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We investigate whether risk seeking or non-concave utility functions can help to explain 
the cross-sectional pattern of stock returns. For this purpose, we analyze the stochastic 
dominance efficiency classification of the value-weighted market portfolio relative to 
benchmark portfolios based on market capitalization, book-to-market equity ratio and 
momentum. We use various existing and novel stochastic dominance criteria that account 
for the possibility that investors exhibit local risk seeking behavior. Our results suggest 
that Markowitz type utility functions, with risk aversion for losses and risk seeking for 
gains, can capture the cross-sectional pattern of stock returns. The low average yield on 
big caps, growth stocks and past losers may reflect investors’ twin desire for downside 
protection in bear markets and upside potential in bull markets. 

 
THE TRADITIONAL MEAN-VARIANCE CAPITAL ASSET PRICING MODEL (MV CAPM) by 
Sharpe (1964) and Lintner (1965) fares poorly in explaining observed cross-sectional 
stock returns. Specifically, market beta seems to explain only a small portion of the 
cross-sectional variation in average returns, while factors like market capitalization 
(size), book-to-market equity ratio (BE/ME) and momentum systematically appear to 
affect asset prices (see e.g. Fama and French, 1992, and Jagadeesh and Titman, 1993). 
Related to this, the value-weighted market portfolio of risky assets seems highly 
mean-variance inefficient, and it is possible to achieve a substantially higher mean 
and/or a substantially lower variance with portfolios with a higher weight of small 
caps, value stocks (high BE/ME stocks) and past winners.  
 One way to extend the MV CAPM is by changing the maintained assumptions 
on investor preferences. If we do not restrict the shape of the return distribution, then 
MV CAPM is consistent with expected utility theory only if utility takes a quadratic 
form. (Less restrictive assumptions are obtained if we do restrict the shape of the 
return distribution; see e.g. Berk (1997)). Extensions of the MV CAPM can be 
obtained by using alternative classes of utility. For example, Friend and Westerfield 
(1980) and Harvey and Siddique (2000) assume that utility can be approximated using 
a third-order polynomial, and Dittmar (2002) uses a fourth-order polynomial. 2 The 
higher-order polynomials better fit stock return data than the standard quadratic utility 
functions do. Still, the market portfolio remains inefficient and size, value and 
momentum effects remain. Two potential problems of the extended models may help 
to explain this result: 
 
1. Risk seeking. The extended models typically maintain the assumption that 

investors are globally risk averse and that utility is everywhere concave (i.e. 
marginal utility is diminishing). However, there is evidence that decision-makers 
are not globally risk averse, but rather they exhibit local risk seeking behavior 
(i.e. the utility function has convex segments). For example, Friedman and 
Savage (1948) and Markowitz (1952) argue that the willingness to purchase both 
insurance and lottery tickets implies that marginal utility is increasing over a 
range (see Hartley and Farrell, 2001, for a recent discussion). Similarly, active 
stock traders seem to play negative-sum games and their behavior is sometimes 
best described as ‘gambling’ (see e.g. Statman, 2002). In addition, psychologists 
led by Kahneman and Tversky (1979) find experimental evidence for local risk 
seeking behavior. 

 

                                                                 
2 Similarly, Bansal and Viswanathan (1993) and Chapman (1997) use polynomial approximations in 
the context of Arbitrage Pricing Theory and consumption-based CAPM respectively. 
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2. Specification error. A difficulty in changing the preference assumptions is the 
need to give a parametric specification of the functional form of the utility 
function or to specify the maximum order of the approximating polynomial. 
Unfortunately, economic theory gives minimal guidance for functional 
specification, and there is a substantial risk of specification error. For example, 
the fourth-order polynomial used in Dittmar (2002) implies that investors care 
only about the first four central moments of the return distribution (mean, 
variance, skewness and kurtosis). This approach is problematic if investors care 
about the higher central moments or about lower partial moments (see e.g. Bawa 
and Lindenberg, 1977), which generally cannot be expressed in terms of the first 
four central moments. Another problem associated with low order polynomials is 
the difficulty to impose restrictions on the derivatives that apply globally. For 
example, we cannot impose nonsatiation by restricting a quadratic polynomial to 
be monotone increasing and we cannot impose risk aversion by restricting a cubic 
polynomial to be globally concave (see e.g. Levy, 1969). 

 
To circumvent these problems, we may use criteria of Stochastic Dominance (SD; see 
e.g. Levy, 1992, 1998). Attractively, SD criteria do not require a parameterized utility 
function, but rather they rely only on general preference assumptions.3 Put differently, 
SD effectively considers the full house of all moments of the return distribution rather 
than a finite set. The SD literature involves a multitude of different criteria, associated 
with different sets of preference assumptions. The traditional First-order Stochastic 
Dominance (FSD) criterion assumes only non-satiation i.e. utility is monotone 
increasing. The Second-order Stochastic Dominance (SSD) criterion adds the 
assumption of global risk-aversion. Recently, a number of intermediate criteria have 
been developed based on non-concave utility functions. Most notably, Levy (1998) 
developed Prospect Stochastic Dominance (PSD), which assumes a S-shaped utility 
function that is convex for losses and concave for gains. In addition, Levy and Levy 
(2002) developed Markowitz Stochastic Dominance (MSD), which assumes a reverse 
S-shaped utility function that is concave for losses and convex for gains.  

In this paper, we use various existing and novel SD criteria to analyze asset 
pricing. To focus on the role of preference assumptions, we largely adhere to the 
remaining assumptions of the MV CAPM: we use a single-period, portfolio-oriented 
model of a frictionless and competitive capital market with a large number of 
expected utility investors.  Within this model, we test whether the value-weighted 
market portfolio is efficient relative to benchmark portfolios formed on size, BE/ME 
and momentum. For this purpose, we assume a simple data generating process with a 
serially independent and identical distribution for the excess returns. Of course, there 
are good reasons to doubt our maintained assumptions, and to believe that our results 
are affected by these assumptions in a non-trivial way. Still, we believe that our 
approach is useful, as we have to ‘walk before we can run’, and the analysis can form 

                                                                 
3 For the sake of analytical simplicity, we phrase in terms of expected utility theory. However, SD rules 
are economically meaningful also for many non-expected utility theories that account for e.g. 
subjective probability distortion (see e.g. Starmer, 2002). For example, it is easily verified that the 
MSD efficiency criterion is not affected by subjective transformations of the CDF that are increasing 
and concave over losses and increasing and convex over gains, and hence MSD allows for subjective 
overweighing of small probabilities of large gains and losses and underweighing of small and 
intermediate probabilities of small and intermediate gains and losses. Interestingly, empirical studies 
suggest that this reverse S-shape is the most common pattern of probability transformation (see e.g. 
Tversky and Kahneman, 1992). 
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the starting point for further research based on more general economic and statistical 
assumptions. 

The remainder of this paper is structured as follows. Section I introduces a 
general SD efficiency criterion and it discusses the special cases used in our study. 
Section II discusses the issue of empirical testing. Specifically, we develop a general 
Linear Programming (LP) test for fitting SD efficiency criteria to empirical data and 
we derive the asymptotic sampling distribution of the test results. This section 
effectively generalizes Post’s (2001) treatment of SSD efficiency towards our general 
SD efficiency criterion. Section III presents the empirical application. Finally, Section 
IV gives concluding remarks and suggestions for further research. The Appendix 
gives the formal proofs for our theorems. 
 

I. STOCHASTIC DOMINANCE EFFICIENCY CRITERIA 

We consider a single-period, portfolio-based model of a competitive capital market 
that satisfies the following assumptions: 
 
Assumption 1 The investment universe consists of N assets, one of which is a riskless 
asset. Throughout the text, we index the assets by {}N

ii 1=≡Ι . The excess returns 
Nℜ∈x  are treated as random variables with a continuous joint cumulative 

distribution function (CDF) : [0,1]NG ℜ → .4 Investors may diversify between the 
assets, and we will use Nℜ∈λ  for a vector of portfolio weights. The portfolio 
possibilities are represented by the simplex { }1: =ℜ∈≡Λ Τ

+ λλ eN .5 
 

Assumption 2 Investors select investment portfolios Λ∈λ  to maximize the expected 
value of a once directionally differentiable, strictly increasing utility function 

ℜ→ℜ:u  that is defined over portfolio return λΤx .6 We represent all admitted 

utility functions by { }ℜ∈∀≥∂≡ xxuuU 1)(:0 , with 
λ

λ
λ

)()(
lim)(

0

xuxu
xu

−+
≡∂

↓
 

for the directional derivative or ‘marginal utility’ at ℜ∈x .7 
 
We may characterize different SD efficiency criteria by different classes of utility 
functions, characterized by different sets of (conditional) linear restrictions on 
marginal utility. Formally, we will denote different classes of utility functions by 

                                                                 
4 Throughout the text, we will use Nℜ  for an N-dimensional Euclidean space, and N

+ℜ denotes the positive 

orthant. To distinguish between vectors and scalars, we use a bold font for vectors and a regular font for 
scalars. Further, all vectors are column vectors and we use Τx  for the transpose of x . Finally, e is a unity 
vector with dimensions conforming to the rules of matrix algebra. 
5 By using the simplex Λ , we exclude short selling. Short selling typically is difficult to implement in 
practice due to margin requirements and explicit or implicit restrictions on short selling for institutional 
investors (see e.g. Sharpe, 1991, and Wang, 1998). Still, we may generalize our analysis to include 
(bounded) short selling. In fact, the analysis applies for an arbitrary polytope if we replace Ι  with the 
set of extreme points of the polytope. 
6 We use a directional derivative to allow for kinked utility functions, including piecewise-linear utility 
functions (see the proof to Theorem 1). 
7 

0U  restricts marginal utility to exceed unity. This restriction effectively standardizes the test statistic 

),( Ψτξ  (see Section II) and forces it away from zero if the evaluated portfolio is inefficient. Still, the 
restriction is harmless because SD rules are invariant to strictly positive affine transformation i.e. 

)()( Ψ∈⇒Ψ∈ UbuUu  for all 0>b   
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{ }RryxyuxuUuU r ,,1),()()(:)( 0 L=Ψ∈∀∂≥∂∈≡Ψ . Here, { }R
rr 1=Ψ≡Ψ , with 

2ℜ⊆Ψr  for a polyhedron that represents the r-th restriction on marginal utility 
(special cases are given below). Using this notation, we may define the following 
general SD efficiency criterion:8 
 
DEFINITION 1 Portfolio Λ∈τ  is )(ΨU -SD efficient if and only if it is optimal 
relative to some utility functions )(Ψ∈Uu , i.e. 
 

(1) { }{ } 0)()()()(maxmin
)(

=∂−∂ ∫∫ ΤΤ

Λ∈Ψ∈
xxxx GuGu

Uu
τλ

λ
. 

 
 
Assumption 3 The value-weighted market portfolio of risky assets, say Λ∈µ , is 

)(ΨU -SD efficient. 
 

In asset pricing theories, efficiency of the market portfolio generally is not an 
assumption but rather a prediction that follows from underlying assumptions on the 
return distribution and investor preferences. For example, following Rubinstein 
(1974), efficiency of the market follows from assuming that the preferences of the 
different investors are sufficiently similar. In this case, we may use the utility function 
of a representative agent whose preferences are an aggregate of the preferences of the 
actual investors. In this paper, we do not take this route, because detailed distribution 
and preference assumptions are not consistent with the SD approach of using minimal 
assumptions. Rather, our analysis builds on revealed preferences. Specifically, our 
motivation for assuming market efficiency lies in the popularity of passive mutual 
funds and exchange traded funds that track broad value-weighted equity indexes. In 
other words, (some) investors reveal a preference for market indexes, and our 
objective is to rationalize their choice and to analyze their preferences.9 Of course, we 
could directly analyze the efficiency of actual funds. Still, for the sake of data 
availability and comparability, we focus on the Fama and French market portfolio 
(see Section III), which is used in many comparable studies (e.g. Harvey and Siddique 
(2000) and Dittmar (2002)). Further, many actual funds, including total market index 
funds based on the very broad Wilshire 5000 index (e.g. the Vanguard Total Stock 
Market Index Fund) are likely to be very highly correlated with the Fama and French 
market portfolio.  
 

Special Cases 

                                                                 
8 We focus on a definition in terms of utility functions, because we analyze the role of preference 
assumptions. SD may be defined equivalently in terms of distribution functions or their quantiles (see 
e.g. Levy, 1992, 1998). In fact, the LP dual of test statistic (9) formulates in terms of quantiles; 

associated with each primal variable 
tß , Θ∈t , is a dual restriction on the running mean t

t

s
s /

1
∑

=

Ττx . 

9 If the investment universe includes a riskless asset, then a sufficient condition for Assumption 3 is 
that some investor holds a combination of the market portfolio and the riskless asset.  Let 

Fδκµκµ )1( −+=′  for some ]1,0∈κ , with 
Fδ  to denote a coordinate vector of zeros with a unity 

value for the riskless asset Ι∈F . If µ′  is the optimal solution for )(Ψ∈ Uu , then µ  is optimal relative 
to )())1(()( Ψ∈−+≡ Uxxuxv Fκκ  and hence efficient. 
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In our empirical analysis we will use various different SD criteria based on different 
sets of preference assumptions. Table 1 summarizes the criteria, the assumptions and 
the associated restrictions on marginal utility, as represented by rΨ . 

 

(Insert Table 1 about here) 

 
The traditional criterion of Second-order Stochastic Dominance (SSD) assumes risk 
aversion for the entire domain of returns, or equivalently risk aversion for losses, risk 
aversion for gains and ‘loss aversion’ (marginal utility of losses exceeds marginal 
utility for gains):  
 
(2) { }421 ,, ΨΨΨ≡ΨSSD .10 
 
Models of decision-making and equilibrium under uncertainty traditionally use utility 
functions from )( SSDU Ψ . However, as discussed in the Introduction, there is 
compelling evidence that many decision-makers are risk seeking over a range.  

The psychological experiments by Kahneman and Tversky (1979) and 
Kahneman and Tversky (1992) suggest that preferences are best described by a S-
shaped function that is convex for losses and concave for gains, and that is steeper for 
losses than for gains (‘loss aversion’). In recent years, Prospect Theory has attracted 
much attention as a framework for understanding investor behavior and for explaining 
financial market anomalies (see e.g. Benartzi and Thaler (1995), Barberis et al. 
(2001), and Barberis and Huang (2001)). In this study, we consider two SD criteria 
that are based on Prospect Theory. 11 Prospect Stochastic Dominance with Loss 
Aversion (PSDL) assumes a S-shaped utility function with risk seeking for losses, risk 
aversion for gains and loss aversion: 
 
(3) { }431 ,, ΨΨΨ≡ΨPSDL .  
 
If we drop loss aversion, then we obtain Prospect Stochastic Dominance (PSD; Levy, 
1998): 
 

                                                                 
10 Gains and losses are typically measured relative to a subjective reference point. For simplicity, we 
set the reference point at zero. The use of excess returns implies that the reference point that 
distinguishes gains from losses effectively equals the riskless rate. However, a follow-up analysis 
demonstrates that the empirical results are not significantly affected by using a lower reference point of 
zero or a higher reference point the average return on the market portfolio. If the reference point is not 
known, it can be included as an additional model variable (at the cost of a possible loss of power). 
11 In contrast to Expected Utility Theory, Prospect Theory uses value functions with subjective decision 
weights that overweight or underweight the true probabilities. Levy and Wiener (1998) demonstrate 
that the PSD efficiency criterion is not affected by subjective transformations of the CDF that are 
increasing and convex over losses and increasing and concave over gains, and hence PSD allows for 
subjective underweighing of small probabilities of large gains and losses and overweighing of small 
and intermediate probabilities of small and intermediate gains and losses. However, this pattern is 
counterfactual (see e.g. Footnote 3) and rejection of PSD efficiency may mean rejection of S-shaped 
probability transformations rather than S-shaped preferences. Still, there are good reasons to expect that 
subjective probability distortion is less severe for investment choices than for some other choices. For 
example, investors can extract information about the return distribution from historical return data and 
from fundamental economic data. In addition, if large amounts of money are at stake, then there is a 
large incentive to gather and process such data so as to eliminate subjective probability distortions. 
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(4) { }43,ΨΨ≡ΨPSD . 
 
Recent experiments by Levy and Levy (2002) suggest that the Kahneman and 
Tversky experiments may be biased by the research design. Specifically, bias may 
originate from framing effects (unlike actual investments, the prospects involve either 
only positive or only negative outcomes, but no mixed outcomes) and subjective 
probability distortion (the prospects involve extremely small and large probabilities). 
After correcting for these sources of bias, Levy and Levy find evidence against 
Kahneman and Tversky type preferences; a large majority of subjects in their 
experiments select PSD inefficient prospects. In fact, the Levy and Levy results 
support a reverse S-shaped utility function with risk aversion for losses and risk 
seeking for gains, i.e. exactly the opposite of Kahneman and Tversky type 
preferences. Interestingly, Markowitz (1952) already suggested this type of utility 
function. 12 In this study, we consider two SD criteria that build on Markowitz type 
preferences. Markowitz Stochastic Dominance with Loss Aversion (MSDL) assumes a 
reverse S-shaped utility function with risk aversion for losses, risk seeking for gains 
and loss aversion: 
 
(5) { }521 ,, ΨΨΨ≡ΨMSDL . 
 
If we drop loss aversion, then we obtain Markowitz Stochastic Dominance (MSD; 
Levy and Levy, 2002): 
 
(6) { }52 ,ΨΨ≡ΨMSD . 
 
Figure 1 shows examples of non-concave utility functions that satisfy the assumptions 
of PSDL, PSD, MSDL and MSD.  
 

(Insert Figure 1 about here) 

 

II. EMPIRICAL TESTING 

In practical applications, the CDF generally is not known. Rather, information 
typically is limited to a discrete set of time series observations, say )( 1 Txx L≡Χ  

with Τ≡ )( 1 Nttt xx Lx , and indexed by { }T
tt 1=≡Θ . 

 
Assumption 4 The observations are independent random draws from the CDF. 13  
                                                                 
12 Markowitz (1952) actually proposed a utility function with two S–shaped segments. Such a utility 
function has a convex segment for ‘large’ losses and a convex segment for ‘small and moderate’ gains. 
Hence, MSD is consistent with Markowitz type utility only if all outcomes are ‘small or moderate’ 
gains or losses. This assumption seems reasonable for our application, because we compare well-
diversified benchmark portfolios; for the full sample period (July 1963 – October 2001), the minimum 
monthly excess return is -34.32 percent and the maximum excess return is 38.82 percent (see Table 
2A-B).  
13 There are compelling theoretical and empirical arguments in favor of a time varying return 
distribution. Unfortunately, the search for a satisfactory specification of the return dynamics is still far 
from accomplished. In fact, Ghysels (1998) finds that ill-specified conditional asset pricing models in 
many cases yield greater pricing errors than unconditional models. For this reason, we use an 
unconditional model here. Still, further research could relax the IID assumption. One possible approach 
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Since, by assumption, the timing of the draws is inconsequential, we are free to label 
the observations by their ranking with respect to the evaluated portfolio, i.e. 

τττ ΤΤΤ <<< Txxx L21 .14 Using the observations, we can construct the empirical 
distribution function (EDF): 
 
(7) { } TtF t /:card)( xxx ≤Θ∈≡ .15 

 
By using EDF )(xF  in place of CDF )(xG , we arrive at the following empirical 
definition of SD efficiency: 
 
DEFINITION 2 Portfolio Λ∈τ  is empirically )(ΨU -SD efficient if and only if: 
 

(8) { }{ }=∂−∂ ∫∫ ΤΤ

Λ∈Ψ∈
)()()()(maxmin

)(
xxxx FuFu

Uu
τλ

λ
 

0/))()((maxmin
)(

=
















−∑
Θ∈

ΤΤ

Λ∈Ψ∈
t

ttUu
Tuu τλ

λ
xx . 

 

Linear Programming Formulation 

We will test for efficiency by using the following test statistic: 
 

(9)      ≡Ψ),(τξ








Ι∈∀≥+−Τ

Θ∈
ΨΒ∈ ∑ iTxitt

t
t 0/)(:min

),(
θβθ

θ
τ

β
x , 

 
with  
 
(10)    [{ }Rrst rstst

T
,,1),(:,:,1)( L=Ψ∈Θ∈∀≥∞∈≡ΨΒ ΤΤ ττβ xxββ . 

 
We can derive the following result for this test statistic: 
 
THEOREM 1 Portfolio Λ∈τ  is empirically )(ΨU -SD efficient if and only if 

0),( =Ψτξ  
 
The test statistic ),( Ψτξ  basically checks if there exists a vector Τ≡ )( 1 Tββ Lβ  that 

represents the gradient vector at τΤX  for a utility function )(Ψ∈Uu  that satisfies 
the first-order condition for portfolio optimality (see the proof in the Appendix).16 

                                                                                                                                                                                          
is to use econometric time series estimation techniques to estimate a conditional CDF. Our empirical 
tests can then be applied to random samples from the estimated CDF rather than the EDF. 
14 Since we assume a continuous return distribution, ties do not occur. Still, the analysis can be 
extended in a straightforward way to cases where ties do occur e.g. due to a discrete return distribution 
or due to measurement problems or rounding; see Post (2001). 
15 We use {}⋅card  for the cardinality or the number of elements of a set. 
16 The theorem extends Post’s (2001) Theorem 2 for SSD, and it exploits the result that the necessary 
and sufficient first-order optimality condition applies not only for concave utility functions, but also for 
more general pseudoconcave utility functions (see e.g. Mangasarian, 1969). 
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The test statistic involves a linear objective function and a finite set of linear 
constraints. Hence, the test statistic can be solved using straightforward Linear 
Programming (LP). The model always has a feasible solution (e.g. eß = ) and the 
solution is bounded from below by zero (the case of efficiency) and bounded from 
above by T

t
tit

i
/)(max ∑

Θ∈

Τ

Ι∈
− τxx   (the case with eß = ). For small data sets up to 

hundreds of observations and/or assets, the problem can be solved with minimal 
computational burden, even with desktop PCs and standard solver software (like LP 
solvers included in spreadsheets). Still, the computational complexity, as measured by 
the required number of arithmetic operations, and hence the run time and memory 
space requirement, increases progressively with the number of variables and 
restrictions. Therefore, specialized hardware and solver software is recommended for 
large-scale problems involving thousands of observations and/or assets. 

The polyhedron )(ΨΒ  involves constraints on pairs of observations Θ∈ts, . 
This suggests that the number of constraints increases quadratically with the number 
of observations. However, many of the constraints are redundant, and the effective 
number of constraints increases linearly with the number of observations. For 
example, using Ι∈z  for the first observation in the domain of gains, i.e. 

ττ ΤΤ
− ≤< zz xx 01 , it is easily verified that: 

 
(11)   { }1:)( 1 ≥≥≥ℜ∈=ΨΒ T

T
SSD ββ Lβ ; 

 
(12)   { }1;:)( 11 ≥≥≥≤≤≤ℜ∈=ΨΒ − TzzT

T
PSDL βββββ LLβ ; 

 
(13)   { }1;1:)( 11 ≥≥≥≤≤≤ℜ∈=ΨΒ − Tzz

T
PSD ββββ LLβ ; 

 
(14)   { }TzTz

T
MSDL βββββ ≤≤≤≥≥≥ℜ∈=ΨΒ − LL 1;:)( 11β  ; 

 
(15)   { }Tzz

T
MSD ββββ ≤≤≤≥≥≥ℜ∈=ΨΒ − LL 1:)( 11β  . 

 

Statistical Inference 

We have thus far discussed SD efficiency relative to the EDF )(xF  rather than the 
CDF )(xG . Generally, the EDF is very sensitive to sampling variation and the test 
results are likely to be affected by sampling error in a non-trivial way. The applied 
researcher must therefore have knowledge of the sampling distribution in order to 
make inferences about the true efficiency classification. The remainder of this section 
therefore develops an asymptotic hypothesis testing procedure for the test statistic 

),( Ψτξ .17 The test procedure is based on two simplifications: (1) the use of a 
restrictive null hypothesis and (2) the use of the limiting least favorable distribution. 
Our null ( 0H ) is that the assets have an equal and finite mean, i.e. ex µ=][E , ∞<µ , 

                                                                 
17 The results extend Post’s (2001) Theorem 3 for SSD, and they exploits the result that ),( Ψτξ  is 

bounded from above by 








−≡ ∑
Θ∈

Τ

Ι∈
Tx

t
tit

i
/)(max)( ττ xω  (see the proof in the Appendix). This argument 

applies not only for 
SSDΨ , but also more generally for all Ψ . 
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and a covariance matrix Ω=−− Τ ]))([( µµ xxE  with finite elements ∞<ijω , 
Ι∈ji, . This null is restrictive, because it gives a sufficient but not necessary 

condition for efficiency. In fact, under the null, all portfolios Λ∈λ  are efficient, 
because they optimize expected utility for xxu =)( , i.e. for risk neutral investors. The 
shape of the distribution of )(τξ  under the null generally depends on the shape of 

)(xG . Our approach will be to focus on the least favorable distribution, i.e. the 
distribution that maximizes the size or relative frequency of Type I error (rejecting the 
null when it is true). This approach stems from the desire to be protected against Type 
I error. For each )(xG , the size is always smaller than the size for the least favorable 
distribution. Naturally, this approach comes at the cost of a high frequency of Type II 
error (accepting the null when it is not true) or a low power (1- the relative frequency 
of Type II error). 

Using )( Τ−≡ τeΙC , we can summarize the asymptotic sampling distribution 
of our SSD test statistic as follows: 18 
 
THEOREM 2 For the asymptotic least favorable distribution, the p-value 

]),(Pr[ 0Hy>Ψτξ , 0≥y , equals the integral ))(1( ∫
≤

Φ−
ez

z
y

d Σ , with )(zΣΦ  for a N-

dimensional multivariate normal distribution function with zero means and 
covariance matrix T/)( Τ≡ CCΩΣ .  
  
The theorem shows the crucial role of the length of the time series (T) and the length 
of the cross-section (N); the p-values decrease as the time series grows, and increase 
as the cross section grows. We may test efficiency by comparing the p-value for the 
observed value of ),( Ψτξ  with a predefined level of significance; we may reject 
efficiency if the p-value is smaller than or equal to the significance level.  

Computing the p-value requires the unknown covariance terms ijω . We may 
estimate these parame ters in a distribution-free and consistent manner using the 
sample equivalents: 
 
(16) ∑ ∑∑

Θ∈ Θ∈Θ∈

−−≡
t t

jtjt
t

ititij TTxxTxx /)/)(/(ω̂ . 

 
We stress that the asymptotic p-values rely on a restrictive null and on the least 
favorable distribution. For this reason, the p-values may involve low power in small 
samples. An alternative approach is to approximate the sampling distribution by 
means of bootstrapping. Bootstrapping can deal directly with the true null (SD 
efficiency) and with the true distribution, and hence it can yield more powerful 
results. Of course, this benefit has to be balanced against the additional computational 
burden of using computer simulations. 

 

III. ANALYZING AGGREGATE INVESTOR PREFERENCES  

We analyze investor preferences by testing if different SD criteria (characterized by 
different sets Ψ ) can rationalize the market portfolio. For this purpose, we need a 
                                                                 
18 We use Ι  for an identity matrix with dimensions conforming to the rules of matrix algebra. 
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proxy for the market portfolio and proxies for the individual assets in the investment 
universe. We will use the Fama and French market portfolio, which is the value-
weighted average of all NYSE, AMEX, and NASDAQ stocks. Further, we use the 
one-month US Treasury bill as the riskless asset. Finally, for the individual risky 
assets, we use three sets of benchmark portfolios: 
 
1. The 25 Fama and French benchmark portfolios constructed as the intersections of 

5 quintile portfolios formed on size and 5 quintile portfolios formed on BE/ME. 
We use data on monthly returns (month-end to month-end) from July 1963 to 
October 2001 (460 months) obtained from the data library on the homepage of 
Kenneth French. 19,20 Also, we analyze the stability of the results by applying the 
test to 2 non-overlapping subsamples of equal length (230 months): (1) July 
1963-August 1982 and (2) September 1982–October 2001. 
 

2. A set of 30 industry momentum portfolios constructed from 30 Fama and French 
benchmark portfolios based on industry classification. The momentum portfolios 
are based on the ranking of the returns over the past 6 months; momentum 
portfolio no. 1 equals the Fama and French industry portfolio with the lowest past 
return, and portfolio no. 30 equals the industry portfolio with the highest past 
return. 21 The portfolios are rebalanced yearly in July. 22 As for the set of 25 size-
value portfolios, we use data on monthly excess returns (month-end to month-
end) from July 1963 to October 2001 (460 months), and we also consider the 
subsamples July 1963-August 1982 and September 1982–October 2001. The raw 
data on the industry portfolios are obtained from the homepage of Kenneth 
French. 

 
3. The set of 27 benchmark portfolios described in Carhart et al. (1996) and used in 

Carhart (1997). The portfolios are formed using a three-way classification based 
on size, BE/ME and momentum. These portfolios are formed by dividing all 
stocks into thirds based on B/M. Each of the three first- level portfolios is then 
divided into three portfolios based on size. Finally, each of the nine second- level 
portfolios is divided into ‘past losers’, ‘middle’ and ‘past winners’. We use data 
on monthly returns (month-end to month-end) from July 1963 to December 1994 
(378 months), as well as the subsamples from July 1963 to March 1979 (189 
months) and from April 1979 to December 1994 (189 months). 

 
These three sets of benchmark portfolios provide a challenge, because many studies 
indicate that the cross-sectional pattern of returns across size, BE/ME and momentum 
portfolios cannot be explained by the traditional approach based on concave utility 
functions. Tables 2A-C show some descriptive statistics for the excess returns of the 
benchmark portfolios for the full sample. 

 
(Insert Table 2A-C about here) 

                                                                 
19 The data library is found at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french. 
20 The data set starts in 1963 because the COMPUSTAT data used to construct the benchmark 
portfolios are biased towards big historically successful firms for the earlier years (see Fama and 
French, 1992). 
21 Similar results are obtained for portfolios based on the returns over the past 3, 9 and 12 months. 
22 The literature generally analyzes momentum in firm-specific returns. However, Moskowitz and 
Grinblatt (1999) demonstrate that momentum also exists in industry portfolios and they suggest that 
industry momentum in fact accounts for much of firm-specific momentum. 
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To give some feeling for the data, Figures 2A-C show mean-variance diagrams 
including the individual benchmark portfolios (the bright dots), the market portfolio 
(M) and the mean-variance efficient frontier (OA).23 Clearly, the market portfolio is 
highly inefficient in terms of mean-variance analysis in all cases. Roughly speaking, 
there exist portfolios with the same standard deviation as the market portfolio but 
twice the average excess return, and there exist portfolios with the same average 
excess return as the market portfolio but only half the standard deviation. This result 
violates the central prediction of the MV CAPM: mean-variance efficiency of the 
market portfolio.  

 
(Insert Figure 2A-C about here) 

 
The maintained preference assumptions of  MV CAPM are a possible explanation for 
this violation; variance does not fully capture the risk profile of assets unless investor 
utility is quadratic. This provides the motivation for testing if the market portfolio is 
efficient in terms of SD criteria. We employ the SD efficiency criteria discussed in 
Section II: SSD, PSDL, PSD, MSDL and MSD. For each criterion, we compute the 
value of the test statistic ),( Ψµξ  and the associated asymptotic least favorable  p-
value. We reject efficiency if the p-value is smaller than or equal to the significance 
level of 10 percent. Tables 3A-C show the test results for the 3 sets of benchmark 
portfolios. The results vary across the different sets of benchmark portfolios and the 
different sample periods. However, the relative goodness of the different SD criteria is 
remarkably robust across benchmark portfolios and sample periods; PSDL and PSD 
perform worst and MSD performs best. 

The market portfolio is significantly SSD inefficient relative to the Fama and 
French size-BE/ME portfolios and the Carhart size-BE/ME-momentum portfolios. 
Based on this finding, we reject the SSD criterion. Harvey and Siddique (2000) and 
Dittmar (2002) find that concave third-order and fourth-order polynomial utility 
functions substantially better explain the cross-sectional variation of stock returns 
than quadratic utility functions do. Our results suggest that no concave utility function 
can rationalize the market portfolio. Under our maintained assumptions, this implies 
that investors that hold the market portfolio are not globally risk averse and utility is 
not everywhere concave, and we have to account for (local) risk seeking behavior. 
This result is in line with the experimental results by Levy and Levy (2001); they find 
that a majority of subjects are not globally risk averse, even when controlling for 
effects of framing and probability distortion. 
 

(Insert Table 3A-C about here) 

 
Prospect Theory offers an alternative to the traditional approach based on concave 
utility. However, we find strong evidence against two key elements of Prospect 
Theory: risk seeking for losses and loss aversion. Both criteria that impose risk 
seeking for losses (PSD and PSDL) are rejected for all sets of benchmark portfolios. 
This implies that no S-shaped utility function can rationalize the market portfolio. 
This finding is in line with the experimental evidence by Levy and Levy (2002) that a 
large majority of subjects select PSD inefficient prospects. Similarly, we reject all 
                                                                 
23 Note that this is the frontier for the case without short selling. Again, we focus on the case where 
portfolio possibilities are described by all convex combinations of the individual assets (see Section I). 
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three criteria that assume loss aversion (SSD, PSDL and MSDL). Barberis and Huang 
(2001) found that a model with loss aversion couldn’t reproduce the empirical cross-
sectional pattern of stock returns. They used a simple utility function formed from one 
linear line segment for losses and one for gains, and hence investors are assumed 
locally risk neutral over gains and over losses. Our results suggest that their 
conclusion is robust for more general preference assumptions; cross-sectional stock 
returns are not consistent with loss aversion.  

Only the MSD criterion is consistent with the data for all sets of benchmark 
portfolios and for all sample periods. This suggests that Markowitz type reverse S-
shaped utility functions can rationalize the market portfolio, and that risk aversion 
over losses and risk seeking over gains helps to explain the cross-sectional pattern of 
stock returns. If investors are risk averse for losses and risk seeking for gains, then 
they will pay (ask) a premium for stocks that have low (high) downside risk in bear 
markets and high (low) upside potential in bull market. Hence, stocks with low (high) 
downside risk bear markets and high (low) upside potential provide low (high) 
expected returns. This explanation is consistent with the experimental evidence by 
Levy and Levy (2002) that a large majority of subjects select MSD efficient 
prospects. Our results suggest that actual stock returns are also consistent with this 
explanation.  

For illustration, Figure 3A-C shows example utility functions that rationalize 
the market portfolio relative to the benchmark assets. These particular utility functions 
are piecewise- linear functions that are formed from the from the optimal solution 

)(*
MSDΨΒ∈β  as 

 

(17) 
















≥+
<≤<+

<≤+
<≤+

<≤<+
≤+

=

Τ

ΤΤ
−

Τ

Τ
−−−

Τ
+

Τ

Τ

∗

τ
ττ

τ
τ

ττ
τ

β

TTT

tttt

zzz

zzz

tttt

xx
xx

xx
xx

xx
xx

xp

x
xx

x
x

xx
x

*
1

*

*
1

*
11

1
*

1
*
11

0
0

0
0

)(

βα
βα

βα
βα

βα
βα

, 

 
with Τ≡ )( 1 Tαα Lα  such that the linear line segments are connected i.e. 

xx tttt
*

11
*

++ +=+ βαβα  for all Tt \Θ∈ , and 0=zα . We stress that these utility 
functions are not unique, as we can construct alternative utility functions with the 
same gradient vector at τΤX . Also, these utility functions are likely to be very 
sensitive to estimation error and we cannot claim any confidence in their statistical 
estimation. Still, the utility functions do suggest that the market portfolio is optimal, 
and hence the benchmark assets are correctly priced, for investors that are very 
sensitive to large losses, say returns of less than -10 percent per month, and to large 
gains, say returns of more than 10 percent. 
 

(Insert Figure 3A-C about here) 
 

Some further results 

Further support for Markowitz type preferences can be found by analyzing the 
relationship between average return and measures of downside risk and upside 
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potential. Two simple measures are ‘downside beta’ (market beta for periods with a 
negative market return) and ‘upside beta’ (market beta for periods with a positive 
market return); see e.g. Bawa and Lindenberg (1977). Risk aversion for losses 
suggests a positive relation between expected return and downside beta, and risk 
seeking for gains suggests a negative relation between expected return and upside 
beta. For the sake of illustration, we estimated the downside and upside betas of the 
27 Carhart benchmark portfolios using OLS regression for the full sample. (Very 
similar results are obtained for the 25 Fama and French benchmark portfolios and the 
30 industry momentum portfolios). Figure 3 shows the results.  
 

(Insert Figure 4 about here) 

 
Obviously, beta risk generally is highly asymmetric across falling and rising 
markets.24 In addition, the differences between downside and upside betas seem to 
support Markowitz type preferences, i.e. high downside beta portfolios generally have 
high average returns, while high upside betas portfolios have low average returns. For 
example, the ‘high yield’ portfolio of small value winner stocks (with an average 
monthly excess return of 1.341) has a downside beta of 1.409 and an upside beta of 
0.883, while the ‘low yield’ portfolio of the big growth loser stocks (with average 
0.105) has a downside beta of 0.849 and an upside beta of 1.119. We may use 
regression analysis to analyze if this pattern applies for the entire sample. Specifically, 
using OLS regression analysis, we find the following cross-sectional relation between 
average excess return ∑

Θ∈

≡
t

iti Tx /µ̂  and estimated downside beta −
iβ̂  and upside beta 

+
iβ̂  (standard errors within brackets):25 

 
(18) 601.0ˆ

)154.0(
938.1ˆ

)060.0(
856.0

)233.0(
633.1ˆ 2 =−+= +− Riii ββµ . 

 
The signs of the coefficients are consistent with Markowitz type preferences: a 
positive coefficient for downside beta and hence risk aversion for losses, and a 
negative coefficient for upside beta and hence risk seeking for gains. Of course, these 
results may be sensitive to the parametric specification (a linear relationship between 
expected return and the downside and upside betas) and to the estimation method 
(estimation based on e.g. generalized methods of moments or maximum likelihood 
procedures may give different results). Also, strictly speaking, we have to reject the 
two-beta specification, because it does not give a perfect fit (the betas explain only 60 
percent of the variation in average return) and because the intercept (the average 
excess return of a zero-beta portfolio) is significantly higher than zero. Still, the 
regression results do provide indirect support for our explanation based on risk 
seeking for gains. 
 

                                                                 
24 Several authors have found similar differences in upside and downside risk measures (see e.g.  Ang 
et al., 2001). These findings are sometimes interpreted as evidence for Prospect Theory. By contrast, 
we find evidence against two key elements of Prospect Theory -risk seeking for losses and loss 
aversion- and our explanation rests on risk seeking for gains. 
25 The cross-sectional regression gives a Fama and McBeth (1973) type test with betas assumed 
constant over time. The assumption of constant betas is needed for comparison with the SD tests that 
build on the assumption that the excess returns are serially IID (Assumption 4). 
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IV. CONCLUSIONS 

We cannot reject MSD efficiency of the market portfolio relative to benchmark 
portfolios formed on size, BE/ME and momentum. Hence, Markowitz type reverse S-
shaped utility functions may rationalize the market portfolio. By contrast, the 
alternative criteria of SSD, PSDL, PSD and MSDL are rejected and utility functions 
with global risk aversion, risk seeking over losses or loss aversion cannot rationalize 
the market portfolio. These results suggest that the individual choice behavior 
observed in the experiments by Levy and Levy (2002) can also help to explain 
aggregate investor behavior. If investors are risk averse for losses and risk seeking for 
gains, then they are willing to pay a premium for stocks that give downside protection 
in bear markets and upside potential in bull markets. Our results suggest that this 
explanation is consistent with the cross-sectional pattern of stock returns. Roughly 
speaking, stock returns suggests that investors are driven by the twin desires for 
security and potential, and that investment portfolios are designed to avoid poverty 
and to give a chance at riches. In this respect, our findings are consistent with the 
predictions of several behavioral finance models, like the behavioral portfolio theory 
(BPT) by Shefrin and Statman (2000). However, contrary to BPT, our results are 
derived within the context of expected utility theory, and we do not explicitly account 
for subjective probability transformation (see Footnote 3 and Footnote 11). 

Of course, our results may be biased by our maintained assumptions: we used 
a single-period, portfolio-oriented model with a large number of expected utility 
maximizers and without market frictions (apart from short selling restrictions). In 
addition, we assumed a simple data generating process with a serially independent 
and identical distribution for the excess returns. There are good reasons to doubt these 
maintained assumptions. Further research could focus on relaxing our economic 
assumptions (e.g. by considering the multiperiod consumption-investment problem, 
imperfect competition, market imperfections like transaction costs and taxes, and non-
expected utility theories with bounded rationality and/or imperfect information) and 
on relaxing our statistical assumptions (e.g. by using econometric time series 
estimation techniques to estimate a conditional CDF). Still, at the very least, our 
results suggest that Markowitz type utility functions are capable of capturing the 
cross-sectional pattern of stock returns even under very simple economic and 
statistical assumptions.  

We hope that our results provide a stimulus for further research based on 
Markowitz type utility functions (and non-concave utility functions in general). Also, 
we hope that this study contributes to the further proliferation of the SD methodology. 
Since large, statistically representative samples often are available in financial 
economics, the ‘nonparametric’ SD approach is a useful complement to existing 
parametric approaches.  
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APPENDIX 

Proof to Theorem 1: The problem ∑
Θ∈

Τ

Λ∈
t

t Tu /)(max λ
λ

x , )(Ψ∈Uu , maximizes a  

strictly increasing and hence pseudoconcave objective over a polytope. Hence, Λ∈τ   
is the optimal portfolio i.e. ∑

Θ∈
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Λ∈
≡

t
t Tu /)(maxarg λτ

λ
x  if and only if all assets are 

enveloped by the tangent hyperplane, i.e. 
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i.e. )()( Ψ∈∇ Τ Bu τX . Optimality condition (19) implies that this solution is 
associated with a solution value of zero. Hence, we find the necessary condition; τ  is 

)(ΨU -SD efficient only if 0),( =Ψτξ . 

To establish the sufficient condition, use Τ≡ )( 1
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T
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with Τ≡ )( 1 Tαα Lα  such that the linear line segments are connected i.e. 

xx tttt
*

11
*

++ +=+ βαβα  for all Tt \Θ∈ . It is easy to verify that )( ∗βxp  belongs to 

)( SSDU Ψ , )( PSDLU Ψ , )( PSDU Ψ , )( MSDLU Ψ , and )( MSDU Ψ . Applying optimality 

condition (19), we find that τ  is optimal relative to )(xu  i.e. )(maxarg λτ
λ

Τ

Λ∈
= tu x . 

Hence, portfolio Λ∈τ  is )(ΨU -SD efficient if 0),( =Ψτξ . Q.E.D. 



 17 

Proof of Theorem 2: Since the unity vector is a feasible solution to the primal 

problem, i.e. Β∈e , we know that ≤Ψ),(τξ








−≡ ∑
Θ∈

Τ

Ι∈
Tx

t
tit

i
/)(max)( ττ xω . Known 

results can derive the exact asymptotic sampling distribution of )(τω . Under the null 

ex µ=][:0 EH , the tCx ΤΤΤ −−= ))()(( 1 ττ tNttt xx xx L , Θ∈t ,  are serially IID 

random vectors with  zero mean and covariance matrix ΤCCΩ . Hence, the 
Lindeberg-Levy central limit theorem implies that the vector 

T/eΧC Τ

Θ∈

Τ

Θ∈

Τ ∑∑ −−= )/)(/)(( 1 TxTx
t

tNt
t

tt ττ xx L  obeys an asymptotically joint 

normal distribution with zero mean and covariance matrix T/)( Τ≡ CCΩΣ . Hence, 
)(τω  asymptotically behaves as the largest order statistic of N random variables with 

a multivariate normal distribution, and ])(Pr[ 0Hy>τω = [ ]ee yT ≤− /Pr1 ΧC  

asymptotically equals the multivariate normal integral ∫
≤

Φ−
ez

z
y

d )(1 Σ . Since 

≤Ψ),(τξ )(τω , ]),(Pr[ 0Hy>Ψτξ  is bounded from above by ])(Pr[ 0Hy>τω  for 
all return distributions )(xG . Moreover, it is easily verified that there exist )(xG  for 
which ),( Ψτξ  approximates )(τω , and therefore the asymptotic distribution of )(τω  
also represents the asymptotic least favorable distribution for ),( Ψτξ . Q.E.D. 
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Table 1: Preference Assumptions 

The preference assumptions underlying the criteria of Second-order Stochastic Dominance (SSD), 
Prospect Stochastic Dominance with Loss Aversion (PSDL), Prospect Stochastic Dominance (PSD), 
Markowitz Stochastic Dominance with Loss Aversion (MSDL), and Markowitz Stochastic Dominance 
(MSD). Each assumption, 5,,1 L=r , is represented by a polyhedron 2ℜ∈Ψr

; each assumption 
effectively imposes the restriction )()( yuxu ∂≥∂  for all 

ryx Ψ∈),( .  
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Figure 1: Example non-concave utility functions  that are consistent with the assumptions of Prospect 
Stochastic Dominance with Loss Aversion (PSDL), Prospect Stochastic Dominance (PSD), Markowitz 
Stochastic Dominance with Loss Aversion (MSDL), and Markowitz Stochastic Dominance (MSD). 

 

MSDL 
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Table 2A: Descriptive Statistics Size-BE/ME Portfolios 

Monthly excess returns (month-end to month-end) from July 1963 to October 2001 (460 months) for 
the value-weighted Fama and French market portfolio and 25 value-weighted benchmark portfolios 
based on market capitalization (size) and/or book-to-market equity ratio (BE/ME). Excess returns are 
computed from the raw return observations by subtracting the return on the one-month US Treasury 
bill. All data are obtained from the data library on the homepage of Kenneth French. 

 Mean St. Dev. Skewness Kurtosis  Minimum Maximum 
Market Port folio 0.462 4.461 -0.498 2.176 -23.09 16.05 

Benchmark Portfolios 
BE/ME Size       
Growth Small 0.235 8.246 0.003 2.466 -34.32 38.82 

2 Small 0.733 7.064 0.037 3.338 -31.30 36.67 
3 Small 0.815 6.140 -0.087 3.233 -29.17 27.86 
4 Small 0.998 5.724 -0.149 3.636 -29.47 27.43 

Value Small 1.075 5.943 -0.098 4.128 -29.45 31.83 
Growth 2 0.359 7.494 -0.316 1.673 -33.21 29.62 

2 2 0.622 6.120 -0.472 2.778 -32.50 26.25 
3 2 0.842 5.410 -0.488 3.739 -28.10 26.78 
4 2 0.913 5.154 -0.385 3.979 -27.09 26.70 

Value 2 0.966 5.660 -0.243 4.245 -29.83 29.43 
Growth 3 0.380 6.908 -0.342 1.365 -29.96 23.39 

2 3 0.665 5.511 -0.624 3.051 -29.65 23.35 
3 3 0.673 4.962 -0.621 2.984 -25.56 21.14 
4 3 0.818 4.710 -0.327 3.029 -23.20 22.61 

Value 3 0.953 5.297 -0.423 4.384 -27.79 27.30 
Growth 4 0.506 6.146 -0.182 1.683 -26.02 25.01 

2 4 0.433 5.218 -0.571 3.317 -29.62 20.46 
3 4 0.651 4.855 -0.423 3.348 -26.13 22.87 
4 4 0.820 4.622 0.035 2.394 -18.30 24.57 

Value 4 0.880 5.347 -0.198 2.697 -25.36 26.20 
Growth Big 0.442 4.841 -0.177 1.676 -22.15 21.70 

2 Big 0.441 4.588 -0.334 1.897 -23.21 16.05 
3 Big 0.493 4.344 -0.243 2.639 -22.47 18.22 
4 Big 0.603 4.289 0.056 1.574 -15.35 18.85 

Value Big 0.583 4.645 -0.146 0.944 -19.28 15.39 
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Table 2B: Descriptive Statistics Industry Momentum Por tfolios 

Monthly excess returns (month-end to month-end) from July 1963 to October 2001 (460 months) for 
the value-weighted Fama and French market portfolio and 30 value-weighted benchmark portfolios 
formed on industry momentum. The portfolios are constructed based on the past performance ranking 
of 30 Fama and French industry portfolios; momentum portfolio no. 1 equals the Fama and French 
industry portfolio with the lowest return over the past 6 months, and portfolio no. 30 equals the 
industry portfolio with the highest past return. The portfolios are rebalanced yearly in July. Excess 
returns are computed from the raw return observations by subtracting the return on the one-month US 
Treasury bill. Raw data on industry portfolios are obtained from the data library on the homepage of 
Kenneth French.  

 Mean St. Dev. Skewness Kurtosis  Minimum Maximu m 
Market Portfolio 0.462 4.461 -0.498 2.176 -23.09 16.05 

Benchmark Portfolios 
1  0.700 6.510 0.297 1.922 -26.43 29.20 
2  -0.080 5.986 -0.442 2.205 -31.05 19.96 
3  0.153 6.288 -0.402 3.070 -32.10 22.82 
4  0.560 5.721 -0.252 2.436 -31.59 18.48 
5  0.257 5.563 -0.152 1.398 -21.56 19.97 
6  0.337 5.500 0.159 0.782 -19.69 19.92 
7  0.218 5.558 -0.030 1.210 -21.08 21.77 
8  0.259 6.276 -0.443 2.021 -28.40 25.18 
9  0.333 5.828 -0.258 1.281 -21.66 19.08 

10  0.408 5.925 -0.011 1.630 -22.25 25.91 
11  0.623 5.486 0.021 3.714 -27.67 28.10 
12  0.442 5.836 -0.404 3.033 -32.69 19.17 
13  0.318 5.662 -0.239 2.394 -28.83 24.48 
14  0.358 5.634 -0.098 1.616 -24.17 19.77 
15  0.570 5.714 0.033 0.824 -20.90 19.56 
16  0.566 5.972 0.318 1.523 -18.74 29.07 
17  0.679 5.950 0.118 3.179 -28.60 31.84 
18  0.775 5.776 -0.341 2.465 -31.96 22.67 
19  0.169 5.523 -0.502 1.852 -27.93 16.53 
20  0.475 5.819 -0.415 2.496 -29.59 23.24 
21  0.850 5.576 -0.706 3.297 -32.14 17.01 
22  0.809 6.460 -0.142 3.500 -33.22 30.36 
23  0.491 5.676 -0.252 1.372 -26.40 18.57 
24  0.485 5.586 -0.303 1.186 -25.91 17.14 
25  0.657 5.529 -0.358 2.385 -28.60 21.84 
26  0.680 6.077 0.096 1.901 -19.31 28.44 
27  0.683 6.456 0.640 6.429 -28.70 45.92 
28  0.986 6.152 -0.082 3.037 -33.02 28.19 
29  1.092 7.030 -0.450 2.078 -31.76 23.56 
30  0.949 7.319 0.178 2.823 -32.91 37.57 
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Table 2C: Descriptive Statistics Size-Value-Momentum Portfolios 

Monthly excess returns from July 1963 to December 1994 (378 months) for the value weighted Fama 
and French market portfolio and 27 value weighted benchmark portfolios based on market 
capitalization (size), book-to-market equity (BE/ME) and momentum. The 27 portfolios are formed by 
dividing all stocks into thirds based on B/M. Each of the three first-level portfolios is then divided into 
three portfolios based on size. Finally, each of the nine second-level portfolios is divided into ‘past 
losers’, ‘middle’ and ‘past winners’. Excess returns are computed from the raw return observations by 
subtracting the return on the one-month US Treasury bill. Data on the 27 portfolios are courtesy of 
Mark Carhart. The remaining data on the market portfolio and the Treasury bill. All other data are 
obtained from the homepage of Kenneth French. 

 
 

   Mean St. Dev Skewness Kurtosis  Minimum Maximum 
Market Portfolio 0.387 4.399 -0.394 2.600 -23.09 16.05 

Benchmark Portfolios       
BE/ME Size Momentum       
Growth Small Loser -0.279 6.644 0.003 2.784 -31.41 30.45 
Neutral Small Loser 0.306 5.975 0.474 5.363 -24.81 37.51 
Value Small Loser 0.552 6.440 0.974 7.774 -28.26 45.34 

Growth Small Middle 0.349 6.070 -0.461 3.194 -31.33 27.54 
Neutral Small Middle 0.631 4.957 -0.201 5.038 -27.05 27.02 
Value Small Middle 1.062 5.583 0.199 6.219 -29.09 33.99 

Growth Small Winner 0.933 6.755 -0.704 2.492 -33.52 19.45 
Neutral Small Winner 1.157 6.088 -0.730 3.569 -32.60 23.17 
Value Small Winner 1.341 6.246 -0.289 4.564 -32.00 30.20 

Growth Medium Loser -0.089 5.952 0.088 2.757 -26.49 27.54 
Neutral Medium Loser 0.400 5.396 0.501 3.468 -19.08 31.20 
Value Medium Loser 0.582 6.078 0.469 4.678 -25.79 38.07 

Growth Medium Middle 0.143 5.341 -0.461 2.207 -26.81 18.96 
Neutral Medium Middle 0.513 4.498 -0.344 4.720 -25.68 23.05 
Value Medium Middle 0.909 5.303 -0.016 6.042 -28.30 31.03 

Growth Medium Winner 0.895 6.033 -0.550 2.261 -29.90 20.73 
Neutral Medium Winner 0.772 5.325 -0.896 3.683 -30.54 17.52 
Value Medium Winner 1.287 5.881 -0.806 5.234 -33.86 25.76 

Growth Big Loser 0.105 5.218 0.178 2.208 -20.40 25.40 
Neutral Big Loser 0.438 4.801 0.477 2.287 -19.66 21.74 
Value Big Loser 0.600 5.569 0.718 4.414 -16.99 35.34 

Growth Big Middle 0.250 4.507 -0.161 1.885 -20.73 17.86 
Neutral Big Middle 0.367 4.211 0.158 2.307 -15.57 21.03 
Value Big Middle 0.589 4.752 -0.053 2.717 -23.47 20.41 

Growth Big Winner 0.611 5.348 -0.298 2.035 -23.68 21.21 
Neutral Big Winner 0.595 4.856 -0.347 2.565 -24.00 19.95 
Value Big Winner 0.923 5.352 -0.254 2.846 -24.78 22.84 
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Figure 2A: Mean-variance diagram for the historical excess returns of 
the 25 Fama and French size -BE/ME portfolios (the bright dots) and the 
Fama and French market portfolio (M). OA represents the efficient frontier 
(with the US Treasury bill,  short sales not allowed). 
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Figure 2B: Mean-variance diagram for the historical excess returns of 
the 30 industry momentum portfolios (the bright dots) and the Fama and 
French market portfolio (M). OA represents the efficient frontier (with the 
US Treasury bill,  short sales not allowed). 
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Figure 2C: Mean-variance diagram for the historical excess returns of 
the 27 Carhart size -BE/ME-momentum portfolios (the bright dots) and the 
Fama and French market portfolio (M). OA represents the efficient frontier 
(with the US Treasury bill, short sales not allowed). 
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Table 3A: Test Results Size-Value Portfolios 

We test whether the Fama and French market portfolio is )(ΨU -SD efficient relative to 
all portfolios formed from a US Treasury bill and 25 benchmark portfolios formed on 
market capitalization (size) and book-to-market-equity ratio (BE/ME). Each cell shows 
the observed value for the test statistic ))(,( ΨΒµξ , as well as the asymptotic least 

favorable p-value (within brackets). We use a bold font if results are statistically 
significant at a level of significance of 90 percent. 

 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 Jul 1963 - 
Oct 2001 

Jul 1963 - 
Aug 1982 

Sep 1982 -
Oct 2001 

 
SSDΨ  

 
0.434 

(0.031) 

 
0.585 

(0.034) 

 
0.299 

(0.490) 
 

PSDLΨ  

 
0.613 

(0.002) 

 
0.918 

(0.000) 

 
0.387 

(0.243) 
 

PSDΨ  

 
0.432 

(0.031) 

 
0.905 

(0.000) 

 
0.356 

(0.324) 
 

MSDLΨ  

 
0.434 

(0.031) 

 
0.585 

(0.034) 

 
0.299 

(0.490) 
 

MSDΨ  
 

 
0.207 

(0.501) 

 
0.226 

(0.748) 

 
0.192 

(0.865) 
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Table 3B: Test Results Industry Momentum Portfolios 

We test whether the Fama and French market portfolio is )(ΨU -SD efficient relative to 
all portfolios formed from a US Treasury bill and 30 benchmark portfolios formed on 
industry momentum. Each cell shows the observed value for the test statistic ))(,( ΨΒµξ , 
as well as the asymptotic least favorable p-value (within brackets). We use a bold font if 
results are statistically significant at a level of significance of 90 percent. 

 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 

  

 Jul 1963 - 
Oct 2001 

Jul 1963 - 
Aug 1982 

Sep 1982 -
Oct 2001 

 

SSDΨ  

 
0.376 

(0.375) 

 
0.604 

(0.214) 

 
0.492 

(0.479) 
 

PSDLΨ  

 
0.595 

(0.026) 

 
0.995 

(0.011) 

 
0.484 

(0.508) 
 

PSDΨ  

 
0.595 

(0.026) 

 
0.749 

(0.057) 

 
0.350 

(0.915) 
 

MSDLΨ  

 
0.376 

(0.375) 

 
0.604 

(0.214) 

 
0.492 

(0.479) 
 

MSDΨ  
 

 
0.344 

(0.510) 

 
0.568 

(0.295) 

 
0.356 

(0.892) 
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Table 3C: Test Results Size-Value-Momentum Portfolios 

We test whether the Fama and French market portfolio is )(ΨU -SD efficient relative to 
all portfolios formed from a US Treasury bill and 27 benchmark portfolios formed on 
size, value and momentum. Each cell shows the observed value for the test statistic 

))(,( ΨΒµξ , as well as the asymptotic least favorable p-value (within brackets). We use a 
bold font if results are statistically significant at a level of significance of 90 percent. 

 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 

  

 

 

 Jul 1963 - 
Dec 1994 

Jul 1963 - 
Mar 1979 

Apr 1979 –
Dec 1994 

 
SSDΨ  

 
0.469 

(0.013) 

 
0.780 

(0.004) 

 
0.442 

(0.169) 
 

PSDLΨ  

 
0.954 

(0.000) 

 
1.171 

(0.000) 

 
0.737 

(0.004) 
 

PSDΨ  

 
0.861 

(0.000) 

 
0.930 

(0.000) 

 
0.737 

(0.004) 
 

MSDLΨ  

 
0.469 

(0.013) 

 
0.780 

(0.004) 

 
0.442 

(0.169) 
 

MSDΨ  
 

 
0.291 

(0.275) 

 
0.346 

(0.547) 

 
0.384 

(0.300) 
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Figure 3A: Optimal piecewise-linear MSD utility function. This utility function 
rationalizes the Fama and French market portfolio relative to the 25 Fama and French size-
BE/ME portfolios. The utility function is constructed from the optimal solution )(*

MSDΨΒ∈β  

to (9) as  
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Figure 3B: Optimal piecewise-linear MSD utility function. This utility function rationalizes 
the Fama and French market portfolio relative to the 30 industry momentum portfolios. The 
utility function is constructed from the optimal solution )(*

MSDΨΒ∈β  to (9) as 
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Figure 3C: Optimal piecewise-linear MSD utility function. This utility function 
rationalizes the Fama and French market portfolio relative to the 27 Carhart size -BE/ME-
momentum portfolios. The utility function is constructed from the optimal solution 

)(*
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Figure 4: Upside and downside market beta’s for the 27 Carhart size-BE/ME-
momentum portfolios. The dark dots represent the 9 portfolios with the highest average 
returns, the bright dots are the 9 portfolios with the lowest average returns and the grey 
dots are the remaining 9 portfolios with medium average returns. Beta’s are computed 
using OLS regression and using the full samples of monthly excess returns from July 
1963 to December 1994. 
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