcomes of calculating the conjugate of the cone associated to a nonregular
convex object:

• K(M)′ = M⊥ × 0 for all nonregular M ∈ Aff(X);

• K(A)′ = X ′ × R for the nonregular A ∈ Co(X), that is, for A = ∅;
• for all nonregular f ∈ Cof (X) :

K(f)′ = j(s(−Ã)× 0) if Ã = {x : f(x) = −∞} 6= ∅,

K(f)′ = X ′ × R2 if f ≡ ∞;
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• K(p)′ = C̃ ′ × 0 for all nonregular p ∈ Conef (X), where C̃ = {x : p(x) = −∞}.

2. We give, for the two most interesting cases, the outcome of calculating which cones are added
to the set K(O(X)) if we take the closure.

• The cones K(M) with M ∈ Aff(X) are precisely the linear subspaces of X × R that are
‘not horizontal’, that is, not contained in X × 0. Therefore, we have to add the linear
subspaces of X × 0, the ‘horizontal’ linear subspaces in X × R. This is precisely the well-
known construction of going over from the affine space to the projective space: the added
objects are precisely the affine subspaces ‘at infinity’.

• The cones K(A) with A ∈ Co(X) are precisely the cones that are contained in the upper
half space X×R+ and that intersect the horizontal hyperplane X×0 only at zero. There-
fore, we have to add the cones in X × R that are contained in X × R+ and that have at
least one ray in common with the horizontal hyperplane X×0. These rays have a concrete
interpretation: if A ∈ Co(X) then the intersection of clK(A) and X × 0 consists precisely
of the rays of recession of the convex set A (half-lines that are contained in A).

Remark 6. We have turned all convex objects into cones. Here we give three other constructions
for turning one type of convex objects into another:

• the epigraph operator epi : Cof (X) → Co(X × R) turns convex functions into convex sets.

• the indicator operator δ : Co(X) → Cof (X), defined by δA(x) = 0 if x ∈ A and = +∞ if
x 6∈ A. The function x 7→ δA(x) is called the indicator of A, or the indicator function of A. The
indicator operator turns convex sets into convex functions.

• the Minkowski operator µ : Co0(X) → Conef (X),

µB(x) = inf{α : α−1x ∈ B}.

The function x 7→ µB(x) is called the function of Minkowski of B. This operator turns zero-
convex sets into sublinear functions. For example, each norm N on X is the image under the
Minkowski operator of the open (or the closed) unit-ball in X with respect to the norm N .

Locally convex spaces. We have chosen to present the theorem of duality and the basic rules of
convex objects in the context of vector spaces, without equipping these with a topology. Alternatively,
one can give the theory for locally convex topological spaces X and their topological conjugate spaces
X∗ (that is, X∗ is the collection of all continuous linear functionals on X). For the purposes of
functional analysis it is required to equip vector spaces with a topology that makes it into a locally
convex topological space. We make the point that this additional structure is itself a convex object.
Indeed, one can prove that such a topology can be described as the weakest topology for which a
certain family of semi-norms is continuous. We recall that a semi-norm is defined to be a sublinear
function that takes nonnegative real values on the whole space X.

The infinite-dimensional case. All results given above extend to infinite dimensional vector
spaces (without topology). Here we indicate how to do this. We have to restrict all results to convex
sets that contain internal points and convex functions for which the epigraph contains internal points
(in the finite dimensional case these asumptions can be omitted: they are automatically satisfied).
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The concept ‘internal point’ is a substitute for the concept ‘interior point’ in the absence of a topology.
Its definition is that a point s of a set S in a vector space X is an internal point if for each nonzero
vector v ∈ X, the interval [s, s + 1

nv] is contained in S for a suitable n ∈ N. In the proof of theorem
2, one has to use Zorn’s lemma to show the existence of a linear subspace of X that is disjoint from
the set of internal points of the cone C. Moreover, one has to use the concept ‘algebraic closed set’ as
a substitute for the concept ‘closed set’. Its definition is that a set S in X is algebraically closed if all
points of the complement X \ S are internal points of this complement.

6 Subdifferentials of convex functions

The aim of this section is to consider the precise convex analogue of the derivative of a differentiale
function at a point: the subdifferential of a convex function at an internal point of its domain. The
domain of a convex function f : X → R ∪ {+∞} is defined to be

domf = {x ∈ X : f(x) < +∞}.

The subdifferential of f ∈ Cof (X) at an interior point x̂ ∈ X of the domain of f , is defined to be
the following convex set

∂f(x̂) = {x′ ∈ X ′ : f(x̂) + 〈x′, h〉 ≤ f(x̂ + h)∀h ∈ X},

in X ′. The elements of this set are called the subgradients of f at x̂.
One can reduce subdifferentials of functions at points to subdifferentials of sublinear functions

by means of ‘localization of f at x̂’. Indeed, for each pair (f, x̂), consisting of a convex function
f ∈ Cof (X) and a point x̂ ∈ int domf , one can consider the sublinear function p ∈ Conef (X) for
which the epigraph equals the closure of the conic hull of the set {v − (x̂, f(x̂) : v ∈ epif}. The
following equality holds true:

∂f(x̂) = ∂p.

Therefore, one can apply all the results on subdifferentials of sublinear functions to subdifferentials
of convex functions at points. In particular, ∂f(x̂) is non-empty.
Theorem 5 Rules for the subdifferential. Let fi : X → R∪ {+∞}, i = 1, 2 be convex functions
and let x̂ ∈ X be an interior point of the domain of f . We enumerate the calculus rules:

1. ∂(f1co ∨ f2)(x̂) = ∂f1(x̂) ∩ ∂f2(x̂),

2. ∂(f1 ∧ f2)(x̂) = ∂f1(x̂)co ∨ f2(x̂),

3. ∂(fΛ)(x̂) = Λ′∂f(x̂),

4. ∂(Λf)(x̂) = ∂f(x̂)Λ′, if ri imf ∩ ΛX 6= ∅.

7 Duality for polars of convex sets that do not contain the origin: looking at
infinity and beyond.

In this section we show how to use the polar operator to describe the duality property of convex
sets that do not necessarily contain zero.

The concept polar can be extended from convex zero-sets to arbitrary convex sets, by using the
same definition: the polar set of A ∈ Co(X) is the following convex set A◦ ∈ Co(X ′),
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A◦ = {y ∈ X ′ : 〈x, y〉 ≤ 1 ∀x ∈ A}.

The problem is that the formula A◦◦ = clA, which expresses the duality property if A contains
zero, does not hold if A does not contain zero. The following example shows that the polar of a convex
set that does not contain zero, need not even be a convex set.
Example 1 Let A be the disk with center (1, 1) and radius 1. Then A◦ is the union of the part of
the plane lying under the lower branch of the hyperbola 2(y1 + 1)(y2 + 1) = 1 and the part of the plane
consisting of the points between the upper branch of this hyperbola and the line y1 + y2 = 1.

Solution problem (informal description). Again, the cone approach will clarify the situation
completely. We begin with an informal discussion of the situation. To a set A ∈ Co(X), we associate
the cone K(A) = cone(A × 1) in X × R. The intersection of the conjugate cone K(A)′ with the
horizontal hyperplane X × 1 equals (−A)◦ × 1, by the definition of the polar operator. We observe
that the conjugate cone K(A)′ is contained in the upper half space X×R+, provided 0 ∈ A. However,
if 0 6∈ A, then this is not the case, and so we lose information if we intersect the conjugate cone K(A)′

with X × 1. What we should do, in order to prevent loss of information, is to take the intersection
with the horizontal hyperplane X ×−1 as well, and maybe also the intersection with X × 0. Thus the
complete polar of A consists of a collection of three convex sets in X, which are obtained by taking
the intersection of K(A)′ with the three horizontal hyperplanes at levels 1, 0 and −1:

1. The first one is the usual polar.

2. The second one can be viewed as the part of the complete polar that lies at infinity.

3. The third one can be viewed as the part of the complete polar that lies beyond infinity.

Thus the reason of the nonvalidity of the duality property for the polar operation on convex sets
that do not contain zero is revealed. It is that the usual polar ignores the part of the complete polar
lying at infinity and beyond.

Solution problem (formal description). Formally, we define, for each convex set A ∈ Co(X),
its antipolar (‘polar beyond infinity’), by A� = {x′ ∈ X ′ : 〈x′, x〉 ≤ −1 ∀x ∈ A} and its polar at
infinity, by A∞ = {x′ ∈ X ′ : 〈x′, x〉 = 0}. In order to get a good duality theory, together with ‘rules’,
one should start, instead of with convex sets A ∈ Co(X), with triples (A+, A0, A−) of convex sets in
X for which there exists a cone C ∈ X × R for which

• C ∩ (X × 1) = A+,

• C ∩ (X × 0) = A0,

• C ∩ (X ×−1) = A−.

We will not display the details here.
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8 Standard results on convex objects

In this section we illustrate how the standard results on convex objects can be derived from theorem
2.

The best-known and most-used results on convex sets are the separation theorems.
Two sets A, B ⊆ X can be separated if there exists an affine hyperplane

M = {x ∈ X : 〈x′, x〉 = α}

—with x′ ∈ X ′ \ {0} and α ∈ R—such that A and B lie on different sides of M .
Theorem 6 Separation of convex sets. Two convex sets A,B ∈ Co(X) with riA ∩ riB = ∅ can
be separated.

Proof. Choose ā ∈ riA and b̄ ∈ riB. Consider the cone

C = {ρ(a, 1)− σ(b, 1) : a ∈ A, b ∈ B, ρ, σ ∈ R+}

in the space X × R. We want to apply theorem 2 to the cone C. To this end, we check that the
assumptions of theorem 2 hold for C. Observe that (ā, 1)−(b̄, 1) ∈ riC×R, and that −((ā, 1)−(b̄, 1)) 6∈
C, as the equality

−((ā, 1)− (b̄, 1)) = ρ(a, 1)− σ(b, 1)

with a ∈ A, b ∈ B, ρ, σ ∈ R+ would lead to the equality

(ā + ρa, 1 + ρ) = (b̄ + σb, 1 + σ)

and so to a contradiction with the assumption riA ∩ riB = ∅. Therefore, theorem 2 can be applied to
the cone C. It follows that C ′ 6= 0. Explicitly, there exists a nonzero y′ ∈ (X × R)′ for which

y′(ρ(a, 1)− σ(b, 1)) ≥ 0

for all a ∈ A, b ∈ B, ρ, σ ∈ R+. This shows that A and B can be separated by the hyperplane
{x ∈ X : 〈x′, x〉 = γ}, where x′ ∈ X ′ is defined by

〈x′, x〉 = 〈y′, (x, 0)〉 ∀x ∈ X

and where γ is chosen to be a number from the interval

[sup
b∈B

x′(b), inf
a∈A

x′(a)].

Two sets A,B ⊆ X can be strictly separated if there exist two parallel hyperplanes in X that
separate A and B.

Theorem 7 Strict separation of convex sets. Two convex sets A,B ∈ Co(X) can be strictly
separated, if there exists C ∈ Co(X) with 0 ∈ intC, for which C + riA is disjoint from riB.
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Proof. By the previous theorem, the sets C + A and B can be separated. That is, there exists a
nonzero x′ ∈ X ′ for which 〈x′, c + a〉 ≥ 〈x′, b〉 for all a ∈ A, b ∈ B, c ∈ C. As x′ 6= 0 and as 0 ∈ intC,
it follows that there exists c̄ ∈ C with 〈x′, c̄〉 < 0. It follows that

infa∈A〈x′, a〉 > supb∈B〈x′, b〉.

This shows that A and B can be strictly separated.

One of the central results of functional analysis is the following theorem (to be more precise, here
we only consider the finite dimensional case).

Theorem 8 Hahn-Banach theorem. Let p : X → R be a sublinear function on a vector space X,
and let l : L → R be a linear functional on a linear subspace L in X such that

〈l, x〉 ≤ p(x) ∀x ∈ L.

Then there exists a linear functional Λ : X → R on the whole space X that is an extension of l, that
is,

〈Λ, x〉 = 〈l, x〉 ∀x ∈ L,

and satisfies the inequality
Λ, x〉 ≤ p(x) ∀x ∈ X.

Proof. Apply corollary 1 (of theorem 2) with

X := X × R, C := epip, L := L× R.

Note that the assumption riC ∩L 6= ∅ is satisfied, as (0, 1) ∈ X ×R is an interior point of epip as well
as a point of L. Therefore, the conclusion of the corollary is seen to be precisely the conclusion of the
Hahn-Banach theorem.

The following result is the central property of systems of linear inequalities. It shows that the
non-solvability of such a system can in principle be demonstrated by producing a solution of a suitable
other system. The proof below is an explicit illustration of the general principle that all results of
convex analysis can be formulated as the statement that the conjugate of a suitable cone contains a
nonzero element. We return to systems of linear inequalities in section 10: there we will prove the
Farkas’ lemma again, this time in order to illustrate the use of the rules of the convex calculus.

Theorem 9 Farkas’ lemma. The system of inequalities

Ax ≤ 0m, cT · x < 0

where A is an m× n-matrix and c ∈ Rn, and the system of inequalities

AT y + c = 0n, y ≥ 0m,

are strong alternatives. That is, precisely one of the two is solvable.
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Proof. We begin by rewriting the second alternative in the form

C ′ 6= 0

for a suitable cone C. We choose a sufficiently small ε > 0.

(
y
y0

)T

·
(

Ax
cT · x

)
= 0, ∀x ∈ Rn,

(
y
y0

)T

· z ≥ 0, ∀z ∈ Rm+1
+ ,

(
y
y0

)T

· u ≥ 0,

for all u ∈ Rm+1 that make an angle with (
0m

1

)
that is not larger than ε. To see that this is equivalent to the second alternative, note that the last
condition is equivalent to the positivity of y0. Then one can de-homogenize the system of linear
inequalities, taking y0 = 1. This gives precisely the system of the second alternative. Now we choose

C to be the convex cone spanned by all vectors
(

Ax
cT · x

)
with x ∈ Rn, all vectors from Rm+1

+ , and all

vectors u ∈ Rm+1 that make an angle with (
0m

1

)
that is not larger than ε. To prove Farkas’ lemma, it remains to write out the condition C 6= Rm+1,
that is, as (

0m

1

)
is an interior point of C, the condition that minus this point does not belong to K. This gives the
condition that the system

Ax ≤ 0m, cT · x ≤ −1

has a solution. This is seen to be equivalent to the first alternative.

9 Duality and calculation of subdifferentials and multiplier methods

The basis of the use of convex analysis for the solution of unconstrained convex optimization
problems is the following result.
Theorem 10 Convex Fermat theorem. Let X be a vector space, f : X → R ∪ {+∞} a convex
function, and x̂ an internal point of the domain of f .

Then each solution x̂ of the unconstrained convex optimization problem

f(x) → min, x ∈ X,

satisfies the following inclusion
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0 ∈ ∂f(x̂).

Conversely, this condition is sufficient for global optimality of x̂.

Parallel with differentiable Fermat theorem. This result is a tautology. However, in combi-
nation with the calculus rules for subdifferentials of convex functions, it leads to an effective method
for solving unconstrained convex optimization problems. This runs parallel to the method for solving
unconstrained differentiable optimization problems by the differentiable Fermat theorem (‘in optimum
derivative is zero’) in combination with the calculus rules for differentiation.

A convenient way to model a constrained convex optimization problem is as follows

f(x) = 〈x′, x〉 → min, x ∈ M, x ∈ C, (P )

where x′ ∈ X ′, M ∈ Aff(X), defined by

M = {x ∈ X : Λx = ȳ}

—for a vector space Y , a linear operator Λ : X → Y and an element ȳ ∈ Y —and C ∈ Cone(X).

Example 2 The linear programming problem in standard form is

cT x → min, Ax = b, x ≥ 0,

where c ∈ Rn, A is an m × n-matrix, b ∈ Rm and x is a variable vector in Rn. This is the following
special case of the problem (P ):

X := Rn, x′ := x 7→ cT x, M := {x ∈ Rn : Ax = b}, C := {x ∈ Rn : x ≥ 0}.

The basis of the use of convex analysis for the solution of constrained optimization problems is
the following result. We need some definitions. A selection of Lagrange multipliers is defined to be
a nonzero vector λ = (µ0, µ) with µ0 ∈ R+ and µ ∈ Y ′. The Lagrange function is defined to be the
function

L(x, λ) = µ0〈x′, x〉+ 〈µ,Λx− ȳ〉.

Theorem 11 Convex Lagrange multiplier rule. Each solution x̂ of the constrained convex opti-
mization problem (P ) satisfies the following inclusion

0 ∈ ∂L(x̂, λ)

for a suitable selection of Lagrange multipliers λ = (µ0, µ). Moreover, this condition is sufficient for
global optimality of x̂ provided µ0 6= 0.
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Parallel with differentiable multiplier rule. In combination with the calculus for subdif-
ferentials of convex functions, this result leads to an effective method for solving constrained convex
problems. This runs parallel to the method for solving differentiable equality-constrained optimization
problems by the differentiable Lagrange multiplier rule (‘in optimum Lagrange function is stationary
for a suitable selection of Lagrange multipliers’), in combination with the calculus rules for differenti-
ation.

Other types of convex problems. Convex programming problems can be modelled as problems
of type (P ). In order to do this, one has to make use of the reduction of convex objects to cones,
which plays a central role in this paper. Applying then the convex multiplier rule given above leads
to the well-known conditions of Karush-Kuhn-Tucker, as we will see in section 10.

The convex Lagrange multiplier rule can be presented in an alternative way: in terms of primal
and dual problems. The problem (P ) above is then called the primal problem. The dual problem is
defined to be the problem

ϕ(y′) = 〈y′, ȳ〉 → max, x′ − Λ′y′ ∈ C ′ (D)

Example 3 For the special case of the LP-problem in standard form, the dual problem according to
the definition above gives

bT · y → max, c ≥ AT y,

keeping in mind that (Rn
+)′ = (Rn

+)T . This is the usual dual LP-problem.

Theorem 12 Primal-dual convex problems. Consider the pair of primal-dual problems (P ) and
(D). Assume that (P ) has a Slater point x̃ (Λx̃ = ȳ, x̃ ∈ intC).

1. Then the minimal value v(P ) of (P ) is not smaller than the maximal value v(D) of (D),

v(D) ≥ v(P ).

2. In particular, for a pair of primal-dual admissible elements (x̂, ŷ′) the following criterion holds
true

f(x̂) = ϕ(ŷ′) ⇔ x̂ ∈ absmin(P ), ŷ′ ∈ absmax(D), v(P ) = v(D) ∈ R.

Relation convex Lagrange multiplier rule and primal-dual problems. Under assumption
of the existence of a Slater point, primal-dual admissible pairs (x̂, ŷ′) with f(x̂) = ϕ(ŷ′) correspond
precisely to solutions (x̂, λ) of the multiplier rule with µ0 = 1: here ŷ′ corresponds to µ. That is, the
two theorems above represent the same result.

The Lagrange multipliers have the following concrete shadow price interpretation. Introduce pa-
rameters in the problem (P ) by considering the family of problems (Py)y∈Y , defined by

f(x) = 〈x′, x〉 → min, Λx = y, x ∈ C,

for all y ∈ Rm. Let S(y) be the minimal value of (Py) for all y ∈ Y .
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Theorem 13 Shadow price interpretation multipliers convex problems/solutions dual prob-
lems. Assume that there exists a Slater point for the problem (P ). Then the function S : Y →
R ∪ {+∞} is convex and ȳ is an interior point of the domain of S. Moreover, if (x̂, ŷ′) is a primal-
dual admissible pair satisfying the equivalent conditions of the previous theorem, then

S(y) ≥ S(ȳ) + 〈y′, y − ȳ〉

for all y ∈ Y .

This theorem is the motivation for calling y′ a shadow price. Indeed, if we view (Py) as a problem
of minimizing costs, then if we put a price of y′ for preventing a change from the constraint Λx = ȳ
into Λx = y, then this price will be attractive for all y as S(y) ≥ S(ȳ) + 〈y′, y− ȳ〉. Moreover, usually
we will have

S(y) ≈ S(ȳ) + 〈y′, y − ȳ〉

for all y ≈ ȳ, which provides additional motivation for the terminology shadow price.
On proofs. The three theorems in this section are immediate consequences of the separation of

convex sets.

10 Applications

In this section we illustrate, for most types of convex objects, the duality theorem and the calculus
rules for its operator of duality.
10.1 Duality of linear subspaces, calculation of annihilators, and the theory of linear

equations

The duality relation for annihilators is as follows

L⊥⊥ = L ⇔ L ∈ ClLin(X).

The calculation of annihilators consists of the following formulas:
(L1 + L2)⊥ = L⊥1 ∩ L⊥2 (i); (L1 ∩ L2)⊥ = L⊥1 + L⊥2 (ii); (ΛL)⊥ = L⊥Λ∗ (iii); (LΛ)⊥ = Λ∗L⊥ (iv).

Theorem 14 (on solvability of linear equations ) Let X = Rn, Y = Rm, Λ ∈ L(Rn, Rm).

1. For the solvability of the system of linear equations Λx = y it is necessary and sufficient that
y ∈ ker ΛT .

2. If X = Y , then the following alternative holds true: or the equation Λx = y is solvable for an
arbitrary righthand side, or ker Λ 6= {0}.

Proof. We have

(ΛX)⊥
(iii)
= L⊥ΛT (v) ⇔ ΛX

(0)
= (ΛX)⊥⊥

Id

( (ΛX)⊥)⊥
(v)
= (X⊥ΛT )⊥ = ({0}ΛT )⊥ + (ker ΛT )⊥.

As a consequence ΛX = Y ⇔ ker ΛT = {0}. Moreover detΛT 6= 0 ⇔ detΛ 6= 0 ⇔ ker Λ = {0}.
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10.2 Duality of cones, calculation of conjugate cones, and the theory of linear
inequalities.

The duality relation for the conjugacy operator is as follows:
C ′′ = C ⇔ C ∈ ClCone(X) if riC 6= ∅,
The calculation of the conjugacy operator consists of the following formulas:
(C1 + C2)′ = C ′

1 ∩ C ′
2 (i); (C1 ∩ C2)′ = C ′

1 + C ′
2 if riC1 ∩ riC2 6= ∅ (ii); (ΛC)′ = C ′Λ∗ (iii);

(CΛ)∗ = Λ∗C ′ if riC ∩ ΛX 6= ∅ (iv).
If X = Rn, Y = Rm, Ci are polyhedral cones, then in (ii) and (iv) one gets equalities.

Theorem 15 (on the solvability of linear inequalities in the finite dimensional case).

1. Let A be a matrix of size m× n (m rows and n columns) and b ∈ Rm. In order for the system
Ax = b, x ≥ 0 to have a solution, it is necessary and sufficient that for an arbitrary y ∈ Rm′

for which yA ≥ 0, the inequality y · b ≥ 0.

2. The inequality Ax ≤ b is solvable if and only if y ·b ≥ 0 for an arbitrary y ≥ 0 for which yA = 0.

3. The inequality Ax ≤ b, x ≥ 0 is solvable if and only if y · b ≥ 0 for all y for which y ≥ 0 and
yA ≥ 0.

Proof.

1. The cone ARn
+ is clearly polyhedral, and as a consequence

ARn
+

(0)
= ((ARn

+)′)′
(iii)
= (Rn

+A)′ ⇒ 1).

2. The solvability of the inequality Ax ≤ b is equivalent(?) with b ∈ ARn + Rn
+. The sum of two

polyhedral cones in a finite-dimensional space is a polyhedral cone, as can be seen easily. In this
way, ARn + Rm

+ is a polyhedral cone, that is,

ARn + Rm
+

(0)
= ((ARn + Rm

+ )′)′
(i)
= ((Rn)′A′ ∩ (Rm

+ )′)′ = (0A′ ∩ Rm
+ )′.

But 0A′ = kerA′ and so the proved equality is equivalent to 2).

3. ARn
+ + Rm

+ is a polyhedral cone in Rm. As a consequence,

ARn
+ + Rm

+
(0)
= ((ARn

+ + Rm
+ )′)′

(i),(iii)
= (R+A′ ∩ Rm

+ )′,

which is equivalent to 3).

Comments. Statement 1) was proved by Minkowski (1896) and Farkas (1901), statement 2) by Ky
Fan (1956) and statement 3) by Fenchel (1960).
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10.3 Duality of convex zero-sets, calculation of polars, and finite dimensional convex
geometry.

The duality relation for the polar operator is as follows:

B◦◦ = B ⇔ B ∈ ClCo0(X),

The calculation of polar operators consists of the following formulas:
(B1co ∪ B2)◦ = B◦

1 ∩ B◦
2 (i); (B1 ∩ B2)◦ = B◦

1co ∪ B◦
2 if riB1 ∩ riB2 6= ∅ (ii); (ΛB)◦ = B◦Λ∗ (iii);

(BΛ)◦ = Λ∗B◦ if riC ∩ ΛX 6= ∅ (iv).
Here we will consider all in the euclidian space En. To begin with, we recall some examples

of convex sets containing zero and their polars: for n = 3 the regular polyhedra (tetraeder, cube,
octaeder, dodecaeder and icosaeder), for general n the polyhedra

Bn
∞ = {x ∈ En : |xi| ≤ 1 ∀i},

and

Bn
1 = {x ∈ En :

n∑
i=1

|xi| ≤ 1}.

More generally, one can take the unit ball of any norm. For n = 3 the polar of a regular polyheder
is again a regular polyheder. For example the polar of a cube is an octaeder. For general n, the polar
of the polyheder Bn

∞ is the polyheder Bn
1 . More generally, the polar of the unit ball with respect to

some norm is the unit ball with respect to the dual norm.
Theorem 16 The following two definitions of compact polyhedra in finite-dimensional space are equiv-
alent:

1. the convex hull of a finite collection of points,

2. a compact that is the intersection of a finite collection of half-spaces.

Proof. Let M1 be a compact in Rn that is the intersection of a finite collection of half-spaces. By
the theorem of Krein-Milman it is the convex hull of its boundary points. Each boundary point is the
intersection of n hyperplanes bounding one of the finite collection of halfspaces. Therefore the set of
boundary points is finite.

Conversely, let M2 ⊂ En be the convex hull of a finite collection of points {xi}N
i=1. Then, without

restricting the generality of the argument, one can assume that 0 is an interior point of M2 = co{xi}N
i=1

(otherwise we consider M2 in the affine hull {xi}N
i=1).

Then the polyheder M0
2 is a convex compact (as a closed set, contained in a certain ball: the

polar of a ball with center 0 contained in M2. Then M0
2 is the intersection of a finite collection of

halfspaces 〈xi, yi〉 ≤ 1. By the theorem on the bipolar M2 = M◦◦
2 and so, M2 is the intersection of a

finite number of halfspaces.

10.4 Duality of convex functions, calculation of the Young-Fenchel transformation,
and duality of convex problems

The duality relation for the Young-Fenchel transformation is as follows
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f∗∗ = f ⇔ f ∈ ClCof (X)r,

The calculation of Young-Fenchel transformation consists of the following formulas:
(f1co ∨ f2)∗ = f∗1 ∧ f∗2 (i); (f1 ∧ f2)∗ = f∗1 co ∨ f∗2 if ridomf1 ∩ ridomf1 6= ∅ (ii);

(Λf)∗ = f∗Λ∗ (iii); (fΛ)∗ = Λ∗f∗ if ri domf ∩ ΛX 6= ∅ (iv).
We begin the subject duality of convex problems with the general duality scheme. Let X be a

locally convex space and X∗ its conjugate space. We consider the problem

f(x) → min, x ∈ X, (P̄ )

where f : X → R ∪ {±∞}.
We embed (P̄ ) in a family of problems, depending on a parameter y ∈ Y , where Y is also a locally

convex topological space, considering a function F : X × Y → R ∪ {±∞} for which F (x, 0) = f(x).
The family

F (x, y) → min, x ∈ X (P̄ )

is called a perturbation of the problem (P̄ ), and the function S : Y → R ∪ {±∞}, associating to each
y ∈ Y the value S(y) of the problem (P̄y) is called the S-function of the family (P̄y).

We find the conjugate of the function S:

S∗(y∗) = sup
y∈Y

(〈y∗, y〉(Y,Y ∗) − inf F (x, y)) = sup
x∈X,y∈Y

(〈x∗, 0〉(X,X∗) + 〈y∗, y〉(Y,Y ∗) − F (x, y)) = F ∗(0, y∗).

If S ∈ ClCof (Y ), then by virtue of (0) we come to the problem dual to (P̄ ):

−F ∗(0, y∗) → max, y ∈ Y ∗.

Applying this construction to the problem of linear programming in symmetric form:

c · x → min, Ax ≥ b, x ≥ 0, x ∈ Rn, c ∈ Rn′ , A ∈ L(Rn, Rm) (P1)

the inequalities between the vectors are meant coordinate-wise. We consider the following pertur-
bation of problem (P1):

c · x → min, Ax ≥ y, x ≥ 0. (P1y)

The epigraph of the S-function of the problems (P1y) is a polyhedral cone, and therefore, its graph
is closed (that is, the S-function is closed) and by the theorem of Fenchel-Moreau we obtain that
S = S∗∗, in particular S(b) = S∗∗(b). It is easy to see that

S∗(z) = max{z · λ : AT λ ≤ c, λ ≥ 0},

that is, if |S(y)| < ∞, then S(b) is the value of the problem

b · λ → max, AT λ ≤ c, λ ≥ 0} (P1
∗)

This leads to the following result:
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Theorem 17 For the problems (P1) and (P ∗
1 ) the following alternative holds true: |S(b)| = ∞ or

|S(b)| < ∞. In the first case either the value of the problem is −∞ or the set of admissible elements
is empty. In the second case both problems (P1) and (P ∗

1 ) have the same value and are both solvable.
Therefore, for admissible elements x̂ and λ̂ the following criterion for both to be optimal holds true:

〈x̂, c〉 = 〈λ̂, b〉.

10.5 Duality of norms, calculation of dual norms, and subdifferentials

The duality relation for norms is as follows

N∗∗ = N ⇔ N ∈ Norm(X).

The calculation of dual norms consists of the following formulas:
(N1co ∨N2)∗ = N∗

1 ∧N∗
2 (i); (N1 ∧N2)∗ = N∗

1 co ∨N∗
2 (ii);

(ΛN)∗ = N∗Λ∗ (iii); (NΛ)∗ = Λ∗N∗ (iv).
The best-known example is the lp-norm on Rn, 1 ≤ p <≤ ∞ given by

‖x‖lnp = (
n∑

i=1

|xi|p)1/p

for p 6= ∞ and by
‖x‖l∞p = max

1≤i≤n
|xi|.

The dual of the lp-norm turns out to be the lp′-norm, where 1/p + 1/p′ = 1 (with the convention that
1/∞ = 0).

The main application is to the calculation of the subdifferential of convex functions. We give a
numerical example.
Example 4 Solve f(x1, x2) = (x2

1 + x2
2)

1
2 − 1

2x1 + 1
3x2 → min.

Solution. This is a convex minimization problem; writing down the stationarity conditions does
not lead to the solution. Let us instead compute the subdifferential at the point of non-differentiability
(0, 0): this is seen to be the disk with center (−1

2 , 1
3) and radius one. This disk contains the origin

(0, 0). It follows that the point of non-differentiability (0, 0) is the unique solution of the problem.

10.6 Duality of convex functions at a point, calculation of subdifferentials and the
Karush-Kuhn-Tucker conditions

The calculation of subdifferentials consists of the following formulas:
∂(f1co ∨ f2)(x̂) = ∂f1(x̂) ∩ ∂f2(x̂) (i);
∂(f1 ∧ f2)(x̂) = ∂f1(x̂)co ∨ f2(x̂) (ii);
∂(fΛ)(x̂) = Λ∗∂f(x̂) (iii);
∂(Λf)(x̂) = ∂f(x̂)Λ′, if ri imf ∩ ΛX 6= ∅ (iv);
∂(f1 + f2)(x̂) = ∂f1(x̂) + ∂f2(x̂) if ... (v);
∂(f1 ⊕ f2)(x̂) = ∂f1(x̂) ∩ ∂f2(x̂) (vi).
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Theorem 18 Karush-Kuhn-Tucker theorem. Let in the problem of convex programming

f0(x) → min, fi(x) ≤ 0, 1 ≤ i ≤ m, x ∈ A (P )

where X is a locally convex space, fi : X → R convex and continuous at points x ∈ A, where A is
a convex subset of X. Then, if x̂ is a solution of (P ), then there exists a nonzero selection of Lagrange
multipliers λ = (λ0, . . . , λm) such that (a) λ ≥ 0, (b) λifi(x̂) = 0, 1 ≤ i ≤ m and the minimum
principle holds (for the Lagrange function L(x, λ) =

∑m
i=1 λifi(x)):

(c) minL(x, λ) = L(x̂, λ).

and if for the problem (P ) the conditions (a) − (c) are satisfied with λ0 6= 0, then x̂ is a solution of
(P ).

Proof. Let x̂ be a solution of (P ). Then this same element is also a solution of the following
problem (without constraints):

f(x) → min, x ∈ X,

where f(x) = max{f0(x)− f0(x̂), f1(x), . . . , fm(x)}+ δA(x) = g(x) + δA(x). By the Fermat theorem
0 ∈ ∂f(x̂), by the theorem of Moreau-Rockafellar there exists an element x∗ ∈ X∗ such that

x∗ ∈ ∂g(x̂), −x∗ ∈ ∂δA(x̂). (i)

Let us assume that fk(x̂) = 0, 1 ≤ k ≤ m′, fi(x̂) < 0, k ≥ m′ + 1. Then, according to the theorem of
Dubovitsky-Milyutin there exist elements x∗i ∈ ∂fi(x̂) and numbers λi ≥ 0, 0 ≤ i ≤ m′,

∑m′

i=1 λi = 1
such that

x∗ =
m′∑
i=1

λix
∗
i (ii)

From the second inclusion in (i) it follows that

〈x∗, x̂〉 = sA(−x∗) (iii).

We put λi = 0, i ≥ m′ + 1 and from (ii), (iii) and the definition of the subdifferential we obtain that

0 = inf
x∈A

m∑
i=0

λi〈x∗i , x− x̂〉 ≤ inf
x∈A

(λ0(f0(x)− f0(x̂)) +
m∑

i=1

λifi(x)).

The sufficiency is obvious.
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