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Cytokines and Therapy in
COPD*

A Promising Combination?

W. I. de Boer, PhD

COPD is a major health problem, with patients
showing a progressively declining, largely irrevers-
ible, change in lung function. This is associated with
chronic airways inflammation and structural remod-
eling, including loss of alveolar walls, and goblet cell
metaplasia with mucus hypersecretion. Inflamma-
tory cells may contribute to the airway remodeling
via secretion of proteases, fibrotic or mitogenic
growth factors, and cytokines. In turn, airway re-
modeling may contribute to the clinical symptoms of
COPD. Currently available therapies are directed to
improvement of clinical symptoms and reduction of
the airways inflammation. The commonly used glu-
cocorticosteroids are expected to reduce the inflam-
mation by acting on kinases or transcription factors
necessary for expression of pro-inflammatory cyto-
kines or chemokines. However, several long-term
and short-term studies showed that glucocorticoste-
roids are rather ineffective in improving lung func-
tion and reducing the airway inflammation in pa-
tients with COPD. New therapeutic strategies may
reduce the inflammation and alleviate the clinical
symptoms of COPD. Tumor necrosis factor-�, inter-
leukin-8, and monocyte chemoattractant protein-1
are important chemotactic proteins for macrophages
and neutrophils, the predominant inflammatory cells
associated with COPD. As lung levels of these cyto-
kines are higher in COPD compared to non-COPD
patients, they may represent targets for novel
therapies. (CHEST 2002; 121:209S–218S)

Key words: antagonists; chemokines; COPD; cytokines; inter-
leukin-8; monocyte chemoattractant protein-1; receptors; ther-
apy; tumor necrosis factor

Abbreviations: GRO � growth-regulated oncogene; IFN � in-
terferon; IL � interleukin; MCP � monocyte chemoattractant
protein; MIP � macrophage inflammatory protein; MMP � matrix
metalloproteinase; SLPI � secretory leukocyte proteinase inhib-
itor; TNF � tumor necrosis factor; TNFR � tumor necrosis
factor receptor

C OPD is a major health problem, ranking among the
most common causes of death in Western societies. It

is defined by a progressive declining lung function that is
only partly reversible by bronchodilator drugs. Although
epidemiologic studies demonstrated a close association
with cigarette smoking, only 10 to 20% of smokers develop
COPD. The disease can be subdivided into three distinct

pulmonary disorders: chronic bronchitis, small airway
disease (bronchiolitis), and emphysema, which show dif-
ferent features such as goblet cell metaplasia and mucus
hypersecretion in chronic bronchitis, and destruction of
alveolar septae in emphysema.1 It has been recognized
that COPD is characterized by chronic inflammation in
the airways or alveoli that differs from that seen in asthma,
involving increased numbers of neutrophils, macrophages,
CD8� T cells, and/or mast cells in the airway walls,
alveolar compartments, and vascular smooth muscle.2–10

In a subpopulation of COPD patients with chronic bron-
chitis, the obstruction seems to be partially reversible and
is accompanied by the presence of airway eosinophils.11–14

Activation of inflammatory cells is thought to be involved
in the airway and alveolar remodeling. For example,
neutrophils and eosinophils possess granules containing
matrix-degrading proteases. Activated neutrophils also
produce reactive oxygen free radicals such as H2O2.
Proteases and free radicals can damage the epithelium and
underlying basement membrane. This is normally fol-
lowed by a repair process that includes the secretion of
antiproteases, such as secretory leukocyte proteinase in-
hibitor (SLPI) and tissue inhibitor of metalloproteinases
by epithelial cells in order to regulate the proteolytic
processes.15 Activated macrophages, T cells, and mast cells
also produce and secrete matrix metalloproteinases
(MMPs) that can damage the epithelial barrier. The repair
process is thought to be disturbed in COPD due to an
imbalance in the protease-antiprotease balance.16,17

Hence, inflammatory cells may be directly involved in
airway wall remodeling.

Cytokines and Chemokines
Migration and activation of inflammatory cells is regu-

lated by cytokines and chemokines, small proteins se-
creted by a variety of structural cells, such as epithelial,
endothelial, smooth muscle, and fibroblasts, as well as by
inflammatory cells. Cytokines associated with COPD in-
clude tumor necrosis factor (TNF)-�, interferon (IFN)-�,
and interleukin (IL)-1� and IL-6.2,18–20 The chemokines
are chemotactic cytokines showing 2, 4, or 6 conserved
cysteine residues. Based on the number and spacing of
conserved cysteines, chemokines are assigned to four
families: �- (CXC), �- (CC), CXXXC, and C chemokines
in which X denotes the number of noncysteine residues
between the first two conserved cysteines. At least 28 CC,
15 CXC, 2 XC, and 1 CX3C chemokines have been
described (Table 1).21 Cytokines and chemokines act via
binding to one or more cellular transmembrane receptors.
For TNF-�, this includes TNF-� receptors (TNFRs) 1
(TNFR p55) and 2 (TNFR p75). For mammalian chemo-
kines, a summary of the seven-transmembrane, G protein-
coupled receptors is provided in Table 2.22 The Duffy and
D6 chemokine receptors are not shown as they bind
chemokines in a nonspecific manner, and do not transduce
intracellular signals. Significant redundancy is observed
for several chemokines with respect to receptor binding.
That is, in some cases, one receptor subtype can bind
several chemokines, whereas a given chemokine can bind
to several receptor subtypes (Table 1). Thus, if one
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chemokine or receptor is inactivated, its effector func-
tion(s) may be replaced by others. As discussed later,
however, expression of some chemokine and cytokine
receptors is cell specific, often resulting in cell type-
specific effects.

Glucocorticosteroid Therapy in COPD

According to the recent guidelines for COPD,23 regular
clinical treatment of COPD includes the use of broncho-
dilators (�2-adrenoceptor agonists, anticholinergic drugs,
and methylxanthines such as theophylline), and oral or
inhaled corticosteroids. Alternative therapies currently
being explored include phosphodiesterase 4 inhibitors,
leukotriene receptor antagonists, and inhibitors of 5-

lipoxygenase and cyclooxygenase. More specific details on
some of these agents are provided, respectively, by Sturton
and Fitzgerald, and Kilfeather in this supplement. Such
treatments are normally expected to improve the quality of
life by (subjective) improvement of lung function, dys-
pnea, and reduced inflammation. Studies24–28 in vitro have
shown that corticosteroids reduce inflammatory responses
by intracellular inhibition of transcription or translation of
pro-inflammatory cytokines and chemokines. Hence, cor-
ticosteroid therapy may inhibit the increased expression of
TNF-�, monocyte chemoattractant protein (MCP)-1,
macrophage inflammatory protein (MIP)-1�, and IL-8
observed in COPD.7,19,29,30

In contrast to the positive effects in asthmatics and a
subpopulation of patients with COPD, ie, those with
bronchial hyperresponsiveness and eosinophilia, regular

Table 1—Overview of Expression of Chemokines in Human Lung*

Old Names New Names Main Receptors Cellular/Tissue Expression

CC
6Ckine CCL21 CCR7/CCR10 Human lymph nodes, mouse lung
Eotaxin-1 CCL11 CCR3 M�, Eos, Epi, F, EC
Eotaxin-2 CCL24 CCR3 Epi, M�, T
Eotaxin-3 CCL26 CCR3 Epi, EC
HCC-2 CCL15 CCR1/CCR3 Lung leukocytes
I-309 CCL1 CCR8 T, MC
MCP-1 CCL2 CCR2 M�, MC, Epi, EC, SM, F
MCP-2 CCL8 CCR2/CCR3 SM, F
MCP-3 CCL7 CCR1–3 SM, M�, MC, F
MCP-4 CCL13 CCR2/CCR3 Epi, SM
MDC CCL22 CCR4 M�, Epi, DC, T
MIP-1� CCL3 CCR1/CCR5 M�, PMN, Epi, F, SM, T, Eos
MIP-1� CCL4 CCR5 M�, PMN, Epi, F, SM, T, MC
MIP-3� CCL20 CCR6 M�, T, EC; F
MIP-3� CCL19 CCR7/CCR11 Lymph nodes
PARC/DC-CK1 CCL18 ? M�, DC
RANTES CCL5 CCR1/CCR3/CCR5 M�, T, Eos, Epi, F, SM
TARC CCL17 CCR4 Epi

CXC
ENA-78 CXCL5 CXCR2 M�, Epi, EC, SM
GCP-2 CXCL6 CXCR1/CXCR2 EC
GRO-� CXCL1 CXCR2/CXCR1 M�, Epi, EC
GRO-� CXCL2 CXCR2 M�, Epi, MC
GRO-� CXCL3 CXCR2 M�, Epi, MC
IL-8 CXCL8 CXCR1/CXCR2 T, PMN, M�, Epi, EC, F, SM, Eos
IP-10 CXCL10 CXCR3 M�, Epi, PMN, EC, F
I-TAC CXCL11 CXCR3 Epi, M�, PMN
Mig CXCL9 CXCR3 Epi, M�, PMN
SDF-1 CXCL12 CXCR4 Epi, F

C
Lymphotactin-� XCL1 XCR1 Lung, T
Lymphotactin-� XCL2 XCR1 Lung, T

CX3C
Fractalkine CX3CL1 CX3CR1 EC, T, DC, Epi

*Chemokines are shown using their former and new names, and are grouped according to their amino acid sequences. Major receptors are also
shown, as well as the cell types expressing them. Chemokines and their producing cell types in the lung are shown in bold. T � T cell;
PMN � neutrophil; M� � macrophage; MC � mast cell; Eos � eosinophil; Epi � epithelial cell; EC � endothelial cell; F � fibroblast;
SM � smooth muscle; DC � dendritic cell; ? � unknown; RANTES � regulated on activation, normal T-cell expressed and secreted;
TARC � thymus and activation regulated chemokine; MDC � macrophage-derived chemokine; PARC � pulmonary and activation regulated
chemokine; I-TAC � IFN-�-inducible T-cell � chemoattractant; IP-10 � IFN-inducible protein 10; SDF-1 � stromal cell derived factor 1;
HCC-2 � human cell cycle 2; ENA-78 � epithelial neutrophil activating protein; GCP-2 � granulocyte chemotactic protein 2; Mig � mouse
monokine induced by IFN-�.
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corticosteroid treatment of patients with COPD has been
disappointing. Some studies31–33 showed that long-term
therapy with inhaled corticosteroids leads to an improve-
ment in FEV1 only during the first 3 to 6 months of
treatment, whereas after that period, the FEV1 declines at
the same rate as in the placebo-treated subjects. Another
study34 did not show any improvement in FEV1. Short-
term treatment (2 to 4 weeks) with corticosteroids does
not seem to affect the airways inflammation (numbers of
neutrophils, macrophages, lymphocytes, eosinophils) or
expression of cytokines (TNF-�, IL-8) and antiproteases
(SLPI, tissue inhibitor of metalloproteinases) in patients
with COPD.19,35 Corticosteroids may also cause adverse
effects such as bone fractures due to loss of bone or
inhibition of bone mineralization, impaired wound heal-
ing, increased bruising, and loss of extracellular ma-
trix.32,36–38 Given the rather ineffectiveness of corticoste-
roid treatment in COPD, and the risk of adverse effects,
more specific therapies directed against the reduction of
inflammation are desirable.

Cytokines and Possibilities for New
Therapies

Neutrophils and macrophages are the predominant
inflammatory cells in COPD tissue, BAL fluid, and spu-
tum. Although they can play crucial roles in microbicidal
host defense, both of these cell types also cause significant
detrimental effects by causing airway wall damage and
remodeling via, for example, the actions of secreted

proteases.17,26,39,40 Important chemotactic and activating
cytokines for these inflammatory cells include TNF-�,
IL-8, MCP-1, and MIP-1�, whose expression levels have
been demonstrated to increase in sputum,19 BAL fluid,29

plasma,41 or lung tissues7,30 from patients with COPD.
Also, increased numbers of IFN-�-positive T cells in
peripheral blood were reported in patients with COPD.18

Although many cytokines, chemokines, and arachidonic
acid metabolites may be involved in neutrophil and mono-
cyte/macrophage effector functions, some studies suggest
that TNF-�, IL-8, MCP-1, and MIP-1�, in particular, play
important roles in this regard. These proteins, therefore,
are the primary focus in ensuing sections.

TNF-�- and TNFR-Based Therapies

Studies have shown that TNF-� expression levels in
patients with COPD may be higher, due either to induc-
tion by eg, cigarette smoking or genetic aberrations. For
example, TNF-� is secreted by cultured bronchial epithe-
lial cells on exposure to cigarette smoke or its conden-
sate.42 Alternatively, other studies reported the presence
of gene-activating TNF-� polymorphism in patients with
COPD,43–45 resulting in a constitutive higher expression of
TNF-�.46 TNF-� has multiple pro-inflammatory actions,
including neutrophil degranulation accompanied by re-
lease of proteolytic enzymes like lysozyme and stimulation
of the respiratory burst47–49 (Fig 1).

In addition to its pro-inflammatory actions, TNF-� has
also been reported to have direct effects on epithelial cells.
TNF-� is capable of inducing airway mucous cell meta-
plasia and hypersecretion in vitro and in vivo, features
reminiscent of the goblet cell metaplasia observed in
chronic bronchitis.50,51 Other effects include decreased
interepithelial binding and cell death in vitro,52,53 emphy-
sematous lesions and alveolar collagen deposition in mu-
rine alveolar walls,54,55 induction of IL-1, TNF-�, IL-8,
and MCP-4 expression,56–59 and of IFN-� receptors on
epithelial cells.60 IFN-� in turn inhibits the proliferation
and decreases desmosome formation of epithelial cells53

and may, therefore, be involved in destruction of epithelial
integrity and formation of emphysematous lesions. Tar-
geted overexpression of IFN-� in type II pneumocytes in
mice resulted in emphysema, higher numbers of activated
pulmonary neutrophils and macrophages, in addition to
increased activity of MMP-9 and MMP-12. Antiprotease
SLPI levels were decreased.61 Such data indicate that
TNF-� has direct and indirect (via IFN-�) effects on
epithelial barrier functions, eg, via inducing cell death and
emphysema, and clearance function (replacement of cili-
ated cells by goblet cells), and may contribute to the
clinical deterioration seen in COPD. The induced pro-
inflammatory cytokine expression and protease release can
perpetuate the inflammatory cell influx and activation,
causing distortion of the airways architecture. Anti-TNF-�
or anti-TNFR therapies may, therefore, provide more
specific means to impair inflammation and epithelial
remodeling.

Studies in vivo in mice and humans have revealed that
TNF-� is involved in the recruitment of macrophages to
sites of inflammation. Thus, in chronic colitis (Crohn’s

Table 2—Chemokine Receptor Distribution*

Chemokine
Receptors Cell/Tissue

CCR
CCR1 M�, Eos, DC, T
CCR2 M�, MC, DC, T, NK, Epi, F, EC
CCR3 Eos, Epi, F, MC, T
CCR4 T, NK, DC
CCR5 M�, T, NK, DC
CCR6 T, DC
CCR7 T, NK, DC, B
CCR8 M�, T
CCR9 M�
CCR10 Trachea, T, DC, EC, F
CCR11 Epi, lung

CXCR
CXCR1 PMN, M�, MC, DC
CXCR2 PMN, M�, Epi, EC
CXCR3 T, NK
CXCR4 T, M�, DC, Epi, EC, B
CXCR5 B

XCR
CR1 T

CX3CR
CX3CR1 M�, T, NK

*The receptors are grouped according to their ligand binding into
CCR, CXCR, XCR, and CX3CR. Receptors expressed in human
lungs as well as cell types expressing them are shown in bold. B � B
cell; NK � natural killer cell; see Table 1 for expansion of other
abbreviations.
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disease) and rheumatoid arthritis, diseases characterized
by the presence of macrophages, T cells, and neutro-
phils,62,63 therapy with neutralizing antibodies directed
against TNF-� reduces the inflammation, whereas clini-
cally the patients improved, showing reduced symptoms
and an improved quality of life.64–68 In addition, in
Crohn’s disease, � 30% of the fistulae closed.67 The
infiltration of macrophages as well as the expression of
IL-8 and MCP-1 were also reduced in patients with
rheumatoid arthritis after a single dose of anti-TNF-�.65

Similar effects were seen in animals and patients treated
with a chimeric ligand-binding domain of TNFR p75
linked to the Fc portion of human IgG1. With regard to
chronic lung diseases, clinical trials have begun, including
a phase II trial with the TNFR-Fc chimera in patients with
atopic asthma, at the National Heart, Lung, and Blood
Institute, Bethesda, MD.

As a caution, however, anti-TNF-� treatment may be
disadvantageous in some conditions such as endotoxine-
mia or sepsis.69,70 For example, following a single dose of
anti-TNF-�, plasma levels of IL-1, IL-6, and IL-8 were
not reduced in patients with severe sepsis, whereas TNF-�
levels were only reduced transiently.69 Also, the clinical
aspects of sepsis were not affected by this treatment.
Anti-TNF-� treatment of chimpanzees that were injected
with endotoxin reduced TNF-� and IL-8 levels but did not

impair neutrophilia and lymphopenia, indicating that
TNF-� is not a key regulator for neutrophilic inflamma-
tion in this model. As COPD patients are prone to
bacterial infections, therapy with anti-TNF-� or TNFR-Fc
during infectious exacerbations may have only limited
effectiveness. To date, few side effects of the anti-TNF-�
therapies are reported, including local reactions at the
injection site, hypersensitivity reactions, and minor upper
airway infections. Minor events include aplastic anemia
and demyelination syndrome by TNFR-Fc.63,67,68 Support
for demyelination syndrome was provided by Liu et al,71

where mice lacking TNF-� were more susceptible to
neurologic changes and inflammation than their wild-type
counterparts.

CXC Chemokine and CXCR-Based Therapy
IL-8 and growth-regulated oncogene (GRO)-� are ex-

pressed by lung epithelium, fibroblasts, endothelial cells,
and alveolar macrophages, and their expression can be
induced by stimuli such as cigarette smoke, endotoxin, or
TNF-�.42,57,72–74 Several studies74–82 in vivo and in vitro
have suggested that IL-8 and GRO-�, acting via their
receptors, CXCR1 and CXCR2, are important mediators
of neutrophil chemotaxis, endothelial cell adhesion, and
degranulation. Evidence for neutrophil chemoattractant

Figure 1. Simplified scheme of cytokine and chemokine actions in human lungs. On triggering, eg,
with cigarette smoke, epithelial cells are damaged, and tissue or alveolar macrophages and epithelial
cells produce TNF-�. In turn, TNF-� stimulates migration of monocytes/macrophages and neutrophils
to the airway epithelium. Macrophages and epithelial cells are induced to produce IL-8, GRO-�,
MCP-1, and MIP-1�. IL-8 and GRO-� also stimulate migration of neutrophils and T cells to the airway
epithelium. Both TNF-� and IL-8/GRO-� cause degranulation of neutrophils and respiratory burst
with production and release of free radicals that cause matrix and epithelial damage. MCP-1 and MIP-1
stimulate the influx of monocytes/macrophages. Alternatively, TNF-� can also cause epithelial damage
and death, goblet cell metaplasia, and/or mucus hypersecretion. TNF-� can also stimulate expression
of epidermal growth factors that orchestrate epithelial repair. IL-8/GRO-� and MCP-1 may be directly
involved in epithelial repair. mono � monocyte; neu � neutrophil; macro � macrophage.
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roles of IL-8 and GRO-� was provided in several animal
studies. For example, treatment with CXCR2 antagonist
GRO-�(8–73) or a neutralizing anti-IL-8 antibody re-
duced the neutrophilic inflammation and alveolar damage
and decreased mortality associated with endotoxinemia,
acid aspiration, and in a skin air pouch model.79,82,83 In
addition, CXCR2-deficient mice show an impaired neu-
trophilic influx and myeloperoxidase activity in wounds
after skin injury.84

In addition to neutrophil chemoattractant properties,
IL-8 and GRO-� may be involved in wound repair and
angiogenesis. Thus, skin, colon, and lung epithelial cells as
well as endothelial cells express CXCR2.85–92 Secondly,
activation of CXCR2 by IL-8 and GRO-� can stimulate
epithelial proliferation, migration, endothelial migration,
and neovascularization.85–87,89,93 CXCR2-deficient mice
show delayed skin wound healing and neovascularization
in vivo, and CXCR2-deficient keratinocyte cultures exhibit
delayed repair that was not improved by mouse GRO-�.84

Also, only basally located, nondifferentiated keratinocytes
in human skin wounds in vivo showed CXCR2, coinciding
with high expression of IL-8 and GRO-�.88,94

Thus, IL-8 and GRO-� are primary mediators in neu-
trophilic inflammation acting via CXCR1 and CXCR2. In
contrast, CXCR2 is involved in epithelial repair. Several
receptor antagonists or anti-IL-8 antibodies have been
developed, but these have so far been reported only in
assays in vitro or animal models.78–80,82,95 Clinical trials in
rheumatoid arthritis and psoriasis with humanized anti-
bodies against IL-8, or CXCR2 antagonists are being
conducted. Such agents may also represent potential
therapeutic agents for COPD. As noted above, however,
such agents may be contraindicated in patients with
bacterial infections, as CXCR2 antagonist treatment of
mice infected with Pseudomonas aeruginosa showed im-
paired pulmonary bacterial clearance.96

With regard to COPD, we observed that CXCR2 but
not CXCR1 protein and messenger RNA are present in
bronchial epithelial cells, mainly in injured areas90 (Fig 2).
In the same patients, IL-8 expression was significantly
higher in bronchial epithelium from COPD patients as
compared to smokers without COPD.30 Preliminary func-
tional analyses indicated that GRO-� but not IL-8 is
mitogenic for bronchial epithelial cells, whereas both
stimulate mitochondrial activity (unpublished observa-
tions). Given that IL-8 and GRO-� are capable of stimu-
lating directly epithelial wound repair via CXCR2, such an
antagonist therapy in COPD may impair this repair.
CXCR1, although expressed primarily in neutrophils, is
also expressed in macrophages, mast cells, and CD8� T
cells.97,98 Specific antagonists for CXCR1 inhibit both the
respiratory burst and degranulation of neutrophils.78

Hence, CXCR1 antagonists, rather than CXCR2 antago-
nists, may be a more effective approach to reducing
airways inflammation in COPD.

CC Chemokine and CCR2-Based Therapy
Macrophages and monocytes express several chemo-

kine receptors, including CCR1, CCR2, and CCR5. Li-
gands for these receptors include MIP-1�, MIP-1�,

MCP-1 to MCP-4, and RANTES (regulated on activation,
normal T-cell expressed and secreted) [Table 1]. These
chemokines stimulate monocyte/macrophage migration in
vitro. Despite this chemokine and receptor redundancy,
studies99–102 in vivo indicate that MCP-1 and CCR2 are
important monocytes and macrophage chemoattractants.
Mast cells and T cells can also be attracted and activated
by MCP-1.103,104 CCR2 is the only known receptor for
MCP-1.105,106 MCP-1 is produced by several cell types
including alveolar macrophages, epithelial, endothelial,
and smooth-muscle cells, and fibroblasts.30,107 MCP-1
expression can be induced by various cytokines, including
TNF-� and IFN-�.56,108 In contrast, the expression of
CCR2 is inhibited by IFN-�.109 This may represent an
anti-inflammatory reaction preventing excessive influx of
macrophages into the tissue. Different studies in vivo
support specific roles of MCP-1 and CCR2 in macrophage
migration. First, in mice with experiment peritonitis, the
influx of monocytes and macrophages but not neutrophils,
eosinophils, mast cells, or T cells, was impaired in MCP-1-
or CCR2-deficient mice as well as in mice pretreated with
antibody against CCR2.99–102 In addition, bacterial clear-
ance was impaired in CCR2-deficient mice, pointing to
the importance of macrophages for bacterial clearance.100

Secondly, transgenic mice with targeted overexpression of
MCP-1 in type II pneumocytes showed increased num-
bers of monocytes, macrophages, and lymphocytes but not
neutrophils in the lungs.110 Third, ovalbumin-sensitized
mice repeatedly exposed to ovalbumin showed an influx of
monocytes/macrophages and lymphocytes into the lung
coinciding with increased MCP-1 and MIP-1� expression.
This influx was almost completely inhibited in mice pre-
treated with antibodies against MCP-1, but not with
anti-MIP-1�.111 Also, bronchial hyperreactivity was re-
duced by anti-MCP-1. Finally, Hautamaki et al112 showed,
in a murine emphysema model, that intratracheal MCP-1
increased both the numbers of lung macrophages and the
smoke-induced emphysema, presumably via macrophage-
derived MMP-12. These studies support the specificity of
the MCP-1-CCR2 system rather than MIP-1� in recruit-
ment of monocytes and macrophages.

Other effects of MCP-1 include stimulation of endothe-
lial wound healing by inducing endothelial migration,113

angiogenesis,114 induction of vascular smooth-muscle hy-
perplasia,115 collagen and transforming growth factor-�
expression by fibroblasts,116 and expression of adhesion
molecules CD11c and CD11b as well as IL-1 and IL-6 by
blood monocytes.117 Our own studies30 revealed expres-
sion of CCR2 on human bronchial epithelial cells. Prelim-
inary data indicated that a signal transduction enzyme,
mitogen-activated protein kinase p42/44, is phosphory-
lated in bronchial human epithelial cells upon MCP-1
treatment in vitro, and MCP-1 slightly but significantly
induced epithelial proliferation. This indicates that CCR2
receptors are functional in airway epithelial cells and,
moreover, that MCP-1 may have an autocrine effect on
epithelial cells. These data further support a major role for
MCP-1 and CCR2 in airway remodeling and inflammation
directly or via macrophages. Antagonists of CCR2 or
MCP-1 may, therefore, be an attractive approach to
therapeutic treatment of COPD.
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Several antagonist of MCP-1 and CCR2 have been
described.102,118,119 These include nonpeptide CCR2-
specific antagonists,119 CCR2 neutralizing antibodies,120

MCP-1 peptide analogs,118 and commercially available
MCP-1 neutralizing antibodies. In several mouse models,
these molecules show improvements of clinical and histo-
logic symptoms in peritonitis,102 arthritis,121 allergic air-
ways inflammation and hyperresponsiveness,111 and bac-
terial clearance.100 However, clinical trials with these
molecules have not been reported. In diseases such as
Mycobacterium tuberculosis infection, however, these an-

tagonists may not be effective, as seen in infected MCP-1
deficient mice.101 In addition, as MCP-1 seems to be
involved in wound repair, inhibition of MCP-1 may also
retard the healing.

Conclusion

As Scanlon et al122 described, sustained smoking cessa-
tion improves lung function as compared to subjects who
continue to smoke. However, for many smokers, stopping
smoking is difficult. New therapies may prove to be more

Figure 2. Expression of CXCR2 in airway epithelium. CXCR2 protein expression as detected by
immunohistochemistry is shown in human bronchial tissue in intact epithelium (top, A) and damaged
epithelium (bottom, B). Note the intense staining in regenerating epithelium (bottom, B) as compared
to the virtual absence in intact epithelium (top, A). The brown (3,3�-diaminobenzidine)-stained cells in
the airway lumen (top, A) are neutrophils. L � airway lumen (original 	 200).
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effective than therapies such as glucocorticosteroids. Al-
though chemokines show extensive redundancy, several
studies65,66,79,82,99,110,111 in vivo demonstrate the specificity
of MCP-1 migration and activation of macrophages and
monocytes, of IL-8 and GRO-� to neutrophils, and
TNF-� to macrophages and neutrophils. Thus, treatment
of COPD with chemokine or cytokines inhibitors may
provide advantages over glucocorticosteroids. In order to
reduce both macrophage and neutrophil numbers and
activation, combinations of antagonists may be necessary.
Long-term efficacy and safety studies with the anti-TNF-�
therapies in humans are, however, lacking. Case reports
may provide insight into side effects of these treat-
ments.63,123 In addition, any impairment of pulmonary
bacterial clearance may indicate a need for concomitant
administration of antibiotics. Furthermore, from the hu-
man studies with anti-TNF-� agents performed so far, it
can be concluded that such treatments should be contin-
ual as the disease activity is only suppressed during
treatment. Future clinical trials may provide encouraging
data on novel treatments for COPD with one or more
chemokine or cytokine antagonists.
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