
New Rat Model that Phenotypically Resembles Autosomal
Recessive Polycystic Kidney Disease

JEROEN NAUTA,* MIRIAM A. GOEDBLOED,* HARRY VAN HERCK,§

DENNIS A. HESSELINK,* PIM VISSER,‡ ROB WILLEMSEN,‡

RICHARD P. E. VAN DOKKUM,† CHRISTOPHER J. WRIGHT,\ and
LISA M. GUAY-WOODFORD\¶#

Departments of *Pediatrics,†Pediatric Surgery, and‡Cell Biology, Erasmus Medical Center Rotterdam,
Rotterdam, The Netherlands;§Central Laboratory Animal Institute, Utrecht University, Utrecht, The
Netherlands; and Departments of\Cell Biology,¶Pediatrics, and#Medicine, University of Alabama at
Birmingham, Birmingham, Alabama.

Abstract.Numerous murine models of polycystic kidney dis-
ease (PKD) have been described. While mouse models are
particularly well suited for investigating the molecular patho-
genesis of PKD, rats are well established as an experimental
model of renal physiologic processes. Han:SPRD-Cy rats have
been proposed as a model for human autosomal dominant
PKD. A new spontaneous rat mutation, designatedwpk, has
now been identified. In the mutants, the renal cystic phenotype
resembles human autosomal recessive PKD (ARPKD). This
study was designed to characterize the clinical and histopatho-
logic features ofwpk/wpkmutants and to map thewpk locus.
Homozygous mutants developed nephromegaly, hypertension,
proteinuria, impaired urine-concentrating capacity, and uremia,
resulting in death at 4 wk of age. Early cysts were present in
the nephrogenic zone at embryonic day 19. These were local-

ized, by specific staining and electron microscopy, to differ-
entiated proximal tubules, thick limbs, distal tubules, and col-
lecting ducts. In later stages, the cysts were largely confined to
collecting ducts. Although the renal histopathologic features
are strikingly similar to those of human ARPKD,wpk/wpk
mutants exhibited no evidence of biliary tract abnormalities.
The wpk locus maps just proximal to theCy locus on rat
chromosome 5, and complementation studies demonstrated
that these loci are not allelic. It is concluded that the clinical
and renal histopathologic features of this new rat model
strongly resemble those of human ARPKD. Although homol-
ogy mapping indicates that ratwpk and human ARPKD in-
volve distinct genes, this new rat mutation provides an excel-
lent experimental model to study the molecular pathogenesis
and renal pathophysiologic features of recessive PKD.

Renal cystogenesis occurs with a number of inherited, devel-
opmental, and acquired diseases (1). A common feature among
this otherwise heterogeneous set of disorders is the develop-
ment of epithelium-lined cysts arising from various nephron
segments and the collecting ducts.

Of these conditions, the inherited polycystic kidney diseases
(PKD) have been most extensively investigated. These disor-
ders, which are transmitted as single Mendelian traits, cause
significant morbidity and death among both adults and children
(2). Autosomal dominant PKD (ADPKD) causes 6 to 8% of
end-stage renal disease among adult patients. With autosomal
recessive PKD (ARPKD), 30 to 50% of affected neonates die
in the perinatal period. Surviving ARPKD patients, in combi-
nation with children with juvenile nephronophthisis, comprise
6 to 14% of all pediatric patients with end-stage renal disease
(3,4).

Recent genetic studies have identified the principal genes
involved in ADPKD (PKD1 and PKD2) (5,6). In addition,
linkage studies have defined the predominant, if not exclusive,
locus for ARPKD (PKHD1) (7,8). Although ADPKD is inher-
ited as a dominant trait, multiple lines of evidence indicate that
a second somatic mutation in this disorder may be necessary
for disease expression (9,10). This suggests that, like ARPKD,
ADPKD is initiated by recessive cellular mechanisms. How-
ever, the molecular pathogenic events involved in the initiation
and progression of renal cystic diseases remain largely
unknown.

In addition to human PKD, numerous mouse and rat models
have been described (11–13). Most of these involve disruption
of a single gene, and the mutant phenotypes closely resemble
human PKD with respect to morphologic features, cyst local-
ization, and disease progression. Several models are the result
of spontaneous mutations, whereas others were engineered
through either chemical mutagenesis or transgenic technolo-
gies. In addition, experimental models of PKD have been
induced by chemical cystogens, primarily in rats.

Although the numerous mouse PKD mutations provide pow-
erful models to characterize the genetic factors that regulate
renal cyst initiation and disease progression, these models have
limited utility for renal physiologic investigations. In contrast,
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rats represent a well established model system for investigating
renal physiologic parameters such as renal blood flow, GFR,
renal tubular transport, and BP regulation. In rats, PKD has
been reported in the Han:SPRD-Cy model (14) and the Wistar-
chi model (15). Han:SPRD-Cy rats have been well character-
ized and have been studied extensively as a model of ADPKD.
The renal cystic disease in the Wistar-chi model resembles
ARPKD in that lectin-binding studies localize the tubular cysts
to collecting ducts. However, unlike in human ARPKD, the
renal insufficiency progresses slowly and is associated with
skeletal abnormalities.

In this report, we describe a new rat PKD model. Affected
homozygotes develop rapidly progressive PKD that clinically
and histologically resembles human ARPKD. This mutation
occurred spontaneously in an outbred Wistar strain. We there-
fore designated the mutant locuswpk (Wistar polycystic kid-
neys). We have localizedwpk to chromosome 5. This locus is
distinct from the rat Han:SPRD-Cy locus, and its mouse and
human orthologs are not allelic with any previously described
mouse PKD model or human PKD gene. However, on the basis
of the phenotypic similarities with human ARPKD,wpk rats
provide a new experimental model for investigating the patho-
genesis of recessive PKD. Because renal physiologic features
have been well studied in rats,wpkrats should provide the first
model system for evaluation of the abnormalities in renal
tubular transport and systemic BP regulation that are associated
with recessive PKD.

Materials and Methods
Rats

The wpk mutation was first recognized in 1994 in a colony of
outbred Wistar rats, U:WU (Cpb), at Utrecht University (Utrecht, The
Netherlands). This breeding colony was initiated in 1989 from 10
ancestral breeding pairs obtained from the National Institute of Public
Health and the Environment (RIVM; Bilthoven, The Netherlands). No
new rats have been introduced into the colony since 1989. In 1996, a
breeding pair of test-proven heterozygotes were transferred to the
University of Rotterdam (Rotterdam, The Netherlands), and a new
subcolony was initiated. This colony has been maintained by brother-
sister matings for more than five generations. Individuals heterozy-
gous for the mutant allele were identified in each generation by
test-crossing phenotypically normal offspring from known
heterozygotes.

The Han:SPRD-Cy rat model of PKD (16) was used in comple-
mentation experiments and as a phenotypic reference for our evalua-
tion of the homozygouswpk/wpkrats. In this model,1/Cy heterozy-
gotes develop slowly progressive PKD that leads to renal failure in
male animals only, at$6 mo of age, whereasCy/Cy homozygotes
develop a severe form of PKD within the first few weeks of life.
Heterozygous Han:SPRD-1/Cy breeding pairs were kindly provided
in 1994 by F. Deerberg (Central Institute for Laboratory Animal
Breeding, Hannover, Germany), and a breeding colony was estab-
lished at the University of Rotterdam. BB-DP rats, an inbred strain
(F30) derived from biobreeding, diabetes mellitus-prone rats, were
kindly provided by H. A. Drexhage (Department of Immunology,
Erasmus University, Rotterdam, The Netherlands).

To map thewpk locus, we used a (Wistar-1/wpk 3 BB-DP)F1
intercross, which was initially generated to test linkage to thePKD1
locus. The inbred BB-DP strain was selected on the basis of its

genotype ofPrm1, a polymorphic marker that is tightly linked to the
rat PKD1 locus (17). Wistar-1/wpk heterozygotes of both genders
were bred with BB-DP rats, and F1 progeny heterozygous for thewpk
mutation were intercrossed to generate F2 rats. Affected homozygotes
could be identified by abdominal palpation on postnatal day 12.

All animals were fed standard rat chow containing 24% protein and
had free access to acidified tap water (pH 2.5 to 3.0). All experiments
were conducted in accordance with the Dutch guidelines for the care
and use of laboratory animals.

Clinical Parameters
Kidney weight, body weight, BP, and urine and blood chemistry

values were assessed for groups of six to eight rats at the age of 3 to
4 wk. Affected wpk/wpk rats were compared with phenotypically
unaffected littermates. AffectedCy/Cyrats were compared with1/1
littermates. In contrast to1/wpk heterozygotes,1/Cy rats could be
identified histologically, and these pups were excluded from further
analysis.

The weights of the left and right kidneys ofwpk/wpkhomozygotes
did not differ. The kidney weights were therefore combined and
expressed as a percentage of body weight. Data for male and female
pups were pooled, because gender effects were never observed for
prepubertal animals.

BP was measured in six pairs of 3- to 4-wk-old rats anesthetized
with ketamine and thiopental, using an indwelling catheter in the
femoral artery. Blood was obtained, by cardiac puncture, from six
pairs of wpk/wpkhomozygotes and unaffected littermates. Urea ni-
trogen, creatinine, and total bilirubin levels were measured in the
plasma using a Kodak Ektachem 700 spectrophotometer (Kodak,
Utrecht, The Netherlands). Urine was collected after cervical dislo-
cation, after 2 h of fasting, from 4-wk-old affected and unaffectedwpk
rats. Urinary creatinine levels were measured by the Jaffé method and
urinary protein levels by absorption spectroscopy.

For older animals, urinary protein excretion, BP, and blood chem-
istry values were compared between test-proven heterozygous1/wpk
rats and wild-type control animals, at the age of 1.5 yr for female
animals and 1 yr for male animals. Twenty-four-hour urine specimens
were collected using metabolic cages. BP was determined by tail
plethysmography. The animals were trained for this procedure before
the measurements (18). Blood was obtained by aortic puncture, with
ether anesthesia.

Tissue Preparation for Histologic Analysis and
Electron Microscopy (EM)

For histologic analysis, kidneys were obtained fromwpk/wpkand
control animals on embryonic day 19 and postnatal days 0, 7, 14, and
21. The cystic phenotype was established by histologic assessment.
Multiple-organ necropsies, including heart, lung, liver, pancreas,
spleen, brain, and intestine, were performed on 21-d-old homozygous
mutants and adult heterozygotes. Heterozygous female animals were
studied at the age of 1.5 yr and male animals were studied at the age
of 1 yr.

For light microscopic and immunohistochemical analyses, the kid-
neys and livers were fixed in 4% paraformaldehyde in phosphate-
buffered saline (PBS) (pH 7.4) and embedded in paraffin. For liver
histologic analyses, the left ventral lobe was dissected, fixed in 4%
paraformaldehyde in PBS, and embedded in paraffin with the con-
vexity toward the surface of the block.

For EM, representative kidney samples were fixed in 2.5% glutar-
aldehyde, postfixed in 1% osmium tetroxide, and dehydrated in a
graded alcohol series. For scanning EM, the samples were then critical
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point-dried, mounted on stubs, coated with gold/palladium, and ex-
amined with a JEOL JSM 25 scanning electron microscope (JEOL,
Tokyo, Japan). For transmission EM, the fixed and dehydrated sam-
ples were embedded in Epon. Thin sections were stained with uranyl
acetate and lead citrate and examined with a Philips C100 electron
microscope (Philips, Eindhoven, The Netherlands). Human kidney
tissue from a neonate with ARPKD and end-stage renal failure was
used as a comparative reference for the scanning EM analyses of
wpk/wpkkidneys.

Evaluation of Biliary Ductal Plates
In addition to the renal cystic lesions, intrahepatic morphologic

features were evaluated for six affectedwpk/wpkhomozygotes and six
phenotypically unaffected animals (age, 21 d). The depth and angle of
the liver sections were standardized for histologic and morphometric
analyses, as described previously (19). Bile ductules and recognizable
portal areas were systematically examined in each section, by one
observer blinded to the phenotypes of the animals. A recognizable
portal area was defined as a venule accompanied by one or more bile
ductules.

Immunohistochemical Analyses
The localization of the renal cysts was evaluated by immunodetec-

tion of nephron segment-specific proteins and lectin binding sites, on
postnatal days 0, 7, 14, and 21. On the basis of preliminary studies, the
following reagents were selected. As a rat proximal tubule marker, we
used polyclonal goat anti-rat dipeptidyl peptidase 4 (dpp4) at dilutions
of 1:500 (kindly provided by E. de Heer, Leiden University Medical
Center, Leiden, The Netherlands) (20). As a marker of the thin limb
of Henle’s loop (medulla) and proximal tubules (cortex), we used
polyclonal rabbit anti-rat aquaporin-1 (Aqp1) at 1:100 (generous gift
of P. Deen, University of Nijmegen, Nijmegen, The Netherlands). As
a marker of the thick ascending limb, we used polyclonal rabbit
anti-human Tamm-Horsfall glycoprotein at 1:200 (Biomedical Tech-
nologies, Stoughton, MA). As a marker of cortical and medullary
collecting tubules, we used polyclonal rabbit anti-rat Aqp2 at 1:100
(generous gift of P. Deen, University of Nijmegen). All antibodies
were diluted in PBS with 0.5% dried milk and 0.15% glycine.

Schäferet al. (16) reported increased expression of collagen type
IV and laminin in the renal cysts of 2-mo-old Han:SPRD-1/Cy rats.
Therefore, for comparative purposes, kidney sections from 21-d-old
Wistar-wpk/wpkrats, 21-d-old Han:SPRD-Cy/Cy rats, and 2-mo-old
1/Cy rats were analyzed with Jones’ silver stain, as well as with a
polyclonal rabbit anti-mouse collagen IV antibody at 1:200 (Collabora-
tive Medical Products) (21) and a polyclonal rabbit anti-mouse laminin
antibody at 1:50 (Eurodiagnostica, Arnhem, The Netherlands) (22).

The tissue sections were pretreated with 0.1% pronase in PBS for
5 to 10 min before the incubations with anti-Tamm-Horsfall glyco-
protein, anti-dpp4, and anti-collagen IV and with 0.2% sodium dode-
cyl sulfate in PBS for 5 min before the incubations with anti-Aqp2.
Anti-laminin and anti-Aqp1 were used without pretreatment of the
tissue sections. Primary rabbit antibodies were detected using swine
anti-rabbit peroxidase conjugate at 1:100 (Dako). Goat anti-dpp4 was
detected using rabbit anti-goat peroxidase conjugate at 1:100 (Dako).
The sections were stained with 0.05% diaminobenzidine/0.01% hy-
drogen peroxide and counterstained with hematoxylin.

Statistical Analyses
Clinical data are expressed as means and SD. Differences between

wpk and control animals were analyzed byt test.

PCR-Based Genotyping
To type progeny for the inheritance of alleles of anonymous DNA

microsatellite markers, spleen genomic DNA was prepared according
to standard protocols. Initial mapping was performed using interval
haplotype analysis (23). For these studies, we selected microsatellite
markers whose Wistar and BB-DP alleles differed in size by at least
6 bp and mapped within approximately 10 cM of the proximal and
distal ends of each chromosome.

After chromosomal localization, further mapping was performed
using markers spaced at 20-cM intervals along chromosome 5 (low-
resolution linkage mapping study) and then within 4 cM ofD5Rat73
(high-resolution linkage mapping study). All markers were chosen
from the on-line Whitehead/Massachusetts of Technology database
[accessible at http://www-genome.wi.mit.edu/; described by Szpireret
al. (24)]. PCR primer pairs for these markers were purchased from
Research Genetics (Huntsville, AL).

Forward primers were end-labeled with [g-32P]ATP, and PCR
amplification was performed as described (25). Amplified fragments
were analyzed on denaturing 6% polyacrylamide gels.

Analysis of Genetic Data
Genotype data, obtained by analyzing 35 affected F2 progeny for

microsatellite markers known to map to the ends of each autosome,
were subjected to interval haplotype analysis exactly as described by
Neuhaus and Beier (23). To construct low- and high-resolution link-
age maps, individual chromosomal haplotypes were inferred from F2
genotypic data, as described previously (25), and markers were or-
dered to minimize the numbers of crossover events needed to account
for the inferred haplotypes.

Results
Wistar-wpk/wpk Phenotype

Our Wistar-1/wpkcolony breeding has been maintained for
more than five generations, using a system of brother-sister
matings. Heterozygotes exhibited a normal phenotype and bred
as productively as wild-type Wistar rats. A typical litter con-
tained 9 to 14 pups. As expected for an autosomal trait,
approximately one-fourth of the offspring of test-proven het-
erozygotes expressed PKD, and male and female animals were
affected in equal numbers (23.5 and 24.2%, respectively). Of
note, approximately 10% of the F1 pups died within the first 2
wk of postnatal life. These were not available for systematic
studies, because dead pups are generally eaten by the parents.

The phenotype of homozygous mutants was characterized
by progressive nephromegaly and abdominal distension.
Nephromegaly was first palpable on postnatal day 12. By 4 wk
of age, homozygous mutants were runted and had large palpa-
ble kidneys. Affected rats died at 4 to 6 wk of age. The total
kidney weight was$10% of the body weight at 4 wk (Table
1). In comparison, the kidney weight was 1% of the body
weight for unaffected littermates and 20% of the body weight
for Han:SPRD-Cy/Cymutants at the same age. At 3 wk of age,
wpk/wpk homozygotes exhibited elevated plasma urea and
creatinine levels, proteinuria, and low urine osmolality after 2 h
of fasting, compared with unaffected littermates. The mean
arterial BP, as assessed under anesthesia by direct measure-
ment in the femoral artery, was markedly elevated (Table 1).
The weight of the liver relative to the kidney-free body weight
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and the plasma bilirubin levels were not significantly different
for homozygous mutantsversusunaffected littermates.

Test-proven heterozygotes were clinically unaffected. There
was no significant difference between 18-mo-old female1/wpk
heterozygotes and age-matched, wild-type, control animals with
respect to body weight (3456 24versus3446 29 g), systolic BP
(1356 9 versus1286 7 mmHg), plasma creatinine levels (416
4 versus46 6 5 mM), or urinary protein excretion rate (206 13
versus276 18 mg/d per 100 g body wt). Similarly, 1-yr-old male
1/wpk heterozygotes did not differ from age-matched control
animals with respect to body weight (5476 31 versus517 6
25 g), systolic BP (1306 7 versus127 6 8 mmHg), plasma
creatinine levels (476 5 versus49 6 7 mM), or urinary protein
excretion rate (406 26versus386 21 mg/d per 100 g body wt).

Pathologic Features of wpk/wpk Kidneys
At a gross level, neonatalwpk/wpkkidneys exhibited normal

architecture, including normal lobulation, medullary rays, and
well defined corticomedullary demarcation. In affected pups,
the kidneys progressively enlarged but maintained a reniform
shape, despite the progressive cystic changes in the paren-
chyma. The capsular surface was smooth. The renal pelvis and
calices were not enlarged and maintained a normal relation to
the parenchyma (Figure 1). The ureters were present and
nondilated. This pattern is very similar to that observed in the
kidneys of human neonates with ARPKD.

The histopathologic findings were characterized by progres-
sive cystic dilation of the renal tubules. Early cysts were noted
at 19 d of embryonic development (Figure 2, A and B). At that
stage, as well as in neonatal kidneys, the lesions were predom-
inantly localized in the renal cortex. The cysts were round or
oval and were lined with either a single layer of cuboidal cells
or flattened epithelia (Figure 2C). Some of the cysts were lined
by a brush border-bearing cell type, suggesting proximal tubu-
lar epithelia. The cell density of the epithelial lining was high
in most but not all cysts. Glomerular cysts were not observed.

With subsequent disease progression, cysts developed
throughout the entire kidney (Figure 2D); cortical cysts were
arrayed in a radial orientation, whereas medullary cysts were
generally round and of variable size. In kidneys with advanced

cystic disease, there was an apparent reduction in the number
of glomeruli and nondilated tubules, and those remaining ap-
peared to be compressed between innumerable tubular cysts.
Interstitial fibrosis was not observed, and the renal vasculature
was unremarkable. In contrast to the early cystic kidneys, the
cysts in more advanced disease were lined with a relatively
homogeneous cell type. Within individual cysts, the cell den-
sities varied considerably. Interestingly, areas of high cell
density were often juxtaposed with similar areas in neighboring
cysts (Figure 2E). This observation suggests that focal epithe-
lial cell proliferation within cysts may be determined by the
local biologic environment. However, true epithelial hyperpla-
sia with associated polyps or microadenomas, as noted in
human ADPKD (26), inCy/Cy rats (16), and in the c-myc-
overexpression model of PKD (27), was never observed.

Immunohistochemical Analyses
Cysts in neonatal kidneys were stained with either anti-dpp4,

anti-Tamm-Horsfall protein, or (from day 1 onward) anti-Aqp2

Table 1. Clinical features of homozygous mutants and unaffected littermates at 3 to 4 wk of agea

Wistar Han:SPRD-Cy

wpk/wpk Unaffected Cy/Cy 1/1

Body weight (g) 43.36 6.8 48.26 7.2 34.36 3.5 38.16 5.8
Kidney weight/body weight3 100 (%) 10.96 0.6b 1.16 0.1 21.86 1.4b 1.06 0.5
BP (mmHg) (mean) 1396 26b 906 10 ND ND
Plasma urea concentration (mM) 29.36 2.8b 8.96 0.7 51.26 8.8b 13.26 1.7
Plasma creatinine concentration (mM) 42 6 11b 246 9 706 15b 356 10
Urinary protein excretion (mg/mmol of creatinine) 5806 307b 336 26 ND ND
Urine osmolality (mosmol/kg) 3946 87b 9616 584 ND ND

a Body weight, kidney weight, and plasma concentrations of urea and creatinine were measured for 3-wk-old rats; proteinuria, urine
osmolality, and mean BP were measured for 3- to 4-wk-old rats. Values are given as means6 SD. ND, not done.

b P , 0.01versuscontrols.

Figure 1. Normal (right) and cystic (left) kidneys at 3 wk of age.
Magnification, 32.3. The affected kidney has a well maintained
reniform shape, a smooth capsular surface, and radially oriented cysts.
The renal pelvis and ureters are not dilated.
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antibody, indicating cellular characteristics typical of proximal
tubules, thick ascending limbs, or collecting tubules, respec-
tively. Staining of medullary cysts with anti-Aqp1, indicating a
thin loop-derived cell type, was rarely observed. Cortical cysts
were occasionally stained with anti-Aqp1 in a weak pattern.
These cysts were lined by a brush border-bearing cell type and
were also stained with anti-dpp4, indicating proximal tubules.
Individual cysts were typically lined with only one cell type,
and overlapping staining patterns (except for anti-Aqp1 stain-
ing in proximal tubules) were not observed. By 2 wk of age, the
vast majority of cysts appeared to be derived from collecting
ducts, because the majority of cysts were stained with anti-
Aqp2. At 3 wk of age,.90% of the cysts expressed Aqp2
(Figure 2F). In comparison, renal cysts in 3-wk-oldCy/Cy
homozygotes appeared to arise from all nephron segments
(data not shown).

In wpk/wpkhomozygotes, the renal tubular basement mem-

brane morphologic features, as assessed with Jones’ silver
staining, were not significantly different between cystic tubules
and normal tubules in either early or advanced disease. More-
over, there was no difference in the expression of the tubular
basement membrane constituents collagen type IV and laminin
when cystic and noncystic tubules were compared. In contrast,
collagen type IV and laminin were overexpressed in the tubular
basement membranes associated with some but not all renal
tubular cysts in SRPD-1/Cy and SRPD-Cy/Cy kidneys (data
not shown) (16).

Electron Microscopy
Scanning EM results were consistent with the light micro-

scopic observation that early and late cysts have different
epithelial linings (Figure 3). The cell surface characteristics of
early cystic tubules varied considerably among individual
cysts. Some tubules exhibited a homogeneous brush border,

Figure 2.Light microscopy of kidneys at different ages. (A and B) Normal (A) and cystic (B) kidneys at embryonic day 19. Clusters of cysts
in the cortex suggest that adjacent cysts are dilations of tubular loops of the same nephron. Medullary cysts are markedly smaller. Hematoxylin;
magnification,330. (C) Neonatal kidney with cortical cysts lined by various types of epithelium. Methylene blue; magnification,3120. (D)
Cortical area of an end-stage cystic kidney, exhibiting large epithelial cysts. Glomerular cysts were not observed. The few glomeruli and
nondilated tubules seem to be compressed between innumerable cysts. Hematoxylin; magnification,330. (E) Considerable variation in cell
densities within individual cysts. Areas of high cell density were often juxtaposed with similar areas in neighboring cysts. Methylene blue;
magnification,380. (F) Aquaporin-2 (Aqp2) staining of the vast majority of cysts in a 3-wk-old cystic kidney. Diaminobenzidine and
hematoxylin; magnification,3100.

2276 Journal of the American Society of Nephrology J Am Soc Nephrol 11: 2272–2284, 2000



Figure 3.Scanning electron microscopy (EM) of renal cysts in neonatal (A) and 3-wk-old (B to F) affectedwpk/wpkrats and of an end-stage
human autosomal recessive polycystic kidney disease (ARPKD) kidney (G and H). (A) A neonatalwpk/wpk cyst is lined by a brush
border-bearing cell type, suggesting a proximal tubular cell type. (B) In this 3-wk-oldwpk/wpkkidney, radially aligned fusiform cysts can be
observed, at low magnification, in the cortex, with more rounded cysts in the medulla. (C) At this stage, the cysts are densely packed and the
epithelia of adjacent cysts are often juxtaposed, with little interstitial tissue between them. Normal renal structures can barely be identified. (D)
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Figure 4.Transmission EM of renal lesions in neonatal (A and B) and 3-wk-old (C and D)wpk/wpkrats. (A) Neonatal cyst lined by proximal
tubular epithelium. The cells are characterized by a well differentiated brush border, an apical endosomal/lysosomal apparatus, a dense network
of microtubules, normal intracellular organelles (including peroxisomes), and many mitochondria, which are short and randomly distributed.
The basal laminae are regular and intact. Magnification,34000. (B) Cortical cyst lined by collecting tubular cells, featuring a relatively smooth
cell surface, apical tubulovesicular profiles, and a regular basement membrane of normal thickness. Magnification,33000. (C) Cyst-lining cells
of a 3-wk-old affected rat. The characteristics of principle cells include a fairly smooth apical surface, a few short microvilli, basolateral folds,
a tight cytoplasmic network of tubulovesicular profiles below the apical membrane, and sparse mitochondria. The basal laminae are intact and
regular. Magnification,35000. (D) Evidence that the intercellular junctions of these cells are relatively deep and tight and the cells have narrow
folds of cytoplasm that interlock with counterparts of adjacent cells. Magnification,325,000.

Figure 3 (Continued). The vast majority of cysts are lined by a homogeneous cobblestone-like cell pattern. (E) Most cells have the typical
characteristics of principle cells, including a relatively smooth rounded surface and a single cilium. (F) Other cells have the characteristics of
intercalated cells, including a relatively rough angular surface and no cilium. The microprojections are moderate in both size and number, as
described for type B intercalated cells (28). (G and H) Human ARPKD cysts are typically lined with a homogeneous cobblestone-like cell
pattern (G) and a mixture of principle and intercalated cells (H). Magnification:36500 in A;310 in B; 3100 in C;3450 in D;36500 in E;
32000 in F;3650 in G;32000 in H.
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characteristic of proximal tubules (Figure 3A). Others exhib-
ited more distal tubule or collecting duct characteristics, in-
cluding fewer microvilli and smoother apical surfaces. Some
exhibited the typical characteristics of collecting ducts, with a
prominent single cilium, as illustrated for 3-wk-old tissue
(Figure 3E).

Cysts in kidneys with advanced disease were radially ori-
ented. In contrast to early cysts, these cysts were uniformly
lined by a homogeneous cobblestone cell type, indicating a
collecting duct origin (Figure 3, B to D). These cells exhibited
the typical phenotype of principal cells, including relatively
smooth apical surfaces and a well differentiated, conspicuous,
single cilium (Figure 3E). These cilia were prominent for the
vast majority of cortical cysts and less prominent or absent for
medullary cysts. In addition, the epithelial lining of most cysts
contained a small number of rough-surfaced cells with char-
acteristics previously described for rat type B intercalated cells
(Figure 3F) (28). This mixed pattern of principal and interca-
lated cells is characteristic of cortical and outer medullary
collecting ducts in rats and is very similar to the pattern
observed for the vast majority of the cysts in our human
ARPKD reference sample (Figure 3, G and H) (28).

Transmission EM results were consistent with both the light
microscopic and scanning EM findings. Early renal cysts in
wpk/wpkrats were lined by well differentiated cells with the
phenotypic characteristics of either proximal tubules, thick
ascending limbs, distal tubules, or collecting ducts (Figure 4).
Microvilli were well formed, cell junctions and basal laminae
were intact, and the cellular organelles were normally distrib-
uted. At 3 wk of age, the vast majority of cortical and medul-
lary cysts were lined by a homogeneous layer of cells with the
characteristic phenotype of collecting duct cells (29). Abnor-
malities evident in human ADPKD and in the Han:SPRD-
Cy/Cymodel,e.g., basement membrane thickening, intercellu-
lar vacuoles, or intratubular micropolyps, were not observed
(26). The basal laminae were intact, with normal architecture
and thickness.

Nonrenal Tissues
Multiorgan necropsies of 3-wk-old Wistar-wpk/wpk pups

and adult Wistar-1/wpkheterozygotes did not reveal any non-
renal structural abnormalities. Of particular note, no evidence
of ductal plate malformations or biliary cysts was observed by
light microscopy in multiple liver sections from six 3-wk-old
wpk/wpk rats. Morphometric analyses of standardized liver
sections revealed no evidence of portal triad abnormalities or
bile ductule proliferation inwpk/wpkhomozygotes, compared
with unaffected control animals (Table 2). Similarly, pancre-
atic tissue exhibited normal ducts and normal endocrine and
exocrine structures in both mutant and control animals (data
not shown).

(Wistar-1/wpk 3 BB-DP)F11/wpk Intercross
In our (Wistar-1/wpk 3 BB-DP)F1 intercross, F11/wpk

hybrids were identified by progeny testing. Evaluation of aged
F1 male and female rats revealed no manifestations of renal

cystic disease, and F1 male and female animals bred in a robust
manner.

Of the 225 F2 progeny generated to date, 55 (24.4%) exhib-
ited recessive PKD. The number of F2wpk/wpkpups is con-
sistent with that expected for the Mendelian inheritance of a
single recessive trait. Detailed histologic analysis of F2 mu-
tants was not performed.

Genetic Mapping of wpk
To test whetherwpk is allelic with the Cy locus on rat

chromosome 5, we crossed test-proven Wistar-1/wpk and
SPRD-1/Cyheterozygotes. None of the 35 F1 pups manifested
the severe, early-onset phenotype evident for eitherwpk/wpkor
Cy/Cyrats. As expected, 17 of the 35 pups (48.5%) expressed
a phenotype consistent with that described for SPRD-1/Cy
heterozygotes. These data exclude allelism between thewpk
andCy loci.

We then performed a whole-genome scan using interval
haplotype analysis, as described by Neuhaus and Beier (23). In
effect, by typing markers at the ends of each chromosome, we
generated a series of 20 chromosomal intervals for the 35
affected F2 progeny of the (Wistar-1/wpk 3 BB-DP)F1
intercross.

Among the progeny of an intercross, a proportion of the F2
pups inherit chromosomes that are apparently nonrecombinant
(NR), that is, the alleles of markers along these chromosomes
correspond to a single parental strain (in this case, either Wistar
or BB-DP). In the analysis of a recessive mutation such aswpk,
a rapid genome scan can be performed by analyzing each
chromosome for the distribution of NR intervals. The fewer
NR chromosomes that correspond to the unaffected parental
strain (BB-DP), the less likely it is that the loci along that
chromosome are randomly distributed. Accordingly, this chro-
mosomal interval is more likely to carry the mutation.

The distribution of chromosomal intervals is evaluated byx2

analysis. The maximal inferredx2 value is calculated for each
chromosomal interval and expressed as a percentage of the max-
imal possiblex2 value. Previous modeling experiments have
established.75% of the maximal possiblex2 value as the thresh-
old for linkage (23). Therefore, this strategy provides an efficient
method to identify candidate chromosomes for more detailed
analyses, using standard recombinational mapping techniques.

Analysis of our data set revealed 88% of the maximal
possiblex2 value for chromosome 5 and,75% of the maximal

Table 2. Intrahepatic biliary profiles of 3-wk-oldwpk/wpk
ratsa

Wistar-wpk/wpk Wistar-1/1

Portal areas/100 veins 16.66 2.7 14.96 2.2
Bile ductules/portal area 1.276 0.13 1.196 0.07

a The development of the biliary system is expressed as the
number of recognizable portal areas, relative to the total number of
vein profiles. Bile ductules/portal area is a measure of biliary
proliferation. Numbers are given as means6 SD. The differences
are not statistically significant.
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possiblex2 value for all other chromosomal intervals (Table 3).
These data provided presumptive evidence for linkage to chro-
mosome 5. We typed the initial cohort of 35 affected F2 pups
with a series of anonymous DNA microsatellite markers
spaced at approximately 20-cM intervals along this chromo-
some. These pups and an additional 19 F2 pups (total of 54
pups and 108 meioses) were typed with markers within 4 cM
of D5Rat73. These data, which are summarized in Figure 5,
positionwpk within a 11.1-cM interval centered onD5Rat73.

We screened 146 markers to identify the 40 informative mark-
ers required for interval haplotype analysis, indicating that the
polymorphism rate between the outbred Wistar and BB-DP pa-
rental strains was only 27.5%. Similarly, for the low- and high-
resolution mapping studies, we screened 16 markers to identify
the six (37.5%) informative markers shown in Figure 5. This low
polymorphism rate was not unexpected, given that the Wistar and
BB-DP strains are phylogenetically related.

Discussion
Similarities Between the Rat wpk/wpk Phenotype and
Human ARPKD

The ratwpk model and human ARPKD exhibit numerous
similarities in their clinical phenotypes and renal histopatho-
logic features.

The majority of human patients with ARPKD are identified
either in utero or at birth. The most severely affected fetuses

exhibit enlarged echogenic kidneys and oligohydramnios be-
cause of poor fetal renal output. At birth, these neonates often
exhibit a critical degree of pulmonary hypoplasia that is in-
compatible with survival. Renal function, although frequently
compromised, is rarely a cause of neonatal death. For infants
who survive the perinatal period, systemic hypertension and
progressive renal failure usually evolve (4). In addition, pa-
tients with ARPKD have defects in both urine-diluting and
urine-concentrating capacities. Hyponatremia, presumably re-
sulting from defects in free water excretion, is often observed
(4).

Similarly, renal cysts inwpk/wpkhomozygotes developin
utero, and enlarged kidneys are palpable within the first few
weeks of life. Disease progression is associated with continued
renal enlargement, systemic hypertension, proteinuria, signifi-
cant reductions in urine-concentrating capacity, progressive
renal insufficiency, and death by 4 to 6 wk of age. As in human
patients with ARPKD (30), early renal cysts inwpk/wpkho-
mozygotes develop in both proximal and distal nephron seg-
ments. With disease progression, the cystic lesions in both the
rat model and human ARPKD predominantly involve the cor-
tical and medullary collecting ducts.

Although Wistar-wpk/wpkmutants do not express a biliary
phenotype, we suspect thatwpk-related disease expression may
be modulated by the genetic background, as has been demon-
strated for thecpk mouse model (31). Genetic backgrounds

Table 3. Haplotype analysisa

Chromosome Markers n Single-Point
Analysis,x2

Haplotype Analysis

Max P x2 exp M x2 % maxx2 NR Haplotypes

1 D1Rat8–D1Rat84 35 4.8–0.5 70 14.6 20 19
2 D2Rat1–D2Rat103 35 3.9–0.5 70 27.6 39 13
3 D3Rat3–D3Rat7 35 2.3–6.9 70 44.8 64 7
4 D4Rat149–D4Rat67 34 0.3–1.2 68 28.4 41 12
5 D5Rat125–D5Rat41 34 66–1.4 68 60.2 88 2
6 D6Rat105–D6Rat1 34 3.8–2.2 68 28.4 41 12
7 D7mit20–D7Rat115 32 1.5–2.1 64 30.2 47 10
8 D8Rat56–D8Rat12 35 4.7–2.8 68 46.1 67 6
9 D9Rat43–D9Rat1 35 2.8–0 70 22.8 32 15

10 D10Rat2–D10Rat47 35 2.8–0 70 22.8 32 15
11 D11Rat52–D11Rat37 29 7.6–11.6 58 39.7 68 5
12 D12Rat2–D12Rat22 34 3.3–0.7 68 23.5 34 14
13 D13Rat4–D13Rat157 35 4.8–8 70 30.2 43 12
14 D14Rat5–D14Rat51 35 1.4–2.3 70 22.8 32 15
15 D15Rat5–D15Rat29 35 2.3–1.9 70 22.8 32 15
16 D16Rat16–D16Rat21 35 8.3–1.6 70 35.7 51 10
17 D17Rat6–D17Rat51 35 1.6–0.2 70 38.6 55 9
18 D18Rat29–D18Rat13 35 1.6–1.2 70 30.2 43 12
19 D19Rat28–D19Rat2 34 4.7–1.4 68 46.1 67 6
20 D20Rat21–D20Rat29 35 1.6–3.5 70 20.6 29 16

a A complete genome scan was performed with 20 chromosomal intervals flanked by proximal and distal markers, e.g.,D1Rat8and
D1Rat84, respectively.n, number of animals in the data set.x2 values for each marker are indicated. Max Px2, maximal possiblex2 for
the indicated number of animals; exp Mx2, maximal inferred experimentalx2; % maxx2, percentage of the maximal possiblex2; NR
haplotypes, number of nonrecombinant haplotypes inherited from the unaffected parental strain.
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(32–35) as well as environmental factors, such as dietary
protein restriction, use of soy proteins instead of casein pro-
teins, use of dietary flaxseeds, use of nonacidified drinking
water, and potassium citrate treatment, have been reported to
alter disease progression in murine PKD models (36–39).
Moreover, adequate treatment of high BP may have an addi-
tional beneficial effect on both renal and patient survival rates,
as it does for human patients (40).

This wpkmodel complements two established rat models of
PKD, i.e., theCy model and thechi model. In contrast to both
human ARPKD and thewpk model, theCy mutation can be
expressed as both a dominant and a recessive trait (14). We
demonstrated that the renal phenotype inCy/Cy rats is more
severe than that currently described for thewpk model (Table
1). Histologic studies of the cysts in bothCy/Cyand1/Cy rats
indicated that these may arise in any nephron segment. This is
consistent with the pattern observed for human patients with
ADPKD and is in contrast to the collecting tubular localization
of the cysts in advanced stages of both human ARPKD and
wpk/wpkdisease. Although thechi model has not been as well
characterized as either theCy model or thewpkmodel, thechi
model exhibits less progressive disease and includes skeletal
abnormalities in addition to the renal lesions (15). In the
original reports, there was no specific mention of whether
biliary lesions are manifested in that model.

Systemic Hypertension
Hypertension is a common finding among human patients

with PKD and contributes to both morbidity and death. Lon-
gitudinal observations indicate that hypertension is a major
determinant of disease progression in ADPKD (41). Among
affected children, hypertension occurs in both ADPKD and
ARPKD but tends to be more severe in ARPKD (42–46).

Stimulation of the renal-angiotensin-aldosterone axis
(RAAS) seems to be a major mechanism causing hypertension
in ADPKD (41). Whether and to what degree increased activity
of the RAAS contributes to hypertension in ARPKD remains
unclear. The limited available data are conflicting. Histopatho-
logic observations indicate that, with progressive disease, the
glomeruli are compressed in the septa between expanding
collecting duct cysts. Mechanical compression of the glomeruli
and the intrarenal vasculature could, at least theoretically,
stimulate RAAS activity. However, clinical data from affected
neonates indicate that ARPKD is actually a low-renin state,
with expansion of total body volume and occasional hypona-
tremia (40).

Given the extensive body of work on BP regulation in rats
and the striking phenotypic similarities between the ratwpk
model and human ARPKD, we propose thatwpk rats may
provide a new powerful model system for investigation of the
physiologic and genetic mechanisms that contribute to hyper-
tension in recessive PKD.

Absence of Biliary Abnormalities
In this study, we observed no biliary histopathologic features

in Wistar-wpk/wpkhomozygotes. This is a shortcoming of the
model, because bile duct proliferation and periportal fibrosis

Figure 5.Genetic localization of thewpk locus on chromosome 5. (A)
Haplotype distribution among 108 test chromosomes from the
(Wistar-1/wpk 3 BB-DP)F1 intercross. For each locus, black boxes
represent the inheritance of Wistar-derived alleles and white boxes
represent the inheritance of BB-DP-derived alleles. The number of
chromosomes for each haplotype is shown below the columns. (B)
Interval between markersD5Rat125andD5Rat41, which were used
in the initial interval haplotype analysis. The map distances, in cen-
timorgans, were calculated from the recombination frequencies ob-
served for each interval and are expressed with the standard errors.
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are typically present in all patients with ARPKD. However,
because we did not examine the liver histologic features of F2
wpk/wpkhomozygotes, we cannot exclude the possibility that
the genetic background affects the expression of biliary lesions
in thewpkmodel, as has been demonstrated for thecpkmouse
model of ARPKD (31,47).

Cellular Morphologic Features of wpk/wpk Renal Cysts
Characterization of the cystic epithelia in thewpkmodel has

yielded a number of interesting insights. First, the initial cysts
seem to be derived from functioning unobstructed nephrons,
and the cystic epithelia maintain their segment-specific pheno-
types. These observations are consistent with data for the
mouse bpk and cpk models and suggest that the disease-
susceptibility genes in these models do not disrupt the early
stages of nephrogenesis,i.e., induction of mesenchyme-to-
epithelium transformation, acquisition of stem cell character,
fate determination, epitheliogenesis, and polarization (48).

In more advanced disease, cysts in the Wistar-wpk/wpk
kidneys are lined by well differentiated collecting duct cells, as
assessed by segment-specific marker profiling and EM. Al-
though the cystic epithelia seem to have escaped the normal
mechanisms controlling tubular diameter, they retain specific
epithelial phenotypes, with heterogeneous populations of prin-
cipal cells and intercalated cells, and maintain their organiza-
tion as monolayers. Interestingly, the cyst epithelium is not
uniformly proliferative, with focal areas of increased prolifer-
ation adjacent to cysts. This observation suggests that cell
proliferation is influenced by local environmental factors as
well as by the defective gene. Interestingly, no abnormalities of
the extracellular matrix or the basal lamina were associated
with renal cyst initiation or progression inwpk/wpkkidneys.

The wpk Mutation as a New Model of Recessive PKD
The renal phenotype of the ratwpkmodel closely resembles

those of human ARPKD and the mousecpk, bpk, and orpk
models. However, thewpk model is genetically distinct from
all previously described PKD loci. Thewpk locus maps to
proximal chromosome 5. Although the ratCy locus also maps
to chromosome 5 (49), we have demonstrated thatwpkandCy
are not allelic.

In homology mapping, the humanwpk ortholog maps to
chromosome 8q11 (http://www.ncbi.nlm.nih.gov/Homology).
These data exclude thewpk locus as a candidate for the human
ARPKD gene,PKHD1, which maps to human chromosome
6p21-p12 (50). Similarly, the mousewpk ortholog maps to
proximal mouse chromosome 4 and thus is genetically distinct
from mousebpkon chromosome 10 (25),cpkon chromosome
12 (51), andorpk on chromosome 14 (52). It is interesting to
note, however, that a principal modifying gene for both the
mousecpkandpcymodels also maps to proximal chromosome
4 (35,53). This observation raises the interesting possibility
that the mousewpk ortholog may be a candidate PKD-modi-
fying gene.

Although the (Wistar-1/wpk 3 BB-DP)F1 intercross was
informative for localizing the ratwpk gene, the fact that the
mutation arose in an outbred strain, coupled with the low

polymorphism rate for the two parental strains, presents prob-
lems for further refinement of the genetic interval and appli-
cation of positional cloning strategies to identify thewpkgene.
Therefore, we are currently generating a congenic Wistar-1/
wpk strain using a standard backcross strategy. By the 10th
backcross generation,.99% of the genome in this congenic
line will be derived from the inbred Wistar strain. At that point,
we will generate a new F2 cohort by breeding the congenic
Wistar-1/wpk line with a second inbred strain,e.g., Brown
Norway, so that the polymorphism rate for the two parental
strains is more robust. We will also monitor the available
databases for potential candidate genes that map to the candi-
date wpk region on rat chromosome 5 or the homologous
regions in the human and/or mouse genomes.

Conclusions
We have characterized the clinical and histopathologic phe-

notypes of a new rat PKD model. Like the mousecpkandbpk
models, the ratwpkmodel strongly resembles human ARPKD.
However, the hepatobiliary lesions typically associated with
human disease were not observed in affectedwpk/wpk rats.
Homology mapping indicated that the ratwpk gene is distinct
from the human ARPKD gene,PKHD1, as well as from the rat
Cy gene and the mousecpk and bpk genes. Because the
Wistar-chi locus has not been mapped, complementation test-
ing would be required to determine whether thechi and wpk
mutations are allelic. In addition to the identification of a new
gene involved in the pathogenesis of recessive PKD, this new
rat mutation provides an excellent experimental model for
study of the renal pathophysiologic processes associated with
recessive PKD.
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