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General introduction and aims of the studies 

Chapter 

1 

Pardy based on: "the use of arninoglycosides in ne\vbom infants". 

M. de Hoog,j.\V. Mouton,J.N. van den Anker, 

Paediatric and Perinatal Dmg Therapy, 1998: 48~56 
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· ... J·'J!.' •• ~~ 

1.1. Use of aminoglycosides in neonates 

1.1.1. General aspects of aminoglycosides 

Introduction 

Aminoglycosides, including tobramycin, have played a major role in anti.mi.crobial therapy 

since their discovery in the 1940's, now more than 50 years ago 1• Their bactericidal 

efficacy in gram-negative infections, synergism \vi.th B-lactam antibiotics, limited bacterial 

resistance and low cost have given these agents a finn place in antimicrobial treatment. 

However, the successful use of streptomycin (1944), gentamicin (1963), tobramycin 

(1967), amibtcin (1972) and netilmicin (1976) has been complicated by nephrotoxicity and 

ototoxicity in a significant number of treated patients. 

This revie\v summa.rizes the available data on aminoglycoside use in neonates. General 

aspects of aminoglycosides will be discussed, followed by a detailed description of specific 

aspects of aminoglycoside use in neonates. Pharmacokinetic parameters, drug resistance, 

toxicity and dosing schedules of the four commonly used aminoglycosides 'Will be 

revi.ewed. Special attention will be paid to recent insights into increasing dose and 

prolonging dosing interval in pretenn infants. 

Structure and chemical properties 

Figure 1: Basic structure if the main aminog(ycosides 

(.Adapted from: Mingeot-Leclerq et a/.)2 

Substituents on R-numbered spaces on basic aminocyclitol 

Alltilf()g/yto.iidt R, R, R, R, R, R, R, 

Tobr:unycin NH, H OH H NH~ H CH~OH 

Gcnt:l.IIJ.icin OH OH OH H NH~ H H 

Ncti.lm.icin CR H 

Amikacin OH OH OH H NH~ COR' CH~OH 

R.\' R, Rm 
OH H H 

CH; OH CH; 

CH, OH CH, 

OH H H 
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Figure 1 shows the basic structure of the main aminoglycosides. Aminoglycosides are 

comprised of t\VO or more amino sugars attached via glycosidic bonds to an aminocyclitol 

nucleus and have a molecular weight of 445 to 600 Dalton. This structure consists of a 

sL>:::-membered ring \Vi.th amino-group substituents, from which the term aminocyclitol is 

derived. To this central ring two or more amino-containing or non-amino-containing 

sugars are bound vi.a glycosidic bonds, which led to the term aminoglycosides for this 

group of antibiotics. The central aminocyclitol for most aminoglycosides, including 

tobramycin, is 2-deoxystreptam.ine. 

Arninoglycosides can be divided into chemical families "'ith related structures (table 1). 

Tobramycin belongs to the kanamycin family, derived from Sirep!Otl!JCes spp3
• The 

kanamycin family is linked to m·o cyclic S%o-ats at positions 4 and 6 of 

2-dcoxystreptamine. Tobramycin is 3'-deo::-..ykanamycin. The relation bet\veen structure of 

am.i.noglycosides and activ--ity is incompletely understood. 

Table I: Families if aminogjycoside antibiotics_, divided in main gpJtfps and group members 

(adapted from Mande!!J' 

Family 

Streptomycin 

J(=unycin 

Gentarnicin 

Spccrinomycin"' (an aminocyclitol no glycosidic bond~) 

.tvfembcr 

Streptomycin 

1-Gmmycin A 

Kan::unycin B 

r\mikacin 

Tobr::unycin 

Dibekadn 

Gcntunicin C1, Cla., C2 

Sisomydn 

Nctilmicin 

Iscp:unicin 

Neomycin 

Paromomycin 

Aminoglycosides are \Vater soluble, cationic at normal pH, and distribute in plasma water. 

Protein binding is minimal. They have a stable structure over a \vi.de range of temperature 

and pHS. 6• Arninoglycosides are .inactivated in vitro by concomitant usc of ~-lactam 

antibiotics7-9. Tobramydn seems to be more easily inactivated than netilmicin, amik.acin or 

isepamlcin. 
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Method of action 

Aminoglycosides act by altering the integrity of the bacterial cell membrane in gro'\vi.ng 

bacteria by way of disturbing protein synthesis through binding to prokaryotic 

ribosomes10- 11 . These cationic antibiotics bind rapidly and passively to the negatively 

charged parts of phospholipids and other proteins in the bacterial cell membrane12. They 

can not pass through the porin channels because of their relatively large size13. They enter 

the bacterial cell by '\vay of a self promoted uptake process, described in detail below, 

wherein aminoglycosides displace Mg.:?:+ and Ca.:?:+ bond bettveen adjoining 

lipopolysaccharides in the bacterial cell membranc14· 15. This leads to a rearrangement of 

lipopolysaccharides, which creates transient holes making the outer membrane more 

permeable to the antibiotic16. This ionic binding of aminoglycosides to the cell membrane 

is follmved by a 2-staged energy dependent cellular uptakeiO. t7. 18. Phase I is slow, rate 

limiting, electron transport dependent and is termed energy dependent phase I (ED P-I). 

ED P-I precedes the loss of viabilit;.r and inhibition of protein synthesis12• It is related to 

the concentration of aminoglycoside and can be inhibited by low pH, anaerobic 

conditions and hyperosmolarity19, 20. Aminoglycosides themselves close the "holes" made 

in the cell membrane through decreasing transmembrane electrical potential, causing 

aminoglycosides to be trapped inside the bacteria21 resulting in far higher intracellular 

than extracellular concentrations. Phase II is characterized by an accelerated uptake of 

aminoglycoside in the cytosol and binding to the 30S subunit of ribosomes in a process 

utilizing energy from electron transport and ATP18- 22. 23. Specific binding may differ for 

different aminoglycosides2+-26. After binding to ribosomes, aminoglycosides disturb the 

proofreading process controlling the accuracy of proteins under construction. These 

aberrant proteins, when inserted in the cell membrane, lead to an increase of permeability 

and increased uptake of aminoglycosides27• In man, inhibition of protein synthesis can 

also occur at supratherapeutic concentrations, probably through non-specific binding to 

eukaryotic ribosomes28• Although inhibition of protein synthesis plays a major part in 

bacterial cell death, it is not the sole explanation for the bactericidal effect of 

aminoglycosides. Other antibiotics that inhibit protein synthesis, like chloramphenicol, are 

only bacteriostatic. Binding of aminoglycosides to the bacterial cell membrane itself may 

play a role in rapid bacterial cell death29. 
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Aminoglycoside antimicrobial activity 

In vitro activity 

r\m.inoglycosides have a concentration-dependent bactericidal spectrum encompassing 

aerobic and gram-negative bacteria like Enterobacteriacae, Escherichia coli, pseudomonas spp. 

and Haemophi!trs spp. Table 2 shows the in vitro spectrum of a.minoglycosides compared 

'Wi.th selected other antibiotics. 

Table 2: In vitro spectrum of actit/l!J of aminogfycosides against selected microorganisms. 

(Adaptedfrom Mandell}' 

.Aminoglycoside 

Organism. Gentamicin Tobramycin Amikacin Nctil:roicin 

Gram-negative 

Esch<.-richia coli + ~ + + 
l)roteus mirabilis + + + 
Kk·b.ridla sp. + + + 
Entcrobadrrsp. + + 

lvf.organdla sp. ~ + + 
Citro barter ~P- + + + + 
Serratia sp. + + + 
Salmonella sp. 

Protidmcia sp. + + + 
Adomonas sp. + + + 
Acim•t.obatft'Tsp. 0 ± 0 

Pseudomonas acruginosa + + + 
Bw:kholdcria ccpacia 0 0 0 0 

Stmotrophomonas !!laltophilia 0 0 0 0 

Nrissrria gonorhorm' 0 0 0 0 

Hatmophillfs inj!Hen:zae + + + + 

Yrr.rinia pestis 

Francist!!a t:darensis 

Gram-positive 

Stnptococcus pnmmoniac 0 0 0 0 

Stap/!Jiococms a/freus + + + + 
Stapl.[ylococms a/freus (J\1RSA) 0 0 0 0 

:vrRSA ::::: mcthicillin-rcsistlnt S. a:tmrs 
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The susceptibility of most gram-negative bacteria to gentamicin, tobramycin, netiJmicin 

and amikacin is relatively sirniiar3°. Although susceptibility to amikacin is three to fourfold 

less than the other aminoglycosides, this is compensated by its lower toxicity and 

therefore higher allowable dose. Gentamicin and tobramycin are comparable in activ--ity, 

although tobramycin is slighdy more active against P. aeruginosa. They are susceptible to 

the same modifying enzymes and resistance rates are therefore very similar. In contrast, 

a.r:nikacin is resistant to many of these enzymes and therefore often an alternative if strains 

are resistant to tobramycin or gentamicin. NetiJmicin susceptibility is comparable to that 

of gentamicin and tobramycin, although netiJmicin is resistant to some of the gentamicin 

inactivating enzyTileS and rhus in some cases a good altemativc.Antimicrobial activity of 

aminoglycosides has four distinct and clinically important aspects: 

I. Concentration-dependent killing 

II. Postantibiotic effect 

III. Adaptive resistance 

IV. Synergism 'W--ith other antibiotics 

Concentration-dependent killing 

In vivo and in v--itro studies have sho"rn that aminoglycoside induced rate of bacterial 

killing as well as induction of resistance is peak concentration dependent31-35• Thls is 

illustrated by figure 2. Other in v--itro investigations, mimicking in vivo fluctuations of 

drug concentrations, have shown a single bolus of aminoglycoside to be superior in rate 

and total amount of bacterial killing to the same dose in a multiple daily dosing regimen, 

in non-neutropenic animals36,37, 

Figure 2: killing ctmJes if tobramycin. Inocula if 5 x 105 ifu/ ml P. aerttginosa were incubated u-ith 

tobramycin for 24 hours in a range from 0.25-16 x MIC (Adapted from]. W. Moutonr 

0 2 4 6 24 

time (hours) 
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PrHtcmtibiotic effect 

Aminoglycosides are often reported to have a postantibiotic effect (P AE), meaning that 

there is suppression of bacterial gro\vt:h for several hours after antibiotic serum 

concentrations have dropped belo\v the J\1IC39-41. However, the PAE in these studies was 

not determined under conditions where decrease of concentrations was similar to that 

seen in patients. The PAE \vas most often determined by exposing bacteria to an 

antibiotic for limited a period of time, usually one hour, whereafter the drug is abruprly 

eliminated. Delay in resumption of gro\\!t:h is compared to a control curve. Recent in vitro 

pharmacokinetic models simulating the normal gradual decrease of serum concentrations 

in patients ho\vever, have failed to show ev--idence of a P.AE beyond the J\1IC, especially 

with longer serum half-lifes42. 43. In v--ivo experiments indicate that there is a PAE, which 

even increases with increasing serum half-life44. 45. The difference bet\veen in vivo and in 

vitro models is partly e::...-plained by the fact that in v--ivo regrowth of bacteria is determined 

at sub-~C concentrations42. Other host-related environmental factors may also play an 

important role. PAE should therefore be labeled as a postantibiotic sub-i\1IC effect. The 

clinical relevance is still unclear, and the emphasis on this effect in discussions on 

extending dose intervals of aminoglycosides is questionable. 

Adap!iJ)e resi.rtance 

Antimicrobial activity of aminoglycosides is associated with a temporary adaptive 

resistance46•47. It is a reversible form of resistance \Vhich develops within 1 to 2h of initial 

exposure to an aminoglycoside and disappears several hours after removal of the 

antibiotic. In this time period the bacterial population surv--iving the initial exposure are 

less susceptible to a renewed dose of aminoglycosides. 

Synerg;' with other an!ibiotics 

Synergy of aminoglycosides with other cell wall active antibiotics, like penic.ilJ.ID.s and 

cephalosporins has been established4. 4S. This synergy· is the basis of the clinical choice for 

combination therapy of aminoglycosides \v:ith penicillin or cephalospo:cins. 

Issues of toxicity, which 'Will be discussed later, concentration-dependent killing, 

postantibiotic effect (although doubtful), as well as adaptive resistance are the rationale 

for the change to extended intel\ral dosing of aminoglycosides over the last decade49•51 • 
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Drug resistance and susceptibility 

Resistance of aminoglycosides in the Kctherlands is defined according to national 

guidelines on susceptibility and is divided in three groups as sho\.VTI in table 3. 

Table 3: Susceptibili!J cnleria in mg/L according to the CRG 1 (Dutch COIJI!Jiittee 017 guidelines in 

sttsceptibili!J of microorganisms) compared JPith j'\.TCCLS gt~idelines 

Antibiotic CRG1 NCCLS' 

s R s I R 

<= >-<= > <= >=-<= >= 

Arnikacin 4 4..16 16 16 32 64 

Gentamicin 1-4 4 4 s 16 

::-Jetilmicin 2 2-8 8 s 16 32 

Tobrarnycin 1-4 4 4 s 16 

1 Cornmissie richtlijnen gevoeligheidsbepalingcn, ~ National Committee for the Clinic.:tl Laboratory Standards, 

S= susceptible, I=intermedi.ate resistance. R=resistant 

Resistance to aminoglycosides can occur by three mechanisms, ribosomal resistance, 

decreased uptake and/ or accumulation and enzymatic modification. Ribosomal resistance 

\v-ill not be discussed since it is only pertinent to streptomycin. 

1. Decreased uptake and/ or accumulation 

A decrease in drug uptake is a clinical significant aspect of aminoglycoside resistance. The 

underlying mechanism, though probably related to membrane impermeabilization, is not 

really k.no\Vn52. It pertains to all aminoglycosides and is a stable characteristic resulting in 

a moderate level of resistance2• Another important phenomenon in aerobic gram-negative 

bacteria is called adaptive resistance, defined as a reduced antimicrobial killing in originally 

susceptible bacterial populations after initial incubation with an aminoglycoside53_ It has 

clinical relevance especially for immunocompromised patients and in serious infections 

with gram-negative bacteria. Adaptive resistance is probably related to membrane protein 

changes and altered expression of regulatory genes of the anaerobic respiratory pathway54. 

It can be overcome by higher peak serum concentrations of aminoglycosides, \.Vhich 

underscores the need for extended dose intervals55. 
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2. Enzymatic modification 

Aminoglycosides can be modified with subsequent loss of antimicrobial activity by 

enzymes produced by bacterial pathogens4• The three major classes of enzymes are 

1\T-acetyltransferases, 0-nucleotidyltransferases and 0-phosphotransferases. The genetic 

code for these enzymes is largely contained in plasmids, thereby rendering the resistance 

easily transferable. In addition, it is important to realize that all susceptible positions in 

aminoglycosides can be modified by several enzymes and that several inactivating genes 

can easily develop from a common ancestor leading to the conclusion that it will be 

unlikely that making aminoglycosides resistant to inactivation by a specific enzyme '\vill be 

a worthwhile effort2. 

1.1.2. Specific aspects of aminoglycoside use in neonates 

General aspects in neonates 

Bacterial infections continue to be a major cause of morbidity and mortality in preterm 

infants admitted to neonatal intensive care units (.KICV's)56, though a decline in sepsis 

associated neonatal deaths has been reported57• The immunologically incompetent 

premature neonate is susceptible to invasive microbial infections through hospitalization, 

ventilation and invasive procedures, such as the introduction of central venous lines. 

Kosocomial infections in the neonatal period, including septicemia, meningitis, 

pneumonia or urinary tract infection occur in approximately 18% of very low birthweight 

(VLBW; <1500 g) infants58• Culture proven early onset sepsis, defined as within the first 

3-4 days of life, occurs in approximately 2% ofVLBW infants, but there are limitations to 

blood cultures in neonates and single blood cultures can be false negative59-61. 

Among major pathogens responsible for bacterial infections during the first month of life, 

Gram-negative bacteria like Escherichia coli, Klebsiella spp, Enterobacter spp and Pseudomonas 

spp, play an increasing role, possibly related to the increased prenatal administration of 

antibiotics and use of percutaneous central venous catheters in the Nrcuss, 62·64. 

Am.inoglycosides are effective against most nosocomial acquired gram-negative infections 

in term and preterm infants and are synergistic '\Vi.th ~-lactam antibiotics in treating group 

B streptococcal and coagulase-negative staphylococcal infections. They play an important 

role in the initial empiric treatment of neonatal septicemla65. After penicillins, 

aminoglycosides are the most commonly used drugs in the neonatal intensive care unit 

(NICLJ)". A MEDLIKE search shows that since 1966 more than 900 articles relating to 
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aminoglycoside use in neonates have been published. Despite this enormous amount of 

documentation, there is still much debate about the proper use of aminoglycosides in 

infants. 

Pharmacokinetics 

Aminoglycosides have a phannacokinetic profile consisting of a rapid distribution phase 

(tt/2r.~.), elimination phase (tl/2.3), and a second elimination phase (t1;2y). The gamma phase 

can only be determined after discontinuation of the drug. Distribution half-life is 

5-10 minutes in adults, but has never been measured in newborns. The gamma phase in 

infants is long. Nerilmicin was detectable in blood and urine 11 and 14 days after 

discontinuation, \Vi.th a tt/2y of 62.4h67, The tissue half-life in renal cortex is 4-5 days68. In 

most studies aminoglycosides are studied using a one-compartment open model \vi.th 

individual pharmacokinetic parameters esrim.ated by way of the method described by 

Sawchuk and Zaske69. In general, the serum concentrations and phannacokinetic data 

mentioned in most studies concern the elimination phase, which is adequately described 

by a one-compartment model. There are, however, some studies that have sho"'Wn a two 

compartment model to be supenor in predicting serum tt/2,3 and serum 

concentrations 70-72. 

Aminoglycosides are eliminated from the body by way of glomerular filtration; it is 

therefore predictable that a relation between glomerular filtration rate (GFR) and serum 

concentrations exists. The link bet\Veen GFR and arninoglycoside pharmacokinetics is 

often67. 73·79, but not consistendy71- 79-81 described in neonates. Brion et al_76 showed a 

linear relation bet\Veen GFR and gentamicin t112, but GFR was determined by serum 

creatinin. Some authors reported that serum creatinin measurements in newborns do not 

reliably predict GFR They hypothesized that serum creatinin concentrations in the initial 

days after birth were a reflection of maternal serum creatinin. However, it was recendy 

shown that the serum concentration is inversely related to gestational ageS2. If the serum 

creatinin concentration in the days after birth is indeed a reflection of maternal serum 

creatinin, the youngest infants should have had the lowest concentration because maternal 

serum creatinin is lowest at the beginning of the third trimester83. Therefore the elevated 

concentration of serum creatinin in these infants during the first postnatal days probably 

reflects the difficulty these children have to eliminate the excess creati.nin transferred from 

their mother. Furthermore in adults it has been shown that aminoglycoside 

concentrations can change \.Vi.thout concomitant change of serum creati.ninS+. 
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Table 4: Restr!ts ofpharmacokinetic studies if aminog!ycosides in neonates 

Reference N GA PNA Weight CL Vd tl/Z 

(weeks) (days) W="l (ml/min/kg) (L/kg-') (h) 

An1ik.acin 

Padovani, 32 32 ± 3.6 1740 = 810 1.08 ± 0.51 0.655 ± 0.414 7.6 ± 4.4 

1993 

Kenyon. 28 30.5 ± 2.86 1380 ::':: 170 0.83 ± 0.28 0.57±0.11 8.4 
1990 

Kenyon, 6 32-40 1-3 1500-3400 1.05 ± 0.30 0.70 ± 0.27 2 
1990 5 36-40 5-S 2100-3600 1.08 ± 0.42 0.49±0.11 5.6 

11 32-38 >8 1900-4600 1.78 ± 0.53 0.73 ± 0.13 5.1 

Gentamicin 

~akac, 1988 19 < 1500 0.75 ± 0.60 0.72 ± 0.45 13 
18 2: 1500 0.97 ± 0.23 0.78 ± 0.39 13.8 

20 4 < 1500 0.50 ± 0.18 0.60 ± 0.26 10.9 

28 4 2: 1500 0.72 ± 0.10 0.50 ± 0.18 8.1 

Kildoo, 1984 15 < 33 <7 < 1500 0.38 ± 0.15 0.53 ± 0.10 11.1 
15 < 33 8-30 < 1500 0.45 ± 0.17 0.50 ± 0.11 10.8 

6 < 33 > 31 < 1500 1.18 ± 0.45 0.50±0.11 4.4 

Koren, 1985 12 LS <1000 0.52 ± 0.08 0.35 ± 0.07 7.9 
36 1.8 2:1000 0.65 ± 0.13 0.38 ± 0.13 6.5 

20 ~ 30 LS 0.58 ± 0.12 7.4 
28 >30 1.8 0.63 ± 0.13 6.5 

hquicrdo, 11 28-33 2-30 1.00 0.597 6.53 

1992 31 35-38 2-30 1.22 0.538 4.95 

55 39-43 2-30 1.15 0.542 5.17 

Williams, 216 32.39 ± 2.83 1850 = 670 0.75 ± 0.25 0.54 ± 0.13 8.98 = 2.86 

1997 106(PDA) 29.02 ± 2.92 1160 = 530 0.67 ± 0.28 0.61 ± 0.15 12.24 ± 7.43 

Wattcrberg, 24 (PDA) < 1500 0.93 ± 0.33 0.64 ± 0.20 8.49 ± 2.69 

1987 16 < 1500 0.83 ± 0.4 0.41 ± 0.08 6.23 = 1.92 

Dahl, 1986 11 26-33 1-10 13 
6 34-40 1-10 6 

Iscmann, 

1996 16 30.6 ± 0.86 < 12h 1600 = 154 0.57 ± 0.03 10.2 ± 0.89 

18 29.2 ± 0.81 < 12h 1294 ± 145 0.58 ± 0.02 12.0 ± 0.84 

Abbreviations: n= number of patients in study, PDA= patent ductus :rrtcriosus, ECMO= C.""(tr.J.corporcal membr::me 

o:-.-ygetution, GA= gestational age, PKA= posmat:J.!. age, PCA= postconeeptio=l age, ASS= 5' apg:u: score, 

CL= tot:t.l. body cl=:mce, Vd= volume of distribution: t1 ;~= serum half-life 
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Table 4 (contintted): Results ifpharmacokinetic stttdies if aminog!ycosides in neOJlates 

Reference N GA PNA Weight CL Vd '"' 
(week.'~) (days) (gram•) (ml/ min/kg) (L/kg"') (h) 

Gmta111ir:l1 (cMtimred) 

Southgate, 10 ECMO 36-43 <7 2.78 = 1.55 0.51 =0.11 9.55 ± 4.38 

1989 

TI1omson, 113 > 3-H .AS52:7 0-50 500-4500 0.88 0.47 

1988 :;34+AS5<7 0.73 

:;34-:-AS52:7 0.6 

Faur.:t. 1991 165 37 ± 4.5 7.8±11.7 2432 ± 952 0.64 ± 0.22 8.2 ± 4.8 

l)ons, 1988 15 < 37 0-2 1.03 ± 0.37 

27 :::: 37 0-2 1.40 ± 0.47 

s < 37 3-7 1.78 ± 0.63 

16 :::: 37 3-7 1.78 ± 0.38 

< 37 8-28 1.67 

14 2:37 8-28 1.97 = 0.43 

Nt"liil!licin 

Granati.. 1985 22 27-40 < 16 800-3400 1.07 ± 0.28 0.034 ± 0.11 9.6 

Kuhn.. 1986 12 28-33 < 28 770-2050 0.83 ± 0.27 0.63 ± 0.24 8.6 

Siegel. 1979 16 <7 < 2000 0.609 4.7 

s >=7 <::woo 0.599 4.1 

9 <7 > 2000 0.472 3.4 

23 <7 >::woo 0.617 4.4 

4 >=7 > 2000 0.510 3.8 

To/Jra!7()'cin 

Kahan. 1984 19 29-40 2-l 1000-3555 1.15 (0.70-1.83) 0.82 (0.54-1.76) 8.6(3.5-14.1) 

+-7 1000-3555 1.14 (0.62-1.56) 0.68 (0.40-1.06) 7.1(4.6-11.6) 

s 2-4 1000-1500 1.09 (0.74-1.15) 1.04 (0.64-1.36) 11.1(6.6-14.1) 

+-7 1000-1500 1.02 (0.62-1.55) 0.73 (0.46-1.06) 8.7 (5.7-11.6) 

Nahata, 1984 9 28-30 2-6 1.04 ± 0.22 0.84 ± 0.31 9.3 ± 2.8 

11 30-34 2-6 1.13 ± 0.35 0.81 ± 0.20 8.9 ± 3.0 

6 34-40 2-6 1.28 ± 0.31 0.61 ± 0.14 5.6 = 1.2 

7 2-6 1000-1250 1.05 ± 0.20 1.02 ± 0.27 11.3±3.0 

6 2-6 1260-1500 1.12 ± 0.39 0.74 ± 0.16 8.2 ± 2.0 

7 2-6 1500-2000 1.10 = 0.32 0.69 =0.16 7.5 ± 1.6 

6 2-6 2100-3500 1.28 = 0.31 0.61 ± 0.14 5.6 ± 1.2 

~:than, 1986 8 24-30 3-5 <1000 0.69:':0.10 0.59 ± 0.10 9.9 ± 1.5 

Abbreviations: n= number of p::tricnts in study, PDA= patent ductus :rrteriosus, ECMO= extracorporeal membmne 

oxygenation, GA= ):;<:Stacional a~;e, PJ'.,; . .'\= posmatal age, PC:·\= postconcepti.onal age, ASS= s· apgar score, 

CL= total body cle::t.t:l.nee, Vd= volume of discriburion; t1;:= serum half-life 
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Keyes showed that serum trough concentrations could not be reliably predicted in 

newborns \\':ith serum creatininS0. In conclusion these studies suggest that, though there 

is a relation, serum creatinin .in the first week of life can not be accurately used to predict 

aminoglycoside clearance. 

Effect of gestational age and birthweight on pharmacokinetics 

The volume of distribution (V d) of most drugs is larger in neonates, especially in 

prematures, primarily due to a higher percentage of extracellular water85, 86. As can be seen 

.in table 4, this also holds true for aminoglycosides. There is a consistently higher V d for 

prematures, especially in the VLBW-group/ gestational age (GA) group below 30 weeks. 

:vfost authors have found birthweight (BW')7l, 77• 87-89 to be the best predictor of V d, some 

found Vd to be .independent of GA76· 90. In practice, this means that premarures \.vill end 

up having lo\.ver peak serum concentrations. The interpatient variability of V d .in these 

groups is greater and therefore serum concentrations are difficult to predict in the 

individual premature infant. Total body clearance (CL), associated with GA71. 78. 88 and 

BW7 1. 87-89, is lower and elimination half-life (tl/213) is longer .in preterm infants, leading to 

higher serum trough concentrations in this group. This can be explained by the significant 

increase of GFR with GA and BW" described in recent srudies91. 92• CL and t1;2 are also 

highly variable in the VLBW infants. Substantial effort has been put into developillg 

formulas, mostly based on population pharmacokinetic studies, which potentially \.villlead 

to better prediction of serum concentrations in the individual patientf6, 87.89_ Despite these 

efforts variability persists and therapeutic drug monitoring (TD_M) remains common 

practice ill all infants. 

Effect of postnatal age on pharmacokinetics 

Diminishing extracellular fluid .in the neonatal period93 leads to a corresponding decrease 

in V d "-;th increasing postnatal age (P'\iA), again especially in the VLBW group. In 

contrast, Faura et al.9-+ found no difference in Vd bet\veen 48h and 144h P~A, most likely 

e:-..-plained by the mean GA of 37 weeks in neonates included ill this study. Recent data 

have shown a significant postnatal .increase in GFR9t. 92_ A concomitant change in CL and 

tt/2 has been sho"'Wn for amikacin95, gentamicin76. 78, 79. 96, 97, netilrnicin67, 71 and 

tobramycin9S, but has been refuted by others77. 94. These data suggest that repeated TDM 

should be performed in the first week of life. 
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Effect of patent ductus arteriosus, indomethacin, extracorporeal membrane 

oxygenation (ECMO) and corticosteroids 

Patent ductus arteriosus (PDA) as well as postnatal exposure to indomethacin alter the 

rapid postnatal increase in GFR99, possibly through decreased renal blood flow, leading to 

an increase in V d and a reduction of CL. Increase in V d of gentamicin is found in infants 

with PDA90, too. In this patient group fluid overload is common. A recent study in 

premarures90 sho\ved that a gentamicin V d exceeding 0. 7 L/kg has 92% specificity for 

presence of a hemodynamically significant PDA. However, important deficiencies in the 

design of this study \vere reponed1D1• Closure of PDA leads to significant decrease in Vd 

of more than 30 %100- ro2. Dosage adjustments, based on TD_M, should be made in 

patients v.rith PDA. The effect of indomethacin, used for closure of PDA, as well as 

surgical closure itself necessitates TDM. Information on gentamicin disposition in infants 

on ECMO is scarce. T\vo small studies72. 103 showed Vd to be increased. Serum half-life in 

patients on EC:YIO was 9.55h and 9.24h respectively, and decreased to 3.87h in the same 

patients off ECMO in the study by Dodge et al103. Southgate et al. showed that serum 

creatinin is a significant predictor for t1;272. On the basis of these data, dosage adjust­

ments should be made in this group of infants. They advise an initial dose of 4.3 mg/kg, 

\Vi.th a maintenance dose of 3.7 mg/kg/18h103. Prenatal exposure to corticosteroids, 

which is seen increasingly in the VLB\V group, leads to increased intra-uterine maturation 

of kidney function, possibly through direct vasodilatation mediated by glucocorticoid 

receptors9t. Though this point has not been investigated yet, it might have a significant 

effect on pharmacokineric parameters in this group of infants. These studies indicate that 

extra therapeutic drug monitoring (TD:M) is ·warranted in patients who are either on 

ECMO, have an open ductus Botalli, or are exposed to indomethacin. 

Drug resistance and susceptibility 

Broad-spectrum antibiotics are generally used in NICU's as empiric treatment of 

(suspected) neonatal sepsis. Drug resistance in :::--JICU's is an important factor related to 

this empirical use. Over the years aminoglycosides remain antibiotics of first choice in the 

initial empirical treatment of neonatal septicemia, both because of their broad spectrum as 

well as their activiry..us. 

Since most serious infections in the NICU are caused by Enterobacteriaceae and 

coa.:,oulase negative staphylococci (CONS), these are the organisms that are now 
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considered \vi.th respect to emergence of resistance in the clinical setting. In one srody, a 

change from gentamicin to amikacin was initiated because of gentamicin resistant COKS. 

Although amlkacin resistance quickly emerged in the CO~S, the bacteria that caused the 

serious infections remained susceprible104• In another study, a change from gentamicin to 

amikacin because of the emergence of gentamicin resistant Enterobacteriaceae did not 

lead to an increase in am.i.kacin resistant strains. In contrast, there was a decrease in 

gentamicin resistance1D5. In a third study on a ~ICU, the change from gentamicin to 

amikacin led to an outbreak of amikacin resistant SetTatia spp, which remained susceptible 

to gentamicin1D6• However, this could have been due to the intrinsically higher activity of 

gentamicin against Serratia spp. In general, although the number of studies are limited, 

emergence of aminoglycoside resistant strains other than coagulase negative staphylococci 

is relatively slow1D7, which is a definite advantage over the third generation 

cephalosporins. The frequent use of these latter drugs has been shown to rapidly lead to a 

significant increase in the emergence of multiple drug resistant strains1D7·109• 

Toxicity 

The major specific side-effects of aminoglycosides are nephrotoxicity and ototoxicity. 

~eurotoxicity by way -of blockade of neuromuscular synapses \vith prolonged muscle 

weakness after the use of muscle rela.\:ants has not been described in infants. The delayed 

type hypersensitivity· reaction of the skin is mostly seen after use of topical application of 

neomycin or framycetin and has not been described in neonates. Kephro- and ototoxicity 

"ill be described in further detail. 

"l.'.Jephrotoxici!J 

Aminoglycoside nephrotoxicity is induced by 'l.vay of proximal tubular injury leading to 

cell necrosis. The mechanisms of toxicity have been mostly studied in animals. Less than 

5% of filtered aminoglycosides binds to the brush-border membrane of proximal tubular 

cells and is actively reabsorbed, finally causing cell death. Absorption through the 

basolateral surface has also been described68• Intracellular mechanisms resulting in cell 

death are formation of hydro:xyradicals, increase in phospholipidosis, inhibition of 

Na-K-ATPase, effects on microsomal protein synthesis, lysosomal and mitochondrial 

injury, increased tromboxane fu synthesis, and vascular factors like activated renin­

angiotensin system110• Because of the site specific damage, aminoglycoside nephrotoxicity 
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does not initially induce azotemia and decreased GFR, but leads to polyuric renal failure, 

defective unnary concentration ability, cylinduria, glucosuria, phosphaturia, 

aminoaciduria, rnicroproteinuria, enzy1:nuria and a slo\v rise in serum creatinin. High doses 

(> 40 mg/kg) are needed to create cortical necrosis and overt renal dysfunction111. 

Tubular cells undergo a proliferative response after treatment leading to repair. This 

response is diminished in ill patients112, which is a possible explanation as to why patients 

arc more sensitive to aminoglycosides. The degree of nephrotoxicity is determined by the 

quantity of aminoglycosidcs stored in the proximal rubular cell and the intrinsic potency 

of the drug to damage subcellular strucrures113. Aminoglycosides sho\v drug-specific 

saturable uptake into rubular cells in animalsll+ and humanstls. 116. Comparison bet\vcen 

once daily dosing (ODD) and multiple daily dosing (MDD) or continuous dosing for 

ami.kacin, tobramycin, gentamicin and netilmicin in adults showed considerably less renal 

accumulation for ODD in gentamicin, nctilmicin and amikacin. There \Vas no difference 

bet\veen dosage regimens for tobramycin, though the srudy group was small (n=18). In 

several large meta-analytical studies toxicity seems to be related to high trough 

concentrations, indicating that these concentrations are not lo\v long enough to prevent 

renal accumulation. l"ephrotoxicity related to ODD opposed to 01DD was found to be 

equal or less in these studies+9, so. 84- 117. ns_ A recent prospective study in adults sho\ved 

that both probability and time of occurrence of nephrotoxicity arc negatively influenced 

by multiple daily dosing119. There is no clear distinction in level of nephrotoxicity bet\veen 

the four aminoglycosides in studies in adults6S. 

The incidence of aminoglycoside nephrotoxicity in neonates is not well knO\vn, but seems 

to be considerably lower than in adults. Enduring glomerular flitration impairment has 

not been conclusively sho\vn in prospective studies. GFR \Vas not affected by tobramycin 

given for less than 6 days120_ The normal postnatal decline of plasma creatinin \vas 

temporarily decreased in preterm and term infants treated "\Vi.th amikacin, gentamicin or 

netilmicin. This diminished decline persisted for at least two days after discontinuation of 

therapy. After 10 days, these differences could no longer be detected, except for term 

infants treated "\Vi.th gentamicin 121 . Other studies sho\ved no difference in serum creatinin 

in treated patients versus controls122. 123. Ko difference in renal function \vas found 

bet\veen ODD and 01DD for amikacin and gentamicin123· 124. ;-.Jo relation bet\veen serum 

concentrations and GFR disturbances has been demonstrated in infants. 

Tubular dysfunction has been shO\vn in many studies involving neonatcst20-t2.2.125-129, and 

is more pronounced in term infants than in preterm newboms120. t23. 128, possibly 



explained by maturity dependent blood supply differences of the outer parts of the kidney 

and lower binding constants ID the immature kidncy13°. Several studies showed the 

dysfunction to be reversiblel21. 122. 125. One study showed enz~rmuria during treatment to 

be more pronounced "'With gentamicin than v.rith amikac.in in the low birthweight infant129. 

In ID.fants -wi.th a GA above 34 weeks no difference in proximal tubular damage was 

found betv.Tecn ODD and :MDD of amikacin123. A reversible increased loss of sodium, 

calcium and magnesium has been shown to exist during and just after treatment '\vith 

amikac.in, nerilmicin and gentamicin. "Crinary electrolyte loss is higher at peak serum 

concentrations121, 125. In the ill term and especially preterm infant, who is already at risk 

for electrolyte disturbances, the increased loss during aminoglycoside therapy might be 

clinically relevant. In summary aminoglycoside related loss of renal function 1s rare. 

Reversible tubular dysfunction is seen often and already occurs early in therapy. 

Ototoxicity 

Aminoglycosides are potentially cochleo- and vestibulotoxic. They accumulate in the 

lymphatic fluid of the inner ear from which they are only slowly eliminated (24-36h) 1". 

There is evidence for saturable uptake in animals132. Some authors suggest that ototoxic 

effect is only possible after conversion in serum of aminoglycosides to a cytotoxin 133. 134. 

Certain gene mutations lead to a familial increased risk of aminoglycoside induced 

sensorineural hearing loss135. Sequentially outer hair cells, inner hair cells and spiral 

ganglional neurons are damaged. Aminoglycosides seem to give a polyamine-like 

enhancement of glutamate N-methyl-D-aspartate (t'JMDA) receptor activity, resulting in 

excessive entry of sodium and calcium which leads to excitotoxic cell death. Protective 

trophic factors like platelet derived gro\.vth factor arc antagonized by aminoglycosides136. 

:-:-.JMDA receptor blockade has been shown to protect against aminoglycoside induced 

ototoxicity137. Hearing loss is usually bilateral, symmetrical and permanent131, and can also 

have a delayed onset of months131. Most authors suggest that ototoxicity is related to total 

dose and duration of therapy rather than to serum aminoglycoside concentrations, but the 

relation to aminoglycoside serum concentrations remains unclear. This form of toxicity 

usually occurs in patients who have received either long, or repeated, courses of 

aminoglycosides138. No difference in incidence bet\\reen ODD and :Y.fDD could be 

demonstrated11S, 119. In e.-...::perimental srudies amikacin appears to be more cochleoto:xic 

than gentamicin and tobramycin. Kerilmicin is probably the least ototoxic 
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aminoglycoside139 • .Although vestibulotoxicity is a disabling side effect in adults, it has not 

been shown .in neonates. 

There are many pitfalls in relating usc of aminoglycosides to loss of hearing in infants. 

Hearing loss .in neonates occurs .in 0.1-0.3% of casesWl. )-,Jumcrous risk factors for 

neonatal hearing loss have been identified. Perinatal infections, meningitis, prematurity, 

hyperbilirubinemia, birthwcight < 1500 grams, asphy-:da, respiratory distress syndrome, 

mechanical ventilation, antibiotics, and diuretics have all been .incriminated141 . Even 

though some studies show a relation to administration of aminoglycosides, it remains 

difficult to separate the effect of aminoglycoside use from concomitant factors140. 

Furthermore initial .investigations concerning hearing loss, before the .introduction of 

brain stem evoked response audiometry (BERA.), were hampered by the fact that 

conventional and behavioral audiometry were used, which arc not reliable under the age 

of 12-24 months. 

Table 5: Reported ototoxicity!![ aminog!ycosides in neonates 

Dru~ N 

and 

reference 

Amikacin 

Finitzo- 50 
Hieber, 1985 

Langhendries. 10 ODD 

1993 121:IDD 

Gentamicin 

Kohclet. 1990 7 

Tsai, 1992 17 

Beml.rd, 1981 26(6 to bra) 

Nt'1i1111icin 

Finitzo- 49 

Hieber, 1985 

GA PNA Duration 

of therapy 

28-41 0, before discharge, 5.3 ± 2.0 

follow up 

2:34 0,3,9 8.8 ± 1.8 

8.0 ± 2.4 

39.3 3 XA. 

3,10 K.A. 

37 5,10 8.7 ± 1.3 

27-41 0, before discharge, 5.2 ± 2.6 

follow up 

Total Serum Ototoxicity 

dose <:one. 

(mg/kg) 

< 403 Yes 2% (N.S.) 

N.A. Yes Xo 

~-A Yes Yes, prolonged 

breneies in the 

treated group 

K.A. Yes Yes, transient 

163 ± 81 Yes Yes 

< 129 Yes 2% (N".S.) 

X.A= not available, N.S.= not significant. GA= gcstarion:li age. PNA= posmatal age. cone. = concentrations 

(mg/L). v:liue. n =number of subjects, ODD= once daily dosing • .MDD= multiple daily dosing 
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Table 5 sho\vs the results of studies concemiDg aminoglycoside related ototoxicity. Of the 

many studies, only those using BERA -,;viJl be discussed belo\v. Ototoxicity is an 

infrequent occurrence in these studies. ~Iany studies did not flnd any aminoglycoside~ 

related toxicity. Cox et al.1 42 found that 14% of infants had abnormal latencies at 4 

months in a group of 43 infants \Vi.th multiple risk factors, but there were no controls. 

Interestingly, 3 infants had an initial normal BERA followed by an abnormal BERA at 

follow-up. This means that auditory· evaluation during, or just after discontinuing 

aminoglycosides, will not caprure all patients \vith induced hearing loss. In the other study 

-,;vi_th a high rate of ototoxicity, the 8 patients \vi.th abnormal BERA's and aminoglycoside 

treatment less than 10 days, also had another reason for hearing loss143. The best study so 

far, \vi.th a baseline value, follow-up and a control group, found 3 patients with hearing 

loss; 1 patient each treated \'Vi.th netihnicin or amikacin, and 1 controP44• Several studies 

found a transient hearing loss144.l+5. Some studies found a relation -,;vi_th duration14-t.t43 and 

total dose141. 1+6. :-Jo clear relation was found to peak and trough concentrations. 

Concomitant treaunent \vith furosemide and vancomycin was associated "vith hearing 

loss123, 139, 1+7. The results mentioned above lead us to conclude that aminoglycoside 

related hearing loss ID IDfants is IDfrequent, possibly transient and might be late ID 

appearing. 

Aminoglycoside therapeutic drug monitoring and dosing 

Dose and dosing interval are determined by the desired therapeutic range and 

phannacokinetic as well as pharmacodynamic properties of a drug. It is difficult to define 

the desired therapeutic range for aminoglycosides. Peak concentrations of> 4-5 mg/L are 

generally accepted as necessary for antibacterial efficacy when dosing thrice 

daily34. 84. 148. 149, but questions are being raised about the underlying basis of this 

assumption 138• \Vhat is known, is that efficacy of aminoglycosides is related to the ratio 

of peak serum concentration to the minimal IDhibitory· concentration (YJJC) of the 

infecting microorganism and the area under the time versus concentration curve (AUC). 

In vitro ratios of 10:1 prevent emergence of aminoglycoside-resistant pathogcns34· 35. In 

several large meta-analysis studies toxicity seems to be related to high pre-dose 

concentrations49.50. 84. 117. Commonly accepted trough concentration goals in adults are 

< 2 mg/L, but '\vhen dosiDg once a day most authors keep < 1 mg/L as a safe 

limit 51. 150. 151. As described before, neonatal data on nephro- and ototoxicity as well as 

efficacy, in relation to aminoglycoside serum concentrations are not available, and 
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therefore have to be extrapolated from adult and experimental models. Based on the 

aminoglycoside susceptibility of gram-negative pathogens involved in neonatal septicemia, 

a reasonable target range for neonates would therefore be peak serum concentrations of 

5-10 mg/L for gentamicin, nerilmicin and tobramycin and 15-30 mg/L for amikadn. 

Trough concentration goals are < 2 mg/L when dosiDg thrice daily and < 0.5-1.0 mg/L 

for ODD ID gentamicin, nerilmicin and tobramycin and 1.5-3 mg/L for amikacin. As 

described before, inves~aations concerning the pharmacokinetics of arninoglycosides and 

other drugs in neonates have sho\vn that elimination half-lives are longer in neonates, 

especially in preterms. This is primarily due to a higher percentage of extracellular water 

and thus a larger volume of distribution and reduced clearance. Most dosing schedules for 

preterm and term neonates take this into account. Currently recommended doses are 

2-2.5 mg/kg for gentamicin, nerilmicin and tobramycin and 7.5-10 mg/kg for amikacin, 

\Vith dosing intervals, dependent on gestational age (GA) and postnatal age (PKA), 

beNreen S and 24h. A critical look at the available data shows that required serum 

concentrations as mentioned above arc not reached \vith most of these dosing regimens, 

stressing the need for other dosing strategies. 

In larger studies, inadequate serum peak concentrations and elevated serum trough 

concentrations were found, especially in \TLB\V -infamsso, 152-155. It has to be noted that 

many studies used steady state peak serum concentrations after the fourth dose, which are 

often higher than initial peak serum concentrations. From the vie\V'Point of efficacy it is 

important to obtain an adequate peak serum concentration after tl1e first dose, which led 

several authors to advise a loading dose of aminoglycosides102, tso, 154- 156. It seems clear, 

that given the desired goals and the phannacokinetic properties, aminoglycoside dosing in 

newborns should be revised towards larger doses at extended intervals. Several studies to 

that effect have been published recently96.124. 

Due to the large interindividual variability of elimination half-life, especially in prcterms, 

dosing interval has to be individualized. Currently this is performed by taking blood 

samples in steady state, around the third or fourth dose. Antibiotic courses in neonates 

are often relatively short. Antibiotics arc initially starred in a large percentage of patients 

in the fl.rst 24h on clinical grounds. They are discontinued if cultures remain negative after 

2-3 days. Furthermore it is essential, when givlng aminoglycoside antibiotics, to obtain 

efficacious peak levels after the first dose. These arguments point to a need fo.r early 

TDM in neonates. A simple method for early TD:\1 might be obtaining t\vo serum 

samples lh and 6h after the first dose. Individual dosing interval is then determined by 
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the calculated t\;2, the target serum trough concentration being 0.5 mg/L. This method 

\vill have to be prospectively validated. 

In conclusion, on the basis of these recent data, dosing of aminoglycosidcs in newborns 

should be revised to higher doses per kg '\vi.th longer dosing intervals, as has been 

propagated in adults over the last few years. The rarity of aminoglycoside related toxicity 

in studies in infants, the paucity of case reports on this subject, the lack of evidence for 

relation to serum concentration, and the data in adults, justify starting infants on higher 

initial doses \'vith longer intervals and early TDM for clinical trials. 
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1.2 Use of vancomycin in neonates 

1.2.1. General aspects of vancomycin 

Introduction 

Vancomycin is an antibiotic first isolated from an Indonesian jungle soil sample in 1956 

and \Vas the first of the ne\v class of glycopeptide antibiotics. Irs initial clinical use in 1958 

\Vas facilitated by the emergence of penicillinase-producing staphylococci. It was largely 

supplanted by methicillin sodium, introduced in 1960, due to the frequent occurrence of 

side effects associated '.V'ith vancomycin use, including generalized skin eruptions, 

phlebitis, fever and more importantly deafness and renal failure157, 158. Several factors have 

contributed to the ''rediscovery" of vancomycin in the 70's. First, important changes in 

the preparation of vancomycin have led to a reduction of impurities present in the 

product and a concomitant decrease in incidence of side-cffects159-1G1. Second, d1e 

emergence of methicillin-resistant staphylococci has necessitated a change in antibiotic 

policy for these infections. 

Despite the emergence of vancomycin resistant enterococc~ vancomycin still is the most 

\Videly used glycopeptide antibiotic, and is a cornerstone in antibiotic treatment of gram­

positive infections in adults as well as neonates. 

Structure and chemical properties 

Vancomycin and teicoplanin comprise the commonly used glycopeptide antibiotics and 

are unrelated to other antibiotics. They are complex soluble glycopeptides, consisting of a 

seven-membered peptide chain, in the form of three large rings. Five of the seven amino 

acid residues arc common to all glycopeptidcs162·164-. A disaccharide, composed of glucose 

and vancosaminc, is also present but is not part of the cyclic structure. The molecular 

weight of vancomycin is 1,448 Dat65. 

Vancomycin is hydrophobic, but less so than teicoplanin163. It has a moderate protein 

binding (10-55%) and exerts its acti:viry over a \Vi.de pH range of 6.5-8 t66. 167. Vancomycin 

can be inactivated by heparin in high concenttations16S. 
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Method of action 

The bactericidal activity of vancomycin is based on the inhibition of bacterial cell '\vall 

synthesis. It complexes, by '\vay of hydrogen binding, to the D-alanyl-D-alanine portion of 

pcptides found only in bacterial cell walls. The binding of this large molecule to the 

peptide side chain shields the substrate from the enzy'IDe peptidoglycan synthetase169. This 

IDterferes with cross-linking of cell wall peptidoglycans and therefore bacterial cell wall 

rigidity can not be achleved163. I65, no. The mechanism of action implies that vancomycin 

can only exert its effect on gro'Wing bacteria. Other, less important modes of action are 

alteration of the permeability of cytoplasmic membranes and selective inhibition of RKA 

synthesis171, 172. 

Vancomycin antimicrobial activity 

Vancomycin is bactericidal for a host of aerobic and anaerobic gram-positive bacteria. 

Strains of Staphylococczrs epidermidis and Staphylococcm auretts are susceptible to vancomycin, 

although emergence of vancomycin intermediate resistant strains are a gro'\ving concern, 

'\vhich '\Vill be discussed later173. 

)Jormal minimum inhibitory concentrations (J\1IC's) are ID the range of 1-5 mcg/L 170. 

Vancomycin is bacteriostatic for enterococci167. 

Important aspects of antimicrobial activity of vancomycin for clinical practice are: 

I. Lack of concentration-dependent killing 

II. Postantibiotic effect 

III. Synergism 'W-i.th other antibiotics 

Lack of concentration-depmdent killing 

Several recent studies have shown that the extent of bacterial killing is not related to peak 

serum concentrations but to the time the antibiotic concentration is maintained above the 

11.IC174-176. This may however be dependent on rime of e::-..-position. An ID-vivo study 

sho'\ved that in the first 12h the 11IC '\vas the most important factor, '\Vhile for the total 

first 24h the ACC was more important177. There are conflicting conclusions in the 

translation of ID-vitro and in-vivo results to vancomyciD dosiDg. Most authors advocate 

12h IDteDrals ID adults. Some give continuous infusion and others dose once daily178-so. 

Treatment failures due to once daily dosing have been described1S1, 182. Continuous 

infusion of vancomyciD was proven to be as effective as IDtermittent dosing179. 



Postmt!ibiolic ejfea 

Vancomycin shows an in-v-i.tro postantibiocic effect (PAE) ~o-ainst S. aurms, S. epidem-;idis 

and enterococcal species, lasting 1-6h175. IS3-JS5. As \.vith aminoglycosides, PAE should be 

studied under conditions simulating time versus concentration curves seen in clinical 

practice The duration of PAE effect seems to be far longer when bacteria remain exposed 

to vancomycin concentrations of 0.1-0.3 mg/L, indicating a sub-MIC effectt 75. In vivo 

experiments relating PAE to vancomycin concentrations arc scarce. A definite conclusion 

on the clinical importance of the PAE of vancomycin can not be drawn. 

S_pmgy with other antibiotics 

Combination of vancomycin \.vi.th an aminoglycoside or rifampicin is synergistic for 

S. aureus (both methicillin-sensitive and medUcillin-resistant) and S. epidermidis and 

entcrococcal infections1SG, 187. In enterococcal infections synergy can be achieved in most 

cases by adding an aminoglycosidc as \VellJss. 

Drug resistance 

Clinically important resistance to vancomycin is seen in enterococci, S. a;Jre!JS and S. 

epidermidis. An unsettling increase of vancomycin-resistant enterococci has been noted in 

the l:nited States, related to selection pressure by indiscriminate use of vancomycin1S9. 190. 

Resistance in enterococci has been linJ.:ed to at least four genes and types of resistance, 

Van A, Van B, Van C and Van D. Van A and Van B resistance can be transferred by way 

of plasmid conj~oation to other cnterococci178- 191. Van A leads to vancomycin and 

tcicoplanin resistance, Van B resistance retains susceptibility to teicoplanin1G7. Van 

C phenotype sho\.V-s low level vancomycin resistance but remains susceptible to 

teicoplanin173• 192. 193. There are two alarming features to these resistance genes. First, a 

transfer of Van A resistant enterococci from poultry and domestic animals to humans has 

been noted, possibly as a result of avoparcin use as a growth promoter in animals194, 195. 

Second, transfer of vancomycin resistance from enterococci to S. cmretts has been 

demonstrated in the laboratory and an emergence of this phenomenon in the clinical 

situation is fearedl96• There arc an increasing number of reports on intermediate 

resistance in S. attreJts and S. epidermidis173. MIC's as high as 16 mg/L with minimal 

bactericidal concentrations (:VIBC's) of 64 mg/L have been reported for S. epidermidis, 

\.vi.th a concomitant resistance to teicoplanin197• After the first report in japan, a number 
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of papers have addressed the emergence of vancomycin intermediate resistant strains of 

S. atrreus (VIRSA) 173. 198. 199. Resistance seems to be related to thickened and aggregated 

cell walls, though the precise mechanism is not yet k..no\vn200. There is cross-resistance to 

teicoplanin. Infection with VIRSA is associated with treaanent failure of vancomycin2D1. 

An important mechanical factor in clinical resistance of S. epidermidi:S infections to 

vancomycin is the production of a biofilm by the bacteria, thereby shielding it from the 

antibiotic with a consequent reduction of antibiotic efficacy2D2. 203, Furthermore 

vancomycin is a large molecule, ·which inhibits diffusion into localized infection sites like 

endocarditis. 
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1.2.2. Specific aspects of vancomycin use in neonates 

General aspects in neonates 

The immunologically incompetent premature neonate is especially susceptible to invasive 

gram-positive infections through invasive procedures such as central venous lines. Late­

onset neonatal septicemia, defined as occurring after the first 4 days of life, is seen in up 

to 31% of very low birthweight (VLB\"V) infants20+. Stopi?Jiococros attre11s and coagulase­

negative staphylococci (CO~S) account for up to 55% of late onset nosocomial 

infections in ne'l-vbom infants2°~-20i. A substantial increase in the number of COKS 

infections rn neonatal units has been reported20s. 209. Especially VLB\V infants have 

sho\.vn an increase in this type of bloodstream infection, associated 'Wi.th length of stay, 

neonatal risk scores, increased usc of central venous lines and adm.inistration of parenteral 

nutrition21 0-212. Late-onset neonatal septicemia has significant impact on outcome and 

length of hospital smy. Length of stl.y is prolonged by nosocomial bacteremia by 

14-25 days20i, 21 0.213. Mortality in this group is at least twofold higher than in neonates 

\.vid1out late-onset sepsis and sepsis accounts for up to 45% of deaths occurring after t\.vo 

weeks of admission207. 

Vancomycin is '1-vi.dely used as empiric antibiotic for treatment of line-related infections in 

neonates. This glycopeptide antibiotic has been used in pediatric patients, including 

neonates, since the late 1950's214. As in adults, it has come into disuse in the 60's because 

of side effects. The resurge of interest in the SO's was instigated by the establishment of 

COKS as a clinical significant pathogen for neonatal septicemia and d1e emergence of 

methicillin resistant S. aure11s and S. epidermidis in neonatal intensive care units 

(NICU's) 2t5-2ts. With the increase of CONS as a cause of late-onset neonatal sepsis, the 

continuous use of low dose vancomycin or teicoplanin added to parenteral nutrition has 

been advocated 219-22+. Although a reduction in number of gram-positive infections in 

preterm infants has been shown, no decrease in mortality or length of stay has been 

provcn225. Given the concerns about development of resistance by overuse of 

vancomycin, routine prophyla.-xis '.Vi.th low-dose vancomycin should not be given225. 226. 

Frequent administration of vancomycin for intravenous catheter-related infections in 

neonates will remain necessary however, and knowledge about pharmacokinetic- and 

dynamic aspects of vancomycin use in neonates is needed to rationalize treatment. 
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Pharmacokinetics 

Vancomycin has a pharmacokinetic profile consisting of a distribution phase, \Vhich is 

longer than in aminoglycosides (tl/2:.:) and an elimination phase (tt/2,3). One, t\vo or three 

compartment models have been described in adults. It has been suggested that a 

triexponential model best describes vancomye1n disposition227_ Vancomycin 

pharmacokinetics in neonates has been described using a model independent2.2s, one180-208-

229-243 or n~.ro233. 238, 2-14-247 compartment model. A one compartment model seems to be a 

valid tool in predicting serum concentrations, as long as these are dra\vTI in the post­

distribution phase238_ Since most studies take peak serum concentrations 1h after a 1h 

infusion this is very likely the case. Earlier serum sampling might lead to an 

underestimation of the apparent volume of distribution at steady state rv~J­

Pharmacokinetic parameters of vancomycin in neonates are different from those in 

adults. These differences are largely determined by the change in amount of body \Vater 

and maturation of renal function, which takes place in term and preterm ne\vbom infants. 

These changes also result in higher inter-individual differences in neonates than in adults. 

Results of pharmacokinetic studies of vancomycin in neonates and infants are shown in 

table 6. 

Distribtrfion 

Vancomycin is only used intravenously in neonates. Distribution half-life (tt/2a) is 

approximately 0 . .5-1 hour in adults227. In neonates and infants it ranges from 0.05-0.49h, 

but has only been determined explicitly in one srudy245. Others have suggested that t112a 

might be longer, even up to four hours 238. 246. 247. Seay et al. calculated tt/2 a from 

population parameter values and found values between 2.8 and 3.7h depending on 

gestational age and dopamine as co-medication 238_ Volume of distribution in steady state 

(y,~) in neonates ranges from 0.38 to 1.06 L/kg, with the highest V~, described in patients 

on e.-xtracorporeal membrane oxygenation (EC::vfO). This is in the same range as 

described in adults227 . As mentioned by Rodvold248, volume of distribution studied after a 

single dose or calculated "\Vi.th the elimination tt/2~ was often larger than Vs,. 

Since meningitis often accompanies sepsis in neonates, penetration of vancomycin m 

cerebrospinal fluid (CSF) is of possible concern. Vancomycin dosing leads to CSF 

concentrations of7-21% of the serum concentration in adults 178_ 
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Table 6: Res!! lis of phar/J/acokimtic st11dies of 1/tlllCOit(Jcill in neo11ates 

N Subgroup/ 

Remark 

7 Do~c 10 mg/kg 

7 Dose 15 mg/kg 

7 Do~e 15 mg/kg 

Wcight 51 kg 

6 Weight> 1 kg 

11 :\:o mc:J.ns aYail"lblc 

14 PC\<41 

6 PCr\>43 

20 

PDJ\c+indomctbacin 

No PDA< concrob 

15 G"itst dose 

12 Steady st.l.tc 

13 

15 

1l 

+ Exposed to 

indometh:Ldn 

19 ~o i...'ldomerhacin 

29 

2 comp:w-.ment 

NO~.\iE.\.f•: 

1 compar.menr 

16 PCr\ 27-30 

15 PCA 31-36 

13 PCr\ 87 

15 Day 2 

15 Day 8 

12 ECl\.IO 

11 

15 EGdO 

15 No EClviO 

24 St:md.nd do~e 

GA 

32 

34 

40 

27-40 

26-40 

31 

26.5 

28.4 

29.8~ 

29.0 

29.3 

29.6 

27.6 

31.2 

26.6 

29.4 

35.9 

39 

30.8 

38.8 

39.7 

29.2 

29 Adjusted dose 30.5 

72 Development ..Ugorithm 29.4 

17 Testing ..Ugorithm 28.4 

59 NONMEM an.'llpis 29 

PNA PCA BW 

(d..1.ys) (wec:k) (gt;Un~) 

3.3 

30b 

32.7~ 

27 29-41 

8-66 32-41 

90-210 54.2 

7 

15 

30" 

29 

18 

34 

15 

16 

18 

18 

23 

24 

90 

90 

2' 

18 

13 

30 

24 

26 

39 

19 

29.0 

32.0 

36.4 

31.4 

38b 

33.2 

30.9 ~ 

28.5 

34.2 

33.4 

29.4 

32.9 

39.2 

33.4 

33.5 

33.9 

32.9 

32.0 

32 

1230 

1570 

3070 

830b 

13781' 

850--+380 

1300 

1069 

1375;, 

1297 

1262~ 

810 

1780 

1480 

1305 

1860 

972 

l379 

2616 

6400 

6400 

3300 

1186 

3100 

3400 

1500 

1800 

1520 

Vd (L/kg) 

0.736h 

0.706:, 

0.690:, 

0.970=0.426b 

0.647=0.3621> 

0.4-81±0.165 

0.377±0.036 

0.71±0.36 

0.+8±0.17 

0.693±0.149 

0.53±0.13 

0.52::::0.1 

0.4-7::::0.15~ 

0.48::::0.09 

0.51 =0.03 h,h 

0.57::':0.06 

0.52±0.08 

0.764::::54.1 '·tl< 

0.551±0.205 

0.55 ± 0.02 

0.56 ± 0.02 

0.57 ± 0.02 

0.81±0.6 

0.44±0.19 

1.06±0.45 

O.+S ± 0.13 

0.45±0.18 

0.39±0.12 

0.61±0.39 

0.65±0.34 

0.67±0.28 

0.669±18"'o' 

CL 

{ml/kg/min) (h) 

9.8 

27• 5.9 

30• 6.7 

1.099±0.293 9.92::::2.59 

1.030±0.223 5.35::::0.77 

3.5-9.6 

4.87 

3.04 

Rof 

245 

242 

247 

236 1.34::::0.46 

1.67=0.61 

0.38::0.15 

0.90±0.57 

24.6±12.4 249 

1.22±0.7J 

1.16±0.6J 

1.44±0.89 h 

1.07±0.34 

0.74±0.20 h 

0.6±0.17 

1.01=0.37 

1.00::::0.07 

1.17::::0.08 

1.33=0.08 

L5::o.5 

1.2±0.4 

0.78=0.19 

0.63=0.18 

0.65::::0.28 

0.79:':0.41 

1.19:':0.55 

0.99::0.41 

1.26±0.55 

1.40±0.67 

7.0±1.8 

6.0±2.0 

6.6±2.1 

5.1±3.0;, 

5.6±1.6 

8.5±2.8:, 

11.9±3.7 

229 

228 

230 

244 

232 

241 

241 

238 

237 

6.63=0.35 208 

5.59=0.36 

4.90::::0.39. 

231 5.3±3.2 

3.+±1.2 

16.9::9.5 250 

246 

8.29±2.23 240 

6.53±2.05 

6.9±4.5 

6.5±3.3 

180 

235 

233 

·'ml/min/1.7 m~. ~c:llcubtcd from individu.'ll v::J .. kes for ill p::tticnts mentioned in the :micle, cPopubtion me:m 

± interindiv'idu;:U v::tri::tbility, Jml/min. ~P::tten~ ductus ::t..""teriosu~. '::tgc \Vhen j)t:t on EC\fO, gPopubtion :uulysis, 

I'App:ll"ent volume of distribution of bct::t ph::tse, GA = gest:J.tional ::tge (wceb), PN1\ = po~tn::tul :tge, 

B\V' = birtl1\veight, 1\: =number of patients 
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C> ... 

In children Spears reported CSF concentrations of <0.8 mg/L in seven samples 1-12h 

after the vancomycin dose-~14• In infants the first report by Schaad et al. found CSF 

concentrations of 7-21% of the serum concentration in three patients24S. Later reports 

have mentioned CSF concentrations ranging from 0.2 to 17.3 mg/L, 'Wi.th vancomycin 

CSF penetration ranging from 7.1 to 68%251-254. ~o clear relation of CSF concentrations 

to serum concentrations was found. As in adults, there is a significant correlation bet\veen 

CSF concentration and markers for meningeal inflammation tG7, 253. Data on this subject 

are scarce, ho\vever, and vancomycin can not be relied upon to adequately treat gram­

positive meningitis \vhen given as the sole antibiotic. 

Excretion 

Vancomycin is eliminated from the body by way of glomerular filtration. After 24h 

80-90% of an administered dose can be recovered from urine in adults17s_ A small amount 

is eliminated by non-renal mechanisms of unkno\\rn orig1n2SS_ In neonates 44% of 

vancomycin \vas recovered unchanged after Sh228. Total body clearance (CL) in adults 

(0.71-1.31 ml/kg/min) is often higher than that reported in neonates and infants, 

although ranges arc similar2SG-.259. 

In neonates CL ranges from 0.63 to 1.5 ml/kg/min, depending on gestational age (GA) 

and/ or postconceptional age (PCA) (table 6). Lo\ver clearances \vere seen in special 

subpopulati.ons, \Vhich v.-ill be described later. Vancomycin tJ/.2.3 in adults ranges from 

4-Sh in patients with normal renal function. Mean t1;2~ in neonates of varying gestational 

and postconceptional ages ranges from 3.5-10h, \vi.th even longer half-lives in neonates 

exposed to indomethacin or ECMO rxeatment, which will be discussed in more detail 

below. 

Given the route of elimination, an association bet\veen glomerular filtration rate (GFR) 

and excretion is logical. In adults vancomycin clearance was directly related to renal 

function, \vith a vancomycin clearance of approximately 100 ml/ min in patients \vi.th 

normal renal function257- 260-263. In neonates this relation has been established as well. 

Serum creati.nin and creati.nin clearance have been correlated to clearance of vancomycin 

in several studies (table 7) 180- 229. 232-234. 237 • .239. 244. 247_ In term and preterm infants 

vancomycin clearance indexed for weight shows a negative correlation ,vith serum 

creati.nin 229 . .232 . .234-244-243. Pawlotsky et al. found vancomycin clearance (ml/kg/min) to be 

inversely related to serum creatinin, though the significance was lost in the multivariate 

analysis tso_ 
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Kildoo and co-workers found a difference in vancomycin clearance bet\veen patients 

with serum creatinin <53 ~Mol/L or 62-106 iJ-:Vlol./L; respectively 1.38±0.24 vs 

0.79±0.10 ml/kg/min 244. Schaible also found a negative correlation. In a study of 

11 infants vancomycin clearance (L/h) was best described by a combination of PCA and 

the reciprocal of serum creatinin (1/CrJ2+7. A recent study found a negative, but 

nonlinear relation in a population analysis of 59 neonates. Serum creatinin '\vas the sole 

covariate included in the final analysis, and dose reconunendations '\Vere purely based on 

this factor233. Rodvold et al. as '\Veil as Silva et al. showed a positive relation bet\veen 

creatinin clearance calculated according to Sch'\Vartz and vancomycin CL (ml/kg/ min) .239. 

248• 264. In the latter study the authors concluded that creatinin clearance was not an 

important covariate in explaining vancomycin clearance. 

Vancomycin t1;2~ displays a positive correlation '\virh serum creatinin229 . .232. The largest 

study to date, performed in 192 neonates, did not include creatinin or creatinin clearance 

as a covariate in the modeJ23S. Clearance found in dais study (0.29-0.98 ml/kg/min) was 

lower than reported in most studies, possibly due to the larger number of VLBW infants, 

sampling strategy or use of the KOI'\:.\tffi~ statistical approach. 

In the case of terminal renal failure, vancomycin clearance by way of hemodialysis and/ or 

peritoneal dialysis is slo'\v '\vi.rh doses of 15 rng/kg leading to trough serum concentrations 

of >4-5 rng/L after 7 days in adults 265. A significant increase of vancomycin clearance 

can be achieved '\vith continuous veno-venous hemodiafiltration 266. 

Taken togerher, the published evidence favors a clear relation between renal function in 

terms of serum creatinin or creatinin clearance and excretion of vancomycin. 

Effect of gestational age, postnatal age and postconceptional age on 

pharmacokineti.c parameters of vancomycin 

Gestational age, postnatal age and postconceptional age can all be expected to alter 

pharmacokinetics of vancomycin. As mentioned in the chapter about aminoglycosides, 

rhe volume of distribution (V d) of most drugs is larger in neonates, especially in 

prematures, primarily due to a higher percentage of extracellular water85• 86. Creatinin 

clearance (ml/min) sho'\vS a positive correlation \virh gestational age82• 267• On the basis of 

gestational age, premature neonates are expected to have a longer t11.2~. The postnatal 

increase in GFR seen in neonates as well as the reduction of extracellular fluid'>1-93 means 

rhat t1;.2p for vancomycin should decrease \vi.th increasing postnatal age. There is also a 

positive relation between postconceptional age and kidney function 267. 
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Table 7: Con-datiom beflPWl demographic variables and phamJacokinetic para!Jieters 

Correlation Coef. p-v::Uuc Ref Correlation Coef. p-valuc Ref 

EwrdiO!l (11&1 sla11dardi~;."d for ll"cigbt) Exm:lio11 (sla!ldardi~fd for IWigbt) 

CL (L/h) <:> GA 0.71 <0.0009 241 CL (ml/kg/min) <=> PC:\ 0.724 <0.005 234 

CL~"/h) ¢> GA 0.59 <0.01 237 CL (ml/min) <=> PCA 0.46 1 0.0002 180 

CL(L/h) <:> GA 0.48 <0.05 239 CL (ml/min) <=> PCt\ 0.741 0.0001 180 

CL(ml/min) ¢> GA 0.54 <0.05 244 CL (ml/ min) <=> PC.r\ + BW 0.521 0.0005 180 

CL(L/h) ¢:;:- P?\'i\ 0.54 <0.01 237 CL(L/kg/h) <:> PCA 0.62 <0.0005 241 

CL(ml/min) <=> BW 0.82 <0.05 244 CL(L/kg/h) <:> PN,\ 0.50 <0.008 241 

CL(rrJ/min) ¢:;:- BW 0.381 0.0013 180 CL(L/kg/h) ¢> PNA 0.46 <0.05 239 

CL(ml/min) ¢:;:- B\'\/ 0.671 0.0001 180 CL(ml/kg/h) <> BW 0.867 <0.00001 230 

CL(ml/min) ¢:;:- BW·' 0.83 <0.001 228 CL(ml/kg/h) <=> PC\ 0.863 <0.00002 230 

CL(mJ/ min) ¢:;:- BW" 0.89 <0.001 228 CL(rrJ/kg/h) ¢:;:- PCt\ 0.649 <0.001 236 

CL(L/h) ¢:> BW 0.85 <0.0001 241 CL(rrJ/kg/h) <=> P:\A 0.873 <0.00001 230 

CL(L/h) ¢:::- B\\l 0.90 <0.01 237 CL(ml/kg/ min) ¢:> B\\l 0.78 <0.001 229 

CL(L/h) ¢:::- B\\l 0.68 <0.05 239 CL(ml/kg/ min) ¢:> B\V' 0.62 <0.01 237 

k(1/h) ¢:> BW 0.464 <0.04 236 CL(ml/kg/ min) ¢> PC\ 0.8 <0.001 229 

PC:\ ¢:> B\\i' 0.89 233 CL(ml/kg/ min) ¢:> PCA 0.41 <0.05 244 

T1;~ <=> B\'\l -0.88 <0.0005 229 CL(mJ/kg/ min) <=> PCt\ 0.48 <0.005 208 

CL(mJ/min) <=> BS.:\·' 0.84 <0.001 228 CL(ml/kg/min) ¢:;:- PCt\ 0.271 0.0094 180 

CL(ml/min) <=> BS:\1' 0.89 <0.001 228 CL(mJ/kg/ min) ¢:> PC.r\ 0.221 0.01 180 

CL(ml/ miil) <=> PCA ...._ BW 0.7T 0.0001 180 CL(ml/kg/ min) <=> PCA 0.62 <0.01 237 

CL(ml/ min) <=> PC\ 0.88 <0.05 244 CL(ml/kg/min) ¢:> P::'\A 0.70 <0.01 237 

CL(ml/ min) <=> PCA 0.81 <0.00001 208 

CL(ml/min) <=> l)C\ 0.02 180 

CL(ml/ miil) <=> PCt\ 0.002 180 

CL(ml/min) <=> PCN 0.56 <0.05 228 

CL(m.l/min) <=> PCA" 0.62 <0.05 228 

CL(L/h) <=> PC\ 0.92 <0.0001 241 

CL(L/h) <=> PC\ 0.86 <0.01 237 

CL0"/h) ¢> PCA 0.57 <0.05 239 

CL(L/h) ¢:> PC.r\ 0.91 <0.0001 2+7 

T1;~ <=> PCA -0.91 <0.0001 229 

T1;~ <=> PCA -0.62.7 <0.01 234 

CL= v:mcomyci..'l. ck'2r.lrl.cc, PCA= postconcl-pcion::tl ::gc, B\V=body \Wight, Cr .. = serum crcatinin, ~=r' 

G.r\= gcsution;li :lgc. v" =volume of distribution in ste:ldy State, PNA = postn::tul :lge. CJ-'(;, = C!l-atinin dc:trmcc, 

K: = elimination ntc consmnt. BSA= body ~crfacc :trc:J.. ·'Brst dose, bsready stlte, cod.= correhtion coefficient 
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Table 7 (continued): ComlatioJls bet;nen demographic t'ariables and pharmacokillefic paratJJeters 

Correlation Cocf. p-value Ref Correlation Cocf. p-value Ref 

DistribtiliM (L) Rn1al jimrtio11 

V"(L) <:> BSA 0.93 <0.0001 241 V .• (L) ¢<> CL"(ml/kg/min) 0.70 <0.01 237 

V ... (L) <> BSA• 0.80 <0.001 228 CL(L/!1)¢>Cl.o-(ml/kg/min) 0.86 <0.01 ''" -0' 
V"(L) ¢:> BSN 0.89 <0.001 228 CL(L/h) <=> CL"(ml/kg/min) 0.27 <0.05 239 

V,.,(L) <=> B\\l 0.94 <0.0001 241 CL(ml/kg/ min)¢;> CLcc(ml/kg/ min) 0.59 <0.01 237 

V .. U-l "'BW 0.86 <0.05 244 CL(L/kg/h) ¢;> CLa(ml/kg/min) 0.31 <0.05 239 

V,_(L) <=> B\\/ 0.86 <0.01 237 V"(L/kg) <=> Cr. 0.47 <0.01 237 

V,(L) ¢<> BW 0.93 <0.05 239 V,-(L) <=> Cr, -0.40 <0.05 237 

V"(L) ¢:> B\V'" 0.77 <0.001 228 CL(L/h) <:> Cr, -0.65 <0.01 237 

V."'(L) ¢:> BW~> 0.89 <0.001 228 CL(ml/kg/min) ¢:> Cr, -0.74 <0.005 229 

V./L) <=> GA 0.84 <0.05 244 CL(ml/kg/min) ¢:> c,, -0.81 0.0027 232 

V.,..(L) ¢:> GA 0.61 <0.01 27>7 CL(ml/kg/rnin) <=> Cr, -0.82 <0.05 244 
V,(L) ¢:> GA 0.58 <0.05 239 CL(ml/kg/ min) ¢:> Cr, -0.64 <0.01 237 

V .. (L) <>PC\ 0.89 <0.0001 241 CL(ml/mi.n) <:>Cr .. -0.351 0.0165 180 

V"'(L) ¢:> PCA 0.67 <0.05 244 CL(ml/rnin) ¢:>Cr. -0.491 0.0001 180 

V ... (L) <> PCA 0.79 <0.00001 208 Tt;.c. <:::> Ct, 0.91 <0.0001 229 

V .. (L) ¢;> PC\ 0.80 <0.01 
, __ 
-0' T1;.c. <=>Cr .. 0.84 0.0012 232 

V,(L) <:::> PC\ 0.76 <0.05 239 T1t~ ¢:> Cr, 0.72.5 <0.01 23-t 

V ... (L) ¢:> PC\• 0.53 <0.05 228 Cr, <=> PC\ -0.62 <0.01 229 

V,(L) ¢<> PCA" 0.62 <0.05 228 CL(L/h) <=> B\\!..,...1/Cr .. 0.96 <0.01 247 

V"(L) <=> PNA 0.41 <0.05 237 

DisJrib11!iM (L! l::.gj 

V .. JL/kg) ¢:> GA 0.29 <0.05 239 

CL= vancomycin cl=cc. PC\= posrconccption:1l age, B\\l=body \vcight. Cr,= serum crcatinin, 1=r2 

G:\= gcst:rtion:li age, V, = volu.'Tle of distribution in steady state. P::\'A = posm:tt:li age, CL:r = cn:atinin clearance, 

K1 = elimination rate const:tnt, BSA= body surScc :J.te:L. ·'first dose. 0stt:ady state, cocf. =correlation coefficio:nt 
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AJl three factors have been related to vancomycin pharmacokinetics in neonates (table 7). 

A significant relation between unstandardized vancomycin CL (ml/ min or L/h) and 

gestational age has been noted, but in all of these studies significance disappears \.vhen 

clearance is normalized for body \.veight237-239• 244. The same studies have described Vs, in 

relation to gestational age and again significance disappears in all but one study \vhen V >s 

is described in L/kg 239. This implies that if weight is incorporated, GA is not an 

important determinant of vancomycin V,~ or CL. Several authors demonstrated the 

relation bet\veen P::--JA and standardized clearance (rnl/kg/min) or Vss (L) 230.237.239.241. 

Ko correlation \.Vas found by many others 20s. 228.232,236, 244.247. V~, (L) but not standardized 

Vs, (L/kg) has been related to PNA 237.244. Postconceptional age has been \.Vell described 

in relation to pharmacokinetic parameters for vancomycin. Unstandardized CL (rnl/min) 
180. 208. 228. 237. 239. 241. 244. 247 and standardized CL (rnl/kg/ min) 1so. 208. 229. 230, 234. 236. 237. 241. 244 

has been related to PCA. A concomitant change in t1;2~ has been noted as \vell 229. 234. As 

\.v-1th P~A, only unstandardized Vs, (L) has a significant correlation \.vith PCA20s. 228.237.241. 
244. The dimi.nished influence of GA and P::--.JA can be explained by several factors. First 

the combined effects of GA and PNA are integrated in PCA. Although a stronger 

increase in renal function in term infants has been described earlier, the frequent prenatal 

exposure of neonates to corticosteroids seen over the last 5-10 years might mitigate the 

difference bet\veen term and preterm neonates, and therefore limit the effect of GA on 

clearance 91• Furthermore postnatal increase of GFR seems to be higher than intra-uterine 

increase 99. At the same PCA, this might imply that the effect of slower maruration of 

kidney function .in premarures is cancelled out by the difference in intra- and extrauterine 

development of GFR. A third and maybe more important factor is that vancomyc.in is 

seldom given in the first \Veek of life. Since a large increase of kidney function in neonates 

takes place in this period, the dynamics of these changes and their influence on 

vancomycin pharmacokinetics arc not seen .in the studies mentioned here. 

In most studies \vhere both the .influence of PCA as \Veil as PNA were studied 

significance of PCA out\Veighed that of PN"A 237. 239.241• These data suggest that clearance 

in relation to postconceptional age is the main determinant .in the pharmacokinetic profile 

of vancomyc.in in neonates. 
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Effect of patent ductus arteriosus, indomethacin and extracorporeal membrane 

ox-ygenation 

Prenatal as well as posmatal exposure to indomethacin has been sho\vn to negatively 

affect increase of kidney function in neonates 91, 268. 269. Open ductus Botalli can increase 

Vss and decrease CL in neonates99, 270. Several studies have addressed the effect of 

indomethacin treatment of open ductus Botalli on vancomycin pharmacokinetics in 

nc\vboms 239-241. 249. Asbury described 4 patients exposed to indomethacin and compared 

them to 19 \vith no exposure (table 6) 241 . Clearance was half that of the no indomethacin 

group, \vith a concomitant change in tuz~. The authors concluded however, that only in 

one patient the decrease of renal function could be attributed to indomethacin. Spivey et 

al. outlined a study in 11 neonates of whom 6 were exposed to indomethacin for closure 

of open ductus Botalli (table 6) 249. Volume of distribution was higher and clearance 

substantially lower in the indomethacin group resulting in a tt/.2~ of more than 24h. Ko 

specifics about peak sampling \vere given and the non-indomethacin group had 

substantially higher GA and PKA. Therefore a clear relation \vi.th indomethacin treatment 

could not be ascertained. Silva et al. outlined a study in 44 patients; 26 received 

concomitant treatment \vith indomed~acin and/ or mechanical ventilation 239• In these 26 

patients clearance was lower than in the other 18 (0.07 vs 0.086 L/kg/h). Although a 

definitive conclusion can not be made on the grounds of these data, they suggest that 

indomethacin treatment of open ductus Botalli leads to an increase of Vs, and a decrease 

of CL, warranting extra therapeutic drug monitoring in these patients. 

Hoie and od~ers were the first to describe vancomycin pharmacokinetics in 6 patients on 

EC:\£0271. Values for V, (0.68±0.12), CL (1.10±0.32 ml/kg/min) and elimination half­

life (7.71±2.61) '\verc not different from values in d~e literature for patients 'Without 

ECMO. Amaker and Bhatia studied 12 term neonates with a PNA of 0-6 days on ECMO. 

These patients had a CL of 0.78±0.19 ml/kg/min, a V, of 1.06±0.45 L/kg and a h/2' of 

16.9±9.5h. Clearance was lower than that seen in other groups of patients 'With a PCA>37 

\veeks and VS$ is higher zso. Creatinin in these patient was relatively high though \vith 

values ranging from 53 to 168 [J.mol/L. Bucket al. did a case-control study in 30 patients, 

of which 15 \Vere on EC:.\fQ240. Patients \Vere matched with historical controls for 

underl:ying disease and several other clinical factors. Renal function expressed in terms of 

serum creatinin was worse in the EC:'viO group (0.8±0.1 vs 0.6:!:0.2 flmol/L). Patients on 

ECMO had a mean GA of 38.8 weeks and a mean PNA of 12.7 days. ECMO patients 

had a slight, but significant higher half-life (8.29 vs 6.53h) and lower elimination rate 
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constant (K.:G 0.09 vs 0.12 h-1). Although these studies \vere relatively small and results 

\Vere some\vhat obscured by differences in renal function a longer half-life in vancomycin 

treated neonates on EC\10 is likely. 

J\ficrobiological and clinical susceptibility and efficacy 

Vancomycin is still \v-idcly used as the first-choice antibiotic for treatment of CONS 

infections in neonates. This choice is mostly based on the in-·vi.tro bactericidal activity of 

this antibiotic against gram-positive infections. A second reason is that emergence of 

vancomycin resistant pathogens in the )JICC is slo"\v in contrast to cephalosporin induced 

resistance108. Data on clinical efficacy in adults arc scarce. There is no correlation bet\veen 

serum vancomycin concentrations and clinical cure. Regimes associated 'vith peak and 

trough concentrations ranging from 18-47 ;;.g/mL and 2-13 ;;.g/ml, respectively, sho"\ved 

acceptable rates of effectiveness, but failures in these treatment groups had the same 

serum concentrations272. Serum bactericidal titers (SBT) of more than 1:8 arc related to 

rreatment success and high minimal bactericidal titers to :rviTC ratio's to treatment failure, 

but exact information pertaining to efficacy does not exist273. 274. Fi.-....::ed doses of 1g every 

12 hours or 7.5 mg/kg every 6 hours have been documented to be effective against 

staphylococcal and streptococcal infections265. Information in neonates is also difficult to 

find. The first study describing vancomycin use in 23 children, described 6 infants \vi.th 

staphylococcal infections, of whom 4 \Vere cured "\vith doses of 40-180 mg/kg/ day (i.v. or 

i.m.)214. An early study by Schaad et al. evaluated the susceptibility of 20 strains of S. 

aureus and 6 strains of S. epiderJJJidis from a group of 55 neonates, infants and children. 

Except for one tolerant strain of S. ourem: an SBT of 1:8 or greater \Vas observed \v-ith 

vancomycin concentrations of;::: 12 mg/L. 

A further study by the same authors detailed antibiotic treatment of 33 patients of whom 

10 were neonates and 11 were infants254. Indications for treatment were septicemia, shunt 

infections, pneumonia, abscesses, fasciitis and cellulitis. In 29 out of 33 patients S. o!frelfJ 

or S. epidermidis was cultured. Eleven of 33 patients received co-treatment "\v-ith another 

antibiotic. Serum concentrations were 18.4-57.1 mg/L (peak) and 3.1-18.8 mg/L (trough). 

The relation benveen these concentrations and antistaphylococcal activity were evaluated 

for 21 patients. In one patient 'l.v-ith recurrent septicemia by a tolerant strain of S. a!frms no 

bactericidal activity was seen, all other samples had bactericidal titers of 1:8-1:32 against 

the isolated pathogen. In all 19 patients who were re-cultured, the causative pathogen was 

eradicated. All but one of 33 patients improved clinically. This patient, a 12-year old girl, 
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had possible brucellosis. Ko details on which of these patients were neonates or infants 

\Vere given. In a smdy of 17 neonates and infants (14 patients '\Vith S. a!frms and 3 "'ri.th 

S. epidermidis infections), :.Jaqv'i et al. reported clinical success in 16/17 patients236. All 

patients had been pretreated \Vicl1 aminoglycosides. The one failure was a patient \vicl1 

recurrent endocarditis due to a vancomycin-tolerant S. al!retts. :\ican peak and trough 

serum concentrations in these patients ranged from 30.4- 57.8 mg/L and 9.5-15.1 mg/L, 

respectively. 

Lisby-Sutch and others described 11 patients in \vhom bactericidal titers were determined 

for infecting organisms23°. Serum inhibitory titers \Vere :;::.1:8 in 10/11 peak serum 

samples, \vith peaks ranging from approximately 10-45 mg/L. In the smdy by Reed et al., 

in \vhich infants were treated for S. epidermidis sepsis, 14 out of 15 patients sho'\ved clinical 

recovery, with initial peaks ranging from 18.8-73.3 mg/L and trough from 5.1-38 mg/L, 

respectively. No details about susceptibility were given and all patients were pretreated 

v.ith an arninoglycoside and a ,S-lactam antibiotic. Pa\vlotsky et al. showed dut continuous 

infusion of vancomycin was effective in 13 documented invasive infections v.ith 

concentrations ranging from 3-37.6 mg/LJSO. There are no definitive data relating serum 

concentrations to effect. These smdies, \v'i.th relative few numbers of patients, show clut a 

wide range of vancomycin peak and trough concentrations arc effective against gram­

positive infections in neonates and infants. But, on a critical note, these results do not 

validate the therapeutic range of peak concentrations of 20-40 mg/L and trough 

concentrations of 5-10 rng/L often mentioned in the literature. 

Choice of antibiotic and drug resistance 

Enterococci are a related genus of gram-positive catalase-negative cocci 275. They are a 

pathogen kno'\vn to cause outbreaks of disease in NICV's 276-278• Vancomycin resistant 

enterococci (VRE) infections in neonates can be accompanied \vith an increase of 

mortality279. Vancomycin use is a consistent risk factor for coloni2:ati.on and infection with 

vancomycin-resistant cnterococci2SO. Emergence of 'VRE has become a major infection 

control problem, especially in rl1e Lnited States. In the )Jed1erlands coloni2ation v.ith 

VRE ofhospi~ed patients seems to be relatively low 2s1. Vancomycin is mostly used in 

the setting of late onset (occurring after 3 days of age) sepsis. The choice is made on tl1.e 

basis rl1at CO:.JS are the most common pathogens in this period 282· 283. COKS is not 

however associated '\Vi.th fulminant late-onset septicemia in neonates. The mortality in 277 

neonates \vith late-onset CQ)JS septicemia \Vas 1% in contrast to late-onset gram negative 
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sepricernia, \.vhich had an associated mortality of up to 56% 282. This has implications for 

choices of empiric antibiotic treatment. Several authors have sho\.Vn prophylactic usc of 

lo\.v doses of vancomycin or teicoplanin to prevent late-onset septicemia in VL\W 

infants219-222, 224. 284. 2ss. An increase of VRE \.vas not reported, but the potential risk of 

development of vancomycin resistance in NICU's through injudicious usc of vancomycin 

has been pointed out22L 2ZU82. 286. Given the overall concern about vancomycin resistance, 

vancomycin prophyla..xis does not seem to be warranted at this time. Alternative 

antibiotics for empiric treatment are effective in the initial treatment of late-onset sepsis 

neonates. Cephalosporins and ~-lactam antibiotics have been effectively used as empiric 

treatment for gram-positive infections, \.vi:th a S'\vitch made to vancomycin when 

methicillin resistance was determined282. 287· 288. The postponed usc of vancomycin '\Vas 

not associated to treatment failure or increased mortality in these patients. 

A highly selective use of vancomycin seems to be justified by these studies. 

Toxicity 

Toxicity related to vancomyan usc has been the subject of numerous reports. 

Complications include Red man syndrome, neutropenia, thromboc:y"'topenia, eosinophilia, 

trombophlebitis, chills, fever, rash, nephrotoxicity and ototoxicity. Three cases of cardiac 

arrest (t\\ro fatal) associated "vith rapid infusion of vancomycin have been describcd214. 289, 
290. The most frequent problem encountered was the Red man syndrome, a histamine 

mediated rash of the face, neck, upper trunk, back and arms. This phenomenon, 

associated "vi.th pruritus, tingling flushing, tachycardia and shock, is related to the rate of 

infusion 170. It has been described in neonates and children, related to an infusion rate of 

< 1h by Schaad ct al., but also in 7 out of 20 patients '\v-ith infusion rates of 1h by 

Odio~45- 252. The incidence of most of these side effects has decreased enormously with 

the removal of impurities from early preparations in the 60's. ~ephro-and ototoxicity '\Vi.ll 

be described in more detail 

1:-lephroto:...,·ici!J' 

Vancomycin can cause reversible nephrotoxicity in man and has been studied extensively. 

Animal models have failed to demonstrate significant nephrotoxicity when vancomycin 

was given alonc29L292. Vancomycin can enhance aminoglycosidc ID.duced renal toxicity in 

animals and possibly ID humans161• 213. The incidence mentioned in adults varies. Some 
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studies did not detect any toxicity \.vith vancomycin monotherapy 294. In other studies in 

adults nephrotoxicity ranges from 5% in patients receiving vancomycin alone to 18% in 

patients \vi.thout control for other variables possibly influencing toxicity 272. 293. 295. It has 

been related to trough concentrations > 10 mg/L, but in most studies it remains unclear 

'\vhether elevated serum trough concentrations are the cause or consequence of renal 

failurc295. 296, Nephrotoxicity has been studied in several groups of neonates, though 

seldom explicitly. Many studies could not detect any nephrotoxicity 232. 236. 245. 247, 254. 297. 

These studies total 61 patients treated from 4 to 28 days, '\vi.th serum concentrations 

ranging from 1.9 to 92.5 mg/L. The earlier studies by Schaad and co-workers sho'\ved no 

difference between baseline and post-treatment serum urea and/or creatinin in 20 

neonates infants and children 245.254. Jarrett et al. did not find clinical or biochemical signs 

of renal failure in 11 patients in whom a baseline creatinin was determined 232• In another 

study 3 out of 12 VL \XIB infants had a rise of serum creatin.in of more than 0.3 mg/ dl 234. 

In 2 out of 3 patients serum creatinin normalized \vi.thin days of stopping treatment, the 

third patient died but obduction did not reveal renal abnormalities consistent with drug 

related nephrotoxicity. Gous et aL could not demonstrate a rise in mean serum creatin.in 

in lS infants bet\veen day 0,2 and 8 of treatment 231. Three of these patients had an 

increase of more than 50% of serum creatinin, but all three were also exposed to 

aminoglycosides, as was the patient described in a case-report 293. A case report sho'\ved 

that a vancomycin induced rise of serum creatinin in 2 children normalized after adjusting 

vancomycin concentrations to the therapeutic range. ::\faqvi and associates did not find 

ev-i.dence of renal toxicity in 17 neonates and infants treated for 10-42 days; all patients 

were also exposed to aminoglycosides236. T'\vent:y VLB\V infants displayed no change in 

serum creatinin or tubular function during vancomycin treatment (4-13 days)297. 

In a study using continuous infusion of vancomycin only one neonate out of 53 showed a 

reversible increase of serum creatinin 18°. The effect of simultaneous use of vancomycin 

and an aminoglycoside was prospectively evaluated in 61 infants299. ::\fo evidence of renal 

toxicity in terms of serum creatinin or urinalysis abnormalities was seen. Finally, Bhatt­

::\1ehta et al. looked at the effect of peak serum concentrations on renal function in 

neonates \vi.th a mean PCA of 32.4 wceks3°0. Patients were div-i.ded in two groups, 61 

patients \'Vi.th peak serum concentrations ::S 40 mg/L and 8 patients \'Vi.th peaks 

> 40 mg/L. ~ephrotoxicity was defined as a doubling of serum creatinin and was not 

seen in the group '\vi.th high peak serum concentrations. In the other 61 patients this was 

noted 6 times, but a doubling of serum creatinin to values of >53 flmol/L was only seen 
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in 3 patients. Interestingly, peak concentrations > 40 mg/L were only seen in neonates 

"\vi.th a baseline serum creatinin of >53 p..mol/L (0.6 mg/dl). This association was also 

found for trough concentrations > 10 mg/L. 

The overall conclusion from this information is that vancomycin induced nephrotoxicity 

.in neonates is rare, reversible, and there is no clear relation to serum concentrations. 

Ototoxicity 

Information on vancomyc.in ototoxicity is scarce. Vancomyc.in is said to be potentially 

vcstibulo- and cochlcotoxic3°1. T.innitus seems to precede hearing loss. As '\Vith 

aminoglycosides, hearing loss is more pronounced .in the high frequency range 

(8-16kHz) :m. There arc animal studies relating ototoxicity to vancomycin in comb.ination 

'\vith an aminoglycosidc, but little evidence for ototoxicity of vancomycin alonc302. 303. The 

first report of vancomycin related ototoxicity .in humans '\vas in 1958166 .• Reported 

incidence of ototoxicity .in adults is fc"\ver than 2% 272. Reports on ototoxicity are fraught 

with methodological problems. Most studies "\vere retrospective and included patients 

\vho had been exposed to other ototoxic medication, mainly aminoglycosidcs3ot. 

A relation bct\.vcen vancomycin related ototoxicity and serum concentrations could not be 

demonstrated from available literaturc293 . .t\ confounding factor, as in nephrotoxicity is, 

that the time of serum sampling .in relation to dose is not al"\vays mentioned, "\vhich douds 

.interpretation of these serum concentrations. Data on vancomycin ototoxicity in neonates 

arc almost non-existent. l"eonates born to mothers who received vancomycin .in the 

second or third trimester of pregnancy did not sho"\v hearing loss304. Brainstcm evoked 

response audiometry and behavioral audiometry did not demonstrate any ototoxicity in 12 

neonates and chilclrcn2s.+. One case report described a repeated accidental overdose .in a 

47 day old prcmature305. Although serum concentrations were in excess of 100 mg/L for 

4 days, no hearing loss "\vas found "\vi.th brainstem evoked response audiometry during 

follow-up. Hearing loss .in humans exposed to vancomycin is sporadic and no clear 

relation to serum concentrations or patterns of underlying illness can be detected . 

. Although the absence of case reports of vancomycin induced hearing loss .in neonates 

suggests that this is very uncommon, data in neonates are insufficient to form any 

conclusion on the relationship bet\veen vancomycin and ototoxicity. 
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Vancomycin dosing and dose interval 

As in other drugs, vancomycin dose and dosing interval are determined by its desired 

therapeutic range and pharmacokineric properties. Historically, vancomycin dosing has 

been titrated to obtain peak serum concentrations between 20-40 mg/L and serum trough 

concentrations of 5-10 mg/L. There is little scientific e\ridence for both ranges. The 

upper limit of 40 is based on the fact that the earliest study, describing ototoxicity \vid~ 

peak concentrations > 80 rng/L suggested that peaks should not exceed 50 mg/L166. As 

described before, there is no clear relation bettveen oto- or nephrotoxicity and serum 

concentrations. r\lso, there is no microbiological or clinical evidence for increased 

effectiveness of vancomycin at advised peak concentrations. The lo\ver limit of the range 

for trough concentrations seems to be reasonable. Susceptibility of most micro-organisms 

for which vancomycin is used is <1-2 mg/L. \V'ith a ma.:illnal protein binding of 50%, this 

means that vancomycin trough concentrations \\ill have to exceed 4 rng/L to stay above 

the 1viiC306. Although there are some reports relating nephrotoxicity to trough serum 

concentrations> 10 mg/L, there is insufficient ev1.dence to rigidly adhere to this goal295. 

Keverthcless, d~ese desired ranges of concentrations have been the goal of dosing 

regimens adv'ised in neonates and infants. The first report on vancomycin dosing in 

children used doses of 25-180 mg/kg/ day, \v'ith the highest dose used in an infant214. 

Following this first report many dosing regimens, related to PNA, PCA, body\\reight or 

serum creatinin, have been defined (table 8). The first dosing advice, based on 

pharmacokinetic studies in 21 infants, related dose to P::-JA245. The advise of 

10 mg/kg q 6h for infants older than 30 days "\vas evaluated by Gous et al231• Despite the 

large interinclividual differences most serum concentrations were '.vi. thin the desired range. 

Three out of 15 steady state trough concentrations were lower than 5 mg/L, though only 

one was below 4 mg/L. This study also demonstrated important changes in 

pharmacokinetic parameters between day 2 and 8 of treatment in the same patient, 

possibly related to a normalization of physiological changes occurring '.Vi.th septicemia. 

Alpert et aL stuclied vancomycin dosing in 44 infants and children and used doses of 10-

15 mg/kg '.Vi.th an interval of 6-12h243. Trough serum concentrations were relatively high, 

especially when using a 6h interval. The guidelines based on this paper, though not 

mentioned in the article itself, were evaluated in the same insri.ru:tion in a group of 11 

infants247• Results of this study suggested reducing vancomycin doses in the first 1:\vo 

months of life, though no specific advice is given by the authors. 
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Table 8: Recommended dosing regimens in neonates and infants 

PNA PCA BW Serum Target Dose Interval Reference 

(days) (weeks) (grnms) crcatinin peak/ (mg/kg) (h) 

(t=ol/L) trough 

<7 25-40/<10 15 12 Schaad, 1980245 

8-30 15 8 

> 30 10 6 

> 30 and CKS infection 15 6 

~14 29-35 <1000 25-40/2-12 25 LD, 15* 12 Gro$5, 1985242 

~14 29-35 >1000 25-40/2-12 12.5 LD. 10* 12 GrO$S, 1985242 

<41 25-30/<10 15 LD, 10"" 8 Kaqvi, 1986206 

>43 25-30/<10 15 LD, 10"' 6 Naqvi. 1986= 

< 27 <800 30/6 27 36 James, 1987:!:1~ 

27-30 800-1200 24 24 James. 1987229 

31-36 1200-2000 18-27 12-18 James, 1987m 

"?:.37 >2000 22.5 12 James, 1987= 

:::36 25-35/5-10 10 12 Reed, 198722~ 

30-34 <1200 25-35/5-10 10 12 Lisby-Sutch,19SS71 

30-34 >1200 25-35/5-10 10 8 
35-42 >1200 25-35/5-10 10 8 
>42 >1200 25-35/5-10 10 6 

25-32 < 1000 25-40/<10 15 24 Leonard, 1989234 

>14 >30 :::o.6 10 8 Kildoo, 1990244 

>14 >30 0.7-1.2 10 12 

~7 <30 20-40/<10 15 24 Gabriel, 1991 ~oa 

>7 <30 :::1.2 10 12 
:::; 14 30-36 10 12 
>14 30-36 ::;o.6 10 8 
>14 30-36 0.7-1.2 10 12 

9 >36 10 12 
>7 >36 :::o.6 10 8 
>7 >36 0.7-1.2 10 12 

<27 <800 25-35/5-10 18 36 McDougal19952"..a 

27-30 800-1200 18 24 
31-36 1200-2000 18 18 
>36 >2000 15 12 

PNA= posmat:tl age, PCA= postconceptional age, B\V' = body">vcight, LD= loading dose;• maimcn:mcc dose,*"' 

!T'.ai.ntenance dose P" day, 1Serum creati.nin in mg/dl, ~no indomethacin and/or mech=i.cal ventilation, 

3indomcthacin :md/ or mech=i.cal ventilation 
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Table 8 (continued): Recommended dosing regimens in neonates and infants 

PNA PCA BW Senun Target Dose Interval Reference 

(days) (weeks) (gmms) ercatinin peak/ (mg/kg) (h) 

(!=ol/L) trough 

532~ 12.5 12 Sih·a., 1998~J9 

5323 10 12 
>32~ 10 8 
>32:. 7.5 8 

7-30 <1000 10 18 Schaible, 1986247 

1000-2000 10 12 Alpert. 1983"43 

>2000 10 8 

31-60 10 6 
>60 10 6 

25-26 7 LD. 10*'" Continuous Pawlotsl.-y, 19981aa 

27-28 7 ill, 12** Continuous 

29-30 7 LD, 15** continuous 

31-32 7 LD. 18"* continuous 

33-34 7 LD, 20*A continuous 

35-36 7LD,23-~<* Continuous 

37-38 7 LD, 26** Continuous 

39-40 7 LD. 29** Continuous 

41-42 7LD,31~* Continuous 

43-44 7LD.34-"'" Continuous 

>45 7 LD. 40** Continuous 

20-29 20 8 Grimsley, 1999m 

30-39 20 12 

4{)-49 15 12 

50-59 12 12 

60-79 15 18 
80-1001 15 24 

>100 15 Depending 

on trough 

PKA- postnatal age, PCA- postconceptional :1gc, BW - bod)'\veight. LD- loading dose.* nuintcn:mcc dose,"* 

nuintenance dose pcr d::ty. 1Scrum crcatinin in mg/dl, 'no indomethacin :md/or mechanical ventilation, 
3indomethacin :.md/ or mcchanic:U ventihtion 
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Serum crearinin was higher than 53 t-tmol/L in 7 patients, which might have ske\ved 

results towards this conclusion. 

Gross et al. suggested a dosing regimen based on neonates \veighing either more or less 

than 1000 grams242. This advice was based on data in 9 prematures, of whom only 3 were 

< 1000 grams. One of these three had a high serum creati.nin of SO ~g/ml, so results for 

this group are doubtful. A loading dose of15 mg/kg followed by 10 mg/kgwith an PCA­

related interval based on average Vss and I<ci was advised by :-.Jaqv"i and co-workers 

folloVving a pharmacokinetic study in 20 neonates236. The group of patients \vith a PCA 

greater than 43 \Veeks comprised only 6 patients. James et al. proposed a very detailed 

PCA-defined dosing regimen, after finding an excellent correlation between tt/2.3 and PCA 

in 20 preterm infants229. Wben looking closely at the graphs, it is obvious that there \vere 

only t\vo patients each in the PCA groups of< 27 and> 37 weeks, which undermines the 

validity for these PCA groups. In a subsequent study by the same authors they showed 

that using their dose recommendation in preterms improved the chance of achieving 

serum concentrations within the therapeutic range over the dosiD.g regimen as proposed 

by Schaad et al245. 307. 

In a third study by the same group, the authors studied 12 infants weighing less than 

1000g and rev"ised the original adv"ise of James et al. to use vancomycin once daily in this 

group234• Vancomycin was given once daily to 10 of these infants and doses varied 

bet\veen 9.4 and 27.3 mg/kg. Peak concentrations were adequate (32.6±9.3 mg/L), but 

trough concentrations were low (5.7±4.5 mg/L). Both the original as well as the revised 

regimen by James, was tested in a later study in 44 neonates208• Individual Vd and!(.,] per 

patient were used to simulate the original and revised regimen by James. These results 

were compared to the dosing regimen as adv"ised by the authors and used in this study. 

On the basis of these simulations the authors concluded that their dose recommendations 

\Vere more precise in achieving adequate serum concentrations in premature neonates, 

although they did not present data in patients with a PCA < 27 weeks. Kildoo and others 

investigated 15 preterm neonates using an institutional PKA and BW vancomycin dosing 

algorithm244. The substantial differences in clearance bct\vcen patients due to renal 

function led to a proposed regimen based on serum creatin.in higher or lower than 

0.6 mg/ dl. They also estimated that using the dosing regimen of James would have led to 

peak serum concentrations e.>::ceeding 40 mg/L in 11 out of 15 cases. Reed also adv"ised 

an extended interval for neonates \vith a PCA :S 36 weeks22S. Doses in this study were 

9.8-17.8 mg/kg, with an interval of S hours in all but one of the 16 patients. 
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High steady state trough concentrations \Vere seen, ranging from 8.1-38 g/L, leading to 

the advice of a 12h interval. A confounding factor in the interpretation of thls study is the 

relatively high serum creatinin prior to therapy of up to 115 y.mol/L. Lisby-Sutch and 

~ahara developed a PCA and weight based regimen on grounds of a study in 13 

vancomycin treated infants230. There was a good correlation bet\veen daily vancomycin 

requirements and PCA, when 4 patients \v"'ith hepatic or renal disease ·were excluded. \\lith 

thls in mind, the subdivision into 4 groups in the dosage guideline has a very small basis. 

Asbury et al. studied pharn:ucokinetics of vancomycin in 19 neonates \vithout and 4 '.Vi.th 

indomethacin c_'(posure 241• The authors postulated that dose and dose interval in patients 

without indomethacin would lie in the range of 29.6 mg/kg/d vvith an interval of 6-!Sh. 

A limitation of this study \Vas that some of the peak serum concentrations as well as all of 

the steady state concentrations were calculated and not measured. The authors themselves 

do not advise to calculate vancomycin dosing according to their equations, until thls has 

been prospectively validated (table 9). Another study individualized dose and dosing 

interval on the basis of linear pharmacokinetic analysis on initial serum concentrations 

obtained after the initial dose of 15 mg/kg-232. Steady state peak and trough concentrations 

\Vere \vi.th.in the desired therapeutic range. Six out of eleven trough concentrations '\Vere 

lo'\ver than 5 mg/L ho\vevcr \vhich suggests an overestimation of t1;2~. 

Seay et al. studied 192 infants with a population pharmacokinetic model and found a 

relation bet\veen clearance and eA-posure to dopamine and/ or gestational age ::S32 weeks. 

Predictive performance of their dosing algorithm was prospectively validated in 30 

patients. Though the study results suggest using longer dosing intervals, no advice was 

made by the authors. 

Forty-four infants \Vere evaluated resulting in a dose recommendation depending on PCA 

and exposure to mechanical ventilation and/ or indomethacin239. Although the relation to 

indomethacin seems logical, effect of mechanical ventilation is harder to imagine. The 

authors described a relation between creatinin clearance and vancomycin clearance, but 

not with mechanical ventilation or indomethacin treatment alone. The clinical usefulness 

of the statistical relation to co-treatment found in thls study is doubtful. Pawlotsh.--y et al 

studied continuous administration of vancomycin after a loading dose in 29 

prematures 1so. PCA related dosing '\vas based on an evaluation of 24 other patients. This 

continuous dosing regimen led to steady state concentrations of 10-30 mg/L in 88%. As 

can be seen in table 8 the division in subgroups is very detailed and is, given the large 

inter-individual variation in pharmacokineti.c behavior bet\veen patients of the same PCA, 
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probably not warranted. Grimsley and Thomson performed a population 

pharmacok.inetic analysis in 59 infants and based their dosing regimen on serum creatinin 

alone233. This regimen '.vas subsequently tested in 25 neonates and found to give more 

adequate trough serum concentrations. The number of patients \vith high serum creatinin 

in the prospective group was not mentioned. 

In conclusion, several dosing regimens in neonates have been proposed and tested. 

Studies based on PCA and/ or serum crearinin have shov.rn to achieve serum 

concentrations "'Within the therapeutic range20S. 231.234.238.3°7. Though an extension of dose 

interval to more than 8 hours has been suggested, especially .in VLBW infants, trough 

serum concentrations < 5 mg/L found in several studies should lead to caution in that 

aspecrzos. 230-234,307. 

Table 9. Formula's represmting dosing schedules 

Model 

1 compartment model 

1 compartment model 

1 compartment model 

2 compartiments model 

Formula 

CL (L/h):::0.0626xBW:x0.455"t:x0.6S6~-=-

vcl (L)=0.496 :x BW 

: CL(L/h)=0.007+6.875 X 10·5 X O.'i/ (g) 

Vd{L) = 0.034 + 4.991 x 10--tx CW(g) 

Vcl:::Q.562±15% L/kg (PC.r\::::32 weeks) 

Vcl= 0.498±16% L/kg (PCA>32 weeks) 

CL::: 0.07±41% L/kg/h (mdomcthacin ::r.nd/ or mechanical 

ventilation) 

! CL::: 0.086::!:35% L/kg/h (no indomethacin or mcclunical 

ventilation) 

CL(L/h)=0.0281:x PCA(weeks)-0.818 

Vcl(L)= 0.557:x BW'(kg)-0.051 

Vancomycin dosage (mg/kg/ d)=1.7835:xPCA(>vecks)-31.36551 

! V ancomvcin dos:1 e m k d'=1.5357:xPCArweeks -26.4576~ 

CL(L/h)=0.0224:xPCA-0.639 

CL(L/h) =0 .06xBW (kg) +0.09 5x(1/Scr)-0.141 

Vcl(L)=0.563xB\~'(kg)+0.052 

Author 

Scay, 19942~ 

Silva, 1998Zln 

i Asbury, 199Y41 

Sch:rible. 1986247 

CL= clearance. BW'= body,veighc. V" :::volume of distribution. PCA= postconceptional :1ge. Z1=1 if e::,:posed to 

dopamine. else 0, Z2=1 if G_,\.:::;32 weeks, else 0. 1Targcts= pe:tk 25-35, trough 5-10 mg/L. ~::r.rget = ste:ldy state 

concentration of 15 mg/L. 

54 



Therapeutic drug monitoring 

Therapeutic drug monitoring of vancomycin is mostly performed at steady state, '\\ti.th 

serum concentrations taken just before and lh after completion of the intravenous 

infusion. Target concentrations are peaks bet\'Veen 20-40 mg/L and troughs of 5-10 

mg/L. Peak serum concentrations depend on the timing of sampling and since there is a 

'\\ti.de variety in sampling time in relation to dose, this should be taken into account \vhen 

setting goals in therapy309, 310. Strangely enough, despite these differences in timing most 

authors adhere to the same peak level goals. 

In general, routine therapeutic drug monitoring is only rational \Vhen the drug has the 

follmving characteristics265. First a good correlation must exist between serum 

concentration and effect or toxicity. Second when this correlation exists, there must be 

large interindividual differences in pharmacokinetic beha"i.or bet\vcen patients. Third the 

clinical effect or toxicity of the drug must be hard to determine or have a delayed 

presentation, othenvi.se TDM \vill not influence treatment. Fourth a readily available assay 

\vith an adequate assay error must exist. Fifth use of TDM should appropriately predict 

subsequent serum concentrations in the same patient. 

In the case of vancomycin use in neonates the first condition is not met. As discussed 

before, neither efficacy nor toxicity show a clear relation to serum concentrations, and 

this is especially true for peak values. The second condition is true; there is a large inter­

indivi.dual variation bet\veen neonates and infants with different PCA's 'Wi.th a 

concomitant effect on obtained peak and trough serum concentrations. There is hO'wever 

no clear relation of peak concentration to toxicity and effect, so the clinical importance of 

this inter-individual variation is doubtfuL Furthermore it has been sho"\YTI in neonates and 

adults that peak serum concentrations >40 mg/L are seldom seen '\\ti.th trough 

concentrations below 10-15 mg/L 311-313. Given these considerations routine monitoring 

of peak serum concentrations is questionable. A case can be made for monitoring trough 

concentrations, although this is also debatable. Based on in-vitro studies, vancomycin 

trough concentrations should exceed 4-5 mg/L3°6. Acceptable cure rates "'Wi.th trough 

concentrations ranging from 2 to 18.8 have been described in neonates 230,236, 254. Except 

for endocarditis, there are no clinical studies in neonates, children or adults which have 

substantiated the clinical need for higher serum concentrations167, Several dosing 

regimens, which have been discussed before, especially those \vi.th dose intervals 

exceeding Sh, have sho'\\tn that trough serum concentrations can be lower than 5 mg/L, 
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indicating a need for trough level monitoring 208. 230-234-. 307. Trough level monitoring 

should thus be aimed at ascertaining that serum concentrations remain > 5 mg/L 

The third and fourth point of requirements for effective TDM are met by vancomycin. 

Pertaining to point five, several studies have investigated the predictive performance of 

TD)1 "\vith vancomycin in the neonatal setting232. 235.237.238,246.311.312.314. Controlling dose 

and/ or dose interval \v:ith TDM can be performed using first order elimination kinetics, 

as proposed by Sa'\vchuk and Zaske, or '\v:ith a Bayesian method69. In adults Bayesian 

feedback is associated with a better predictive performance than the method of Sa"\vchuk 

and Zaske315. Jarrett and associates obtained serum concentrations 2.7 and 12h after 

initiation of a 60-minute vancomycin infusion, and determined Vo and t112~ using first 

order elimination kinetics 232. :Aaintenance dose and dosing interval were calculated and 

results showed that 9 out of 11 infants had peak concentrations within the therapeutic 

range in steady state. All troughs were < 10 rng/L. They also concluded that using only 

the 2 and 12h serum concentration \Vorked as '\Veil as using all three. 

Two studies, using 132 routinely collected paired serum concentrations, demonstrated 

that, as long as there is no overt renal failure, serum trough concentrations < 10 mg/L are 

seldom accompanied by peak concentrations > 40 mg/L 311.312. One other study found 

no relation benveen pre-dose and post-dose concentrations in 100 paired samples, but 

only 3 patients had a high peak serum concentration associated \v-i.th a low trough value235. 

In a group of 74 :infants and children, including 30 neonates, therapy was optimized by 

using paired serum concentrations after the first dose314. TDM goals were peak and 

trough concentrations of 15-60 and> 4 mg/L, respectively. Standard vancomycin dosage 

guidelines, which were not specified, '\vere used. Initial trough serum concentrations were 

lo\v in 5 out of 30 neonates '\vi.th. After optimization, only 1 neonate had an insufficient 

trough concentration. The authors conclude that monitoring of vancomycin 

concentrations is essential to prevent underdosing. 

Burstein et al. studied pharmacokinetics in 11 neonates in a 2 compartment open model 

'\vi.th serum concentrations taken 3 and 9h after initiation of a 1h infusion of vancomycin. 

They calculated an optimal sampling strategy \vi.th 2, 3 or 4 serum samples, using 

population based optimal sampling strategies. These strategies were tested on 100 

simulated cases. All strategies underestimated actual distributional and total clearance 

(L/kg/h) as well as central compartment volume and Vd (L/kg). They concluded that no 

more than t\vo samples (0.5h after a 1h infusion and a trough concentration) are needed 

for clinical purposes. A lot of assumptions were made in calculating individual 
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pharmacokinetic parameters \virh only 2 serum concentrations, which somewhat clouds 

the results obtained in this srudy. The best srudy has been performed by Rodvold and co­

\Vorkers237. They developed a set of population based parameters (see table 9) based on 

data in 29 neonates. The precision of rhe dosing regimen based on rhese parameters \Vas 

tested in 18 neonates, \V-irh 35 courses of vancomycin, in \vhom more rhan 1 set of peak 

and trough concentrations \vas available. Prediction of subsequent paired serum 

concentrations was performed using eirher rhe population parameters alone or \V-irh 

Bayesian feedback of rhe first paired serum concentrations. The Bayesian method 

performed slightly better when subsequent serum concentrations \Vere taken \v-ithin 30 

days of the initial set. Bias and precision for this period were -1.62 and 4.72 mg/L (peak) 

vs 0.65 and 1.74 (trough). Population-based parameters were superior after 30 days, 

underscoring the potential change in individual pharmacokinetic parameters over time. 

The authors conclude rhat additional feedback concentrations are needed approximately 

every 14 days. These srudies indicate that TDM \V-irh use of 2 serum concentrations can 

predict subsequent serum levels reasonably well. Peak concentrations e~ceeding 40 mg/L 

are unlikely \v-irh trough concentrations< 10-15 mg/L. 

In conclusion, vancomycin has shown to be an effective and relatively safe antibiotic for 

treatment of gram-positive infections in rhe neonatal setting. Concerns about 

development of resistance warrants judicious use. Several dosing regimens were 

successful in aclUeving target serum concentrations. In rhe light of in-vitro and in-vivo 

studies of efficacy and toxicity it is unlikely that peak concentrations play a major role. 

TDM should therefore probably be aiming at producing trough concentrations 

> 5 mg/L, except for patients wirh certain specific illnesses like endocarditis. ::\feonates 

\V-ith renal failure should be monitored more closely. 

Further studies \ViJl have to determine dosing regimens adhering to this new target range. 
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1.3. Aims of the studies 

Chapter 1 sets out to rev-i_ew the literature pertaining to clinical, pharmacokineric and 

pharmacodynamic aspects of amlnoglycoside (including tobramycin) and vancomycin use 

in neonates. At the end it states the aims of the studies provided in this manuscript. 

Chapter 2 \V"ill describe the use of pharmacokinetic modeling of tobramycin antibiotics in 

neonates. Two methods of phannacokincric modeling, non linear mi'\.ed effects modeling 

(KO!\:;\iliYr) and non parametric expectation ma.x.imization (NPE:Yl), 'Will be compared 

in the setting of routine therapeutic drug monitoring in a neonatal intensive care unit 

(KICL~. 

Chapter 3 addresses the questions relating to pharmacokinetics and therapeutic drug 

monitoring of tobramycin in neonates. In chapter 3.1 a gestational age related tobramycin 

dosage regimen for neonates is developed and prospectively validated using routinely 

collected peak and trough serum concentrations. These data are analyzed in a population 

phannacokinetic model '\vi.th the follo\Ving questions: 

1. Is there a need for extended interval dosing of tobramycin in neonates ? 

2. Is there a relation bet\veen gestational age and dose or dosing interval ? 

3. Is there a need for a loading dose of tobramycin in neonates ? 

This proposed dosing reg1men is prospectively validated in a group of neonatal intensive 

care patients. In chapter 3.2 the use of early therapeutic drug monitoring is investigated. 

The follo\Vi.ng questions are adrcssed: 

1. \Vill the dosing reg1men mentioned in chapter 3.1 lead to effective peak serum 

concentrations after the first dose ? 

2. Is it possible to predict individual trough serum concentrations of tobramycin by t\vO 

serum samples taken 1 and 6 hours after the first dose ? 

3. \\!hat is the relation between individual dose intervals and gestational age of the 

patient? 
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Chapter 4 sets out to describe the pharmacokinetics of vancomycin in neonates. In 

chapter 4.1 a dosing regimen for vancomycin in neonates is developed. The following 

issues were studied: 

1. Is there a need for a gestational age dependent dosing regimen in neonates? 

2. Is there a need for the routine measurement of peak serum concentrations of 

vancomycin in neonates ? 

In Chapter 5 \Ve evaluate the relative risk of hearing loss in neonates exposed to 

tobramycin and/ or vancomycin. In chapter 5.1 \Ve designed a study using otoacoustic 

emissions to determine high frequency hear:ing loss in three year old children who have 

been treated on the neonatal intensive care unit. The purpose of this study is to: 

1. Determine whether high frequency hear:ing loss occurs in children \vho have been 

treated \vith tobramycin in the neonatal period. 

2. Relate hearing loss to serum concentrations and duration of therapy of tobramycin. 

In chapter 5.2 \Ve analyze results of routine neonatal hearing screening (A-ABR screening) 

performed in the NICU of the Sophia Children's Hospital. Screening results "ill be 

related to e."posure to tobramycin and/ or vancomycin. 

Chapter 6 is the concluding chapter in which the results of the previ.ous studies are 

discussed. Recommendations about dosing, dosing intenral and in&ddual therapeutic 

drug monitoring of tobramycin in neonates are made and suggestions for future research 

in this area are presented. 
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SUMMARY 

::-.Jonlinear mixed effects modeling (NO::--.Jl\1E}.1) and nonparametric expectation 

rna..ximization (NPE~I2) have both been used in population modeling of tobramycin. We 

compared both methods for differences in population phannacokinetic parameters in 

relation to error models used. Predictive performance \Vas compared bet\veen models. 

A group of 470 neonates who had received tobrarnycin \vith a gestational age dependent 

dosing interval \vas analyzed according to a one-compartment model "vith NON.NIEM 

and NPE112. Additional models were made "vhere the assay error pattern in :\JPE:Yf2 

mimics :\JON11EM residual error and vice versa. Individual phannacokinetic parameter 

estimates were compared. Predictive performance was evaluated in a separate group of 61 

patients. Population estimates and variation coefficients (CV) for optimal models \Vere: 

NOK:'vffiYl K.; 0.071 h-1 (27%), v, 0.59 L/kg (9%), l\iPEM2, I<o, 0.079 h-1 (42%), 

V, 0.65 L/kg (48%). Forcing NO:\IMEM to use the :\IPEYI:2 error pattern as residual 

error or vice versa resulted in smaller differences in CV's of the estimates. ~O='J.01E:NI 

gave less bias (p<O.OS) than NPEM2 and comparable precision with this approach. In 

conclusion ~QN}..ffiM and ~PE:.\12 are dissimilar in population estimates. Differences in 

ranges of pharmacokinetic parameter estimates bet\veen ~ON.YIE:VI and KPEi\12 are 

largely determined by the method of incorporating error patterns in both programs. 
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INTRODUCTION 

Therapeutic drug monitoring plays an important role in the optimization of 

aminoglycoside dosing regim.es in neonates. Several nomograms and models 

incorporating gestational age, weight, postnatal age, co-meclication and other possible 

descriptive factors have been tested to define the optimal a priori dosing regimen for this 

v"Dlnerable population. However, due to the large inter-patient variability dose 

indiv-i_dualizarion based on serum concentration measurements early in therapy remains 

necessary. Bayesian feedback methods using population models have been sho'\VTI to be 

clinically superior and cost-effective in this respect1. l'onlinear mi:xed effects model 

(KOJ'.::Yffi:\,1) and the nonparametric expectation ma.'\lrnization (NPEM2) algorithm have 

been used for population pharmacokinetic modeling of aminoglycosides in neonates2•6. 

Both methodologies give an estimate of the interinclividual variability within a sample of 

subjects from the target population, given the data of past doses and responses (serum 

concentrations). Typically population phannacokinetic models are defined as the mean or 

median phannacokinetic parameter estimates \vi.th interpatient variability characterized by 

the standard deviation (SD) or coefficient of variation (CV). In addition, :\IPE:YI2 gives 

the full population probability distributions while KON:\1E:Vf provides estimates 

(standard errors) of the precision of its parameter estimates, including those describing 

variability. 

NO)-J::\-ffiYf assumes a unimodel normal or lognormal distribution of phannacokinetic 

parameters in the population under study. KPEM2 makes no assumption about the 

distribution other than a limitation to the possible values. Both methods have theoretical 

advantages for clinical use. ~PE:.\1.2 gives a graphic output of the probability distribution 

of a given combination of pharmacokinetic parameter estimates Goint density plot), and is 

able to discover and quantitatively describe unsuspected sub-populations that can give rise 

to multi-modal population distributions. \Vith KOJ'{~ .. ffi:\1 clinically important covariatcs 

can be easily analyzed and incorporated into the model. Maire et al. "verc the first to 

describe preliminary data on relative differences beNreen the modeling methods for 

amikacin in geriatric patients'.Recencly, NO:-..Jl\ffiM and ~PEM2 modeling has been 

compared describing flucytosine pharmacokineticss. 

To date, no study has addressed potential causes for differences found in population 

phannacokinetic estimates generated by either method. The residual error models used in 

::-..JON11EM and the assay error pattern plus additional environmental noise caprored by 

gamma used in :-..JPE~ play an important role in determining population parameters, 
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and changes in these parameters are likely to influence the flnal model. Clinlcally the most 

relevant question is '\vhich method gives the most useful model for capturing interpatient 

variability and for predicting (and therefore control) serum concentrations in any next 

patient. 

The aim of the present study was to compare results of population modeling '\Vi.th 

::'\JOK.MEM and the nonparamerric EM algorithm by re~analyzing tobramycin therapeutic 

drug monitoring data in a neonatal population as described recendy 3• The predictive 

performance of ~0::-.JivffiM and KPEN12 generated models '\Vas evaluated in a separate 

group of 61 neonates which was not part of the population modeling. 

PATIENTS AND METHODS 

Patients 

The patient population for this study consisted of two groups of neonates admitted to the 

neonatal intensive care unit of the Sophia Children's Hospital, Rotterdam empirically 

treated 'Wi.th tobramycin for suspected neonatal sepsis in the first '\veek of life. 

Data of the first group of 470 patients were used to develop population pharmacok.inetic 

models (model generation group). Tills group received the following tobramycin regimen 

in a 30~minute i.v. infusion: GA less than 28 weeks 3.5 mg/kg/24 hrs,28-36 weeks 

2.5 mg/kg/18 hrs, more than 36 '.veeks, 2.5 mg/kg/12 hrs. Drug administration times, 

dosing regimens, blood sampling times and demographic data were collected and have 

been published pre,~ously3. 

Data of a second group of 61 patients (validation group) were used to validate the 

population models developed "vith data of the model generation group. The validation 

group received 4 mg/kg/ dose of tobramycin with an interval of 48, 36 or 24 hours 

depending on their gestational age of < 32 weeks, 32-37 '\Veeks and > 37 weeks, 

respectively. Data collected in both studies included gestational age, birth weight, 5 minute 

Apgar score and e::-.:posurc to indomethacin and/ or corticosteroids. 

Tobramycin concentration monitoring 

Serum concentrations were d:ra"vn just before and 30 minutes after completion of the 

fourth dose in the model generation group. In the validation group TDM '\Vas performed 

3 and 8 hours after the first dose and just before d1e second dose. Concentrations of 
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tobramycin '\vere measured by a Fluorescence Polarization Immuno Assay (FPIA) using a 

TDxFLx (Abbott Diagnostic Division, Amstelveen, :\IL). The assay error pattern for the 

tobramycin assay was: SD (mg/L)= 0.0599 + 0.0126 C+0.00438 C2, where C is the 

measured serum concentration (mg/L). 

Population pharmacokinetic modeling 

Tobramyc.in data of the model generation group were analyzed according to a one­

compartment open model, assuming the data were attributable to the fourth dose after 

birth, using 1\iOJ\:MEM population pharmacokinetics software (NONME:\1: version V, 

J\:0:\1:\iE:\1: project group, University of California, San Francisco, CA) ' and the 

NPEM2 algorithm (l'-.'PEM2, USC*PACK collection of PC programs, version 10.7, 

LAPI(, Los Angeles CA)10. The model parameters were the elimination rate constant 

(Kd; h·') and volume of distribution (Vd; L/kg). For 1\iOI\i:\iE:\1: and NPEM2 individual 

empirical Bayes' estimates '\Vere generated for IZ:l and V d based on the population 

estimates. 

Nonlinear Mixed Effects Model (NONMEM) 

Data were analyzed using first order conditional estimation (FOCE). A constant 

coefficient of variation .intra- and .inter-indi-vidual error was assumed. 

Two models were parameterized: 

1. A model parameterized in terms ofi.C.,1 and Vd in a standard :\101\iMEM analysis. This 

standard model was defined as the optimal 1\iOJ\:MEM model and was compared to 

the optimal NPEM2 model in the validation group. 

2. A model parameterized in terms of Kd and V d and a fixed residual error of 0.0599 

plus a proportional error of 5%. In this way the input residual error in the ~ONlvfEM 

model is comparable to the assay error pattern in ~PEM2 model 1 over the 

concentration range studied. 

With each model individual empirical Bayes phannacokinetic parameter estimates were 

generated by ~ON:y(E:y£_ 

Non-Parametric Expectation Ma.ximization algorithm (NPEM2) 

With :\IPEM2 the joint probability density functions (PDFs), population means 

(± standard deviation), medians (± dispersion factor) and individual parameter estimates 

for IZ:l and V d \Vere estimated using the assay error pattern for the tobramycin assay as an 
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ex"Plicit measure for intra-individual error. In the NPE_;vf2 program this assay error 

pattern can also be multiplied by a factor (gamma) which can either be user defined or 

estimated by the program as a means to account for other environmental noise. A change 

of less than 0.001% in the likelihood function was taken as the convergence criterion for 

:\IPEM2. Calculations were based on 20.000 grid points. 

Three different )JFE_;vf2models were parameterized: 

1. A I<ei and V d model using the tobramycin assay error pattern and a fi;;:ed gamma of 

1.0. This is the most widely used method in )JPEY12 analysis. This model was 

compared to tbe optimal NOI'::\ffiYf model in tbe validation group. 

2. A I<ci and V d model using the assay error pattern multiplied by a gamma of 2.82 as 

detemtined by tbe program. This way of modeling has recently been described, and 

may be a better way to model total error with )JPE:y£2 11 . 

3. A I<cJ and Vdmodel using an error pattern that mimics the residual error of 21% found 

in tbe first :\101\MEY! analysis (SD (mg/L) = 0.21 C). By using this approach tbe 

NPEM2 error model becomes comparable to tbe residual error of tbe first 

1':0:\IMEM model. 

For each model ma.;;:imum a posteriori (JYIAP) Bayesian estimation was used to generate 

individual Bayesian posterior parameter estimates by using the 'population of one' utility 

in tbe KPEM2 program. 

Predictive performance evaluation: comparison ofNONMEM and NPEM2 

models in the validation group 

The relationship between the observed tobramycin concentrations and concentrations 

predicted by the population models was evaluated with data of the validation group. For 

thls purpose the mean population pharmacokinetic parameters and standard deviations of 

botb optimal models were defined in tbe MW\PHAR.'v! program (Yf\'7\PHARM, version 

3.15A, MecliWare; Groningen, The Netberlands) 12• Three and eight hour serum 

tobramycin concentrations were used as Bayesian feedback to the models. Next, predicted 

trough concentrations estimated by d~e :\!Iarquardt algorithm were compared '\v1.th the 

observed trough concentrations for each patient. 
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Statistical analysis 

Statistical analysis was performed using SPSS (SPSS for Windows V9.0, SPSS, Inc., 

Chicago, IL). 

Individual pharmacokinetic parameter estimates for both NOKMEY! and NPE:\12 

models were compared. The predictive performance of NOKMEY! and ]';PEM2 models 

'\vas evaluated by comparing predicted serum concentrations "vith observed serum 

concentrations according to the method of Shdner and Beal 13. Bias '\vas calculated as the 

mean prediction error (ME; mean difference betw'een measured and predicted 

concentration), and is a measure of the systematic error. Precision was calculated as the 

mean squared prediction error (mean of the sum of squared differences bettveen actual 

and predicted serum concentrations QY.[SE), and represents the accuracy of the systematic 

error. The root mean squared prediction error is the squared root of ::Y.£SE and converts 

the measure of precision back to concentration units. Relative predictive performance was 

determined by comparing differences and confidence intervals of differences of ~SE and 

:ME for models. 

Individual parameter estimates for comparable NOKMEM and :'-JPE:\12 models were 

analyzed using descriptive statistics. Bayesian parameter estimates for ~O~lv.ffiM and 

KPEi\12 were tested for significant differences 'W-ith the \Vilcoxon signed rank test. A 

significance level of p < 0.05 was accepted throughout. 

RESULTS 

Demographic parameters of both study groups are summarized in table 1. 

Table 1: De111ographics of botb stucfJ' grotrps 

Variable 

Gestational age 

(weeks) 

Birthweight (g) 

:\!ale/ female 

:\' .S., nor ~igr-..ificanr 

84 

Groupl 

(n=470) 

Median (range) 

31.6 (23.7-42.9) 

1530 (485-5245) 

267/203 

Group2 

(n=61) 

Median (range) Difference 

33.4 (25.7-41.4) N.S. 

2029 (765-4500) ::-:.s. 
34/27 ::-:.s. 



Data of 4 70 neonates in group I were used for the generation of population models. 

Population pharmacokinetic models were evaluated for predictive performance in the 

validation group consisting of 61 neonates. There '\Vere no significant differences in 

gestational age, '\veight or gender benveen groups. 

Figure 1 sho'\VS the error patterns used in J'\O~lvfEM and NPEiY12 expressed as the 

relation bet\veen the serum concentrations and the standard deviation of the 

concentration over the '\Vorking range. 

Figure 1: Relation between sertJI7l concentration and error pattem used in ]\TQ]\T]\1EM and l\PEM2 
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The line portraying the residual error estimated by J'\ONMEM (model 1) of 21% 

approximates the assay error pattern times the gamma of 2.82 found by )JPE:Y12 

(model2). If residuil error in NOK:\ffi:YI (NO:-liviEM model 2) is fi:-;ed like d>e assay 

error pattern in )JPE:yu (model 1), as described in the methods section, the lines 

representing assay error for both models are approximately the same over the 

concentration range in this patient group. 
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Table II:pop11lation pharmacokinetic parameters for NONMEM and I','PEM2 models 

K,, (h'') v, (L/kg) 

(CV%) (CV%) 

NO:-.:~M model! 0.0713 (27 %) 0.593 ( 9 %) 

:c-.:ONMEM model2 0.0695 (41 %) 0.568 (32 %) 

NPEM2 model 1 0.0789 (42 %) 0.646 (31 %) 

NPEM2 model2 0.0743 (42% 0.816 (36 %) 

:-.:PEM2 model 3 0.0783 (35 %) 0.647 (30 %) 

K.,1. elimination rate constmt; V J, distribution volume, CV%, coefficient of variation in % 

Population pharmacok.inetic parameter estimates for NPEJ\.12 and NON:MEM models are 

listed in table II. As can be seen population pharmacok.ineric parameter estimates from 

the ~'PEM2 analyses are higher in all models. For the two optimal models (NON~:VC 

model! and NPEM2 model 1), KPEM2 estimates are 11% higher for l<ci and 9% rugher 

for Vd. These differences remain largely the same when residual error in NO~:MEM is 

modeled according to the assay error pattern in NPEM2 (NO);J:MEM model 2 and 

~'PEM2 model 1) or ;~ce versa (NON~M model 1 and i'-'PEM2 model 3). The 

coefficient of variation is larger for NPEi\12 in the optimal models, 15% for~~ and 22% 

for V d· This difference decreases some'\vhat, to 8% and 21% respectively, when the 

NPE.:A.Z error pattern is modeled as ~ON~1EM residual error. \\!hen ~01"~:\1 

residual error is modeled to resemble the assay error pattern of NPEiv.!2 however, the 

difference in coefficient of variation is reduced to almost nothing (1 %). 

Table III: descripti;ie statistics of indh1tl:tal parameter e.rtimate.r with ]\,TQ]\,TMEM and l\'PEl\12 llJodels 

K,, (h'') K" (h'') v, (L/kg) v. (L/kg) 
Mean (SD) Median (range) Mean (SD) Median (range) 

NON11E:Y1 model1 0.073 (0.017) 0.071 (0.10) 0.59 (0.02) 0.59 (0.15) 

:\JONMEM model2 0.079 (0.030) 0.072 (0.19) 0.62 (0.23) 0.57 (1.71) 

NPEM2 model 1 0.076 (0.037) 0.069 (0.24) 0.82 (0.44) 0.73 (2.98) 

NPEfviZ model 2 0.075 (0.030) 0.067 (0.19) 0.80 (0.28) 0.76 (1.70) 

:-.:PEM2 model 3 0.078 (0.025) 0.069 (0.15) 0.63 (0.17) 0.60 (0.98) 

K:1. elimim.rion rate consunt: V 0, distribution volume 
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Table III and fig. 2-4 show descriptive statistics and histograms of indi;~dual Bayesian 

parameter estimates. The difference in means for I<eJ and V d be-rureen all comparable 

~OKMEM and NPEM2 models is statistically significant (p<0.001) except for I<.,t in 

KONMEM modell and ~PEM2 modell. 

As can be expected, ~PE112 and KONiv.IEM medians for Bayesian parameter estimates 

of K.; and vd follow the differences found in population estimates of both models. 

Medians for K.; arc higher for the NOKMEM models than for comparable ~PE~l2 

models, whereas Vci is consistently lower for :I:'\0:::--JN.l:EM than NPEM2. The changes in 

parameter estimates and ranges are illustrated in figures 2-4. The distribution for Ke1 and 

Vd (optimal models) is normal (Kologorov-Sm.i.rnov test) for ~ONMEM and neither 

normal nor lognormal for NPEM2. Standard deviation for both I<:ot and Vd arc higher for 

all :::--JPE~ models "\Vi.th a concomitant difference in distribution range. \Vhen 

NON11EM residual error mim.ics NPEl\12 assay error pattern, the differences in 

parameter ranges almost disappears (fig. 3, table III). These clifferences are reduced, but 

still large when :'-!PE:'v12 error pattern mintics NO~MEM residual error (fig. 4, table III). 

Table IV shows the predictive performance of both optimal KOJ\'~ffiYI: and NPEIV!2 

models. Bias for KOJ\'MEM and KPEM2 are -0.25 and -0.33 mg/L, respectively. The 

bias for the 1\'0~MEM model is significantly better than that for KPEM2 (p<0.05). 

Precision for the models is 0.44 mg/L for KOKME~I and 0.47 mg/L for ~EM2. 

Table IV: Prediaive peiformance of optima! NONMEM and 1'-iTEM2 models 

Bias" Precisiona 

Models used J\1can error Ratio" MSE' RootMSEl> 

(mg/L) (mg/L) 

NQ~:y[EM modell -0.25 0.08 (0.01-0.014)' 0.20 0.44 

NPEM2 model 1 -0.33 0.23 0.47 

' Datl points arc point cstinutes. \Vith 95% confidence intenr:lls in parentheses 

b :\1SE. mc:111 sq=cd error 

c Rcbtivc to KPE1:12 modcl1. ·, p<O.OS (\Vllcoxon) 

Ratio' 

(mg/L) 

-0.03 (-0.08-0.02) 
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F~ 2: Histograms for inditidtta! estimates ojKI and vd: optimal 1\TQl\TlvfEM and ~'PEJ.\12 models 
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Fzg 4: Histograms .for individzta! estimates ojK1 and Vd· l\.TPEl\12 assqy error pattern mimicking 

J\TOJ\.}l'\1EM residual error 
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DISCUSSION 

Several population pharmacokinetic methods have been used in order to determine the 

optimal model for individualizing aminoglycoside therapy in adults14--16 and neonates of 

varying gestational ages2-s, 17 -18. The most \videly used methods for population modeling 

are nonlinear mi'(ed effects modeling (.KO:I'\.YIE::vr) and the non-parametric expectation 

ma.:'\.imization (KPEl\12) algorithm. Both methods can handle sparse data sets \vi.th 

varying amounts of information per subjcct19.20. 

~ONl\ffiM describes the data using a mi>:ture of fixed (e.g. time of measurement, dose) 

and random (variability '.Vi.thin or bet\:Veen subjects) effects. Besides population 

pharmacokinetic parameters the residual error is determined by the analysis. Thls residual 

error is the difference bet\veen predicted and obsenred concentrations and accounts for 

unexplainable variability like dosing error, assay error, model misspecification and errors 

in recorded timing of measurements. 
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:-.JPE~ describes the data using the assay error pattern of the drug as the predominant 

source of error. This assay error can be multiplied by gamma, as described in the methods 

section. Differences are to be expected bev,veen population pharmacokinetic estimates 

generated by these programs. To date, there are only a few studies comparing these 

methods :in the same patient group7· s. In the study by Vermes et al. various l"O='JivffiM 

and ='JPE1.12 models for flucytosine were compared using the population estimates as 

priors for :MAP Bayesian forecastingS. Predictive performance was evaluated using bias 

and precision. In their cohort of patients the NO)'JJ\1EM model had better predictive 

ability, although at closer inspection, there were no statistical differences in bias or 

precision bet\veen optimal :-.JQ)'Jj\.ffiM and NPEYL2 models. In the present study, using a 

comparable approach, '.Ve found the optimal :-.JONJ\ffiM model to have a significantly 

smaller bias. There '.Vas no significant difference in precision. The clinlcal relevance of this 

small, but significant difference in bias is unclear however. 

The intriguing question is why the population estimates, variation coefficients and 

individual Bayesian estimates differ between ::--lONMEM and ::--lPEY\2 . ::--lPEY\2 

calculates a higher v, and a slightly lower!(, than 1':0::--lMEM. The higher population v, 
is partly e::-..'Plained by more extreme outliers for individual estimates of V din NP£112; the 

difference in median of individual estimates for V a is 0.14 L/kg versus 0.23 L/kg for 

mean values. The difference in standard deviation for both models is even larger. This can 

be explained by t\vo reasons. First, :t'Q)-J:\{E:\1 assumes a normal or log-normal 

distribution and it \vill therefore tend to put less '.·veight on extreme outliers. The second 

important factor is that the assay error pattern used by NPEI\12 is appro:xirnatcly three 

times lower than the residual error in NO:-.J:\1EM. Because of this small bandwidth of 

error, :0-.TPEJ\.12 assumes serum concentrations lying outside of the e.'\pectcd range to be 

due to extreme pharmacokinetic parameters in the patient. These parameter estimates are 

incorporated in the expected distribution of parameters. NQ)J:MEM on the other hand 

does not :find a '.Vi.de distribution of pharmacokinetic parameters. This is mainly because 

extreme serum concentrations are considered to be a part of the residual (unexplained) 

error and are not ascribed to interindividual pharmacokinetic differences. This is 

illustrated by the histograms for indivi_dual parameter estimates. The initial differences in 

range decrease greatly when the assay error pattern in :-.JPE:J2 and residual error in 

NOJ-.;MEM are fi:<ed at the same level. 
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These results have implications for clinical use of these methods. As seen in this study, 

the use of gamma in NPEM2 may largely determine the difference between the final 

NOI\ME:YI and NPEM2 population estimates. 

This study as \veil as the study by Vermes suggest 0JOKlviEM to have a better predictive 

performance, when using population pharmacokinetic estimates as the basis for Bayesian 

feedbacks. This however does not mean that this \Vill hold true for every setting. Use of 

parametric methods like NOI\MEM still imply that all the information in the population 

is reduced to a mean or median \\tith a standard deviation or dispersion factor. This limits 

the ability to predict serum concentrations in ne\v patients. \Vith :t\PE:M2 an interesting 

new feature is under development; multiple modelingll. 21• \Vith this method proposed by 

Schumit7--ky and Jelliffe it is possible to retain all the information of the population and, 

using ::--JPErvr2, design an optimized regimen in which the weighted squared error in 

obtaining desired serum concentrations is minimized. It would be interesting to compare 

predictive performance of this method to ='!OKMEM. Furthermore, if the distribution of 

parameters in the actual population has discrete subpopulations, KOKMEM will not be 

able to detect these without further analysis, whereas ::-JPE::v.£.2 'W-ill. In this parricular 

setting predictive performance of KPE112 may be better. KO::-J1LEM on the other hand 

is able to integrate covariates in the analysis, which is a valuable feature for clinical 

application. We propose that both approaches have complementary strengths. KPEN.l2 is 

useful for obtaining the full joint density of pharmacokinetic parameter estimates and 

discrimination of clinically relevant subgroups. NOK~M is the robust method for 

obtaining estimates of residual error, parameter point estimates and population 

pharmacokinetic covariate models. 

In conclusion, this study sho\vs that tobramycin population modeling in neonates wi.th a 

parametric and nonparametric approach results in different indiv"i.dual parameter 

distributions. Differences in PK estimates can be largely e::-..-plained by differences in 

method of incorporating error patterns in ::-JOKlviEM and NPE112. 
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SUMMARY 

Objectiz..•e: Establish a tobramycin dosing schedule for neonates of various gestational ages. 

lVIethods: This \.Vas a retrospective study ""i:th prospective validation. A retrospective study 

in 470 neonates, \\r.ith suspected sepricemla in the first \.veek of life, was performed . .All 

patients received tobramycin according to the follo\.vi.ng scheme: infants "'Wi.th a gestational 

age (GA) of less than 28 weeks: 3.5 nag/kg/24 hrs, 28-36 weeks: 2.5 mg/kg/18 hrs, more 

than 36 weeks: 2.5 nag/kg/12 hrs. Trough and peak tobramycin serum levels were 

determined before and 30 minutes after the fourth dose. Tobramycin data were analysed 

according to a one-compartment open model using 1'\0N.MEM population phar­

macokineric sofuv·are. Individual empirical Bayes' estimates were generated based on the 

population estimates, and used to calculate predicted peak and trough levels for different 

dose and dosing intervals. To establish an opt:imal dosing regimen, target trough levels 

were set at below 2 mg/L and target peak levels above 5-10 mg/L. The dosing regimen 

was prospectively evaluated in 23 patients. 

&st~lts: Of the 470 patients 19.1 %of measured peak and 32.8% of measured trough to­

bramycin serum levels were outside the desired therapeutic range. 48.8% of infants \V-ith a 

GA of less than 28 weeks had an aberrant trough level. Using population estimates the 

follo\\ring dosing regimen was recommended: 

• GA < 32 weeks: 4 mg/kg/ 48 hrs 

• GA 32-36 weeks: 4 nag/kg/36 hrs 

• GA 2: 37 weeks: 4 mg/kg/24 hrs 

With this dosing schedule predicted peak levels were higher than 5 mg/L in 95.1% of 

cases. Predicted trough levels were higher than 2 mg/L in 1.9% and higher than 1 mg/L 

in 7.6%. Prospectively measured peak levels were higher than 5 mg/L in all but one. 

Measured trough levels were higher than 2 nag/L in three patients and marginally higher 

than 1 mg/L in four patients. 

Conclus-ions: With the use of this proposed schedule, taking into account differences in 

GAs, predicted peak levels "Will be therapeutic \.vhereas predicted trough levels "Will 

micimize toxicity. 
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INTRODUCTION 

During recent years there has been much debate about the optimal dosing interval and 

required serum concentrations of am.ID.oglycosides in adults, in order to ma.~c efficacy 

and minimize tox.icityl-5. Efficacy of aminoglycosides is related to the ratio of peak serum 

concentration to the minimal inhibitory concentration (NIIC) of the infecting micro­

organism and the area under the time versus concentration curve (AUC)L \ '.vhereas 

toxicity of these drugs seems to be related to high trough levels!. 5• Based on these 

pharmacodynamic characteristics and the results of clinical trials it was recently advocated 

in three meta-analytic studies2. 4. s to administer aminoglycosides in adults once daily. 

Aminoglycosides also play an important role in the initial empiric treatment of neonatal 

septicemia6• Various regimens for dose, dosing interval and monitoring have been 

suggested and implemented over the last two decades7•14• A significant relation bet\veen 

GA and the need for prolonged dosing intervals "\vas established, and the more recent 

dosing regimens propose· once daily dosing of aminoglycosides in very low birth weight 

infants11 -15. We, ho\vever, had the impression, that even "\·vith once daily adrnlnistration of 

aminoglycosides in these infants high trough levels were frequendy encountered. We 

therefore performed this study to investigate the results of the dosing schedule \Ve 

currendy use, in order to find a more appropriate dosing schedule to adrnlnister 

aminoglycosides to ne\vborns of different gestational ages during the first \Veek of life. 

"C sing population pharmacokinetics on our o"\vn data over the last few years we 

established a dosing regimen that combines optimal efficacy \vith minimal toxicity. To 

validate this regimen, we prospectively tested it in our patient group. 

PATIENS AND METHODS 

Patients 

This retrospective study \V-ith prospective validation comprised all neonates, in the first 

"\veek of life, who were treated "\vi.th tobramycin as part of their empiric treatment for 

suspected neonatal sepsis in the neonatal intensive care unit of the Sophia Children's 

Hospital between August 1992 and December 1994. Only infants whose paired peak and 

trough serum tobramycin levels were available were included. In the period bet\veen 

February and April 1997 additional patients were studied for validation. 
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Parameters 

All parameters were abstracted from the patient files. GA and birth\vcights \Vere 

recorded. GA \Vas determined on the basis of the mother's menstrual history, conftrmcd 

by early ultrasound examinations if available, and by physical examination \Yi.th the use of 

the criteria ofDubo\vitz ct all G. 

Administration and dosage regimen of tobramycin 

Tobramycin was given in combination '-Y-ith amoxicillin 50-100 mg/kg/day as empiric 

treatment for suspected neonatal sepsis. Patients wid1 documented invasive bacterial 

infection received at least 10 days of intravenous therapy. Patients '\vith sterile cultures and 

\v-ithout a focus of infection received a total of 72 h of therapy. Administration of 

tobramycin '\vas done in a 30 minute i.v. infusion with the following dosing regimen: GA 

less than 28 weeks 3.5 mg/kg/24 hrs, 28-36 weeks 2.5 mg/kg/18 hrs, more than 

36 weeks 2.5 mg/kg/12 hrs. All doses and times of administration were recorded 

routinely. Trough and peak blood samples were taken before and 30 minutes after the 

fourth dose. Dosage adjustments were made according to the outcome, wid1 d1e intention 

to keep trough levels bclo\V 2 mg/1 and peaks bet\veen 4 and 10 mg/1. 

Analytical Techniques 

Concentrations of tobramycin were measured by a Fluorescence Polarization Assay using 

a TDxFLx (Abbott Diagnostic Div--ision, Amstclveen, )JL). 

Data Analysis + Dosage recommendations and simulations 

Tobramycin data were analyzed according to a one-compartment open model, assuming 

the data were attributable to the fourth dose after birth, using :-.JON.LvffiM population 

pharmacokinetics soft\vare (NO:-.Jfv.ffiM version IV, )JON:MEM project group, 

University of California, San Francisco, CA). Based on the population estimates, 

individual empirical Bayes' estimates '\Vere generated. Scatterplots against weight and age 

indicated that both clearance and volume of distribution were related to age and weight. 

After estimation of clearance per kilogram birth weight, only a correlation between V d and 

age or weight remained (age and weight arc naturally highly correlated in this group). The 

empirical Bayes' estimates were used to calculate predicted peak and trough levels at 
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steady state for different dose and dose inter,ral combinations, and scatterplots against 

gestational age were constructed. 

Target serum to bramycin levels \.Vere set. The target trough level was below 2 mg/L 

(generally accepted as trough when dosing more than once daily) and preferably below 

1 mg/L 4• 17• Target peak levels \.Vere set at a minimum of 5 mg/L daily18-21 and preferably 

ten times the !v:1IC of the :infecting micro-organism because of the possibility of 

emergence of aminoglycoside-resistant pathogens at lower ratios21, 22. The rv.o:c of the 

most important gram-negative pathogen, Escherichia coli, is 1 mg/L in the Dutch 

popularion23, so target peak levels \vere 5-10 mg/L 

Prospective study: 

The predictive performance of the dosing regimen \vas evaluated prospectively :in patients 

receiving tobramycin according to the dosing recommendation mentioned in the results: 

• Gestational age S 32 weeks: 4 mg/kg every 48 hours 

• Gestational age> 32 but <37 weeks: 4 mg/kg every 36 hours 

• Gestational age ~ 37 \.Veeks: 4 mg/kg every 24 hours 

Tobramycin peak and trough serum levels were determined 30 minutes after the first dose 

and just before the second dose, and analyzed as described :in the retrospective study. 

RESULTS 

Retrospective study: 

Table I.lvf.eas!lred tobra»rycin concentrations in retrospectiv·e stuc!J' 

Gestational age group (weeks) 

Tobramycin (mg/L) GA<28 28:SGA<32 32,SGA<37 GA;;::37 TOTAL 

trough S2 42 (51.3) 103 (61.7) 104 (81.2) 67 (72.1) 316 (67.2) 

trough> 2 40 (48.8) 64 (38.3) 24 (18.8) 26 (28.0) 154 (32.8) 

peak< 5 4 ( 4.9) 37 (22.2) 32 (25.0) 17 (18.3) 90 (19.1) 

5:Speak:S10 75 (91.5) 128 (76.6) 96 [15.0) 74 [19.6) 373 (79.4) 

peak> 10 3 (3.7) 2 (1.2) 0 (0) 2 (2.2) 7 (1.5) 

TOTAL 82 (17.4) 167 (35.5) 128 (27.2) 93 (19.8) 470 (100.0) 

:!:'\;umbers an: number of patients. numbers in p::trenthe~c~ ::tre percentages of tot:ll in group. G.\:::::ge~t:ttional age 
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Four hundred and seventy neonates were enrolled in the study. Their gestational ages 

(GA) and birthweigths (B\V) ranged from 23 to 42 weeks (median 31.5 weeks) and from 

485 grams to 5245 grams (median 1530 grams), respectively. Table I summarizes the 

results of robramycin peak and trough concentrations for the different GA-groups. As 

can be observed 19.1 % of peak and 32.8% of trough levels \Vere outside d~e desired 

therapeutic range. In the GA groups belo\.v 28 weeks and bet\veen 28 and 32 \Veeks ilie 

percentage of aberrant trough levels was particularly high, 48.8% and 38.3% respectively. 

On the basis of ilie scatterplots and set target serum tobramycin levels d1e dosing is 

recommended at 4 mg/kg \viili the follo\V"ing dosing intervals: 

• GA < 32 \Veeks: 4 mg/kg every 48 hours 

• 32:S GA <37 weeks: 4 mg/kg every 36 hours 

• GA ~ 37 weeks: 4 mg/kg every 24 hours 

For illustrative purposes, the curves predicted using the advised dosing regimen and the 

empirical Bayes' estimates were constructed and concentrations corresponding to the 5d~, 

50th and 95th percentile computed for the three dosing intervals-age groups (Fig. 1). 

Calculations were performed using SPSS for Windows (V6.1.2). Fig. 2 and Table II show 

the predicted peak and trough levels \vith d~ese recommendations. 

Table II. Predicted tobramycin concentrations 11.ring revised do.ring recommendatioll 

Gestational age groups (weeks) 

Tobramycin (mg/L) Gi\<28 28:S_GA <32 32::SGA<37 GA 2:37 

trough :S 1 75 (91.5) 161 (96.4) 116 (90.6) 82 

1 < trough :S 2 6 (J.3) 5 (3.0) 9 (7.0) 7 

trough> 2 1 (1.2) (0.6) 3 (2.3) 4 

peak< 5 11 (13.4) 10 (6.0) 2 (1.6) 0 

5 :Speak :S 10 69 (84.1) 149 (89.2) 92 (71.9) 6 

peak> 10 2 (2.4) 8 (4.8) 34 (26.6) 87 

TOTAL 82 (17.4) 167 (35.5) 128 (27.2) 93 

numbers arc number of patients, numbers in parentheses arc percentages of total in group. 

GA = gcstario112.l age 

(88.2) 

(7.5) 

(4.3) 

(0.0) 

(6.5) 

(93.5) 

(19.8) 

TOTAL 

434 (92.3) 

27 (5.7) 

9 (1.9) 

23 (4.9) 

316 (67.2) 

131 (27.9) 

470 (100.0) 
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Figure 1. Predicted tobramycin concentration curoes ttsing re1Jised dosing recommendation. A, 4 mg/ kg 

eVeJ)' 24 brs. B, 4 mg/ kg evel)' 36 brs. C, 4 mg/ kg eve!]' 48 hrs. Cttmes are 95tb,50th and 

5th percentiles. 
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Fig. 2 clearly sho\.VS that predicted peak levels rise \vith gestational age. Predicted peak 

levels range from 2.9 to 18.7 mg/L, 'Wi..th a median of 8.0 mg/L. Predicted peak levels 

\.vere below 5 mg/L in 4.9% of the newborns and above 10 mg/L in 27.9 % of the 

nc\vborns. Median peak levels in the GA-groups were 6.1 mg/L < 28 \.Veeks, 7.3 mg/L 

bet\veen 28 and 32 weeks, 8.7 mg/L bet\veen 32 and 37 \.veeks and 13.2 in the term 

group. Insufficient peak levels are found in 11 of 82 (13.4 %) of neonates \.vi.th a GA < 28 

weeks. Of these 11 newborns, 10 had predicted peak levels between 4 and 5 mg/L. 

Predicted trough levels tanged from 0.01 to 8.1 mg/L (median 0.36 mg/L).Trough levels 

\.vere above 2 mg/L in 1.9% of all cases and bet\veen 1 and 2 mg/L in 5.7 %. As Fig. 2 

shows, there was no relation between GA and trough levels. Figure 1 shows the predicted 

serum levels over time for the dtree GA-groups. The 50th percentile line of tobramycin 

serum levels dropped below 1 mg/L at approximately 18, 24 and 32 hours in the once 

every 24, 36 and 48 hour group respectively. 

Fig11re 2. Predicted lobra/J()'ciJJ peak (sqNare.s) and trough (circles) levels with revised dosing 

recommendation 
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Prospective study 

Prospective evaluation was performed in 23 neonates. Their GA ranged from 24.4 to 42.1 

"\vccks (median 32.5). Table III summarizes the results of observ~ed tobramydn peak and 

trough concentrations for the different GA~groups using the recommended dosing 

regimen. Peak levels ranged from 2.9 to 13.5 mg/L >vith a median of 7.9 mg/L. Only one 

peak level is below 5 mg/L. .'Vledian peak levels in the GA-groups were 6.9 mg/L < 32 

"\vceks, 7.3 mg/L between 32 and 37 weeks and 9.0 in the term group. Trough levels were 

between 0.1 and 5.7 mg/L (median 0.7 mg/L). Trough levels exceeding 1 mg/L were 

found in 7 cases. Of these, three patients had trough levels of 1.2 mg/L and one patient 

had a trough level of 1.3 mg/L. .'Vfedian trough levels in the GA-groups were 0.7 mg/L 

below 32 "\Veeks, 0.65 mg/L bet\veen 32 and 37 "\Vecks and 0.95 rng/L in the term group. 

Table III.lvfea.mred tobraiJI)'cin concmtrations 11sing rni.red dosing rr:co!!lltlendation 

Gestational age groups (weeks) 

Tobramycin mg/L) GA<32 32:SGA<37 GA237 TOTAL 

trough.$. 1 6 (85.7) 5 (62.5) 5 (62.5) 16 (69.6) 

1 <trough .S. 2 2 (25.0) 2 (25.0) 4 (17 .4) 

trough> 2 (14.3) 1 (12.5) 1 (12.5) 3 (13.0) 

pcak<5 1 (14.3) 1 (4.3) 

5.$. peak .$.1 0 6 (85.7) 7 (87.5) 6 (75.0) 19 (82.6) 

peak> 10 1 (12.5) 2 (25.0) 3 (13.0) 

TOTAL 7 (3D.4) 8 (34.8) 8 (34.8) ?' _, (100.0) 

Numbers arc nu:nbcr of p:1cicnt~. numbcn in parentheses arc perccnmgcs of total in group 

GA=gcstacion:ll age 

106 



DISCUSSION 

Earlier inves~o-ations concerning the pharmacokinetics of aminoglycosides and other 

drugs in neonates have shown that elimination half lives are longer in neonates, especially 

in preterm neonates8·11 , 24• This is primarily the result of a higher percentage of body water 

and thus a larger volume of distribution and reduced clearance25. 26• Most dosing 

schedules for preterm and term neonates take dUs into account?-12. 14. \Ve had the clinical 

impression that our use of GA-related dosing still led to serum concentrations which 

\vere frequendy outside the desired range. The inventory of our O'\VTI results over d1e past 

fe\v years sho\ved that about one third of the initial trough serum levels were too high, 

particularly in premature neonates, and that in v'iew of these results a more appropriate 

dosing schedule should be found. 

The limitation of dosing aminoglycosides in neonates lies in the long elimination half life, 

and therefore the only way to effectively reduce trough serum levels "\v"ithout 

compromising adequate peak levels is by further increasing the dosing interval. It is 

difficult to define the desired therapeutic range for aminoglycosides. Peak levels of >4 to 

5 mg/L arc generally accepted as necessary for antibacterial efficacy whith administration 

three times a daylS-21; however questions arc being raised about the underlying fundament 

of this assumption3. \'lhat is k.no\.Vn, is that efficacy of aminoglycosides is related to peak 

levcl/fviTC ratio and AUC1. 21, and that in -vitro ratios of 10:1 prevent emergence of 

aminoglycoside-resistant pad1ogcns22• In the first week of life, d1e pathogens for which 

tobramycin is indicated as therapy are mainly acquired trough the birth passage. By far the 

most common pathogen in this group of gram-negative bacteria is E. Cofi27_ In a recent 

survey of the Dutch population, the .MIC;o for E. Coli was found to be 1 mg/L23, and 

although in theory a peak serum concentration of 10 mg/L would be optimal, a 

pcak/.MIC ratio of 5 can be considered to be effective. 

The effect of serum concentrations on toxicity is even harder ro quantify. High ami­

noglycosidc peak levels do not increase nephrotoxicity because of drug-specific sarurable 

uptakc2S-30_ In several large meta-analytical studies toxicity seems to be related to high pre­

dose levels, indicating that trough levels are not low long enough to prevent renal 

accumulation1. 2, s. t<J_ Commonly accepted trough level goals arc < 2 mg/L, but for once­

a-day administration most authors keep 1 mg/L as a safe limit+- 17_ Another point in the 

discussion is that renal toxicity is mosdy reversible, whereas ototoxicity is usually 

irreversible. Most authors suggest that ototoxicity is related to total dose and duration of 

therapy rather than to serum aminoglycosidc levels, but the relation to aminoglycoside 
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serum levels remains unclear. This form of toxicity usually occurs in patients \.vho have 

received either long, or repeated, courses of aminoglycosides3.Reports about ototoxicity 

in neonates are contradictory. Some authors report no relation31 -33, \.vhereas others did 

find a higher incidcnce34--36_ Until conclusive evidence is given, it seems prudent to keep 

duration of tobramycin therapy as short as possible. 

On the grounds of a peak/MIC ratio above 10 and the MICoo of E. Coli in our population 

a peak tobramycin serum concentration as high as 10 mg/L is desirable from the efficacy 

point of vie\v. A trough level belo\v 1 mg/L --will have to suffice until better data about 

toxicity are available. 

Using population pharmacokinetics, \VC established a better dosing scheme to meet these 

criteria. This resulted in the follo\.ving GA-rclatcd regimen: 

• Gestational age $ 32 \Veeks: 4 mg/kg/ 48 hours 

• Gestational age > 32 \.veeks but< 37 \veeks: 4 mg/kg/36 hours 

• Gestational age::=: 37 \Veeks: 4 mg/kg/24 hours 

\Vith this regimen most predicted peak levels are in the required range in neonates with a 

GA above 32 weeks, \vith acceptable predcited trough values for almost all (see table II). 

In the GA-group below 28 \Veeks, predicted peak serum levels arc arguably too lo\.v ill 12 

of 82 patients, but still 11 of these are bet\vcen 4-5 mg/L The prospective evaluation 

sho\ved that serum peak levels are in the desired therapeutic range in all but one patients 

(see table III). Yrcasured trough levels were mildly elevated in four patients and clearly too 

high in three, so there is a definite need for measuring trough serum levels before the 

second dose. This dosing regimen also makes redundant the need for a loacling dose of 

aminoglycosides in prematures, as suggested by some1L 17- 37 because high enough peak 

levels are achieved at the first dose. In addition, the practical advantage of this proposed 

schedule is a fixed starting dose per kilogram body"\veight, irrespective of GA. 

A possible problem in the once every 48 h group is that tobramyc:in levels might be 

subtherapeutic for too long. Serum levels at 24h in this group (figure 1) sho\v that most 

neonates arc around 2 mg/L, which is still higher than the l\1IC of relevant micro­

organisms, but drops belo\v 1 mg/L after approximately 32 hours. In the prospective 

group of 23 patients serum trough levels did not fall too low. Furthermore tobramycin is 

al\.vays given in combination with amoxicillin in this group and the post-antibiotic effect, 

or post-antibiotic leukocyte enhancement effect, or sub-~C effect, which will prevent 
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regrm:vth of bacteria at sub-lvilC levels of tobramycin for another period of at least 

hours33-40, so \Ve consider this a safe dosing intenral. 

In conclusion, the information that we presented sho\VS that acceptable therapeutic 

tobramycin peak and trough concentrations can be reached \Vith a simple dosing schedule 

for three separate GA-groups in the first \Vcek of life. Trough levels according to our 

scheme arc not toxic and probably not long enough bclo\v 1 mg /L to permit bacterial 

regro\V"i:h. 
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SUMMARY 

0/jective: To individualize tob.ramycin dosing regimens in neonates of various gestational 

ages using early therapeutic drug monitoring. 

Methods: This study was performed in neonatal patients \vith suspected septicemia in the 

first week of life. All patients received tobramycin in a dose of 4 mg/kg/ dose, as a 30' 

I.V. infusion, with a gestational age (GA) related initial interval of 48 hours (<32 weeks), 

36 hours (32-36 weeks) and 24 hours (2: 37 weeks). The target serum peak and trough 

serum concentrations were 5-10 mg/L and 0.5 mg/L, respectively. Serum trough samples 

as well as 1 and 6 hour samples were taken after the first dose. T obramycin 

concentrations were used to obtain gestational age dependent population models '.Vi.th 

NPE~ soft\vare. To investigate the effect of timing of sampling in a second group of 

patients, serum trough samples as well as 3 and 8 hour samples were taken after the first 

dose of tobramycin was administered. Serum trough concentrations were predicted using 

linear phannacokinetics in both groups and by using the population models with Bayesian 

feedback of one or two serum concentrations in the second group. These predicted 

concentrations were compared to actual serum trough concentrations. The predictive 

performance of the 1-Gh and 3-8h models and the population models were compared to a 

gestational age related model \.Vlthout therapeutic drug monitoring (fDJ\1). 

Results: A total of 247 patients were analyzed, 206 with 1-Gh serum samples and 41 with 

3-Sh serum samples. Peak serum concentrations were above 5 mg/L in 90.8 °/o and 

trough serum concentrations above 1 rng/L in 25.5% of cases. The 3-8h linear model had 

a bias of -0.31 mg/L and a precision of 0.48 mg/L and performed significantly better 

than the 1-6h model. The best KPEM model had a bias of -0.11 mg/L and a precision of 

0.45 mg/L. Kone of the models yielded a significant improvement of predictive 

performance over the model w-ithout TDM. 

Conclusion: Routine early therapeutic drug monitoring does not improve the model based 

prediction of initial tobrarnycin dosing intervals in neonates in the first week of life. 
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INTRODUCTION 

Neonatal sepsis is an important health care problem, especially in developing countries, 

with an estimated world\Vi.de mortality of 1.5-2 million per year 1. 

Although a trend for a decline in sepsis associated neonatal deaths in neonatal intensive 

care units (1'\ICD's) has been reported, treatment of (suspected) neonatal sepsis remains a 

cornerstone in neonatal intensive care practice 2• In recent years there is an increase 

towards gram-negative infections in the NICU3. 4• Culture proven early onset sepsis 

(occurring within 72 hours of birth) in very low birthweight infants (VLBW) is reported 

to occur in 1.9% of cases, but this does not reflect the need for antibiotic treatment in 

this patient group'. Diagnosing sepsis in these vulnerable patients is difficult. ]';;either 

blood culture, nor leukocyte count or CRP give conclusive evidenceS, 6. In many VLB\V 

infants early-onset sepsis is suspected on clinical grounds and antibiotic therapy is started 

and continued for 3-7 days. Initial empiric treatment with a combination of an 

ami.noglycoside with penicillin, amoxicillin or a cephalosporin is common practice7• 

Optimization of ami.noglycoside use in neonates warrants therapeutic drug monitoring 

(TD:tvl) for both efficacy and toxicity reasons. Aminoglycoside efficacy is related to the 

ratio of peak serum concentration to the minimal inhibitory concentration CMJC) of the 

infecting microorganism and the area under the rime versus concentration curve (A e C) s. 

If a peak we ratio of >10 is taken as essential, this means that adequate initial peak 

serum concentrations of 5-10 mg/L are warranted9. Toxicity is related to high pre-dose 

concentrations and serum trough concentrations should be in the range of 0.5-2 mg/L 

depending on the dosing IDterval7· 10. 11. Traditionally TDM for ami.noglycosides is 

performed in steady state around the fourth dose. For several reasons this is not useful in 

neonates in the first week of life. Antibiotic courses in neonates are often discontinued 

after a few days when blood cultures and other tests remain negative. Because of 

prolonged half-life and reduced clearance in prematurcs IDtervals of 24-48 hours arc 

advised in this patient group9· 12. 13. Large inter-individual differences remain and 

predictive performance of these proposed regimens might be improved by TDM. 

Traditional therapeutic TDM in this setting would not be performed in time to be of use. 

Early TD:vf direcdy after the first dose may improve treatment for the individual patient. 

There are two commonly used approaches to TDM in this setting. The first method is to 

take t\VO serum samples in the elimination phase after the first dose and calculate the 

individual dose interval by using first order elimination kinetics. The timing of the first 

sample is normally 1h after start of infusion, but it has been suggested that this is too 
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early 14• The second method is determining the individual intenral using a population 

pharmacokinetic model \Yi.th Bayesian feedback of one or t\vo serum sample. The aim of 

our study "\vas to explore the possibility of individualizing dosing interval in neonates of 

varying GA's during the first week of life. Both TDM strategies were analyzed. 

Furthermore the influence of timing of serum samples was studied. The predictive 

performance of these strategies was compared to our standard GA-related dosing 

regimen previously published9. 

PATIENTS AND METHODS 

Patients 

All neonates, in the first week of life, who \vere treated \Yi.th tobramycin as part of their 

empiric treatment for suspected neonatal sepsis in the neonatal intensive care unit of the 

Sophia Children's Hospital between December 1996 and June 2000 were eligible for this 

retrospective study. Only infants whose paired 1-6 hour or 3-8 hour and trough serum to­

bramycin levels were available were included. Furthermore the trough serum 

concentration had to be sampled within one hour of the advi.sed GA-related dosing 

interval of our previ.ous study9. 

Parameters 

GA, b.i.rtlT\veight, Apgar scores and medication '\vere noted in the patient files as a routine 

procedure. GA was determined on the basis of the mother's menstrual history, confirmed 

by early ultrasound examinations if available, and by physical examination '\Vi.th the use of 

the criteria ofDubowitz et al15. 

Administration and dosage regimen of tobramycin 

Tobramycin was given in combination with penicillin G as empiric treatment for 

suspected neonatal sepsis. Patients '\Vi.th documented invasive bacterial infection received 

intravenous therapy as considered appropriate by the attending physician, usually at least 

7 days. Treatment '\Vas discontinued after 72 h in patients with sterile cultures and '\Vi.thout 

a focus of infection. Administration of tobramycin was performed in a 30-minute 

intravenous infusion in a dose of 4 mg/kg. The initial dosing interval was 48, 36 or 24 

hours in neonates "\vi.th a GA of <32 weeks, 32-36 weeks and 2:: 37 '\Veeks, respectively 9. 
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Therapy adjustments were made at the discretion of the attending physician. All doses 

and times of administration were recorded routinely. Tobramycin serum samples were 

taken as part of routine therapeutic drug monitoring 1 and 6 hours after the first dose and 

just before the second dose. 

After analysis of this patient group (1-6h group) serum sampling was changed to 3 and 8 

hours (3-Sh group) after the first dose and just before the second dose to investigate the 

effect of sample timing on serum trough concentration prediction. 

Analytical Techniques 

Concentrations of tobramycin \Vere measured by a Fluorescence Polarization Assay using 

a TDxFLx (Abbott Diagnostic Dh~sion, Amstclveen, ::-.lL). 

The coefficient of variation for this test in our laboratory is 8% at 0.3 mg/L and <5% 

from 1-20 mg/L. 

Population modeling 

Data from the 1-6 h group of patients were used to obtain a population model by way of 

a nonparametric C..."'\:pectation ma..'\..llnizarion algorithm developed by Schumitzky (NPEM 

program, USC*PACK clinical collection version 10.7, LAPK, Los Angeles, CA) 

employing all 3 available data points (lh, 6h and trough concentration) per patient. A total 

of three models \vere made, one for each different gestational age group (GA-group): <32 

weeks, 32-36 weeks1 ?:.37 weeks. :vfodels were described in terms of volume of 

distribution (V d, L/kg) and elimination constant (Ke1, h-1). Serum concentrations were 

'\veighted by the reciprocal of its variance, fitted by the following equation: 

SD= 0.0599 + 0.0126C + 0.00438 U, where SD is the standard de>~tion of the assay 

and C represents the measured tobramycin serum concentration. 

The population models \vere achieved in 2 steps. The front part of the :t'-..1?EM program 

calculated individual parameter estimates for Ke1 and V d ill a one-compartment model by 

the iterative 2-stage Bayesian (IT2B) modeling approach. Parameter value boundaries 

used as priors for this step were arbitrarily set at 0 to 0.4 h-1 for K:1 and 0.2 to 3 l/kg 

forVd. 

The parameter estimates were then used as input for the actual :::--JPE:y£ program resulting 

in mean population parameter estimates and SD's. 
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Data Analysis 

The follo"v-1ng tobramyc.in TDM strategies \.Vere compared for predictive performance 

1. Linear pharmacokinetics (1 ~6h group and 3-8h group) 

Tobramycin data were analyzed according to a one-compartment open model for the 

1-6h group and the 3-Sh group. Analysis for the 1-6h group will be described in detail. 

Analysis for the 3-Sh group was similar. Based on the assumption that one and si' hour as 

'\Veil as the trough serum concentrations were determined in the elimination phase of the 

drug, serum concentrations were used to calculate the elimination constant (Ket), the 

elimination half-life (tv£) and the time to reacb a serum concentration of 0.5 mg/L (t""'") 

ln(c6)-ln(cl) . 
as follo\VS: I<eJ == _ , where C6 and Ct are serum concentrao.ons (mg/L) at t6 

0 

. , -!n( 05
) 

and t 1 respecnvely, ! 1/.£ = 0.69.,/I<eJ, tUrgct = T + 1. 

The interval between the start of infusion and trough sampling [interval(h)] was 

determined. 

The predicted serum trough concentration (Cprcd) was calculated as follows: 

Cprcd== Ct.e·Kd.(intcrv:U-1) 

2. Pop:tfation model and Bqyesian fledback 

The GA-related population model '\vas used in conjunction '\v'i.th Bayesian feedback of 

either or both of the 3h and Sh serum concentrations to predict individual serum trough 

concentrations of the 3-Sh group by way of the :'.1\V\Pharm software package 

GY!W\PHAR..'Y!, version 3.30, YlecliWare; Groningen, The Netherlands). Tobramycin 

trough serum concentrations were predicted in this way and compared using either or 

both of the 3h and Sh serum concentrations as feedback. The same procedure was not 

performed in the 1-6h group because population parameters were based on this group. 

Validation in the same patient group could lead to a false favorable performance16. 

3. GA6rrro:tp model witho:lt TDlvl (no TD}Ilgrolfp) 

In our previous study we concluded that the initial tobramycin dosing interval in neonates 

in the first week of life would be optimal \vith 48, 36 or 24h in GA-groups <32, 32-36 

and ;;::37 ·weeks, respectively 9. This '\vas based on a desired trough serum concentration of 
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0.5 mg/L. If the actual trough serum concentration in the present study was taken v.1:r.hin 

1 hour of this GA-rclated interval, the predicted trough serum concentration was then 

defined as 0.5 mg/L. In this model no individual TD.\1: information was used to predict 

trough serum concentrations. 

Predictive performance and statistical evaluation 

The predictive performance of all models was evaluated by comparing predicted serum 

concentrations 'With measured serum trough concentrations according to the method of 

Sheiner and Beal 16. Bias \.vas calculated as the mean prediction error (J\ffi); the mean 

difference bet\'\reen measured and predicted concentration. This is a measure for the 

systematic component of error. Precision was calculated as the mean squared prediction 

error (lvfSE); the mean of the sum of squared differences between actual and predicted 

serum concentrations. The root mean squared prediction error is the squared root of 

MSE and converts the measure of precision back to concentration units. Relative 

predictive performance was determined by comparing differences and confidence 

intervals of differences of :ME and MSE for models. 

Statistical analysis was performed using SPSS 8. 0 statistical software (SPSS Inc., Chic~oo, 

LSA). Significance for relative predictive performance \.vas defined when the 95% 

confidence inten~al did not include zero. The Wilcoxon signed rank test and Mann­

\Xibitney test '\vere used as non parametric tests. 

RESULTS 

Patient groups 

In the 1-6h group a total of 379 patients had paired 1-6h serum concentrations and 

trough concentrations taken. Serum sampling times were aberrant or incomplete in 32 

patients. An incorrect dose (< 3mg/kg or > 5 mg/kg) \.vas given in 5 patients. In 136 

patients the serum trough concentration '\vas taken outside 1 hour of the GA-related 

intcn~al. Thus a total of 206 patients were evaluated. In the 3-Sh group serum sampling 

group 77 patients \.vere included. Serum sampling time '\vas aberrant or incomplete in 14 

patients. An incorrect dose \.Vas given in 2 patients. T'\vcnty patients had their serum 

trough concentration taken outside 1 hour of the GA-related interval. Forty-one patients 

were evaluated. Table I shO\.VS demographic variables of the 1-6 and 3-8 study group. 
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There arc no significant differences for Gr\, birtll\veight Apgar score or postnatal age 

bet\veen 1-6h and 3-Sh groups. 

Table I: Demographic variables of the 1-6h and 3-8h stud_;' group 

Group1-6h Group3-8h Significance 

(n=206) (n=41) 

Gestational age (weeks) 33.1 (24.4-42.1) 33.3 (25.9-40.3) 0.97 (NS) 

Birrhweight (grams) 2011 (580-4780) 1976 (765-4500) 0.78 (NS) 

APGAR score 5 min 7.5 (1-10) 7.5 (2-10) 0.97 ()JS) 

Postnatal age (days) 0.97 (0-7) 0.93 (0-7) 0.80 (NS) 

Data :lie mcan(rnngc) 

Distribution of obtained serum concentrations 

Table II shows obtained peak serum levels in the 1-6h group. In the 3-8h group no peak 

serum concentrations \vere determined. Peak concentrations ranged from 2.4-14.1 mg/L. 

Table II: Tobra!'1()1cil1 peak senw; concentraiions according to GA-grottp in tbe 1-6h grot;p 

Gestational age groups 

Tobramycin peak 

serum concentration <32 \vccks 32-36 weeks ~37weeks TOTAL 

<5mg/L 14 (14.7) 4 (8.9) 1 (1.5) 19 (9.2) 

5-10 mg/L 79 (83.2) 38 (84.4) 53 (80.3) 170 (82.5) 

> IOmg/L 2 (2.1) 3 (6.7) 12 (18.2) 17 (8.3) 

TOTAL 95 (100) 45 (100) 66 (100) 206 (100) 

Data :l!c number of patients (pcrccnt:tgc of rocl) 

Yrean serum peak concentrations (±SD) for GA-groups are 6.4±1.6. 7.2±1.8 and 

8.2±1.9 mg/L for <32, 32-36 and ~37 '\Veeks, respectively. r\ total of 90.8% of peak 

concentrations '\Vas higher than the lo'\ver limit for presumed optimal efficacy (5 mg/L). 

Only 5 of 19 neonates \vi.th peak concentrations belo'\V 5 mg/L had concentrations bclo'\v 

4mg/L. 
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Table III: TobraJJ!)'cin trottgh serum concentrations according to GA-grottps (both 1-6h and 3-8h group). 

Data in parenthe.res are percentages of total 

Gestational age groups 

Tobramycin trough 

serum concentration <32weeks 32-36 weeks 

< 0.5mg/L 60 (53.6) 17 (28.3) 

0.5-1 111g/L 44 (39.3) 26 (43.3) 

>1 mg/L 8 (7.1) 17 (28.3) 

TOTAL 112 (100) 60 (100) 

Dam arc number of patients (pcrcentlgc of tocl) 

"'37weeks 

12 (16.0) 
y -" (33.3) 

38 (50.7) 

75 (100) 

TOTAL 

89 (36.0) 

95 (38.5) 

63 (25.5) 

247 (100) 

Table III shows trough serum concentrations for the 1-6h and 3-Sh group. Mean serum 

trough concentrations (±SD) for GA-groups are all higher than the target of 0.5 mg/L. 

Values (±SD) are 0.52 ± 0.33, 0.78 ± 0.46 and 1.07 ± 0.58 mg/L for <32, 32-36 and "'37 

weeks, respectively. Approximately one quarter (25.5%) of patients had serum trough 

concentrations higher than 1 mg/L, the highest percentage (50.7%) in the term group. 

Fourteen neonates had a trough serum concentration < 0.2 mg/L, half of these in the GA 

age group <32 "\veeks. 

Population model 

The results of the NPEM analysis of the three different GA-groups for the 1-6h group 

are sho,vn in table IV. There are substantial differences between V d and K:1 for different 

GA-groups '"i.th a decrease ofVd and an increase ofKe1 in relation to gestational age. I<e1 
increases with 53% and V d decreases '\Vi.th 23% \vhen comparing pretcrms < 32 weeks 

with term infants. 

Table W.· Population phaT!l1acokinetic parameter estimates of the 1-6h groHp 

N ~'(I>') vd (L/kg) 

GA-models G.A < 32weeks 95 0.064 ± 0.034 0.70 ± 0.17 

GA 32-36 weeks 45 0.066 ± 0.022 0.63 ± 0.15 

G.A;::.:. 37 'l.vccks 66 0.098 ± 0.046 0.54 ± 0.11 

G:\ :::::: gestational age, l<c; :::::: elimination rate constant, VJ :::::: volume of distribution. DaL'1 ;uc means :t stmdard 

dcv-i'1tion 
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Predictive performance 

Darn for predictive performance of the investigated models in accurately estimating 

trough concentrations are sho\vn in table V. These data represent all GA-groups. 

Table V· Prediaive peifmJ1ance of models in estimating serttJTJ trough concentration (n=41 ). 

BIAS PRECISON 

Models used lviean error MSE* RootMSE* 

(mg/L) (mg2/L2) (mg/L) 

1\'o TDM model (1-6h group) -0.26 0.34 0.58 

No TDM model (3-8h group) -0.20 0.20 0.45 

)JPEYI: model -0.30 0.21 0.46 

(3-8h semm concentration feedback) 

)JPE::\1: model -0.11 0.20 0.45 

(Jh serum concmtralion feedback) 

NPEMmodel -0.24 0.16 0.42 

(8b semm concentration feedback) 

Linear model -0.39 0.69 0.83 

(1-6h grwp) 

Linear model -0.31 0.23 0.48 

(3-Sh grwp) 

*MSE = mean squared prediction error 

Bias represents the systematic error in the model and was negative in all cases (-0.11 up 

to -0.39 rng/L). Tlus means that all models underpredicted the actual trough serum 

concentration. Linear pharmacokinetic models had a more negative bias than comparable 

NPE~I and no-TDM models. Bias of KPEM models using one serum concentration as 

feedback was lower than "vhen using t'\vO. The measure for precision [root mean squared 

error (rng/L)] differed between 0.42 and 0.83 mg/L. Linear pha.rmacokinetic models had 

a worse precision than comparable :1:'\PEM and no-TDYI models. Precision for NPEM 

models using one or t\VO serum concentrations as feedback did not differ much and \vere 

comparable to precision of the no-TD:\ti model. To investigate whether predictive 

performance '\Vas related to GA, data were also analyzed separately per GA-group (data 

not sho\VTI). Bias and precision for ='JPE~-, linear- as well as no-TDM models in the term 



lnfant group were worse as compared to preterm lnfants < 32 \.veeks. The only exception 

was bias in the 1\iPEYI: 3h model. The model with the best bias and precision was the 

no-TD~ model for preterms < 32 weeks with a bias of -0.02 and a precision of 

0.04 mg/L. 

To determine the relative predictive performance, ratios for bias and precision bet\veen 

the no-TDM model and other models \.vere calculated 16• The predicted trough 

concentration \.Vi.th the no-TDM model was defined as 0.5 mg/L. Table VI shows results 

for this analysis. A positive ratio for bias or precision implies a lower predictive accuracy 

of the TDM model as compared to the no-TDYI: model. 

Table VI: Relative predictive performance of linear and population modeLe compared to vo-TDM models 

in estimating semm trough concentration 

Bias (mg/L) Precision (mg2 /L ") 

Models used Ratio (95% Cl) Ratio (95% Cl) 

1-6h linear 0.12 (0.03,0.22) § 0.34 (0.01.0.70) § 

3-Sh linear 0.11 (0.001,0.22ji 0.02 (-0.08,0.13) 

NPEMmoder" 0.09 ( -0.003,0.19) 0.007 (0.09,0.11) 

(3-8h semm concentration) 

NPEMmodel' -0.09 (-0.24,0.05) ·0.007 (-0.13,0.12) 

(3h senli/J C011CeJJtration) 

NPEMmodcl1 0.04 (·0.07,0.14) ·0.05 (-0.16,0.06) 

(8/J sem111 concentratio11) 

t Rebcive ro 1-6h no IDM model t Relative to 3-Sh no IDM model F p<O.OS 

Predictive performance of the no TDYI: model is significantly better for bills (1-6 and 

3-Sh models) and precision (1-6h model) than the linear model. :\iPE:>f models using 3h 

and/ or Sh Bayesian serum feedback had a predictive performance comparable to the no­

TDM strategy. The NPEM 3h model had a slightly better bias and precision without 

reaching significance. Analysis of linear pharmacokinetic models showed that the 3-Sh 

model had a superior precision (p<0.01) and a comparable bills to the 1-6h model. 

Slnce one of the aims of TD:yf was to predict aberrant trough concentrations, we also 

tested \.vhether the best population model can accurately predict undesirable trough levels 

ill lndivi.dual patients. Undesirable trough serum concentrations were defined as 

<0.2 mg/L or > 1.0 mg/L. 
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Results for thls analysis are shown in table VII. As can be seen the 3h model accurately 

predicted only 3 out of 10 undesirable trough serum concentrations. 

Table VII.· predicted trough serttm concentrations with j'\,TPEM 3h model versus measured serum trough 

concentrations 

Predicted troughs 

Measured trough < 0.2mg/L 0.2-1.0 mg/L 

< 0.2 mg/L 1 

0.2-1.0 mg/L 6 21 

> I.Omg/L 1 5 

TOTAL 7 27 

Data :u:c number of patients 

Covariate analysis 

> 1.0 mg/L TOTAL 

4 

3 

7 

1 

31 

9 

41 

Covariate analysis was performed to study the influence of perinatal asphyxia and 

exposure to other medication on serum trough concentrations. The 5' Apgar score (ASS) 

as a measure of asphyxia showed a negative correlation with trough serum concentration 

for the :0:37 week group (p < 0.01). All term neonates \vith an ASS below 5 had increased 

serum trough concentrations. Serum trough concentration were lower in neonates \.vith a 

GA < 32 weeks who were antenatally exposed to corticosteroids (p<0.01). )Jo correlation 

\.Vi.th antenatal or postnatal exposure to indomethacin \Vas found, though it is important 

to realize that only 14 neonates received postnatal indomethacin before serum sampling. 

Start of therapy was \vi thin 48h from birth in 228 patients and no relation to postnatal age 

could be demonstrated. 

DISCUSSION 

Once daily dosing of amirtoglycosides in adults has become common practice during the 

last decade. Several large studies have shO\.VTI that extended interval dosing has been 

associated "'Wi.th an increase of clinical response rate and a decrease of oto- and 

nephrotoxicity10. 17-20. The need for longer dosing intervals has also been established in 

neonates, though a difference in toxicity bet\veen ODD and :\1DD has not been 

demonstrated yet in thls group9· 12. 13. 21, 22. These extended intervals are GA related. 
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Earlier investigations concerning the pharmacokinetics of aminoglycosides and other 

drugs in neonates have shown that elimination half-lives are longer in neonates, especially 

in preterm infants23-Z7_ This is primarily due to both reduced clearance and the higher 

percentage of body water resulting in a larger volume of distribution28· 29. Extended 

interval dosing has implications for desired serum concentrations and methods of 

aminoglycoside TDM. Monitoring of aminoglycosides is based on the observation that 

outcome is improved with peak serum concentrations of 4-5 mg/L30, 31 and toxicity is 

reduced with trough serum concentrations of< 2 to 4 mg/L32.33_ Combined '\vith the fact 

that peak/:yfiC ratios of 5-10 are essential in preventing emergence of aminoglycoside 

resistant bacteriae, this has led to the common TDM goals of peak and trough serum 

concentrations of 5-10 mg/L and < 2mg/L, respectivelyS, 34. With C.."X:tended interval 

dosing there might be a need for other trough concentration goals. Some authors have 

suggested to maintain the trough standard of 2mg/L in ODD and only reduce dose or 

extend dose intervals when troughs > 2 mg/L are encountered11• 35_ If a trough of 

< 2 mg/L is accepted Mth a ODD rs,ollnen however, exposure to aminoglycosides in 

terms of ADC could be 2.5 rimes as high as that with conventional multiple daily dosing". 

There is clinical evidence that this goal could lead to an increase of nephrotoxicity11· 37. It 

therefore seems more prudent to set trough concentration goals at 0.5 - 1.0 mg/L. In the 

present study we confinned our earlier finding that a dose of 4mg/kg, irrespective of GA 

leads to adequate peak serum concentrations in >90 % of cases9. 

Several methods have been advocated to individualize aminoglycoside treatment in 

relation to these goals. A method being used in adults uses a peak and mid-interval serum 

concentration which allows the calculation of AUC or elimination half-life Mth the use of 

linear pharmacokinetics11. 20,36.38_ These calculated values might then be used for adjusting 

the dose or dosing interval of the administered aminoglycoside. In the present study we 

investigated whether use of early TDM using this approach would :improve prediction of 

individual dose intervals over a model '\vith no TDM from an earlier study 9_ Our data 

show that obtaining lh and 6h serum concentrations after the first dose as advocated by 

Begg 38and using linear kinetics yields a poor prediction of tobramycin trough serum 

concentrations and thus of individualized dose interval. Since some have suggested that 

this might be due to a prolonged distribution phase '\Ve changed sampling rimes to 3 and 

Sh14_ This led to a statistically significant :improvement of precision. However prediction 

based on the original GA-related model, using no TDM, is superior for bias and precision 

to this type of monitoring. For practical purposes linear kinetics are therefore not useful 

126 



in this setting. A second method uses population pharmacokinetic parameter estimates 39. 

These estimates with Bayesian feedback of one or more serum concentrations have been 

sho\vn to adequately predict aminoglycoside serum concentrations in adults39• 

Individualization of dosing regimens in neonates with Bayesian feedback has been studied 

by some authors13, 40. 41 • Bias and precision in these studies :ranged from -0.11 to 

-0.372 mg/L for bills and 0.359 -0.6 mg/L for precision for gentamicin"· 4D and 

-0.12 mg/L for bias and 3.69 mg/L for precision for amikacin41 • These values are 

comparable to the best Bayesian feedback model in this study, where a bias of -0.11 mg/L 

and a precision of 0.45 mg/L are found (table V). 

The introduction of Bayesilln feedback in this study, using the best model, slightly 

improves bias, but is not statistically superior to the no TDM model. Furthermore use of 

this ='JPEM model only selects 3 out of 9 patients with high trough concentrations and 

thus is not of much practical use in pinpointing individuals at risk for prolonged e::...'Posure 

to tobramycin. Use of the no TDM model leads to a substantial number of relatively high 

trough serum concentrations since approximately 25% of trough concentrations were 

> 1 mg/L. In this study neonates with serum concentrations taken outside the 1h limit of 

the GA-related interval were left out of the analysis. Since it is possible that the difference 

in timing of the inter;ral is related to more extreme phannacokinetic parameters in the 

group not included, we also looked at the total groups of neonates (342 in the 1-6 group, 

61 in the 3-Sh group). :\lo significant differences for bills and precision of both linear and 

KPEM models are found between the study groups and the total groups (data not 

shown). 

Several studies have looked at cova:riates for explaining the large interindivi.dual variation 

of aminoglycosides in neonates. As in other studies this study shows a GA related 

increase in I<ct and decrease ofVd 42-44. 

This study confirms the negative correlation bet\.Veen the ASS and serum trough 

concentration seen before 43, 44. The relation to term neonates can be expected because 

the ASS is a better predictor of hypoxia and concomitant renal failure in term than 

preterm newborns 45 • The decrease of serum trough concentration in preterms with 

prenatal exposure to corticosteroids might be a reflection of increased intra-uterine 

maturation of kidney function 46. In contrast to other studies no relation to P:::--.JA or 

admi.olstration of indomethacin is found 42-44• 47• This is probably due to the fact that 92% 

of neonates received tobramycin within 48h of bird1 in combination \vith the fact that 

indomethacin is often started on day 3. 
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How should these results be translated to dosing and therapeutic drug monitoring of 

aminoglycosides in neonates? 

Since adequate initial peak serum concentrations were found in both this and our earlier 

srudy, routine measurement of peak serum concentrations does not seem to be 

"\varranted9. A direct relation beween serum concentrations and toxicity has not been 

sho\VTI in neonates. Toxicity seems to be related to high trough concentrations and 

duration of therapy in adults19. 4S. The currendy accepted opinion is that aminoglycoside 

induced toxicity does not seem to be associated with short courses of antibiotics (<5 

days). It is possible that a prolonged period of aminoglycoside concentrations below we 
might permit bacterial regrowth. :\ionitoring trough serum concentrations before the 

second dose might allo\v us to prevent potential bacterial regrowth Oow concentrations of 

the aminoglycoside) or toxicity (high concentrations of the aminoglycoside). However it 

remains questionable if this trough concentration has any value in preclicting the amount 

of tobramycin e::-..-posure after the second, third or fourth dose of the aminoglycosidc-26. 

Although we were not able to preclict trough concentrations adequately enough, others 

have inclicated the possibility of preclicring steady state peak and trough concentrations in 

the first week of life, \v'ith a single serum sample taken after the first dose13,4t. Neither of 

these studies looked specifically at trough serum concentrations or compared their 

strategies to not performing TD~. Given the fact that bias and precision in these stuclies 

is comparable to ours it is unlikely that preclictive performance in these stuclies would be 

superior to not using TDM. In conclusion, our results indicate that routine early TDM is 

not useful in neonates in the first week of life. Precliction of individual tobramycin dosing 

intervals can not be Unproved by the use of 1-6h or 3-Sh serum concentrations after the 

first dose. Keonates in the fust week of life should be started on the proposed dosing 

schedule of 4 mg/kg dose with a GA related interval of 24,36 or 48h '· TDM should only 

be performed routinely in neonates receiving tobramycin for longer than 5 days for 

toxicity reasons. Patients "\vith renal failure as well as patients "\Vi.th obvious neonatal 

asphyxia (e.g. ASS < 5) should be monitored more closely. 
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SUMMARY 

Background: Recently the value of vancomycin therapeutic drug monitoring as well as the 

required therapeutic range has been subject of debate, resulting in ne\v recommendations. 

This study was performed to incorporate these new insights in an up-to date dosing 

scheme for neonates of various gestational ages. 

L\J.ethods: A retrospective study \vi.th prospective validation. 108 newborn infants \Vith 

suspected central line related septicemia during the first month of life received 

vancomycin 30 mg/kg/ day div-1.ded into 2 doses regardless of gestational or post­

conceptional age. Trough and peak vancomycin serum concentrations \Vere determined 

before and after the third dose. Vancomycin data \Vere analyzed according to a one­

comparrment open model \vith use of NO:J'(~M population phannacokineric soft\vare. 

~fodel parameters \Vere evaluated and then used to simulate vancomycin dosing for 

different dose and dose interval combinations. Targets were a trough concentration 

berw-een 5 and 15 mg/L and a peak belo"v 40 mg/L. In the prospective study, the optimal 

scheme was tested in 22 patients. 

Results: Of the 108 patients, 34.3% of measured trough- and 17.6% of peak 

concentrations '\Vere outside the desired therapeutic range. The model best fitting the data 

included clearance and volume per kg and was independent of gestational age (GA). 

Simulation of various dosing schemes showed that a dosing schedule of 30 mg/kg/ day, 

irrespective of GA, in three doses was optimal,. and this scheme '.vas prospectively tested. 

Mean trough concentrations before the second dose were 8.2±2.2 mg/L versus a 

predicted trough of 8.9±2.5 mg/L. :\lo peak levels higher than 40 mg/L were found. 

Conclusions: the usc of the proposed schedule leads to adequate vancomycin trough serum 

concentrations and there is no need for routine monitoring of peal( serum concentrations. 
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INTRODUCTION 

The immunologically incompetent premature neonate is especially susceptible to invasive 

Gram-positive infections thxough invasive procedures such as central venous lines. 

Stopf?y!ococctts attrerrs and coagulase-negative staphylococci account for up to 31% of 

nosocomial infections in newborn infants1. Vancomycin is the first-choice antibiotic for 

treatment of these infections in neonates. This glycopeptide antibiotic, \Vhich is 

bactericidal through inhibition of cell wall synthesis, has been used in pediatric patients, 

including neonates, since 19592. Historically, vancomycin dosing has been titrated to 

obtain peak serum concentrations betureen 20-40 rng/L and serum trough concentrations 

of 5-10 mg/L. These therapeutic goals are \vi.dely used in pediatrics and neonatology. 

There are, however, no controlled clinical trials that show a relation bet\veen serum 

concentrations and clinical response. 

Vancomycffi reportedly has potential oto- and nephrotoxic side effects. These side effects 

however are rare, especially after removal of impurities from preparations in the 1960s. 

Ototoxicity is characterized predominandy by transient tinnitus and hearing loss3 and has 

not been described in neonatal patients. ~ephrotoxicity has been reported incidentally4-S, 

especially when given in combination with an aminoglycoside. Recent research sho\ved no 

relation benveen peak serum concentrations > 40 mg/L and nephrotoxicity in neonates9, 

although a relation to very high concentrations over > 60 mg/L is suggestcd8. Therefore 

recent papers have discussed the necessity of therapeutic drug monitoring of 

vancomycin10-13_ In light of these and other papers it seems to be more clinically relevant 

to look at serum trough concentrations as the main determinant of effective therapy14· 15. 

Some studies suggest that minimum trough levels of at least 10 mg/L should be obtained 

for efficient therapy16. As yet no prospective clinical trials have inves~o-ated this 

hypothesis, and no dosing schemes based on target trough concentrations have been 

described in neonates. The aim of our study \vas to retrospectively investigate population 

pharmacokinetics of vancomycin in infants. To that purpose \VC simulated various dosing 

schedules to determine which dosing scheme would be optimal. Finally \Ve prospectively 

evaluated this optimal dosing scheme to determine its value in clinical practice. 
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PATIENTS AND METHODS 

Study design 

Retrospective study '\vith prospective validation. 

Patients 

All neonates "Utith a postnatal age of less than 29 days \vho were treated -with vancomycin~ 

.in the neonatal intensive care unit of the Sophia Children's Hospital bet\veen Al\-:,oust 1992 

and December 1997 \vere eligible for this study. Infants '\Vere only included if their paired 

peak and trough serum vancomycin concentrations \.vere available. 

Parruneters 

All parameters \.Vere abstracted from the patient files. Gestational ages (GAs), 

birthweights and weights at start of antibiotic therapy \.Vcre recorded. GAs '\Vere 

determined on the basis of the mother's menstrual history, confirmed by early ultrasound 

examinations if available, and by physical examination '-Vith d1e use of the criteria of 

Dubo\vitz ct al_17, 

Administration and dosage regimen of vancomycin 

Vancomycin was given as empiric treatment for suspected neonatal sepsis \\tith a line­

related focus, or after confinnation of a positive blood culture \v:i:th coagulase-negative 

staphylococci. Patients '\vith culture proven invasive bacterial infection received at least 7 

days of intravenous therapy. Administration of vancomycin \Vas performed in a 1h i.v. 

infusion with the follov.ing dosing regimen: 30 mg/kg I day divided in 2 doses, 

irrespective of GA. 

All doses and times of administration \Vere recorded routinely. Trough and peak blood 

samples were taken before and 1h after completion of dlC third dose. Dosage adjustJ.nents 

\Vere made according to the outcome, 'W-ith d1e intention to keep trough concentrations 

bet'\veen 5 and 10 mg/L and peak concentrations bet\veen 20 and 40 mg/L. 
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Analytical Techniques 

Concentrations of vancomycin were measured by a Fluorescence Polarization Assay using 

a TDxFLx (Abbott Diagnostic Di·vision, Amstelveen, l"L). The coefficient of variation 

for this test in our laboratory \Vas 5.1% at 7 mg/L and 2.9% at 35 mg/L. 

Data Analysis + Dosage recommendations and simulations 

Vancomycin data were analyzed according to a one-compartment open model, assuming 

the data were attributable to the third dose after birth, using KONN!EM population 

pharmacokinetics sofuvare 0-JO")Jlv.ffiM version V, ~ONlv.ffiM project group, University 

of California, San Francisco, CA) "vith a number of different models; all were one 

compartment models "vith a constant coefficient of variation intra- and inter-individual 

error model. First order conditional estimation (FOCE) \Vas applied in all cases. 

Indiv-i.dual empirical Bayes parameter estimates were generated to examine possible 

covariate relationships. The different models '\vere compared using the minimum value of 

the objective function (likelihood-ratio test). Model parameters (including residual 

variability) were used to simulate vancomycin dosing in 100 subjects for different dose 

and dose interval combinations. The target trough concentration was 5-15 mg/L and 

peak concentrations preferably below 40 mg/L. 

Prospective study 

The predictive performance of the proposed dosing regimen '\Vas evaluated prospectively 

in patients receiving vancomycin according to the dosing recommendation mentioned in 

the results: 30 mg/kg/ day dh~ded in 3 doses. 

Vancomycin trough serum concentration was determined prior to the second dose, to 

ascertain adequate therapy after the first dose. Furthermore peak and trough serum 

concentrations were determined before and 1h after the fifth dose to detect possible 

accumulation of vancomycin. The fifth dose was chosen because in the model as 

described, this \.vas the dose at '\vhich a steady state '\vas reached. 
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RESULTS 

Retrospective study 

Vancomycin trough and peak concentrations were obtained .in 115 neonates. Data for 

seven neonates were indicated as aberrant because results \Vere not identifiable as being 

either peak or trough concentrations and removed from the data set. Results mentioned 

are of the remaining 108 neonates. 

Their GAs and birth weights ranged from 24 to 41 weeks (median age, 28.9 weeks) and 

from 485 to 4625 g (median w~oht 1002 g), respectively. Postnatal age and \veight at start 

of therapy ranged from 3 to 27 days (median age, 14 days) and from 510 to 4410 g 

(median weight, 1045 g), respectively. Figure 1 and 2 summarize the results of 

vancomycin peak and trough concentrations for the various post-conceptional age (PCA) 

groups. 

As sho\VTI, 22.2% of peak concentrations and 34.3% of trough concentrations '\vere 

outside the desired therapeutic range. 17.6% of trough concentrations was below 5 mg/L. 

Population pharmacokinetic analysis was performed \.vith different models in which GA, 

PCA, clearance, volume, clearance per kg and volume per kg were used as parameters. 

The best description of the data was found in the model using clearance per kg and 

volume per kg. In this model empirical Bayes estimates of clearance and volume did not 

correlate \.vi.th weight measures; the r2 (squared correlation coefficient) bct\veen volume 

and gestational and post-conceptional age measures was less than 0.1 indicating that less 

than 10% of the variability could be explained by age. Population pharmacokinetic 

parameters for this model were a clearance of 0.057 ± 0.0018 1/hr/kg ((inter-individual 

variability 31 %) and a volume of distribution (Vd) of 0.43 ± 0.0131/kg ((inter-indi,~dual 

variability 25%). For descriptive purposes an additional model parameterized in terms of 

clearance/kg and half-life was constructed. The population average half-life was 6.0 h 

with a standard error of 0.27 hand a coefficient of variation of 34%. Evaluation of these 

models indicate that vancomycin population pharmacokinetics in neonates is best 

described using clearance per kg and volume per kg. If dosed per kg this means that the 

expected concentration profile is independent of weight or age e.g. \.vith the same Cma.-...;: 

and half-life and therefore the same Cmin. Deviations from this profile are due to inter­

individual differences and not caused by differences in covariates. 
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Fig. 1: Peak concentrations ill the retrospectiv·e study group 
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Fig. 2: Trough concentratioJJs in the retrospective stttc!J:gro;p 
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Using these pharmacokinetic parameters several vancomycin dosing regimens were 

simulated to determine which dosing schedule would be optimal in vic'\v of the target 

trough concentration. Results show that once daily administration of 30 mg/kg would 

lead to an average peak concentration after the first dose of 59.9 mg/L and a trough (at 

24 h) of 3.7 mg/L. Other simulated dose and dose inteD.ral combinations are sho'\vn in 

figure 3 and 4. As can be seen twice daily dosing of 15 mg/kg/ dose leads to an 

unacceptable percentage of undesired trough and peak concentrations, whereas 20 mg/kg 
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t\v:ice daily, results in too much accumulation, indicating that these regimens are not 

optimal. Thrice daily dosing leads to accumulation when giving 12 mg/kg/ dose and to a 

substantial percentage (27%) of ineffective initial trough concentrations "\vhen givi.ng 

Fig. 3: Predicted trough concentrations with tested dose regimem.l:-·..Tumbers are percmtage of predicted 

trough concentrations < 5 mg/ L 
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8 mg/kg/ dose. The best regimen tested was 10 mg/kg/ dose, in which less than 5% of 

predicted trough concentrations is below 5 rog/L and steady state is reached after dose 5. 

Predicted peak concentrations after the 5th dose range from 22.4 to 50.0 mg/L (mean 

34.3 ± 7.7 mg/L). Trough concentrations with this regimen range from 4.3 to 15.0 mg/L 

(mean 8.9 ± 2.5 mg/L) before the second dose and 5.0 to 30.6 mg/L (mean 15.7 ± 
6.3 mg/L) before the 5th dose. 

Prospective study 

The application of the vancomycin 10 mg/kg/Sh regimen was prospectively tested in 22 

patients. Table I sho'\vS the demographic variables for the prospective smdy group in 

relation to the retrospective group. Posmatal age was significantly lower in the 

prospective group (p=0.026), compared to the retrospective group. GA, birth weight, 

weight at start of therapy and PCA \vere not significantly different. 

Table I: demographics if retro.rpectit•e and prospective grottp 

Retrospective group Prospective group p~valuc 

Range (median) Range (median) (one way AN OVA) 

Gestational age (weeks) 24-41 (28) 25-42 (29) 0.488 

Birth\vcight (grams) 485-4625 (1002) 770-3500 (1102) 0.625 

Actual weight (grams) 510-4410 (1045) 730-3420 (1160) 0.469 

Postconccptional age (weeks) 26--42 (31) 27-43 (31) 0.832 

Postnatal age (days) 3-27 (14) 7-21 (11) 0.026 

Table II shows the results of vancomydn serum concentrations. As sho\vn, 95.5% of 

initial trough concentrations \Vas in the desired therapeutic range. Vancomycin trough 

concentrations before the second dose ranged from 3.4 to 12.5 mg/L (mean 8.2± 2.2) 

mg/L). Trough concentrations before the 5th dose ranged from 4.6 to 20.6 mg/L (mean 

12.3 ± 4.1 mg/L). Trough concentrations before the 5th dose were significantly (paired 

saruples T-test, p< 0.001) higher than before the second dose. Both before the second 

and 5th dose only one trough concentration was below 5 mg/L. Vancomycin trough 

serum concentration before the 5th dose was higher than 15 mg/L in four cases, \Vi:th 

serum concentrations of 15.3, 17.8, 20.6 and 20.6 mg/L respectively. 
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Table II: Vancol7!)ci11 serum concentrations (prospedive stttcfy) 

Vancomycin serum 

concentration 

< 5 mg/L 

5-15 mg/L 

> 15 mg/L 

<20mg/L 

20-40 mg/L 

> 40mg/L 

TOTAL 

Trough! 

1 (4.5 %) 

21 (95.5 %) 

0 (0.0 %) 

22 (100 %) 

TroughS 

1 (4.5 %) 

17 (77.3 %) 

4 (18.2 %) 

22 (100 %) 

PeakS 

3 (13.6 %) 

19 (86.4 %) 

0 (0.0 %) 

22 (100 %) 

K umbers :u:e the number of patients with v:mcomycin serum concentrations v,::irh.in specified 

nnge before dose 1 :md 5 and after dose 5. Numbers in parentheses are the percentages of the 

total in the group. 

Peak concentrations after the 5th dose ranged from 16.6 to 34.5 mg/L (mean 25.8 

± 5.0 mg/L). There '\Vas no significant relation bet\veen serum concentrations at any of 

the three sample points and GA, postnatal age (PKA) or post-conceptional age (PCA) 

DISCUSSION 

Historically vancomycin dosing in neonates, similar to aminoglycosides, has been subject 

to therapeutic drug monitoring for N·o reasons: toxicity and clinical effect. 

Apart from the infusion related histamine like reaction (red-man syndrome), due to 

impurities in the earlier preparations of vancomycin in the shties, side-effects are 

relatively rare 10. Proof of vancomycin related nephro- or ototoxicity in adults is 

circumstantial and probably only true for a selected high-risk population 18. Furthermore 

this toxicity was described using the old formulation of vancomycin. Ototoxicity has not 

been described in neonates. Vancomycin-related related nephrotoxicity is rare and no 

relation bet\V·een nephrotoxicity and serum concentrations has been found 9- 19. The few 

neonates \vith nephrotoxicity all had documented very high serum concentrations, so it 

seems prudent to keep peak serum concentrations below an arbitrary threshold of 

40 mg/L, but this in itself is insufficient reason for therapeutic drug monitoring. 

Efficacy of vancomycin related to serum concentrations has been under debate. Several 

mainly in v-itro studies have been performed to determine which pharmacodynamic 
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parameter correlates \.vith efficacy of vancomycin. Serum bactericidal titers of 1:8 or more 

(corresponding to serum concentrations of > 12 mg/L) were associated \Vith clinical 

cures in children 20. In vitro models have sho\.VTI no correlation bet\veen killing rates and 

vancomycin concentrations higher than 2-S mg/L 15. 21 . In animals, outcome of 

endocarditis was related to vancomycin trough serum concentrations 22 .. Although it is not 

possible to draw a definite conclusion as to which pharmacodynamic parameter is best 

correlated to efficacy, these studies indicate that keeping the trough level above the lviiC 

is necessary to obtain clinically good results. Monitoring of vancomycin serum 

concentrations should be focussed mainly on keeping adequate trough concentrations. 

For this study goals '\vere set at trough concentrations of S-15 mg/L and peak 

concentrations preferably belo'\v 40 mg/L. 

Using population pharmacokinetics we first established the parameters that best described 

our retrospective data. In contrast to most other studies 4-23-31, these parameters included 

clearance per kg and volume per kg, but not PCA. Given the fact that each patient only 

contributes two data points, the dependence of for instance Cl/kg on GA would have to 

be strong to be detected by the method used. This strong dependence \.Vas not found; in 

our data there is only a trend towards higher serum concentrations at lower GA. 

Elimination half-life and clearance of most drugs is longer in preterm neonates, partly due 

to a higher percentage of body water. However this factor and the postnatal increase of 

renal function32 change considerably in the first postnatal week, during '\vhich vancomycin 

is seldomly given. Furthermore most (81.8 %) of our patients were antenatally e:xposed to 

intra-uterine corticosteroid administration, which diminishes the GA-dependent 

difference in metabolism of different antibiotics 33. 34. These factors might explain the 

mitigated GA effect in our retrospective data. The independence of PCA was confirmed 

in the prospective study. 

Reported mean clearance, V ss and t-;,~ for neonates and infants ranges from 0.036 to 

0.1 L/kg/hr, 0.44 to 0.97 L/kg and 3.0 to 12.0 hrs, rcspectively19 Clearance and Vd 

found for our model were comparable to the other neonatal population pharmacokinetic 

srudy of Seay et al. 35: CL of 0.057 ± 0.0018 vs O.QJS to 0.059 L/kg/hr, Vd 0.43 ± 0.013 

vs 0.50 L/kg, though in this srudy CL was corrected for GA < 32 weeks and dopamine 

use, explaining the \Vide range. Elimination half-life in our population was quite different: 

t'l=~ 6.0 ± 0.27 hrs compared to 13.4-33.7 hrs, and more in concordance '\vi.th the range 

mentioned in other studies 19. Based on the result of these parameters, and the desired 

therapeutic range mentioned before, we tested several possible vancomycin dosing 
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schemes (table II), of which 10 mg/kg/ dose, three rimes a day led to a minimization of 

undesirable high peak- and especially too low trough serum concentrations. Prospective 

evaluation showed that indeed only 4.5% (1 of 22) of initial trough serum concentrations 

was belo\.v 5 mg/L, assuring effective therapy from the start. Ko potentially toxic peak 

serum concentrations were found. In 4 patients serum trough concentrations before the 

fifth dose were arguably too high, but still not higher than 20.6 mg/L. We did not 

simulate constant rate infusion of vancomycin \Vhich \.vas recently advocated24. Though 

this seems a logical approach to obtain desirable steady state vancomycin serum 

concentration, there are several reasons \vhy we do not consider this a feasible option. 

One of the main treatment modalities for line related infections is removing the central 

venous line. This would make continuous dosing of vancomycin unpractical in this group 

of patients in whom venous access is not always easy. Furthermore drug interactions, 

though not found in this study24, are a potential hazard. Last but not least, the time 

relation bet\veen vancomycin serum concentrations and microbial kill rates does not 

warrant such a cumbersome dosing method. 

In concurrence \.V-1th recent literature and given our results there is no obvious need to 

monitor peak vancomycin serum concentrations in neonates \.'\rithout a strong suspicion 

of renal insufficiency 12. 13.36, though this is contradicted by one author 37. 

In conclusion \Ve have shown that the application of a pharmacokinetic population 

model, built on retrospective data, is useful in determining a practical dosing scheme. 

Prospective validation shows that vancomycin dosing in neonates can be simplified to a 

GA-independent schedule of 10 mg/kg/Sh and leads to adequate vancomycin trough 

serum concentrations before the second dose, \.v-1thout potentially toxic peak serum 

concentrations. Our data indicate a need for routine monitoring of trough, but not of 

peak vancomycin concentrations in neonates. 
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SUMMARY 

Oijectiw: To assess the occurrence of hearing loss in children due to neonatal e::-.:posure to 

long courses of tobramycin and/ or high tobramycin serum concentrations. 

Methods: This \.Vas a pilot case-control study in 3-4 year old children. Data on tobramycin 

administration were abstracted from the patient files of an earlier study. Patients exposed 

in the neonatal period to either long courses (> 7days) or high serum concentrations of 

tobram.ycin constituted the study group. The control group consisted of patients \.vi.thout 

tobramycin exposure. Patients were matched for other risk factor according to criteria of 

the Joint Committee on Infant Hearing. All patients undenvent the follo'\ving 

investigations: otoscopy and pneumatic otoscopy, follo\ved by impedance audiometry, to 

exclude middle ear effusion. Click-evoked oto-acousric emissions ( ce-OAE) as well as 

distortion product oto-acoustic emissions (dp-OAE), tested at f2 frequencies ranging 

from 1-10 kHz, \Vere measured to assess hearing. All patients with abnormal ce-OAE 

results undenvent brainstem electric response audiometry (BERA) as \veil. Since 

aminoglycosidc ototoxicity is usually bilateral, results were compared per patient and not 

per ear. 

Results: A total of 29 patients were tested. Eleven patients \Vere excluded due to middle ear 

effusion. Data for 18 patients \Vere analyzed. In the tobramycin treated group (n=9) both 

ce-OAE and dp-OAE (at all tested frequencies) were not detectable in 6 ears of 3 

patients. All other patients had normal ce-OAE's as \veil as normal dp-OAE's in this 

frequency range. Difference bettveen the tobramycin treated and control group for OAE 

as well as dp-OAE showed a trend (p=O.OS). In all three patients "~th undetectable 

emissions BERt\ confirmed a cochlear loss of 60-70 dB at 3 kHz in both ears. These 

three patients had the longest total exposure to tobramycin: 20-24 days and 84-92 mg/kg, 

respectively. ~o relation to either peak or trough serum concentrations could be detected. 

Conc!Nsion: There was no statistical relation bet\veen hearing los; and tobramycin exposure, 

probably due to sample size. Our results do indicate a need for a case-control follo\v-up 

study of hearing in neonates e::-..1Josed to long courses of arninoglycosides. 
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INTRODUCTION 

Bacterial infections play an important role in the morbidity and mortality of preterm 

nconates1. Arn.lnoglycosides are effective ~o-ainst most gram-negative infections in infants 

and play an important role in the initial empiric treatment of neonatal septicemia. 

The most important specific adverse effects of aminoglycosidcs are nephro- and 

ototoxicity. The incidence of nephrotoxicity is not well kno"Wn, but seems to be 

considerably lo\ver in preterm infants than in adults2 • 

.Aminoglycosides accumulate in the lymphatic fluid of the .inner ear and are potentially 

cochlea- and vesti.bulotoxic. Outer hair: cells, inner hair cells and spiral ganglional neurons 

are damaged in a process of excitotoxic cell death due to enhancement of glutamate 

N-methyl-D-aspartate 0fMDA) receptor activity'. Cochlear hearing loss can be divided in 

acute reversible and chronic irreversible ototoxicity v.;-ith a total reported .incidence of 0 to 

47% in adults4. Hearing loss is mainly bilateral and starts in the high frequency range 

above 5 kHz, but is also found in lower frequencies in serious cases5• Reported 

occurrence of aminoglycoside induced ototoxicity in neonates is low in the range of a fe\v 

percent6- 7. The risk of developing clirllcally significant hearing problems in neonates 

treated shorter than one week seems to be smaJl6, s. 9. Suggested risk factors associated 

v.-ith aminoglycoside induced ototoxicity are elevated peak serum concentrations and 

duration of therapy, but the actual relation is unclear6· 9-11. As in adults, aminoglycoside 

extended dose intervals are recommended for neonatcs12-14. These schedules advise doses 

of 3.5-4 mg/kg with intervals of 24-48h for gentamicin and tobramycin with concomitant 

higher peak serum concentrations and lower troughs. Several studies did not find a 

relation between these ne\v dosing regimens and ototoxicity, but since the incidence is 

low, study size \vas possibly too small to detect a difference12.15.16_ 

There arc many pitfalls in relating neonatal hearing loss to aminoglycoside usc. 

Numerous risk factors for neonatal hearing loss have been identified. Perinatal infections, 

meningitis, prcmaru.rity, hyperbilirubinemia, birthwcight < 1500 grams, asphyxia, 

respiratory distress syndrome, mechanical ventilation, antibiotics, and diuretics have all 

been incriminated9_ Potentiation of aminoglycoside induced hearing loss due to loop 

diuretics has been described17. Furthermore delayed onset of hearing loss, possibly related 

to aminoglycoside use has been described9- ls.-zo. Hence aminoglycoside induced hearing 

loss in neonates should be studied in the light of these concomitant factors. 

The aim of the present pilot study was to assess the occurrence of hearing loss due to 

neonatal high-risk exposure to aminoglycosides, defmed as long courses and/ or high 
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serum concentrations. For this purpose 3-4 year old children, e.~posed .in the neonatal 

period to either long courses (> 7days) or high serum concentrations (peak > 12 mg/L, 

trough > 2 mg/L) of tobramycin were compared to patients '\vi.thout tobramycin 

exposure, but matched for other risk factors of hearing loss. 

PATIENTS AND METHODS 

Study design 

The present study was a pilot case-control study of hearing loss conducted in children of 

3-4 years old admitted to the NICU of the Sophia Children's Hospital during theix the 

neonatal period. 

Patients ·were selected from an earlier study on the emergence of antibiotic resistance due 

to antibiotic use21• In that study (study period December 1996 - December 1997), 

neonates admitted to one ward received initial treatment for suspected septicemia "\Vi.th a 

combination of penicillin-G or flucloxacillin and tobramycin. In the other ward the initial 

treatment consisted of amoxicillin or flucloxacillin with cefota.~e. All other treatment 

protocols for these wards were equal. Patients from that study were divided in two 

groups; those who had received tobramycin during admission (eligible for study group), 

and those who had only received other antibiotics (eligible for control group). 

This study '\vas approved by the institutional revie'\v board and patients '\Vere only .included 

after informed consent from a parent or guardian '\Vas obtained. 

Study group 

All patients whose records indicated that they had received tobramycin were revie'\ved. 

Patients '\vi.th an increased risk of tobramycin related toxicity were identified. Risk factors 

were defined as prolonged exposure (> 7 days), elevated peak serum concentrations 

(> 12 mg/L) or elevated trough serum concentrations (> 2 mg/L). All patients '\vi.th one 

or more of these risk factors '\vhose current address could be traced '\Vere approached and, 

if informed consent was obtained, included. 

The dosage regimen used in the period 1996-1997 was as follows. Tobraruycin (4 mg/kg) 

was administered as a 30-minute intravenous infusion. The initial dosing interval was 24, 

155 



36 or 48 hours in neonates with a gestational age of <32 weeks, 32-37 weeks and 

:::: 37 weeks, respectively. Therapy adjustments were made at the discretion of the 

attending physician. All doses and times of administration \Vere recorded routinely. 

Tobramycin serum samples were taken as part of routine therapeutic drug monitoring 1 

and 6 hours after the first dose and just before the second dose. 

Control group 

For each patient in the study group matched controls were identified in the non­

tobramycin group. Patients \Vere matched for risk factors for neonatal hearing loss, 

according to criteria of the Joint Committee on Infant Hearing22. These were defined as: 

family history of hereditary childhood sensorineural hearing loss, in utero infections (e.g. 

toxoplasmosis, herpes), craniofacial anomalies and other syndromes related to hearing 

loss, birthweight < 1500 g, hyperbilirubinemia requiring exchange transfusion, bacterial 

meningitis, Apgar scores of 0-4 at 1' or 0-6 at 5', mechanical ventilation for more than 

5 days, use of loop diuretics and usc of vancomycin. The first matched control without 

middle-ear effusion in whom measurement of oto-acoustic emissions was technically 

possible, \Vas included in the study. 

Data collection and audiologic testing 

Risk factors for hearing loss in the intervening period between neonatal admission and 

time of audiologic testing were assessed by interviewing the parents. E:-..-posure to other 

ototoxic drugs, meningitis and head trauma as well as familial hearing loss were excluded. 

Frequency of otitis media \vith or \vi.thout antibiotics, paracentesis or ear operations \Vere 

recorded. 

Investigators were blinded to the antibiotic history of the patient. All patients undet\vent 

the follov,.ing investigations. The tympanum \vas vi.sualized using a binocular Zeiss 

OP.MI-9 microscope. Pneumatic otoscopy was used to assess mobility of the tympanic 

membrane. Test results per ear were labeled as normal (aerated), containing fluid, or a 

diminished mobility. Tympanomctry \Vas performed using a clinical impedance device 

(GSI33, Grason Stadler). Tympanograms were defined as type A, B or C according to 

Jerger, \vhere type A is normal23. 

Otoscopy and tympanogram.s were used to determine the validity of test results of the 

otoacoustic emissions. In cases ·with an abnormal tympanogram. and/ or abnormal 
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otoscopic result the absence of otoacousti.c emissions \.Vas considered as due to a middle 

ear dysfunction. 

Otoacoustic emissions were measured using an IL096 OAE-instrument (OtoDynamics, 

UK). Click-Evoked otoacoustic emissions were recorded, with the standard non-linear 

click sequence stimulation, at a level of 82 dBSPL, \Vi.th the real time lo\v pass filtering 

enabled during recording, and a response pass band filter bet\veen 700 Hz and the 

instruments upper frequency limit (6.25 kHz). Distortion Product Oto Acoustic 

Emissions (dp-OAE) were also recorded at the 2£1 - f2 frequency, "~th primary levels of 

60 and 55 c!BSPL for f1 and f2, respectively. F2 frequencies of 1kHz- 10 kHz were used 

with a resolution of 3 points per octave. Scoring on absence or presence of the ce-OAE's 

and dp-OAE's was done subjectively by an expert judge (author# 2). 

All patients \vi.thout middle ear dysfunction, but \Vi.th abnormal ce-OAE results 

undet\'Vent brainstem electric response audiometry (BERA) as well. 

Statistical analysis 

Statistical analysis was performed using SPSS 8. 0 statistical soft\'vare (SPSS Inc., Chicago, 

USA). Comparison between patients exposed to tobramycin and matched controls \Vas 

performed using a paired samples t-test. 

RESULTS 

A total of 59 patients had received tobramycin for ~ 7 days and/ or were exposed to 

tobramycin serum concentrations outside of the desired therapeutic range. The current 

address of 30 could be traced of whom 12 responded. These t\Velve patients constituted 

the tobramycin group. A total of 17 patients were tested in the control group. Eleven 

patients were excluded of whom three \vere e::-.."Posed to tobramycin . In these 11 patients 

no dependable otoacoustic emissions could be recorded, despite retesting, apparently due 

to middle ear effusion. Eighteen patients were included, 9 patients witl~ exposition to 

tobramycin and 9 patients \Vi.thout. Individual demographic variables for tl~ese patients 

are listed in table 1. All patients were intubated or had a nasopharyngeal tube for more 

than 5 days. )Jo patient had a bilirubin level necessitating exchange transfusion. Patient 1 

and 2 are matched for GA, but not for birtbweight. 
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A total of 33 out of 36 ears were evaluable 'Wjth ce-OAE and dp-OAE. Three patients 

(one Mth tobrarnycin) had middle ear effusion in one ear. 

In the tobramycin treated group both ce-OAE and dp-OAE were not detectable in 6 ears 

of 3 patients. Results for dp-OAE showed no emissions in the range of 1-10 kHz for 

both ears. All other patients had normal ce-OAE's as well as normal dp-OAE's in this 

frequency range. Difference bet\veen the tobramycin treated and control group for ce­

OAE as well as dp-OAE showed a trend (p=O.OS), but did not reach statistical 

significance. In all three patients Mth undetectable emissions, BERA confirmed the 

abnormalities. In all three patients a cochlear loss of 60-70 dB at 3 kHz in both ears was 

found. These three patients had the longest total exposure to tobramycin: 20-24 days and 

84-92 mg/kg, respectively. :::--Jo relation to either peak or trough serum concentrations 

could be detected. 

Patient 5 had a right sided grade III intraventricular hemorrhage. Patients 7 and 9 are 

heterozygote mi.ns. Patient 9 showed bilateral periventricular leucomalacia on cerebral 

sonography. 
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Patient Tobramycin: Tobramycin: Maximum Ma.'Ximum Vancomycin Furosemide Gestational Birth~ AS 54 :;-1 
total exposure peak2 troughl weight "" total exposure exposure exposure age "' (days)' (mg/kg) (days) (mg/kg) ("-'eeks) (grams) "' \;' 

8 8 7.5 !.6 0 0 31 0/7 995 7 !l., 
~. 

2 0 2 31 6/7 2010 9 t 
3 8 8 ll.l 0.3 0 0 28 0/7 950 9 v 

~ 

~ 
4 0 0 27 6/7 1190 7 ~ , 
5 20 8 9.8 0.7 0 4 27 0/7 1040 5 ~ 

29 4/7 
~ 

6 0 0 1235 6 '\\ 
7 22 14 7.7 l.l 13 0 26 1/7 1050 9 ~· 

" 8 6 2 27 0/7 1130 7 ~· 

9 0.6 I 26 1/7 960 
!;-

24 15 7.8 0 7 ~ 
"'-

10 0 2 24 6/7 670 10 ~· 

"'-II 6 6 14.8 0.9 0 0 37 5/7 3155 9 ~ 

~ 

12 0 37 0/7 " 0 3800 9 ~ 

13 16 12 9.7 0.6 0 2 25 5/7 1130 7 

14 0 0 29 3/7 1450 8 

15 16 9 8.2 l.l 22 22 37 0/7 2840 lO 

16 30 30 39 6/7 4000 lO 

17 14 7 14.0 2.3 4 4 28 1/7 860 8 

18 I I 28 1/7 1140 8 

1 Longest consecutive treatment (days), 2 .Maximu peak serum concentration, J ~laximum trough serum concentration,-+ 5' Apgar score 'D 
'-'. 

~ I'" u, ~;, '"' 



DISCUSSION 

The relation benveen adm.inisttation of aminoglycosides and ototoxicity has been under 

discussion since early reports ID 194524• Studies in adults have suggested an influence of 

absence of sufficiendy low trough concentrations for adequate periods, but there is little 

evidence for a relation bertveen peak or trough serum concentrations and 

ototoxicityS, 11· 25· 26. In adults as \Veil as neonates a relation bet\veen ototoxicity and total 

dose and duration of therapy is postulatedS-to. Treatment for longer than 10 days is 

considered to be a risk factorS, s. Reported aminoglycoside ototoxicity in neonates is low, 

also \vith present day extended interval dosing7, 12. 16. 27. ~o relation bettveen serum 

concentrations of aminoglycosides and ototoxicity has been demonstrated. Also, hearing 

screening in neonates did not show an increase in occurrence of hearing loss in 

aminoglycoside exposed patients2S-3l_ These studies did not however look specifically at 

serum concentrations. On the other hand several authors have demonstrated that, mainly 

reversible, abnormalities on BERA can be seen early on in aminoglycoside treated infants, 

indicating alteration of the central transmission of auditory brainstem responses1D. 1s. 32. 33. 

Furthermore it has been demonstrated in adults and suggested in neonates that 

aminoglycoside related ototoxicity can occur \.Veeks to months after discontinuation of 

treatment5· 18·2D. In the study by Ka\.vashiro et al., all patients \.vi.th this type of hearing loss 

were exposed to 7-14 days of treatment with gentamicin and/ or amikacin, next to other 

risk factors19. To capture the possibility of delayed hearing disturbance we investigated the 

patient group most at risk for aminoglycoside related ototoxicity at the age of 3-4 years. 

Since aminoglycoside ototoxicity is mosdy bilateral '.ve chose not to compare patients to 

matched controls per car but per patient. Although no statistical significance was found, 

possibly due to the small number of patients, it is worrisome that three patients in this 

high-risk group had moderate to severe cochlear hearing loss. No relation to either peak 

or trough serum concentration could be detected. Also hearing loss, which if induced by 

aminoglycosides \vas expected to be mainly in the higher frequency range, was apparent at 

all frequencies in our patients. This could imply that these \.Vere more severe cases of 

aminoglycoside induced hearing loss, where damage has progressed beyond the basal turn 

of the cochlea. There \vas a striking relation to total exposure; the three patients with 

hearing loss had the highest overall e:A'Posure to tobramycin (duration as well as in mg/kg) 

of the 9 patients studied. This result is in concordance '.vi.th several other studiesS-10_ 

Borradori and co-workers performed a case-control study in S neonates \vi.th 

sensorineural hearing loss, all exposed to more than 10 days of aminoglycoside treatment 
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and found a significant relation to cumulative dose and total treatment duration of 

aminoglycosides9• In the study by Chayasirisobhon et al., neonates treated '\vi.th 

gentamicin for 2: 10 days \vere at a significant greater risk of having abnormalities on 

BERA than neonates exposed to < 10 days of treatments. Patients in both studies were 

not matched for all other risk factors. Therefore abnormalities might have been related to 

underlying co-morbidity. An earlier study also found a correlation bertveen \vave V 

latencies on BERA \Vi.th the total dose of aminoglycosides adm.i.nisteredlO. Hearing \Vas 

evaluated \.vi.thin 2 days of end of treatment. Therefore abnormalities might have been 

reversible. 

Since nvo of our patients \vi.th hearing loss \.vere nvins, familial hearing abnormalities, 

possibly of mitochondrial origin could be the cause'4 • Family history for hearing loss was 

negative and permission for mitochondrial D~A analysis was refused. 

How should \Ve perceive the seemingly conflicting ev-idence of aminoglycoside related 

ototoxicity in newborns? On the one hand screening programs found no relation bet\veen 

e:-."Posure to aminoglycosides and hearing loss2S·31• Also, \vith the present extended dose 

intenrals, aminoglycoside related ototoxicity is rare 12. 16. On the other hand several studies 

in relatively few patients, including this one, found a relation to duration of therapy. In 

most of these studies neonates had been exposed to more than 10 days of aminoglycoside 

treatments-1o. Furthermore, there are reports \vhere delayed onset of hearing loss in 

infants is described9- 18-20. It is possible that hearing screening performed in infants before 

discharge might be too early to detect this type of hearing loss. A second reason might be 

that aminoglycoside induced hearing loss starts at higher frequencies ·which are not 

detected by routine hearing screening methods. These factors imply that aminoglycoside 

related hearing loss could be underreported. The main limitation of this pilot study is the 

small number of patients included. Our results do indicate a need for a case-control 

follow-up study in neonates exposed to aminoglycosides for longer than 10 days 

compared with patients matched for other risk factors related to hearing loss. 
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SUMMARY 

0/jectiz:e: to investigate the chance of detecting hearing loss '\vith neonatal hearing 

screening in relation to exposure to tobramycin and vancomycin expressed in terms of 

duration of therapy and serum concentrations. 

Methods: Automated Auditory Brainstem Response (A-ABR) hearing screening \vas 

performed in all neonates with at least one risk factor as defined by the Joint Committee 

on Infant hearing. Data on administration of tobramycin, vancomycin and furosemide as 

well as available serum concentrations were abstracted from patient files of neonates who 

undenvent hearing screening bet\veen :I:"ovember 1998 and November 2000. Exposure to 

these drugs was quantitated in terms of total dose, duration of therapy and, where 

possible, serum concentrations and related to the result of hearing screening using logistic 

regression. In patients failing hearing screening, exposure to ototoxic medication was 

assessed in the light of other risk factors for hearing loss. 

Results: A total of 625 patients \.Vere analyzed. Forty-five neonates failed hearing 

screening. Tobramycin, vancomycin and furosemide were used in 508, 130 and 174 

patients, respectively. 

E::...-posure to vancomycin and tobramycin in terms of treatment duration, total dose or 

serum concentrations \.vas not related to failure to pass A-ABR screening. Exposure to 

both antibiotics in the same patient, as well as combination -..v-ith furosemide treatment, 

\.Vas also not related to a failure to pass hearing screening. In none of the patients \.vith 

serum concentrations outside the therapeutic range, exposure to ototoxic medication was 

the most likely risk factor for hearing loss. 

Co!lc!Jtsion: )Jo quantitative or qualitative relation berureen exposure to tobramycin or 

vancomycin and a failure to pass hearing screening \.Vas found. Routine TDM of 

vancomycin and tobramycin in neonates for ototoxicity reasons is not helpful in detecting 

patients at risk for clinically important hearing loss. 
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INTRODUCTION 

Congenital neonatal hearing loss has a reported prevalence of 0.1-0.3%1. 2. ;\Jconates 

admitted to a neonatal intensive care unit (:'JICU) have a higher risk of developing 

sensorinew:al hearing loss of approximately one in every hundred3. Late recognition leads 

to impaired acquisition of language and speech~. Therefore, early detection of impaired 

infant hearing is important, and consequently many neonatal hearing screening programs 

have been developed. The methods most often used are Oro-Acoustic Emissions (OAE) 

and Automated Auditory Brainstem Response (A-ABR)5. A-ABR is a very reliable 

screening method with a reponed sensitivity of 100o/o and specificity of over 95% 6•8. 

Screening programs in the NICU follo\.V one of t\\70 strategies. Screening is either 

performed in all neonates6. 9 admitted to a NICU or in neonates "Wi.th certain risk factors 

previously described3. Risk factors are among others: family history of hearing loss, 

perinatal infections, meningitis, birthweight < 1500 gms, hyperbilirubinemia, asphyxia, 

respiratory distress syndrome, mechanical vemihtion, diuretics and antibiotics, especi2.lly 

aminoglycosides and vancomycin10. These potentially vestibulo- and cochleotoxic 

antibiotics are frequently used for early (aminoglycoside) and late onset (vancomycin) 

neonatal septicemia. Vestibulotoxicity is difficult to determine in neonates, so reports on 

ototoxicity are limited to hearing loss. Vancomycin reported ototoxicity, mainly based on 

case reports, is < 2°/o in adults. Data from the current literature do not show a relation 

benveen vancomycin related ototoxicity and serum concentrations, and it is not clear 

\vhether ototoxicity should be attributed to vancomycin or other confounding factorsll. 

Little is known about vancomycin ototoxicity in neonates. The fC\v studies addressing this 

issue did not f111d ototoxicity12.13. 

Aminoglycoside induced ototoxicity in adults usually occurs in patients \vho have received 

either long, or repeated, courses of aminoglycosides14. A relation bet\veen high serum 

concentrations and toxicity has been suggested, but not demonstrated. There are still 

many gaps in our knowledge on the relation bet\veen aminoglycoside use and hearing loss 

during infancy. Even though some studies show a relation to administration of 

aminoglycosides, it remains difficult to separate the effect of aminoglycoside use from 

other confounding factors 15-17. Ko clear relation was found to peak and trough 

concentrations and most of these studies did not correct for concomitant risk factors. 

Concurrent treatment \vi.th furosemide and vancomycin was associated "\vith hearing 

loss1S. 19. Furthermore these studies were performed in neonates receiving 

aminoglycosides several rimes daily, \Vhile over the last few years dosing intervals, similar 
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to dosing regimens in adults, have been extended20· 21• Ototoxicity should be studied in 

the light of these ne\.v regimens. It is also clear that this toxicity has to be seen ~oainst the 

background of other risk factors. Although several recent screening studies in neonates 

have not shown aminoglycoside administration to be an important risk factor, no study 

has looked specifically at serum concentrations and duration of therapy1. 22-2+. The aim of 

the present study \.vas to explore the risk of detecting hearing loss "vi.th neonatal hearing 

screening in relation to exposure to tobramycin and vancomycin expressed in terms of 

duration of therapy and serum concentrations. 

PATIENTS AND METHODS 

Study design 

The present study was conducted in neonates admitted to the NICU of the Sophia 

Children's Hospital from November 1998 to ~ovembcr 2000. 

Inclusion criteria 

.All neonates \.vho undenvent A-ABR screening were included in this study. A-ABR 

screening \.vas performed in neonates \.Vi.th the follo\.vi.ng risk factors, as noted on a chart 

by the attending physician: positive family history for hearing loss, positive serology for 

toxoplasmosis, rubella, cytomegalo virus or herpes virus, craniofacial abnormalities, 

bird1.weight below 1500 grams, hyperbilirubinemia necessitating exchange transfusion, 

cerebral complications, a 1' APGAR score below 5 or a 5' APGAR score below 7, 

mechanical ventilation longer than 5 days, syndromal abnormalities. 

Data collection 

ParaUJeters 

Gestational age (GA), birthweight, indication(s) for A-ABR screening, test date and result 

were abstracted from A-ABR case record forms. Apgar scores \.Vere abstracted from the 

patient files. Information on administration of potential ototoxic medication (tobramycin, 

vancomycin and furosemide) \.Vas abstracted from the computerized hospital medication 

ordering system by t\Vo independent inves~o-ators and cross-checked. 
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Administration and dosage regil7lel1 of tobraJJ()Icil1_, v·anCOJJ()'ci!l and Jirrosel7lide 

Administration of tobramycin was performed in a 30-minute i.v. infusion in a dose of 

4 mg/k.g. The initial dosing interval was 24, 36 or 48 hours in neonates \vi.th a GA of 

<32 weeks, 32-36 weeks and 2: 37 weeks, respectively. Tobramycin serum samples were 

taken as part of routine therapeutic drug monitoring 1 and 6 hours (October 1998-

February 2000) or 3 and 8 hours (from March 2000 onwards) after the first dose and just 

before the second dose (all), at the discretion of the attending physician. Thus tobramycin 

peak concentrations were only available for the first period. Vancomycin was 

administered in a dose of 10 mg/kg in a 1h infusion \vith an intenral of Sh irrespective of 

GA. Trough and peak serum sampling \Vas performed around the fourth dose, \vith the 

trough just before and the peak 1h after completion of the infusion. Therapy adjustments 

were made at the discretion of the attending physician. AJl doses and times of 

administration were recorded routinely. Duration of therapy and ma:illnum peak and 

trough concentrations were noted for vancomycin. 

Exposure to furosemide in mg/kg was also noted. 

A;rdi!O!]' te.rtt'ng 

Hearing screening was performed with an automated auditory brain stem response device 

(ALGO-l E, Natus Medical Inc., California, l.:"SA) by specialized nurses. This device 

measures responses to a monoaural 35 dBnHL click stimulus. Artefact rejection for 

ambient noise and myogenic acti'vity is automatic. ALG0-1 E displays a pass when the 

internal algorithm reaches a likelihood ratio ~ 160 in discriminating between response + 
noise, noise and no response5 . The algorithm criteria were defined by comparison "'W-ith 

conventional ABR Sensitiv·ity for this test (compared to conventional ABR as the gold 

standard) is 100%, specificity ranges from 96 to 98.7% 8.25-27_ 

Patients \Vi.th refers from A-ABR testing ·were scheduled for a retest and a further retest 

on second failure to pass. All patients failing this sequence of testing were referred for 

further conventional testing. 
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Statistical analysis 

Statistical analysis was performed using SPSS 8. 0 statistical software (SPSS Inc., Chicago, 

t:SA). 

The \Vilcoxon signed rank test and ~nn-\Vbitney test were used as nonparametric tests. 

All variables were entered as single covariates for logistic regression. For the purpose of 

analysis certain continuous variables \vere categorized, to enable valid inclusion of non­

exposed patients. Tobramycin: exposure as longest consecutive duration of treatment 

(days): 0, 1-5, >5; total exposure (mg/kg): 0, S 20 mg/kg, > 20 mg/kg; peak serum 

concentrations: 0 (no e.:-."Posure), :S 12 mg/L, > 12 mg/L; trough serum concentrations 0 

(no exposure), :S 2, > 2 mg/L. Vancomycin: exposition in days of treatment: 0, 1-7 and 

> 7 days; peak serum concentrations: 0 (no exposure), :S 40 mg/L, > 40 mg/L; trough 

serum concentrations 0 (no e::..."Posure), :.S 15 mg/L, > 15 mg/L Furosemide exposition: 

0, 1-10 and >10 mg/kg. If a relation bet\veen serum concentrations and ototoxicity exists, 

this is expected \vith higher exposure. For this reason, univariate logistic regression \Vi.th 

serum concentrations as continuous variable '\vas also performed in a subgroup of 

patients with serum tobramycin and vancomycin peak and trough concentrations 

exceeding arbitrary limits: tobramycin 8 mg/L and 1 mg/L, respectively and vancomycin 

30 mg/L and 10 mg/L, respectively. 

Multiple logistic regression was performed on combination therapy of tobramycin, 

vancomycin and furosemide. 

RESULTS 

Patient characteristics 

During the study period a total of 1197 patients were admitted to the NICC. A total of 

669 patients \vere eligible for ALGO screening. In 44 patients complete A-ABR screening 

was not performed; 28 patients died before screening, 11 parents refused cooperation in 

screening and in 2 repeat A-ABR screening has not been performed. In three patients 

A-ABR screening failed for technical reasons. All dtree undenvenr conventional ABR and 

tested as normal. Data for 625 patients were analyzed. 

Demographic parameters are sho\Vn in table 1. There \Vere no differences in GA and 

bird~weight bet\veen patients passing or failing A-ABR screening. There is a significant 

difference in age at final A-ABR screening betv.reen neonates who pass or fail hearing 

screening, inherent to the method of screening. 
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Tab!e1: Demographics for stllcj)i grot~p. l\Tttmbers are medians and ranges 

p-value 
Total Pass Refer (Mann-

(n=625) (n=580) (n=45) Whitney) 

Gestational age (weeks) 32.0 (24-43) 31.9 (25.3-43.0) 32.1 (24--41.9) 0.56 

Birth-..veight (grams) 1480 (520-5800) 1478 (520-5800) 1550 (545- 4050) 0.89 

Age at A-_A.BR (days) 19 (0-286) 18 (0-286) 47 (1-255) <0.001 

Statistical relations between ototoxicity and risk factors 

Figure 1 shmvs the distribution of number of risk factors per patient. Thlrteen neonates 

had no indication, but were tested by request of the parent, because they \.Vere part of a 

t\\rin pregnancy of '\vhlch the orher half had to be screened. There \.vas one indication for 

testing in 377 neonates, t\vo indications in 178 neonates and 3 or more indications in 

57 neonates. 

Fig.1: Ri.rk of foiling A-/fER screening in relation Jlt1111ber of iJJdicutiom:for screeJJing 
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Number of indiations 

In univariate analysis, the number of indications per patient for testing '\vas the single 

most important risk factor (p=0.0007). This is also illustrated by %oure 1. Given the 

influence of the number of indications as well as the significant difference in postnatal age 

at final screening, univariate analysis of orher variables was corrected for these t\vo 

factors. Table 2 shows all inclusion criteria for A-ABR screening and the relative risk for 

failure of this screening. These numbers are only valid in a population \.Vith at least one 

risk factor. The presence of craniofacial abnormalities \.Vas the most imponant single risk 

factor in failing A-ABR screening. No other single risk factor attained significance. 
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Table 2: Distribution of risk factors in ilifants Jl!ith normal and abnormal A-ABR scremi;tg. P-ml11es 

are from tmil/an"ate ana!Jsis> corrected for number of indicatiom and age at A-ABR screeniJ7g 

A-ABR normal A-ABRrefer Odds ratio 

Risk factor (n=580) (n=45) P-value (95% CI) 

Family history 12 2.1% 3 6.7% 0.18 2.5 (0.6-9.9) 

TORCH* 8 1.4% 1 2.2% 0.81 1.3 (0.2-11.0) 

Craniofacial 10 1.7% 5 11.1% 0.0014 6.9 (2.1-22.6) 

Birthwcight<1500 304 52.4% 22 48.9% 0.04 0.5 (0.2-1.0) 

Hyperbilirubinemia 17 2.9% 3 6.7% 0.19 2.4 (0.6-9.2) 

Cerebral complications 63 10.9% 8 17.8% 0.84 1.1 (0.4-2.8) 

Apgar score 1 '<5/5'<7 223 3.8% 17 37.8% 0.62 0.8 (0.4-1.7) 

Mechanical ventilarion>S days 172 29.7% 19 42.2°/o 0.65 0.8 (0.4-1.8) 

Syndrome 23 4.0% 4 8.9% 0.24 2.0 (0.6-6.2) 

" Positive serology for toxoplasmosis, rubella, cytomegaly virus or herpes. 

Table 3 sho\VS details on exposure to ototoxic medication in the study group. As can be 

seen 508 patients received tobramycin, 130 patients vancomycin and 174 patients 

furosemide. Total exposure to tobramycin was 15.3 ± 11.1 and 20 ± 19.6 mg/kg for 

neonates passing and failing hearing screening, respectively. For vancomycin, total 

exposure \vas 234 ± 159 and 375 ± 273 mg/kg respectively for groups of neonates \vho 

passed or failed hearing screening. These data were not statistically different bet\veen both 

groups. Table 3 also shows ototoxic medication as risk factor for failure of A-ABR 

screening. Potential ototoxic medication, defined in terms of duration of treatment, total 

exposure and aberrant peak and trough serum concentrations \Vas analyzed using logistic 

regression. As can be seen exposure to vancomycin and tobramycin in terms of treatment 

duration and total dose was not significantly related to failure to pass A-ABR screening. 

Exposure to both antibiotics in the same patient, as well as combination \Vith furosemide 

treatment, was also not related to hearing loss. Peak and trough serum concentrations of 

both vancomycin and tobramycin were not associated \vith an increased risk of failing A­

ABR screening. In the subgroup of patients \.vi.th l,jgher peak- or trough serum 

concentrations of vancomycin or tobramycin, entered as continuous variable in logistic 

regression, no relation to failing A-ABR screening \vas detected (p-valuc ranging from 

0.13- 0.67). 
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Table 3: Unh·miale ana!J:.ris rj ototoxic nJedication a.r: n:r:k factor for Jaihtre o/ A-ABR .r:creming. P-valtres and 

oddr ratio.r are corrected for nJtmber of indications and age at A-ABR screening 

Total Pass Refer n p--value Odds ratio 

(95% CI) 

Tobramycin 508 473 35 625 0.19 0.6 (0.3-1.3) 

Total cposJtre (mg/ kg)> 20 mg/ kg 102 93 9 6?" -0 0.28 0.8 (0.4-1.3) 

Longe.r:t seqJtentia!treatment > 5 dqy 135 125 10 6?" -0 0.18 0.7 (0.4-1.2) 

Peak concentration> 12 mg/L 6 5 1 449 0.23 0.6 (0.3-1.4) 

Tro11gh concenlrotion > 2mg/L 9 8 1 393 0.55 0.8 (0.4-1.7) 

Vancomycin 130 119 11 625 0.52 0.8 (0.4-1.7) 

Vancoi?(Jcin ex:po.mre > 7 dqys 54 8 62 625 0.89 1.0 (0.6-1.5) 

Peak concentration> 40 mg/L 4 3 1 593 0.45 0.7 (0.3-1.7) 

Tro11gh concentration> 15 mg/L 26 25 604 0.22 0.7 (0.3-1.3) 

Furosemide 174 158 16 625 0.49 0.3 (0.4-1.6) 

Total e:;. .. pomre > 10 mg/ kg 25 21 4 625 0.90 1.0 (0.5-1.7) 

Tobramycin +vancomycin 122 111 11 6?" -0 0.67 0.8 (0.4-1.8) 

Tobramycin +furosemide 154 140 14 625 0.44 0.7 (0.4-1.6) 

T obramycin + vancomycin + 66 59 7 625 0.73 0.8 (0.3-2.1) 

furosemide 

n = number of patients included in analysis 

Relation of ototoxicity to antibiotic use in individual patients 

Tobranrycin 

Patients \V·ith potential ototoxic serum concentrations failing A-ABR screerung were 

analyzed. Only one of the si.x patients Vlith a peak tobramycin concentration > 12 mg/L 

failed hearing screening and conventioool ABR showed bilateral hearing loss of 50-60 dB 

Vlith a cochlear component at follow-up. This patient was born a premature (GA 26 

weeks) and had low Apgar scores (6/7) as well as periventticnlar leucomalacia. 

Furthermore he also received vancomycin for 35 days Vlith normal serum concentrations . 

Only one out of three peak serum concentrations of tobramycin in this patient was 

> 12 mg/L. 

Nine patients had trough serum concentrations > 2 mg/L. One of these nine patients 

failed A-ABR screening. This patient had bilateral hearing loss with a cochlear 

component of 50-60 dB. This patient received only 2 doses of tobramycin however and 

also had neonatal asphyxia and delayed motor development. Since there is evidence that 
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trough concentration goals should be set to 0.5-1.0 mg/L \.vith extended interval dosing 

of aminoglycosides, '\Ve also looked at the 56 patients ""l.th trough serum concentrations 

exceeding 1.0 mg/L2S. 29. In this group, three neonates failed hearing screening. One 

patient, "vl.th a trough > 2 mg/L, is described above. Of the t\VO others, the first patient, 

'\vho had severe perinatal asphyxia, '\Vas exposed to only one dose of aminoglycosides. The 

second patient, exposed to 7 doses (2 courses, longest consecutive treatment 7 days), had 

severe bilateral hearing loss ""l.thout a clear cause. 

Eleven patients received tobramycin for 2: 10 consecutive days; t\.vo failed A-ABR 

screening. The first patient had slight cochlear loss (20-25 dB) in one car and '\Vas also 

exposed to 12 days of vancomycin treatment. The second patient had severe bilateral 

hearing loss with no reproducible responses on ABR pointing at auditory neuropathy 

and/ or severe loss of ear sensitivity to sound. This patient '\vas not exposed to 

vancomycin, but had 3 other risk factors; birthweight <1500 grams, 1' Apgar score of 5 

and abnormalities on cerebral ultrasound. 

Vanco!J(Jcin 

Four patients had peak vancomycin concentrations > 40 mg/L. One of these patients 

(peak 42.3 mg/L) had bilateral severe hearing loss. This patient, who had a grade III 

intraventricular hemorrhage and sepsis/meningitis, died later. 

One of 26 patients '\vl.th vancomycin trough concentrations exceeding 15 mg/L failed 

hearing screening. This patient (trough 17.7 mg/L), who had neonatal septicemia and 

periventricular leucomalacia, was exposed to 12 days of vancomycin and 27 days of 

tobramycin. He had mild (20-25 dB) cochlear loss in one ear. There was a rise in serum 

creati.nin to 112 f.liDol/L prior to this serum trough concentration. 

Si.xteen patients were e::-.."Posed to vancomycin for more than 14 days, "\Vl.th 3 failures on 

hearing screening. One patient had grade III intraventricular hemorrhage as well as 

abnormalities on YIR1 compatible Mth kernicterus. The second and third patient received 

3 doses of tobramycin as \.veil, Mth normal serum concentrations for both antibiotics. 

The second patient had 5 indications for A-ABR screening, including bilateral grade III 

IVH and posthemorrhagic hydrocephalus. The third patient, with neonatal periventricular 

leucomalacia and hydrocephalus, had bilateral cochlear hearing loss (50 dB). 
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DISCUSSION 

The relation bet\veen use of tobramycin or vancomycin and neonatal hearing loss is not 

'\veil defined. In this study \Ve investigated the effect of e::-.."Posure to tobramycin and 

vancomycin, both commonly used in the ~ICU, on failing hearing screening. Ototoxicity 

has been related to usc of both antibiotics and therapeutic drug monitoring (TD~ has 

been advocated. Commonly accepted TD.YI goals for tobramycin are peak and trough 

serum concentrations of 5-12 mg/L and < 2mg/L, respectively. A clear relation of serum 

concentrations of arninoglycosides to ototoxicity has not been demonstrated in adults or 

neonates'O. 14-lrJ. 30. Possible reduction of nephro- and ototoxicity \v-ith extended interval 

dosing of arninoglycosides \vas a major reason for implementation of this regimen in 

adults and neonates during the last decade. A definite reduction in the number of patients 

\vith aminoglycoside related ototoxicity has not been demonstrated ho\vever31, 32, These 

new extended dosing interval regimens have implications for therapeutic drug monitoring. 

To prevent prolonged exposure, it has been suggested that trough concentration goals 

should be reduced to 0.5-1 mg/L in adults with once daily dosing'"·"· In this study we 

evaluated the effect of our extended interval dosing regimen on occurrence rate of failure 

to pass A-ABR screening. As in several other screening studies, \ve could not detect an 

overall difference of prevalence in hearing loss bet\veen patients exposed or not 

exposed to aminoglycoside treatment.!. 22- 24· 33 . Kone of these studies sho\ved detailed 

information on admirllstration regimens and/ or serum concentrations, \vhich might be 

important since other studies in neonates suggest that ototoxicity might be related to 

total duration of therapy and high peak and/ or trough serum concentrations to. 15.16.34. No 

relation to any of these determinants was found in the present study. Several studies have 

demonstrated that extended interval dosing in neonates is relatively safe16, 21. 35. These 

studies have focussed on screening neonates exposed to aminoglycosides \\r.ithout 

matching for concomitant risk factors. Borradori et al. found a relation between hearing 

loss and aminoglycoside treatment .in a matched control study .in 8 children -with hearing 

loss10. Their study found a relation bet\veen cumulative dose and treatment days, but not 

\vith serum concentrations. Ho\vever, patients \Vere not matched for all risk factors 

(e.g. hyperbilirubinemia, days on ventilatory support). In this study, there was no patient 

exposed to tobramycin in \Vhom aberrant tobramycin serum concentrations \Vhere the 

most likely cause of hearing loss. 

TDM goals for vancomycin are peak and trough concentrations of 20-40 mg/L and 

< 15 mg/L, respectively. There is circumstantial evidence relating high peak 
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concentrations to ototoxicity, but a relation between v'"2ncomycin related ototoxicity and 

serum concentrations has not been demonstrated in adultsll, 36. Information in neonates 

is very scarce but did not demonstrate vancomycin related hearing loss13. 37• 

In this srudy no relation was found bet\veen e::-.-posure to vancomycin and hearing loss. 

Only one patient \vith peak concentrations exceeding 40 mg/L failed A-ABR screening, 

but as described before, this patient had sever neurologic deficit including meningitis and 

IVH which have been shown to induce hearing loss38. 39. All three patients \vith high 

trough vancomycin concentrations and failure to pass A-ABR screening had central 

nerv-ous system abnormalities (e.g. IVH, hydrocephalus) associated urith hearing loss38. 40. 

Incidence of ototoxicity is said to be higher in patients receiv--ing both arninoglycosides 

and vancomycin18- l9,3G. The present study, however showed no relation between failure to 

pass A-ABR screening and concomitant usc of tobramycin and vancomycin. Several 

authors have indicated that the potential ototoxic effect of arninoglycosides is potentiated 

by loop diuretics and/ or vancomycin10. 41 • 42• In the present study we did not find this 

association, not even when the patient group with highest exposure to both furosemide 

and tobramycin was compared to the rest (data not shown). 

There are three limitations to this study. First, this study describes hearing screening in an 

at risk population, '.Vi.th at least one risk factor for hearing loss. One has to be careful to 

translate results to the total group of ne\vboms admitted to a ~ICU. However a high 

percentage of all patients admitted to the NICU and e:<posed to either tobramycin (60%) 

or vancomycin (84%) were included in this study. Second, click-evoked A-ABR screening 

detects hearing loss in the 2-4 kHz frequency range, which is clinically important for 

speech and language development. Aminoglycoside related hearing loss starts in the 

higher frequency ranges, above 8 kHz, but is also found in lower frequencies in serious 

cases43. It is possible that some neonates in tllls study had hearing loss in this range, 

which can not be investigated \Vi.th current routine techniques in this age group. Because 

cochlear damage induced by arninoglycoside use is stationary over the years, the long­

term clinical importance of this high-frequency hearing loss is doubtful. 

Third, delayed onset of hearing loss in infants has been described10• 44. In the present 

study, 77% of patients exposed to tobramydn for more than 10 days undenvent hearing 

screening at least t\vo weeks after cessation of therapy. It is conceivable ho\vever, that 

hearing screening was performed too early in some patients to detect hearing loss and it 

might be necessary to reassess hearing in neonates \Vi.th prolonged exposure to 

aminoglycosides. 
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O:o:oxiciiJ' 

Given these limitations, this study still has important implications for TDM. Aberrant 

serum concentrations for tobramycin and vancomycin in the present study were not 

associated "With failing hearing screening, and adherence to TD.M goals did not preclude 

hearing loss. There was no patient in this study in whom aberrant serum concentrations 

were a likely cause of hearing loss. This leads us to conclude that routine TD:yf of 

vancomycin and tobramycin in neonates is not helpful in detecting patients at risk for 

clinically important hearing loss. 
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INTRODUCTION 

Keonatal sepsis remains one of the main causes of mortality and morbidity of newborn 

infants admitted to a neonatal intensive care unitl. Sepsis in this age group can be divided 

in early onset, defined as \vi.thin the first 3-4 days of life and late-onset, occurring after 

4 days1. 

Group B streptococcus and gram negative organisms such as Escherichia coli and 

Haemophi!tts ilifluenza are the most common causative organisms for early-onset scpsis2. 

Especially in the United States an increase of gram-negative neonatal infections has been 

noted due to prenatal administration of anribiotics3• Late onset neonatal sepsis is related 

to the increased use of invasive procedures such as central venous lines and includes as 

major pathogens gram-positive organisms from the skin: S. epidermidis and S. aureu.f+, 5• The 

spectrum of pathogens .in these t\vO different age groups has led to conunonly accepted 

empiric antibiotic strategies. Early onset sepsis is treated "\Vith a combination of a 

penic.illin '-Vith either a third generation cephalosporin or an aminoglycoside. Empiric 

treat:nlent of late onset sepsis often starts \vith a combination of flucloxacillin and either a 

third generation cephalosporin or an aminoglycoside, with a switch made to vancomycin 

when culture results and resistance patterns indicate a need for change4.6. 7. 

Treatment with vancomycin as well as aminoglycosides has historically been subject to 

therapeutic drug monitoring (TD:\1), and many dosing regimens in neonates have been 

constructed, \vi.th the aim to adhere to currendy accepted therapeutic ranges. 

Several interconnecting aspects surrounding dosing of these antibiotics in newborns have 

to be taken into account to optimize the therapeutic effect of these drugs. Goals for 

TDM have to be determined based on the relation between serum concentrations and 

efficacy/toxicity. On the basis of target concentrations and pharmacokinetic behavior of 

these drugs in neonates a dosing regimen must be developed. During trearment efficacy 

and toxicity have to be monitored. Monitoring can not be limited to taking well timed 

serum concentrations. 

In the follo"\Ving sections the different aspects ofTDNC, dosing and monitoring of efficacy 

and toxicity 'Wi.ll be discussed in detail. 
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THERAPEUTIC DRUG MONITORING: WHEN AND WHY? 

In general, routine TD~ is only rational when the use of the drug has the follo'.ving 

characteristics: 

1. Availability of an assay for the drug v.ith an adequate assay error. 

2. Clinical effect or toxicity of the drug is difficult to determine or has a delayed 

presentation. 

3. A large interindividual variation in pharmacokinetic behavior bet\veen patients. 

4. A good correlation bet\veen serum concentrations and effect or toxicity. 

5. Lise of TDM should appropriately predict subsequent serum concentrations in the 

same patient. 

Aminoglycoside and vancomycin use in newborns fulfill several of these prerequisites. 

Good quality serum assays for both tobramycin and vancomycin exist. The most widely 

used routine method, Fluorescence Polarization Assay, has adequate performance 

characteristics. In both drugs clinical effect as well as toxicity are difficult to determine. 

Toxicity, especially ototoxicity, can have a delayed presentation, as will be discussed later. 

As described in chapter 1, iliere are large interindividual differences in the 

pharmacokinetics of vancomycin and am.inoglycosides (including tobramycin) in 

newborns. Of the points mentioned above, two remain unclear. There is still a lot of 

uncertainty on both a good correlation between serum concentrations and effect or 

toxicity and the usefulness of TDM to predict subsequent serum concentrations in the 

same patient. These issues \\.7ill be discussed in the following paragraphs. 

TDM of aminoglycosides: correlation between serum concentrations and effect 

Since arninoglycosides have a narrow therapeutic \\I-indow, any discussion regarding the 

dosing regimens of these drugs should take into account both efficacy and toxicity. Given 

the differences between individual aminoglycosides, this implies that concentrations and 

dose recommendations discussed in the follo\ving sections are valid for gentamicin, 

tobramycin and netilmicin. Because of the pharmacokinetic and pharmacodynamic 

characteristics of amikacin values regarding this drug have to be multiplied by three. 

Efficacy of aminoglycosides is related to both peak serum concentration to minimal 

inhibitory concentration (.N.llC) ratio (Peak/WC) and area under the time versus 

concentration curve (AUC/WC) in clinical and experimental stucliesS--10. It seems that 
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peak/MIC ratio's of 5-10 are desirable for clinical efficacy. Given the sensitivity of gram­

negative organisms in our KICU, this ratio translates to desirable peak serum 

concentrations of 2: 5 mg/L for our setting. The study presented in chapter 3.1 shows 

that this goal is reached in more than 90% of patients 'iNi.th the proposed dosing regimen. 

Based on desirable ratio's and pharmacokinetic behavior of aminoglycosides in neonates, 

higher doses at longer intenrals (24h for adults, 24-48h in neonates) have been advocated 

over the last 10 years. Studies in adults as well as neonates have failed to detect an 

increase of efficacy '.Vi.th this strategy11-16. The studies in chapter 3 have sho'WTI the need 

for extending dose interval up to 4Sh for premature neonates. However, no conclusion 

on resulting efficacy can be dra•wn from our studies. 

TDM of aminoglycosides: correlation between serum concentrations and toxicity 

J\'ephrotoxicity of aminoglycosides is related to the quantity of aminoglycosides stored in 

the proxlmal tubular cell17• Since aminoglycosides show drug satu.table uptake into these 

cells, nephrotoxicity can occur when the time period of low trough concentrations is too 

short to prevent accumulation 18• Although aminoglycoside induced nephrotoxicity has 

been related to high serum trough concentrations in studies in humans, exact information 

on the relation to serum concentrations is lacking. Aminoglycoside induced 

nephrotoxicity in neonates is rare, especially if the treatment period docs not exceed 

7 days. Ko relation bet\'veen serum concentrations and glomerular filtration rate (GFR) 

distu.tbanccs has been demonstrated in newboms15, 16· 19• However, reversible tubular 

dysfunction, resulting in a decreased capacity to form concentrated urine as well as 

electrolyte loss, is seen more often20. 21. 

Mainly based on toxicity characteristics, extended intenral dosing has been advocated for 

adults and neonates. Extended intenral dosing has .implications for TDM goals. Although 

desired peak serum concentrations of circa 5 mg/L \vould still suffice, trough 

concentration goals should be lower. Aiming at a trough concentration of 2 mg/L \vould 

lead to a 2.3 times higher total exposure (AUC) 22• Trough concentration goals of 

0.5-1 mg/L seem to be more appropriate. For amikacin these goals should be multiplied 

by three. :,Y[ost studies, ho\vever, are still using trough concentration goals associated \vith 

multiple daily dosing (2 mg/L). Several clinical and meta-analysis srudies in adults have 

sho\vn nephrotoxicity to be equal or less \vith single daily dosing as compared to multiple 

daily dosing11-14• In neonates no difference in nephro- or ototoxicity bet\veen once-daily 

dosing and multiple daily dosing has been demonstrated15. 16. This suggests that 
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nephrotoxicity in newborns is either infrequent and a clifference is therefore undetected in 

the relatively small stuclies or that maturational dependent clifferences in nephrotoxicity 

exist. 

Ototoxicity of aminoglycosides in man has been related to total dose and duration of 

therapy v.i.th no clear relation to high serum concentrarions23• A causal relation bet\V"een 

ototoxicity and eA"Posure to aminoglycosides in neonates has not been proven. Most 

stuclies comparing aminoglycoside treated infants to non-treated patients clid not detect 

permanent hearing loss24-26. Routine hearing screening in infants exposed to 

aminoglycosides has failed to detect a significant relation to hearing loss27. 28. These 

stuclies clid not quantify· exposure in terms of serum concentration and/ or duration of 

therapy. In chapter 5.2 we studied 625 neonates undergoing routine neonatal hearing 

screening and could not demonstrate a relation to e.'(posure to tobramycin. :!'\either 

duration of therapy, nor high serum concentrations or simultaneous treatment v.i.th other 

ototoxic drugs was found to be a significant risk factor. Also, in patients failing A-ABR 

screening, aberrant serum concentrations were not found to be the most likely 

explanation for hearing loss. There are reports however which describe delayed-onset 

hearing loss \vi.th a possible association to prolonged (>7-10 days) exposure to 

aminoglycosides29-31. This hearing loss could be missed by routine hearing screening, 

which is often performed shortly after discontinuation of the drug. In chapter 5.1 we also 

studied possible late effects of aminoglycoside eAJ'Osure on hearing in a matched case­

control study, by examining 3-4 year old children who had been treated with tobramycin 

as neonates. Although no statistical significance was found, possibly due to the small 

sample size, the finding of three infants v.i.th moderate to severe hearing loss, all of them 

exposed to > 14 days of aminoglycoside is worrisome. ~ing exposure to tobramycin 

in terms of duration of therapy should be the aim. 

Our studies thus show that aberrant tobramycin serum concentrations do not detect 

patients at risk for hearing loss, and adherence to IDM goals does not preclude hearing 

loss. From that point of view, the fourth point mentioned above as a prerequisite to 

perform TDM, is not fulfilled. 

In summary, efficacy is related to peak concentration to ~C ratio's, but improvement of 

efficacy \Vi.th extended interval dosing has not been demonstrated. Clinically important 

nephro- an ototoxicity are rare in neonates in courses shorter than 7 days, and there is no 

clear relation to serum concentrations. The importance of routine TDM in the first \Veek 

of life for efficacy and toxicity reasons is questionable. 
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TDM of aminoglycosides: predictive performance 

Predictive performance of TDM of aminoglycosides in newborns needs careful attention. 

Routine TDM for aminoglycosides is normally performed around the third or fourth 

dose, and is based on the assumption that steady state is more or less attained. For 

several reasons this assumption is not valid in neonates in the first week of life. Antibiotic 

courses in neonates are often discontinued after a few days when blood cultures and other 

tests remain negative. Since extended interval (24-48h depending on GA) dosing of 

aminoglycosides is now general practice, steady state \vould not be reached before 

discontinuation of the drug, and TDM would therefore not be performed in rime to be of 

use. One solution to this problem is to predict initial individual dosing interval using 

population pharmacokinetic parameters v..i.th Bayesian feedback of early serum 

concentrations. In this thesis (chapter 3.2) we hypothesized that, given the large .inter~ 

individual pharmacokinetic differences within GA-groups, early TDM, directly after the 

first dose, may improve these predictions for the individual. A prerequisite is ho\vever 

that a model incorporating early TDM data is superior in predicting subsequent serum 

concentrations to a model based on the population parameters alone. Data in adults have 

sho\\rn that population estimates -wi.th Bayesian feedback of one or more serum 

concentrations can adequately predict aminoglycoside serum concentrations32• In 

neonates this is not so clear. Two studies in neonates showed that serum concentrations 

can be predicted from an early sample using a population approach with Bayesian 

feedback33, 34. ~either study looked specifically at predicting trough serum concentrations, 

which is necessary to individualize dose interval. Also, they did not compare their 

feedback model to a strategy -wi.thout TDM 33, 34• We investigated the Bayesian approach 

as well, looking solely at predicting trough serum concentrations, and found a predictive 

performance comparable to the other t\vo studies. We could not however detect an 

increase of predictive performance of this method over our original population based, 

gestational age related dose advice \Vi.thout using TDM. Patients at risk for prolonged 

exposure to aminoglycosides in our study were not detected by this method. Hence, the 

results of our study indicate that routine early therapeutic drug monitoring does not 

improve the model based prediction of initial tobramycin dosing intervals in neonates in 

the first week of life. 

In conclusion, routine early TDM of aminoglycosidcs in newborns in the first week of life 

does not seem to be very useful from the viewpoint of toxicity. Furthermore early TDM 

does not adequately predict subsequent trough serum concentrations. \Vc therefore 
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propose that routine TDM of aminoglycosides is not needed in the first 7 days of life. An 

exception should be made for patients \vi.th renal failure, patients \Vi.th obvious neonatal 

asphyxia (e.g. 5' Apgar score < 5), and patients exposed to drugs or situations which are 

known to significantly alter pharmacokinetic beha;~or (e.g. indomethacin, ECMO). 

In these difficult to manage patients use of a population model Mth feedback of repeated 

serum concentrations as well as serum creatinin might be useful in guiding therapy. 

TDM of vancomycin 

TDM of vancomycin: correlation between serum concentrations and effect 

For vancomycin the correlation bet\veen serum concentrations and efficacy or toxicity is 

not clearly defined. Several, mainly in vitro, studies have sho\VTI no relation bet\veen 

killing rates of bacteria and increasing vancomycin concentrations above the :MIC35, 36. In 

animals, outcome of endocarditis was related to vancomycm trough serum 

concentrations37• Clinical studies in neonates have shown a \Vide range of serum 

concentrations associated \vi.th resolution of infection, but causal relation was not 

studied3s, 39. i\.lthough it is not possible to draw a definite conclusion, these studies 

indicate that keeping the trough level above the we is necessary to obtain clinically good 

results. This implies minimal serum concentrations are needed of approximately 

4-5 mg/L, when considering MIC's and protein binding. These findings are not reflected 

in currently accepted TDYI goals however, where peak and trough serum concentrations 

of 20-40 mg/L and 5-10 mg/L respectively, are generally accepted. 

TDM of vancomycin: correlation between serum concentrations and toxicity 

Vancomycin can cause reversible nephrotoxicity in humans. Toxicity has been related to 

trough concentrations > 10 mg/L, but it remains unclear whether elevated serum 

concentrations are the cause or consequence of renal dysfunction. Ototoxicity has been 

described in incidental cases where patients were exposed to high peak serum 

concentrations, but a relation benveen vancomycin induced ototoxicity and serum 

concentrations can not be ascertained from available literature. Although there arc studies 

relating both nephro- and ototoxicity to vancomycin in combination with an 

aminoglycoside, there is little evidence for vancomycin alone. In neonates, data are limited 

even more and very scarce. Several hearing screening studies did not detect vancomycin 
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related ototoxicityn2B. In the study presented in chapter 5.2, we investigated the effect of 

qualitative and quantitative e.'{posure to vancomycin on hearing screening in infants. This 

was the first study to relate serum concentrations of vancomycin to hearing screening. \YJe 

could not detect ·a significant relation ·of any denominator _of vancomycin use to hearing 

loss-found-'\vith neonatal hearing screening~ 

From the above, it can be concluded that there is no clear relationship between serum 

concentrations and toxicity, and TDM for toxicity reasons is not substantiated by current 

literature or studies presented in this thesis. TDM might be warranted for efficacy and 

should focus on adequate serum trough concentrations. 

TDM of vancomycin: predictive performance 

Adequate predictive performance for TDM of vancomyc1n in neonates has been 

established. In contrast to aminoglycosides, subsequent vancomycin serum concentrations 

can be reasonably well predicted \vith use of 2 serum samples in a Bayesian feedback 

modeJ40. Additional feedback concentrations are needed approximately every 14 days40. 

In conclusion, TDM requirement criteria for vancomycin are doubtful. Neither efficacy 

nor toxicity sho\v a clear relation to serum concentrations; the relation of efficacy to 

trough serum concentrations does not seem to exist above concentrations exceeding the 

~C. Although there are substantial inter-individual differences in pharmacokinetic 

behavior they are not important in the context of pharmacokinetic-phannacodyna.m.ic 

relations. In the light of these factors routine TDM of vancomycin, \vith both peak and 

trough concentrations, is not \v"atranted for either efficacy or toxicity reasons. A case can 

be made for routine monitoring of serum trough concentrations for efficacy reasons. 

Intensified TDM should only be performed in patients in whom an alteration of 

pharmacokinetic behavior (e.g. renal failure) is likely. 

DOSING REGIMEN: HOW MUCH AND HOW OFTEN? 

Although TDM goals, as discussed above, for both vancomycin (trough > 5 mg/L) and 

aminoglycosides (peak 5-12 mg/L, trough < 1 mg/L) are disputable, they have 

implications for drug dosing in neonates. \'Yhen designing a dosing regimen, these goals 

together \Vi.th pharmacokinetic characteristics have to be taken into account. 
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Aminoglycoside dosing 

Pharmacokinetics of aminoglycoside antibiotics .in neonates, as other drugs, are 

gestational age related. Premarure neonates have a larger volume of distribution and lower 

clearance. As in adults once daily dosing has been advocated in neonates. Based on these 

considerations several dosing regimens have been suggested and tested for 

neonates15.33. 41 . 42. The dose recommendation of our study presented in chapter 3.1 

(4 mg/kg) is simihr to these studies, where dose advice ranges from 2.5-5 mg/kg for 

neonates of varying gestational ages, mostly with an interval of 24h. Some of these studies 

however vary dose to keep the dosing interval the same, which is counterproductive in 

the face of efficacy15. 42. Lower doses in these studies led to subtherapeutic peak 

concentrations in 15-47% of patients15- 33. Our studies in chapter 3 have shown that 

dosing tobramycin at 4.0 mg/kg for neonates of all GA's in the first week of life leads to 

peak serum concentrations > 5 mg/L for more than 90% of patients. The need for 

dosing intervals exceeding 24h in preterm. infants has been established, but not evaluated 

by others15,42. Results from our studies have indicated a need for extending dose illtervals 

up to 48h in neonates \Vi.th a GA< 32 weeks. Use of our GA related dose interval showed 

that in pretenns< 32 weeks, mean trough serum concentrations were still 0.52 mg/L after 

48h. Results from recent studies, including ours, clearly indicate that aminoglycoside 

doses of approximately 4 mg/kg 'N"ith a GA-related interval are warranted. There is no 

need for a loading dose "'Wi.th this regimen. 

Vancomycin dosing 

The pharmacokineti.c profile of vancomycin in neonates is mainly determined by 

postconceptional age (PCA) and renal function, although a relation to other factors like 

birthweight and gestational age (GA) is described. 

As 'With aminoglycosides, dose adv-ises in most studies so far try to adhere to traditional 

monitoring goals. Studies based on PCA and/ or serum creatinin have shov.n to achieve 

serum concentrations within that therapeutic range43-46. Dose recommendations range 

from 10-20 mg/kg with an interval of 8-36h. In contrast to others we showed in chapter 

4.1 that, if serum goals are set at trough concentrations > 5mg/L, vancomycin can be 

dosed at 10 mg/kg every Shin all neonates in the first month of life, irrespective ofPCA. 

This regimen leads to >95% of trough serum concentrations above 5 mg/L. The lack of 

association to PCA in our study is partly explained by two factors_. First, very few patients 

received vancomycin in the first week of life, the period ·where volume of distribution, 
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clearance and renal function show the largest change. Second, the majority of our 

patients (81.8 %) were antenatally exposed to corticosteroids, which has been shown to 

d.itn1nish the GA-dependent difference in renal clearance of other antibiotics47. The 

dosing advise presented in this thesis, namely 10 mg/kg every 8h for all neonates in the 

first month of life, has the practical advantage of be.ing simple. Since dosing errors are 

frequently seen in infants, this practical dosing scheme might be important in the clinical 

setting4S. 

Finally, therapy with both tobramycin and vancomycin should be seen in rehtion with 

disease and immunological status of the patient. Although extended dose intervals are 

generally desirable, diseases in which microbiological rehtion to serum concentration or 

pharmacokinetic behavior are very different (e.g. endocarditis, renal failure, eA--posure to 

indomethacin, ECMO) or in immunologically compromised patients, treatment should be 

individualized, as will be described in the following parag<aph. 

MONITORING OF EFFICACY AND TOXICITY 

:y_{onitoring efficacy of antibiotic treatment in the first week of life is difficult. Culrure 

proven early onset sepsis occurs in approximately 2% of VLBW infants, but there are 

limitations to blood cultures in neonates and single blood culrures can be false 

negative2· 49. so. Furthermore increasing prenatal treatment of mothers \Ni.th antibiotics 

obscures culrure results in newborns. In our study population culrure proven early-onset 

sepsis was approximately 3°/o, in other words, for every patient \Vi.th a positive blood 

culture, 30 others were treated as well. Early detection of neonatal sepsis remains difficult. 

Laboratory tests are unspecific and clinical signs can be ambiguous. Neonatal sepsis is 

suspected in many VLB\V-infants on clinical grounds and antibiotic treatment is 

frequently started and discontinued after 48-72h '-Vhen blood cultures and results of other 

tests remain negativel. Given the infrequent occurrence of positive blood cultures, these 

can not be used as marker for antibiotic efficacy. Laboratory data, including C-reactive 

protein, complete blood count and ratio of immature to total neutrophils hck sufficient 

sensitivity to detect neonatal sepsis, and can therefore not be used to evaluate efficacy51• 

The same counts for clinical features (e.g. respiratory rate, skin color) which can either 

not be quantified or lack a clearly defined relation betw"een predictor and outcome. 
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Monitoring efficacy in late-onset sepsis is slightly bener. l..:p to 31% of VLBW infants 

have late onset culture proven sepsis5• In our series, 30% of neonates treated "vi.th 

vancomycin had positive blood cultures. Even though this number is lllgher, it still is 

difficult to monitor efficacy this \.vay. Treatment of central line asSociated ··sepsis often 

includes--remOval of·-the~ intravascular catheter· and· it is hard· to separate the ·antibiotic· 

effect from other treatment modalities used. Again traditional clinical and laboratory 

parameters are not useful. It is dear from the point of view of efficacy that there is a need 

for a more evidence-based approach of suspected neonatal sepsis. .YI:arkers like 

interleukin-1 receptor antagonist, interleukin-6 and interleukin-8 have shovm promising 

results in the early detection of neonatal sepsis52. 53. It is clear that a reduction in 

unnecessary treatment of neonatal suspected sepsis 1s needed before the question of 

antibiotic efficacy can be addressed. 

Toxicity is another matter. As discussed in the section on TDM, monitoring serum 

concentrations alone \.Vill not prevent aminoglycoside and vancomycin associated nephro­

and ototoxicity. Since TD:y£ is not enough, the obvious way to augment monitoring 

nephrotoxicity for aminoglycosides as "\veil as vancomycin is assessing renal function. 

Both antibiotics are almost totally renally excreted and a decrease of renal function is 

directly reflected in accumulation of the drug . ..1\Jthough glomerular function in neonates 

in the first \.Veek of life can not be reliably predicted from a single serum creatinin 

concentration, repeated measurements are indicative of renal function54. In neonates at 

risk for, or witb overt renal failnre (e.g. asphyxia), clinically detectable by oliguria and/ or a 

rise of serum creatinin, administration of aminoglycosides should be seriously 

reconsidered. If no good antibiotic alternatives for aminoglycosides are available, dose 

interval should be extended on the basis of repeated serum drug monitoring. 

Results from hearing screening studies in ne\.vboms have indicated that aminoglycoside 

and/ or vancomycin ototoxicity has not been proven, especially in the face of short 

courses of treatment. The Achilles heel of this conclusion is the reports on delayed onset 

hearing loss associated with prolonged exposure to aminoglycosides, as several studies 

including ours indicate29-31. Although routine follow-up of hearing screening in infants 

treated 'Wi.th aminoglycosides and/ or vancomycin is not necessary, a case can be made for 

retesting infants exposed to more than 10-14 days of therapy of aminoglycosides. 

In conclusion, based on current literature and the findings of this thesis, we propose the 

follo"\vi.ng simplified strategy for dosing and monitoring tobramycin and vancomycin in 

neonates (Fig. 1 and 2). 
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Fig. 1: Dosing and TOM strategy fortobramycin in newborns in the first week of life 

Renal dysfunction/severe asphyxia ? 
Exposure to indomethacin ? 
ECMO? 
Other special clinical considerations ? 

Tobramycin: 
,---------'1>1 4 mg/kg 

Alternative for 

Tobramycin: 
4 mg/kg 

Other antibiotic 
therapy 

GA < 32 weeks: GA 32-37 weeks: GA ;::: 37 weeks: 
Initial interval 48h Initial interval 36h Initial interval 24h 

yes 

1 Before the next dose. 

Suspicion of renal failure ? 
Exposure to indomethacin ? 
ECMO? 
Other special considerations? 

2 Evaluate necessity of continuing tobramycin. 
3 Individualize treatment, preferably on the basis of a 

population model with serum concentrations and renal 
function as feedback. 

Perform TOM 1 with 2 serum 
samples (8h and trough 
concentration) 

Individualize treatment3 

Treatment 2: 10 days 

Perform hearing screening and arrange 
foJJow-up of hearing 
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Fzg. 2: Dosing and TDM strategy for vanco»rycin in the first month of lift 

Renal dysfunction/severe asphyxia ? 
Exposure to indomethacin? 
ECMO? 
Other special clinical considerations? 

Vancomycin: 
10 mg/kg q 8h 

PNA <?days 

Suspicion of renal failure 
Exposure to indomethacin ? 
ECMO? 
Other special considerations? 

Measure serum trough 
yes concentration at steady state 

(repeat every 14 days) 

1 Early is before the next dose. 
2 lndividualize treatment, preferably on the basis of a 

population model with serum concentrations and renal 
function as feedback. 
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Vancomycin: 
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and trough) 
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Limitations of the studies 

Results from our studies have important implications for dosing and therapeutic drug 

monitoring of tobramycin and vancomycin in neonates. It is necessary to judge these 

results in the light of certain limitations of our studies. 

The major limitation of our studies analyzing pharmacokinetics of vancomycin and 

tobramycin is the retrospective nature. The TDM data used in our studies were taken 

from a large section of patients exposed to these drugs in everyday NICU practice. 

Results therefore depict the total spectrum of inter-individual variability encountered in 

this population. Implicitly, conclusions of these studies can be used in the same 

heterogeneous group. However, although only patients were included .in whom timing of 

drug administration as well as serum sampling was recorded, these data may not have the 

same precision as when prospectively recorded. Furthermore a general limitation to 

srudies in neonates is the acrual amount of drug given. In newborns, for aminoglycosides, 

this can be up to 20% lower than the prescribed dose, due to dilution and other processes 

involved in administrationss. This might lead to an overestimation of inter-individual 

phannacokinetic differences. Since )JQNJ\ffiM accounts for unexplained variability of 

both these issues, this is not a major drawback '"rith population modeling56. Also, it must 

be stressed that both proposed dosing regimens have been prospectively validated in the 

srudies presented in this thesis. 

In the srudy describing predictive performance of TD11:, only patients were selected in 

whom trough serum sampling was performed at the GA-related interval, to facilitate a 

comparison '.Vi.th a regimen 'W-ithout TDM. This might have led to a selection bias; 

patients not included in the analysis might have had more extreme pharmacokllietic 

parameters. We investl.:,oated this assumption by analyzing the total srudy group. Predictive 

performance in the total group was not significantly different from the srudy group. 

There are three limitations to our hearing screening study. First:, this study describes 

hearing screening in an at risk population, 'W-ith at least one risk factor for hearing loss. 

One has to be careful to translate results to the total group of newborns admitted to a 

NICU. However a hlgh percentage of all patients admitted to the NICU and C).:posed to 

either tobramycin (60%) or vancomycin (84%) were included in this study. Only one 

patient not included in this study was exposed to more than 7 days of tobramycin 

treatment. Second, click-evoked A-ABR screening detects hearing loss in the 2-4 kHz 

frequency range, \vhich is clinically important for speech and language development. 

Aminoglycoside related hearing loss starts above 8 kHz and it is thus possible that some 
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neonates .in this study had hearing loss in this high-frequency range. Because cochlear 

damage induced by aminoglycoside use is stationary over the years, the long-term clinical 

importance of this high-frequency hearing loss is doubtful. Third, delayed onset of 

hearing loss in infants has been described. In the study in chapter 5.2 a large percentage 

of patients e::...-posed to tobramycin for more than 10 days underv.rent hearing screening at 

least t\Vo weeks after cessation of therapy. It is conceivable however, that hearing 

screening was performed too early in some patients to detect hearing loss and it might be 

necessary to reassess hearing in neonates "\Vi.th prolonged e::..."Posure to aminoglycosides. 

The main limitation of our matched case-control study in 3-4 year old children exposed 

to tobramycin as neonates is the relatively small number of patients included. All patients 

whose address was traceable were approached, of \vhom approximately half responded. 

Also a few patients were not measurable due to chrocic middle ear effusion. 
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Future perspectives 

Although this thesis addresses several features of tobramycin and vancomycin use in 

neonates, further research into selected issues is needed. 

• Efficacy of aminoglycosides in neonates can not be addressed effectively as long as 

more than 95% of treated neonates have negative blood cultures. Research into 

clinical, biochemical and other markers that can adequately select patients at risk for 

invasive bacterial infections is needed. 

• For vancomycin, studies relating clinical efficacy to serum concentrations as well as 

MIC's will have to be performed. 

• Although the safety of extended interval dosing of aminoglycosides in newborns is 

comparable to that of multiple daily dosing, a clinical advantage has not been 

conclusively sho\VTI. These advantages are mainly extrapolated from adult and animal 

studies. Further prospective double blind studies in large numbers of neonates are 

needed to assess this theoretical advantage. 

• Ototoxicity related to aminoglycoside use in newborns has not been proven for short 

courses. The alarming case reportS of delayed onset hearing loss in neonates \Vith 

prolonged e.•,:posw::e to amlnoglycosides warrants further investigation. 

• Since mitochondrial point mutations are associated 'N'ith amlnoglycoside related 

ototoxicity, genetic studies in infants \Vi.th une.~plained hearing loss and exposw::e to 

amlnoglycosides \\.-ill have to be performed. 

• This thesis describes amlnoglycoside use in the first week of life. There is a lack of 

data on the change of aminoglycoside pharmacokinetics in the period between one 

week and one month. This gap will have to be filled, especially for VLB\'V' -infants, to 

determine dosing intervals in this period. 

• The role ofTDM of vancomycin and aminoglycosides, preferably in conjunction 'N'ith 

Bayesian feedback, will have to be redefined in the light of changing serum 

concentration goals. 
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SUMMARY 

Tbis thesis describes pharmacokineric and pharmacodynamic aspects of tobramycin and 

vancomycin in the neonatal intensive care unit. 

Chapter 1 provides an overvie\"~l of current knowledge on use of both antibiotics in the 

neonatal setting, and describes the aims of the stuclies. 

Chapter 1 a describes the use of the four main aminoglycosides (gentamicin, tobramycin, 

netilmicin and amikacin) in neonates. Special attention is given to the influence of 

gestational age and patient-related factors, such as e::..-posure to EC:yiO, indomethacin and 

corticosteroids. The recent shift towards longer dosing intervals of aminoglycosides .in 

adults, which has also been noted in neonates has implications for dosing and TD::YI of 

these drugs in neonates. 

Chapter 1 b sumrnar:izes the literature on use of vancomycin in the :::-.II CU. The relation 

berw-een phannacokineric behavior and PNA as well as renal function is described in 

detail. The recent discussion regarding the validity of current therapeutic range targets as 

well as necessity of routine determination of peak serum concentrations in adults are put 

in a neonatal conte:-;:t. The implications for drug dosing as \Veil as TDM in newborns are 

discussed. 

Chapter 1 c denotes the objectives of the studies presented in this thesis: 

1. E:: .. :plore the use of parametric and non parametric population modeling of tobramyc.in 

in the setting of routine therapeutic drug monitoring in a ~1CC". 

2. Determine a gestational age related e:-;:tended interval dosing of tobramycin in 

neonates. 

3. Investigate the potential of inclividualbing drug therapy by way role of early TDM of 

tobramyc.in in neonates. 

4. Determine the need for gestational age or postconceptional age related dosing of 

vancomycin in the :1:'\ICU. 

5. Evaluate the occurence of hearing loss caused by neonatal exposition to vancomycin 

and/ or tobramyc.in. 

In chapter 2 we compared t\VO population modeling methods, nonlinear mi"Xed effect 

modeling (:\JOKMEYI) and nonparametric tc'Cpectation maximization (NPE""l), using 

routinely obtained therapeutic drug monitoring data of tobramyc.in in neonates. 

KO:\IMEM and NPEM were found to be dissimilar in population estimates. The source 
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of these differences \.Vas investigated by creating models in which the error algorithm used 

by NQ)\JjY.(EM emulates that of~PEM and vice versa. \YJe determined that differences in 

range estimates of pharmacokinetic parameters bet\veen l"Q)\J1ffiM and NPEM are 

largely deter.mlned by _the method of incorpo:ra:ting·crror patterns_ in both programs. Use 

of both modeling ·techniques are ·synergistic- ·in--· adequately- ~describing population 

pharmacokinetics. 

Chapter 3 describes the development of a neonatal dosing regimen of tobramycin and 

the place of early TD~ in individualizing treatment in neonates in the first \.veek of life. 

In chapter 3.1 a tobramycin dosing schedule was established for neonates of various 

gestational ages, with use of a population pharmacokinetic method. In a study in 470 

newborns in the flrst week of life, paired peak and trough serum concentrations were 

analyzed according to a one-compartment open model using NOl":YIEYI population 

pharmacokinetic software. Using population estimates the follo\.ving dosing regimen was 

recommended: GA belo\.v 32 \.veeks: 4 mg/kg/ 48 hours, GA bet\\reen 32 and 36 \.Veeks: 

4 mg/kg/36 hours, GA above 36 weeks: 4 mg/kg/24 hours. This dosing advice was 

prospectively tested in a group of 26 patients. Measured concentrations \.Vere \.V-ithin the 

desired therapeutic range for more than 90% of patients. This study taught us that dose 

intervals in newborns in the first week of life are GA-related and should be longer than 

generally recommended. 

In chapter 3.2 we looked at the possibility of refining individual treatment as recommended 

in chapte:r 3.1 by way of linear pharmacokinetics or a population model v.--i.th Bayesian 

feedback. Tobramycin concentrations of 206 patients were used to obtain gestational age 

dependent population models 'vith NPEYr software. A second group of 41 patients with 

different sampling rimes was studied as well. Serum trough concentrations were predicted 

using linear pharmacokinetics in both groups and by using the population models with 

Bayesian feedback of one or t\.V·o serum concentrations in the second group. These 

predicted concentrations were compared to actual serum trough concentrations. The 

predictive performance of these models was compared to the GA-related model in 

chapter 3.1 "'ithout TD:YL 

None of the evaluated models yielded a significant hnprovemcnt of predictive 

performance over the model '\vithout TDM. This study sho\.ved us that early therapeutic 

drug monitoring does not hnprove the model based prediction of initial tobramycin 

dosing intervals in neonates in the first week of life. 

208 



In chapter 4 we performed a study on vancomycin pharmacokinetics in neonates in the 

first month of life. In the same way as in the study on robramycin, routinely sampled peak 

and trough serum concentrations in steady state of 108 newborns \Vere analyzed with 

NON11EM, according to a one-comparrment open model. The model best fitting the 

data included clearance and volume per kg and \vas independent of GA. Simulation of 

various- doslng-schemes-showed-that a dosing-schedule of-30--mg/kg/-day,-irrespective· of 

GA, in three doses \Vas optimal, and this scheme was prospectively tested in 22 patients. 

Mean trough concentrations \vere comparable to predicted trough concentrations. ~o 

peak levels higher than 40 mg/L \Vere found. The conclusion of our study \Vas that the 

proposed dosing regllnen leads to adequate vancomycin trough serum concentrations. 

There is no need for routine monitoring of peak: serum concentrations. 

Chapter 5 describes ototoxicity in relation to administration of tobramycin and/ or 

vancomycin. 

In chapter 5.1 we tested the effect of neonatal tobramycin use on hearing loss in 3-4 year 

old children. This study was a pilot case-control study \vhere neonates who had received 

tobramycin during their admission where compared to newborns who had only received 

other antibiotics. Nine KICC graduates with a high risk profile for aminoglycoside 

induced hearing loss (prolonged exposition to tobramycin and/ or high serum 

concentrations) were matched for other potential risk factors for hearing loss with nine 

control infants. Hearing \Vas evaluated by means of oto-acoustic emissions and, if 

necessary, brainstem evoked response audiometry. r\lthough there was no statistical 

difference, three of nine tobramycin treated children had moderate to severe cochlear 

hearing loss compatible \Vi.th aminoglycoside ototoxicity. These three infants were all 

exposed to tobramycin for longer than 14 day--s and there was no relation to high serum 

concentrations. All control patients had normal hearing. Our results suggest that 

tobramycin ototoxicity is related to duration of therapy rather than serum concentrations. 

Hearing screening of infants with prolonged exposure to tobramycin is warranted. 

In chapter 5.2 we investigated the effect of administration of vancomycin, tobramycin and 

furosemide on hearing in 625 neonates. This group of newborns unde:Nrent routine 

automated auditory brainstem response screening as part of neonatal follow-up on the 

basis of previously described risk factors. The relation bet\V·ecn administration of the 

aforementioned ototoxic drugs and a failure to pass hearing screening was investigated. 

)Jo statistical relation of hearing loss to e::...--position to these drugs, described in terms of 

total exposure as well as aberrant serum concentrations, was found. In individuals failing 
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to pass hearing screening, a causal relation bet\"lleen e::-..-posure to ototoxic medication and 

hearing loss could not be demonstrated. The results of our study indicated that 

aminoglycoside- and vancomycin related ototoxicity is rare. TDM of these drugs was not 

helpful in detecting newborns at risk for hearing loss. 

Chapter 6 described the results of our studies in context \.vith the literature. We discussed 

the implications of our finclings for dosing regimens and TDM of tobramycin and 

vancomycin in neonates. We provided a flow-chart for management of these t\V"o drugs in 

the ~ICU setting. Limitations of our studies were pointed out and directions for future 

research were given. 
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SAMENVATTING 

Dit proefschrift beschrijft farmacokinetische en farmacodynamische aspecten van het 

gebruik van tobramycine en vancomycine in de neonatale intensive care unit (NICU). 

Hoofdstuk 1 geeft een oveoJcht van de huidige kennis op het gebied van her gebruik van 

beide antibioti.ca in de neonatale setting en beschrijft de doelstellingen van de studies. 

Hoofdstuk I a beschrijft het gebruik van de 4 belangrijkste aminoglycosiden (gentamicine, 

tobramycine, netilrnicine en amikacine) bij pasgeborenen. Hierbij wordt speciale aandacht 

gegeven aan de invloed van Z\vange:rschapsduur en patientgerelateerde factoren zoals 

blootstelling aan extracorporele membraan m ... ygenatie, indomethacine en 

corricosterolden. De recente vexschuiving naar langere doseringsintenrallen van 

aminoglycosiden bij volwassenen, die ook bij neonaten gezien wordt, heeft itnplicaties 

voor dosering en therapeutische monitoring van deze geneesm.iddelen bij pasgeborenen. 

Hoqfdstuk 1 b vat de literatuur op het gebied van het gebruik van vancomycine bij 

pasgeborenen samen. De relatie tussen farmacokinetisch gedrag en postnatale leeftijd 

alsook nierfunctie wordt in detail beschreven. De recente discussie in de volwassen 

literatuur aangaande de validiteit van de huiclige doelen voor therapeutische vancomycine 

spiegels, alsmede de noodzaak van het routinemarig meten van pick serumconcentraties, 

\vordt besproken in de neonatale context. De gevolgen voor dosering en 

spiegelbepalingen worden bediscussieerd. 

Hoqfdstuk 1 c geeft de doelstellingen weer van de studies in dit proefschrift: 

1. Onderzoek het gebruik van parametrisch en non-parametrisch populatiemodelleren 

van tobramycine tegen de achtergrond van het routinemarig monitoren van dit 

geneesrniddel op een NICU. 

2. Bepaal een Z\Vangerschapsduur afhankelijk dose.ringsinte.nral voor tobramycine bij 

pasgeborenen. 

3. Onderzoek de mogelijkheden van het individualiseren van de neonatale behandeling 

met tobramycine door middel van vroege bepaling van geneesmiddel spiegels. 

4. Bepaal de noodzaak tot het hanteren van een Z\vangerschapsduur of 

postconceptioneel gerelateerde dosering van vancomycine bij pasgeborenen op een 

NICU. 

5. Evalueer het v66rkomen van gehoorverlies veroorzaakt door neonatale blootstelling 

aan vancomycine en/ of tobramycine. 
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In hoofdstuk 2 is met gebruik van routinemarig verkregen geneesmiddelspiegels van 

tobramycine bij neonaten een vergelijking gemaakt tussen t\vee methodes voor het 

modelleren van populaties; nonlinear mi'>:ed effect modeling ~O::':J.jyffii\1) en 

nonparametric expectation ma:ilinization (NPEM). ~O~MEM en ~PEYf bleken te 

verschillen in populatie schatti.ngen. De bron van deze verschillen werd onderzocht door 

modellen te creeren waarin NOK:MEM het fouten algoritme d3.t gebruikt \.vordt door 

KPEM simuleert en vice-versa. Wij stelden vast dat de verschillen in schatti.ngen van de 

spreiding van farmacokinetische parameters met name bepaald worden door de marrier 

\.V--a.a.top beide progranuna's fouten algorirmen inbouwen. Gebruik van beidc populatie­

modellen is synergistisch in het adequaat beschrijven van populatie farmacokinetiek. 

Hoofdstuk 3 bcschrijft de ont\Vikkeling van een neonataal doserings schema van 

tobramycine. Tevens \.vordt de plaats bepaald van het vroeg bepalen van serumspiegels bij 

neonaten in de eerste levensweek ten behoeve van individualisering van de behandeling. 

In hoofdstuk 3.1 wordt met behulp van een populatie farmacokinetisch model een 

doseringsschema vastgesteld voor neonatcn met een verschillende zwangerschapsduur. 

De gepaarde pick- en dalconcentraties van 470 neonaten in de eerste levensweek werden 

geanalyscerd met gebruikmaking van een 1-compartiments model in 1'0~1\ffiM. Met 

behulp van de populatieschatti.ngen werd het volgende doseringsschema geadviseerd: 

zv.rangerschapsduur < 32 \.veken: 4 mg/kg/ 48 uur, zwangerschapsduur tussen 32 en 36 

weken: 4 mg/kg/36 uur, zwangerschapsduur 2: 37 weken: 4 mg/kg/24 uur. Dit 

doseringsadvies werd prospectief getest in een groep van 26 patienten. Gemeten serum 

concentraries lagen binnen het ge\.venste therapeutische bereik bij meer dan 90% van de 

patiCnten. Deze studie leerde ons dat doseringsintervallen van pasgeborcnen in de eerste 

levensweek Z\vangerschapsduurafhankelijk zijn en langer dienen te zijn dan algemcen 

aangenomen. 

In hoofdstttk 3.2 hebben we gekeken naar de mogelijkheid van het verfijnen van de 

individuele bebandeling, zoals aanbevolen in hoofdstuk 3.1, door ntiddel van het gebruik 

van lineaire farmacokinetiek of een populaticmodel met Bayesiaanse terugkoppeling. De 

tobramycine concentratics van 206 patiCnten werden gebruikt ID ='JPE:y£ om 

zwangerschapsduur afuankelijke populatiemodellen te verkrijgen. Een t\veede groep van 

41 patienten met andere afname tijdstippen van serumconcentraties wcrd eveneens 

bestudeerd. De dalspiegels werden voorspeld met behulp van l.ineaire farmacokinetiek in 

beide groepen en met de populatiemodcllen met Bayesiaanse terugkoppeling van CCn of 

n.vee serumspiegels in de t\Veede grocp. Deze voorspelde concentraties werden vcrgeleken 
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met de gemeten dalconcentrati.es. De voorspellende waarde van deze modellen wcrd 

vergeleken met het mrangerschapsduur afhankelijke doseringsschema van hoofdstuk 3.1 

zonder gebruik van serum concentrati.es. Geen van de onderzochte modellen gaf een 

significante verbetering van de voorspellende waarde boven het model van hoofdstuk 3.1, 

waarbij geen gebruik \.Vordt gemaakt van serumconcentrati.es. Deze studie liet ons zien dat 

routinematig v-roege bepaling van scmmconcentraties geen toegevoegde '.V'aarde heeft 

voor het voorspellen van de initiele tobramycine doseringsinte!\rallen van pasgeborenen 

in de eerste levens\veek. 

In hoofdstuk 4 verrichtten "\Vi.j een studie naar de farmacokineri.ek van vancomycine bij 

pasgeborenen in de eerste levensmaand. Zoals bij de studie naar tobramycine, \verden 

routinematig verkregen steady-state top- en dalspiegels van 108 neonaten geanalyseerd 

met KON:y(E.:\1, volgens een CCn-compartimentsmodel. Het best passende model 

bevatte klaring en volume per kilogram en was onafhankelijk van de zwangerschapsduur. 

Simulati.e van verschillende doseringsschema's liet zien dat een dosering van 

30 mg/kg/ dag, verdeeld over 3 doses, onafhankelijk van de zwangerschapsduur, oprimaal 

was. Dit schema werd prospecti.ef onderzocht bij 22 pati.Cnten. De gerniddelde dalspiegels 

waren vergelijkbaar met de voorspelde waarden. Er weren geen piekspiegels boven de 

40 mg/L gevonden. De conclusie van onze studic was dat het voorgestclde 

doseringsschema leidt tot adequate vancomycine dalspiegels. Er is geen noodzaak tot 

routinemarig bepalen van vancomycine piekspiegels. 

Hoofdstuk 5 beschrijft ototoxiciteit in relatie tot de toediening van tobramycine en/ of 

vancomyane. 

In hoifdstttk 5.1 testten we het effect van het gebruik van tobramycine in de neonatale 

periode op het v66rkomen van gehoorverlies bij 3-4 jaar oude kinderen. Deze studie \vas 

een pilot case-control studie waarin neonaten die tobramycine hadden gekregen 

gedurende hun opname werden vergeleken met pasgeborenen die aileen andere 

antibiorica hadden gekregen. Kegen ex-neonaten met cen hoog risico profiel voor 

aminoglycoside gerelateerd gehoorverlies Oangdurige blootstelling aan tobramycine en/ of 

hoge serum spiegels) \.verden gematched met negen controle pari.Cnten voor andere 

potenti.Cle risicofactoren voor gehoorverlies. Het gehoor \Verd geevalueerd met oto­

acoustische ernissies en, zonodig, hersenstam respons audiometric. Alhoe\vel er geen 

statistisch significant verschil was, hadden 3 van de 9 kinderen die behandeld \varen met 

aminoglycosiden een matig tot emsti.g cochleair gehoorverlies, compatibel met 
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aminoglycoside ototoxiciteit. Deze drie kinderen waren allen langer dan 14 dagen 

blootgesteld aan tobramycine en er was geen relatie met serumspiegels. Aile 

controlepatienten hadden een normaal gehoor. Onze resultaten suggereren dat 

tobramycine ototoxiciteit sterker gerelateerd is aan de duur van de behandeling dan aan 

serumspiegels. Gehooronderzoek van neonaten met langdurige blootstelling aan 

tobramycine is noodzakelijk. 

In hoofdsfttk 5.2 onderzochten '\Vij het effect van toediening van vancomycine, tobramycine 

en furosemide op het gehoor bij 625 neonaten. Deze groep kinderen ondergjng 

routinematige gehoorsscreening met de geautomatiseerde auditieve hersenstam respons 

methode (A-ABR) als onderdeel van neonatal follow-up op basis van eerder beschreven 

risicofactoren. De relatie tussen toediening van de hiervoor genoemde ototoxischc 

geneesrniddelen en het "niet slagen" voor de gehoorsscreening werd onderzocht. Er werd 

geen statistische relatie gevonden met blootstelling aan deze geneesrniddelen, uitgedrukt 

in termen van totale blootstelling alsmede af\.vijkende serumspiegels. Ook kon bij 

indiv'iduele patienten geen causaal verband worden aangetoond tussen blootstelling aan 

deze ototoxische medicamenten en het "niet slagen" voor de gehoorsscreening. 

De resultaten van deze studie gaven aan dat aminoglycoside- en vancomycine gerelateerde 

gehoorsschade zeldzaam is. Routinematig bepalen van serumspiegels hielp niet bij het 

detecteren van pasgeborenen met een verhoogd risico op gehoonrerlies. 

Hoofdstuk 6 beschrijft de resultaten van onze studies in samenhang met de Jiteraruur. De 

implicaties van onze bevindlngen ten aanzien van doser:ingsschema's en routinematig 

bepalen van serumspiegels van tobramycine en vancomycine bij pasgeborenen werden 

bediscussieerd. Er \.verd een stroomdiagram gepresenteerd voor het praktisch hanteren 

van deze t\.vee geneesrniddelen in de neonatale setting. De beperkingen van onze studies 

werden beschreven en suggesties voor toekomstig onderzoek werden gedaan. 
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