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Abstract; In this paper we analyse the optimal claim behaviour 
of a policy holder having a third-party liability insurance in 

which one is allowed to decide at the end of an insurance year 
which damages occurred during that year should be claimed. 
This analysis can only be carried out in detail in case the 
damages are negative exponentially distributed. Moreover, we 
present some computational results using an existing bonus- 

malus system and a horizon of 10 and 25 years and compare 
these results with similar computations for a corresponding 

third-party liability insurance in which the policy holder has to 
decide within a limited time period after the accident to claim 

or not to claim. 

Keywords: Optimal critical claim size, Markov decision 
processes, Order statistics 

1. Introduction 

An important feature of premium rating sys- 
tems for vehicle insurance is the no-claim or 
bonus-malus principle. This principle is meant to 
reward policy holders for not having claims during 
a year; that is, to grant a bonus to a careful driver. 
A bonus principle affects the policy holder’s deci- 
sion whether or not to file a claim in a particular 
instance. An example of such a bonus-malus 
scheme operative in the Netherlands is given in 
Table 1. 

In the case of a third-party liability insurance 
the policy holder is generally allowed some period 
(at least 24 hours) to decide to claim or not to 
claim a particular damage. After this time period 
he has to take a decision. Since the bonus-malus 
system depends on the number of claims in each 
year, his claim behaviour reflects his uncertainty 
about what might happen in the remaining part of 
the present insurance year. This system and in 

particular the optimal claim behaviour of a policy 
holder having imperfect information about the 
future is discussed in detail by Dellaert et al. 
(1990). In the same paper an overview of the 
existing literature on this topic is also presented. 
However, recently some Dutch insurance compa- 
nies allow insurants without any additional cost 
and under the same bonus-malus scheme to de- 
cide at the end of an insurance year which damages 
occurred during that year should be claimed. This 
means that the policy holder has perfect informa- 
tion about the number of accidents and the corre- 
sponding damages during an insurance year at the 
moment he decides which damages to claim. 

The purpose of this paper is to analyse the 
optimal claim behaviour of a policy holder having 
complete information at his decision moments and 
to compare his corresponding costs with the costs 
for an optimally claiming policy holder operating 
under an imperfect information system as dis- 
cussed in Dellaert et al. (1990). In Section 2 a 
mathematical description of a third-party liability 
insurance with perfect information is given. Due 

Table 1 
Percentages of the basic premium by bonus-malus class. 

Bonus- 

malus 
class 

Premium as New bonus-malus 
percentage class after . . claims 
of the basic 

0 1 2 
premium 

r3 

14 30.0 14 9 5 1 
13 32.5 14 8 4 1 

12 35.0 13 8 4 1 

11 37.5 12 7 3 1 
10 40.0 11 7 2 1 
9 45.0 10 6 1 1 

8 50.0 9 5 1 1 
7 55.0 8 4 1 1 
6 60.0 7 3 1 1 
5 70.0 6 2 1 1 
4 80.0 5 1 1 1 
3 90.0 4 1 1 1 
2 100.0 3 1 1 1 
1 120.0 2 1 1 1 
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to the analytical intractability of the distribution same holds for the sequence xjt, 1 I j I _N,, 1 I c 

of sums of order statistics we focus our attention I T, with distribution G satisfying G(0) = 0. Fur- 
in Section 3 on the case where the damages are thermore, let the sequences {_N, : 1 I t < T } and 
independent and negative exponentially distrib- {_X,,:O<j_<_N,,l<ttT} be independent of 
uted. Finally in Section 4 we present an example each other. In the remainder we will omit the 
of a third-party liability insurance with and 
without perfect information and compare both 

subscript r and denote the realisations of + and 
-xJ :_N by k, resp. x,. To complete our description 

systems. define: 

j := the policy holder’s bonus-malus class, 
1 sjlJ, 

2. The model 

In order to model the problem discussed in the 
previous section as a discrete time Markov deci- 
sion process we have to define: 

_ the set .? of decision moments, 
- the decision set 9, 
_ the state space 9’. 

Clearly, if we assume that the insurance will 
continue for T years (T < 00) the policy holder 
has to take decisions at the end of each year and 
hence 5= {tlt=l, 2 ,.._, T}. 

Moreover, by Table 1 the policy holder has the 
option at the end of each insurance year in which 
k accidents occurred to claim i damages with 
0 <i I min(2, k) or if k > 2 to claim all the 
damages. Therefore 9= (0, 1, 2, 3) with i := claim 
i damages, 0 < i I 2 and 3 := claim all damages. 
Of course, since the insurance premium to be paid 
for the next year only depends on the number of 
filed claims at the end of the present year the 
policy holder claiming i damages claims the i 
biggest damages. We now introduce the state 
space. Before doing this we define for 1 5 t I T 

the following random variables: 

r(j) := premium to be paid at the beginning of 
an insurance year if the policy holder 
enters bonus-malus class j, 

b,(j) := bonus-malus class the policy holder en- 
ters next year if he is at the moment in 
bonus-malus class j and decides to take 
action i E 9 at the end of the present 
year. 

By the above definitions an elements s of the 
state space S is given by 

s= (x0, x1,..., xk, j), k20, l<jlJ, 

where x0 = 0 (in the remainder we will omit x,, in 
the state description). 

Define now for every 1 I t I T; 

v:(x 1,“” xk, j) := minimal expected discounted 
cost for the policy holder from 
the end of year t until the end 
of the insurance period, if this 
policy holder observed state 

(Xi,...rXk, j) at the end of 
insurance year t just before he 
has to decide which claims to 
file, 

and 

N 

z;r 

:= number of accidents in year t, 
:= amount of damage of jth accident in 

insurance year t, 0 S j I _N,, 

_xI:_N, := the jth smallest amount of damage occur- 
ring in insurance year t, i.e. the jth order 
statistic of the sample _X,,, 0 lj 5 _N,. 

V,(j) := minimal expected discounted cost for the 
policy holder of the total insurance period 
it this policy holder enters bonus-malus 
class j at the beginning of his insurance. 

Clearly _X,, = 0 and 

Assume now that the random variables &, 
1 5 t I T, are independent and identically distrib- 
uted with P(_N, = k} =pk, k 2 0, and that the 

Clearly 

v,(x l,...,~k, j) =0 

and 

V,(j) =r(j) +P~~:(&l:E,...,XE:E, j) 

with E denoting the mathematical expectation 
symbol. 
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If we define a,(t), 0 I i I 3, by 

a,(t) := r@,(j)) 

+PIE~+,(_x,:,,...,_x,:,, 6(j)) 

(2.1) 

we obtain for the years 1 I f 5 T - 1 the following 
set of backward equations: 

K:(x O’...‘Xk, j ‘) 

i 

I,&(t) 
=min C x,+a,(t):OIiSmin(k,3) 

n=O 1 

(2.2) 

with 

Ut) := 
i 

k-i if i<min(k,3) 
o if i=min(k, 3)’ 

From these backward equations we see that an 
optimal decision is easy to determine at the end of 
insurance year t if the values lE I$+ ,(_X, : _N, . . . , 

&: N’ j) are known for every j. Hence to solve 
the model we have to compute these expectations. 
Therefore we shall take a closer look at the struc- 
ture of the backward equations and derive some 
general properties of lE I$:(& : &, . . . ,_X,: _N, j), 1 < 
t<T-1. 

First of all we observe that for every fixed t, 

so(t) 5 ai(t) I u,(t) _< a&). 

These inequalities hold since the premium to be 
paid for entering bonus-malus class b,(j) is non- 
decreasing in i, while at the same time, being in 
bonus-malus class b,(j) in year t, the minimal 
expected discounted cost from year t + 1 until the 
end of the insurance period is also non-decreasing 
in i. (Hint: use induction with respect to t.) 

Moreover, it also follows for every t 2 1 that 

k=O 

xP{_N=k} 

= E IEy:(_x,:, Y..., _xk? j)P,. 
k=O 

(2.3) 

Hence by (2.1) and (2.2), in order to compute 

lE K(_X, : &, . . . , _xN: N, j), we have to calculate _ 

~V:(_x,:,,...,&:,,,, j) 

k-i 

a;(t) + c %:k 

n=O 
(2.4) 

if 0 I k I 2 and 

k-r 

u;(r) + c _x,:k 

n=O 

(2.5) 

if k 2 3. 
For the above expectations one can derive the 

following inequalities. 

Lemma 2.1. For every bonus-mulus class j, k 2 3 
and 1 i t I T we have 

5 IE~:(&:k+,~..., _x,+l: k+l, j>. 

Proof. Let &, . . . , _X, be a random sample from 
a distribution G and denote by _X, : k < . . . I _X,: k 
5 . . . I _X, : k the corresponding sequence of order 
statistics. If _X,+, is an additional drawing from 
the same probability distribution and _X, : k+ 1 5 
_Xk+l~ ... s_X~+,:~+~ isthenewlyformedse- 
quence of order statistics one can easily verify that 

P+t 

c &:,+I 2 i _x,:k 

n=l n=l 

for every l<p<k. 
lows by (2.5). •I 

Hence the desired result fol- 

By Lemma 2.1 it is now possible to 
following lower and upper bounds. 

derive the 

Lemma 2.2. For every bonus-mulus class 1 S j I J 
we have 

y(_x,:,:,,..., -x3:39 jP@Q 41 

5 5 IEK(&:k,...,&:k: j)p, 
k=4 

I u,P{_N 2 4). 

Proof. By (2.5) clearly 

~~(_x,:,,...,_x,:,, j) su3 
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for every k 2 3 and hence 

Moreover, by Lemma 2.1 the other inequality 
follows. 0 

It is clear by the above lemma and (2.3) that a 
lower and upper bound on Ev(_X, : _N,. . . ,_X,: _N, 
j) can be derived. Since this derivation is obvious 
we will omit it. 

In the next section we will discuss an example 
of a distribution G for which it is possible to 
derive an analytical expression for the upper and 
lower bound. 

3. Negative exponential distribution amount of 
damage 

In this section we assume that _X,, . . . , _X, is a 
random sample from a negative exponential distri- 
bution with parameter f.~ > 0. Then it is possible to 
calculate lEV;(_X,:,,..., _XkKk, j) for every k < 3 
and so by the remark after Lemma 2.2 we obtain 
an approximation of lEq(_X, : N,. . . , _xNIE, j) with 
computable lower and upper bounds. The compu- 
tation is carried out using the computer system 
Maple, which is a system of symbolic mathemati- 
cal computation (cf. [3]). However, in order to 
apply Maple we need to rewrite the expectations 
in a proper form making use of the properties of 
the exponential distribution. This procedure of 
rewriting the expectations and the corresponding 
mathematical manipulations are carried out in de- 
tail in the Appendix of Dellaert et al. (1990) and 
so we only mention the results. 

F,(u, b, /JCL) = ;F,(pu, pb, l), 

&(a, b, c, P) = 372(w, pb, PC, 1) 

and 

F,(u, b, c, d, P) = +&w pb, PC, pd, 1) 

for every k 2 3. 
Hence we can assume without loss of generality 

that f.~ = 1 and so it is sufficient to calculate the 
functions F,(u, b, c, d, 1). Starting with k = 1 it 
is easy to verify that 

&(a, b, 1) = 
u+l-exp(u-b) if Olu-cb 

b if u>b 

Table 2 
Results of the computation of F2( a, b, c, 1). 

Define now Ma, b, c, 1) 

F,(a, b, p) := E(mh(a +_X,:l, b)) 

F’(a, b> cv CL) 

:=E(min(u+&:.+_X,:,, b+_X,:,, c)) 

and 

&(a, b, c, d, P) 

k k-l 

a+ c &:k, b+ c &.k, c 
n=l n=l 

k-2 

+ c Zn:k, d 
n=l 

for every k 2 3. 
Observe, if one assigns to the variables a, b, c 

and d the values u,(t), 0 I i I 3, then the func- 
tion &(a,, % e2, u3, p) equals the expected 
minimal cost from year t until the end of the 
insurance period if the policy holder is in bonus- 
malus class j at the beginning of the forthcoming 
insurance year and the number of accidents in 
that new insurance year is equal to k. 

Since the random variables &, i 2 1, are inde- 
pendent and negative exponentially distributed 
with parameter p > 0 it is not difficult to verify 
that 

c s min(a, b) c 
b s min(a, c) 0.5 + b -0.5 exp(26 -2~) 
ascsb 2+a+(-2+a-c)exp(a-c) 

asbsc 2+a-2exp(a-b)+0.5exp(2a-2b) 

&b-asc-b - 0.5 exp(2b - 2~) 

asbsc 2+a-2exp(a-b) 

&c-bsb-a +(a-2b+c)exp(a-c) 
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Moreover, for k = 2 the results are shown in 
Table 2. 

Finally, for k = 3 the long and complicated 
formulas are shown in Dellaert, Frenk and Voshol 
(1990) and are therefore omitted. 

In Section 4 the model and the formulas de- 
rived in this section will be applied to an existing 
third-party liability insurance. It will be shown 
that the difference between the lower and upper 
bound on E v(_X, : _N,. . . , _xN: N, j) as discussed 
after Lemma 2.2 is negligible over a period of 10 
or 25 years and therefore either the computable 
lower or upper bound can be used to determine 
the minimal expected cost of the policy holder and 
his corresponding optimal decisions. 

4. Computational results 

The model presented in Section 3 will be ap- 
plied to the bonus-malus system given in Table 1. 
As in Dellaert et al. (1990) we divide an insurance 
year in N equal periods and assume that the 
probability p, to have an accident during period n 

is equal to h/N. To compare our results with the 
results found in Dellaert et al. (1990) we take the 
probability pk of having k accidents during an 
insurance year equal to 

Usually the number of accidents during an in- 
surance year is assumed to be Poisson-distributed, 
but the above choice is only little different when h 
is fixed and N is big [cf. Hogg and Craig (1978)]. 
We assume the amount of damage _xl to be nega- 
tive exponentially distributed with parameter EL. 
For reasons of simplicity the parameters h and p 
are constant throughout the entire insurance 
period. 

For a third-party liability insurance a value of 
X = 0.1 accidents per year is reasonable. We take 
the value of p= 1800-i, that is, the expected 
amount of damage equals Dfl.1800. The basic 
premium is equated to Dfl.lOOO, and the annual 
interest rate to 5 percent. Therefore the annual 
discount rate equals j3 = 0.95238. 

The lower and upper bounds on IE I$:(& : _N,. . . , 

&:N, j) discussed after Lemma 2.2 are calcu- 
lated for the above values for a period of 10 and 
25 years. It is found that in both cases the dif- 
ference between these bounds is even smaller than 
Dfl.0.05. Since this difference is negligible, it is 
legitimate to use either the computable lower or 
upper bound for the expectation given after 
Lemma 2.2. The upper bounds for a period of 10 
years are given in Table 3. 

Since at decision moments the number k of 
accidents and the corresponding damages are 
known the policy holder can deduce his optimal 
claim behaviour from Table 3 and the expression 
(2.2). 

Table 3 

UpperboundonEV,(_X,.,,...,_X,:,, j)forahorizonoflOyears,i.e. T=lOandO<t<9. 

Bonus- t=o t=l t=2 

malus 

class j 

14 2682 

13 2721 
12 2781 
11 2876 
10 2984 

9 3148 

8 3364 
7 3627 
6 3932 
5 4326 
4 4801 
3 5320 
2 5875 
1 6556 

2501 
2516 

2553 
2626 
2714 

2833 

3230 
3499 
3807 
4201 
4641 
5119 
5624 

2267 2022 1765 1497 1216 925 624 315 
2282 2036 1779 1510 1228 935 632 319 
2318 2012 1814 1543 1260 966 659 342 
2390 2143 1882 1609 1323 1024 710 369 
2477 2228 1965 1689 1399 1093 758 393 
2594 2342 2075 1794 1497 1169 809 420 
2764 2508 2236 1948 1628 1275 891 474 
2984 2721 2442 2131 1787 1411 999 528 
3246 2977 2676 2341 1974 1571 1106 582 
3547 3257 2933 2576 2184 1729 1213 625 
3921 3609 3264 2884 2441 1938 1371 742 
4341 4008 3640 3214 2726 2175 1560 834 
4799 4445 4034 3564 3033 2437 1735 926 
5284 4890 4440 3931 3358 2684 1908 1018 

t=3 t=4 t=5 f=6 t=7 r=8 t=9 
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In Table 4 the minimal expected cost for the 
policy holder with perfect information is listed for 
eight different cases. These costs are calculated for 
different time horizons (10 and 25 years), different 
values of A (A = 0.1 and h = 0.2), and different 
values of fl [/I = 0.95238 (discounted), and p = 1.0 
(undiscounted)]. Similar cost calculations for the 
model with imperfect information [Dellaert et al. 
(1990)] are performed and the corresponding dif- 
ferences in cost compared with the model having 
perfect information are listed in Table 5. Clearly 
the minimal expected cost for a policy holder with 
perfect information is always smaller than in the 
case of imperfect information. This confirms our 
intuition that the additional (free) information 
enables the policy holder to take better decisions 
and therefore lowers his expected cost. Only, as 
shown in Table 5, the benefit from this informa- 
tion is very small. 

Up to this point the lower and upper bounds 
on lEy(_X,: N,. . . , _xNifl, j) are compared only for 
relevant values of A. In the non-discounted model, 
where /3 = 1.0, we have computed the lower and 
upper bounds also for values of X up to 1.0. The 
difference between these bounds grows rapidly 
from 0.001% of the total cost when X = 0.1 to 
approximately 0.30% when X = 1.0. The actual 
difference is smaller than Dfl.72 over a period of 
25 years and smaller than Dfl.32 over a period of 
10 years. So the computable lower and upper 
bound are relatively close for extreme values of A. 

Table 5 
Extra cost due to imperfect information. 

T 10 25 10 25 10 25 10 25 
h 0.1 0.1 0.2 OS.2 0.1 0.1 0.2 0.2 

d/ud d d d d ud ud ud ud 

BM class 14 12 25 18 46 1 7 6 27 

13 12 26 19 41 2 8 7 27 
12 12 26 19 47 1 7 6 26 
11 12 27 19 48 2 7 6 27 
10 14 27 21 49 2 7 7 27 

9 14 28 22 51 2 8 7 27 
8 15 30 23 52 2 7 6 26 

7 16 31 24 54 2 7 5 25 
6 18 31 27 58 1 7 6 25 

5 19 35 30 61 1 6 8 26 
4 23 38 36 69 3 8 11 30 

3 25 42 39 74 4 9 15 34 
2 27 44 41 77 4 10 16 37 

1 28 46 40 79 4 10 15 37 

Hence, even for these extreme values the computa- 
ble lower or upper bound can be used for the 
minimal expected cost. In the remainder we will 
use the upper bound. 

Next the minimal expected cost for the policy 
holder with perfect information is computed for 
values of h = 0.1 up to X = 1.0 for a time horizon 
of 25 years in the non-discounted model (p = 1 .O). 
These values are compared with the results from 
the model with imperfect information. The 
minimal expected cost for a policy holder with 
perfect information is always smaller than in the 

Table 4 
Minimal expected cost for the total insurance period with perfect information, in Dfl. 

T 10 25 

x 0.1 0.1 

d/ud d d 

10 25 
0.2 0.2 
d d 

10 25 

0.1 0.1 

ud ud 

10 25 

0.2 0.2 
ud ud 

BM class 14 2682 5006 2994 5784 3325 8525 3732 9943 

13 2721 5046 3049 5841 3366 8567 

12 2781 51006 3120 5914 3430 8632 
11 2876 5202 3237 6036 3532 8737 
10 2984 5313 3360 6166 3653 8861 

9 3148 5481 3548 6364 3836 9049 
8 3364 5702 3794 6626 4078 9302 
7 3627 5976 4091 6947 4377 9618 

6 3932 6297 4430 7318 4731 9996 

5 4326 6711 4854 7784 5185 10484 

4 4801 7213 5354 8335 5735 11079 

4 4801 7213 5354 8335 5735 11079 

3 5320 7776 5816 8928 6341 11760 

2 5875 8392 6408 9548 6995 12519 

1 6556 9146 7038 10273 7785 13441 

3791 

3868 
3998 
4138 
4350 
4631 
4973 
5369 
5862 
6445 
6445 
7059 
7692 

10005 
10086 
10223 
10373 
10601 
10907 
11287 
11735 
12296 
12967 
12967 

13704 
14495 
15410 
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case of imperfect information. It is found that the 
difference in cost between both models increases 
as h increases, but remains smaller than Dfl.300 
(which is less than 1% of the minimal expected 
cost). So the additional (free) information enables 
the policy holder to take better decisions and 
therefore lowers his expected cost, but still the 
benefit is very small. 
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