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In the dual bin packing problem, the objective is to assign items of given size to 
the largest possible number of bins, subject to the constraint that the total size of 
the items assigned to any bin is at least equal to 1. We carry out a probabilistic 
analysis of this problem under the assumption that the items are drawn indepen- 
dently from the uniform distribution on [0, 11 and reveal the connections between 
this problem and the classical bin packing problem as well as to renewal theory. 
0 1991 Academic Press. Inc. 

1. INTRODUCTION 

Given n items of size a,, . . . , a, (ai E (0, l), i = 1,. . . , n), the classical 
bin packing problem is to assign the items to the smallest possible number 
of bins, subject to the constraint that the total size of the items assigned to 
any bin is at most equal to 1. The dual bin packing problem, which is the 
subject of this paper, is to assign the items to the largest possible number 
of bins, subject to the constraint that the total size of the items assigned to 
any bin is at least equal to 1. The problem could also appropriately be 
called the bin covering problem and was first studied by Assmann et al. [2] 
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(For a recent survey, see Csirik et al. [13]). Their main concern was 
worst-case analysis of approximation algorithms. While superficially simi- 
lar to its traditional counterpart, the problem poses a challenge of its own: 
as in the case of more general packing and covering problems, a result for 
one problem occasionally carries over immediately to the other, but 
generally the differences between them are as pronounced as their com- 
mon traits. 

We shall see examples of both phenomena as we carry out an explo- 
ration of the dual bin packing problem. We shall do so from a probabilistic 
point of view, i.e., we shall assume that the item sizes a,, a2,. . . are drawn 
independently from the uniform distribution on [0, 11. Many results will in 
fact be seen to hold under more general assumptions, but the uniform 
distribution provides a traditional starting point for this type of enquiry. 

In addition to the bin packing problem, we shall also consider a 
two-dimensional analogue, the dual vector packing problem. Here, we are 
given n pairs (aI, b,), . . . , (a,, b,) that have to be assigned to the largest 
possible number of bins subject to the constraint that both the sum of the 
a-coordinates and the sum of the b-coordinates of the pairs in any bin are 
at least equal to 1. Many of our results can in fact be extended to the 
obvious m-dimensional version of this problem, for any fixed m. 

In Section 2, we consider the optimal solution value OPT(n) to the dual 
bin packing problem (i.e., the largest possible number of bins that can be 
covered by n items) and prove that 

lim sup 
E( OPT( n)) - n/2 

&2 s - (32~) -1’2; (1) 
n-m 

i.e., for n large enough, &(OPT(n)) = n/2 - R(n’/‘). In Section 3, we 
demonstrate that this estimate is the best possible one up to a multiplica- 
tive constant by demonstrating that a simple heuristic, the pairing heuris- 
tic, produces a value P!(n) satisfying 

E(PA(n)) 2 ; - ( &y2 - a (2) 

for some constant (Y. This heuristic can be adapted to show that the 
expected solution value of the dual vector packing problem is also asymp- 
totic to n/2. 

These two results have their counterparts in the classical bin packing 
problem, where an upper bound of n/2 + O(n’/2) on the optimal solu- 
tion value can be proved to be best possible in a similar fashion [lo, 111. 
(Actually, our technique yields an improvement on the best known upper 
bound on the multiplicative constant for this case.) The result in Section 4, 
where we analyze the expected performance of a suitably adapted version 
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of the next fit heuristic, has a different flavor. Using techniques from 
renewal theory that do not carry over to the classical case, we establish the 
strong result that the solution value W(n) satisfies 

lim (&(NF(n)) - ;) = ; - 1 = -0.2642... . 
n+m 

This result improves lim,&WVF(n))/n) = l/e, which was derived in 
Section 8 of [l] by modeling the algorithm as a Markov process with 
discrete time steps (the arrival of each item) and continuous state space 
(the level of the current bin). 

Note, by Assmarm’s result, that the expected relative error given by 
(&(OPT(n)) - B(NF(n)))/B(OPT(n)) converges to 1 - 2/e. A similar 
strong result is obtained for an appropriately modified version of next fit, 
applied to the dual vector packing problem. Both results can be easily 
extended to distributions other than the uniform one. In Section 5, we 
present a probabilistic analysis of the next fit decreasing heuristic, which 
can again be easily adapted to our model. Surprisingly, its performance is 
inferior to that of next fit, in remarkable contrast to their behavior on the 
classical bin packing model. Some concluding remarks are contained in 
Section 6. 

2. THE EXPEND OPTIMAL SOLUTION VALUE 

In deriving an upper bound on the optimal solution value to the dual 
bin packing problem OPT(n), we shall find it convenient to assume that it 
is even or, equivalently, to focus on OPT(2n). 

To obtain an upper bound on the expected value of this random 
variable, we start by defining b,, to be the number of big items (i.e., those 
with size greater than or equal to i). Since, with probability 1, each bin 
must contain at least two items in any feasible solution, we almost always 
have that OPT(2n) I n. If, however, we know that b,, < n, then the best 
that we can hope for is to pair each big item with a small item to cover a 
bin, and to divide the remaining small items in groups of three of which 
each covers an additional bin. Hence, in this case OPT(2n) I b,, + 
(2n - 2b,,)/3 = 2n/3 + b,,/3. 

Since obviously OPT(2n) I C:!iai, we have that 

B(OPT(2n)) I 5 & k-n (-in( iFluj,n)lb2, = k)( :)ze2” 

= k)( y)2-2”. (4) 
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The first term in (4) is clearly bounded from above by 

and since (cf. 112, p. 341) 

ZkFn(7) = kgo(y) + (F) =zzn+ (2,n)9 

this is equal to 

.2-2”4(22” + (2,n)) = n/2 + n2-9 23. 

(5) 

(6) 

If we define 

d, = ai (0 I a, < $) 

1 - ai (3 I a, 5 1) ’ 
(7) 

we may observe by the exchangeability of (a,, . . . , a,) and the indepen- 
dence of b,, and (di}iz,“l (cf. [S]) that for every k, 

F di,p+i . (8) 
i=k+l 

Hence, the second term in (4) equals 

?k( ) 2n -2n 

k=O k 2 
E di- idi,& -k) 

i=k+l i=l 

(y)2-2”. 

The first term of (9) is equal to n/2 - 2r~2-~“-~(2) (cf. [12, p. 341). We 
bound the minimum in the second term of (9) by (2n - 2k)Bd, = 
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(n - k)/2 to obtain (cf. [12, p. 341) 

in&n - k)( y)2+ 
k=O 

= $2 -2n-1 2n 
( ) n * 

Summing up the various components in (6), (9), and (lo), we conclude 
from (4) that 

B(OPT(2n)) I n - $~2-~“-’ 2,” . 
( 1 

Since, for large n, (y) is asymptotic to (mz)-1’222”, we obtain the 
desired result (1): 

lim sup 
B(OPT(2n)) - n 

(2n)1’2 
I - (32~) -1’2: (12) 

n-+- 

In the above proof it is only necessary to require that the distribution 
F(x) of the item sizes ai satisfies F(x) = 1 - F(1 - x) for every 0 I x zc $ 
and F is not degenerate at 3. This means that the inequality (12) with 
(32~)“~ replaced by some other constant depending on rZ’di also holds 
for this larger class of distributions. 

For the optimal solution value to the classical bin packing problem, the 
above technique yields an asymptotic lower bound equal to n/2 + 
(32~)-r/~n’/~ which is a slight improvement over the result in [ll]. 

3. THE PAIRING HEURISTIC 

In this section, we demonstrate that the upper bound (12) is sharp by 
showing that a certain heuristic for the dual bin packing problem produces 
a solution value that is equal to n/2 - O(n1/2) in expectation. 
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For this purpose, we adapt the binary pairing heuristic for the classical 
bin packing problem [ll, 101 to obtain a pairing heuristic (PA) for dual bin 
packing. In this heuristic, the largest unassigned item is selected and 
combined with the smallest unassigned item such that together they can 
cover a bin (i.e., such that the sum of their sizes exceeds 1). If no such item 
exists, all items then remaining are added to the bin most recently opened, 
and the algorithm terminates. 

We analyze this heuristic along the lines of [91, using the random 
variables di defined in (7). If we label di by “ + 1” and call it big if ai 2 3, 
and label it by “ - 1” and call it small if ai < i, and consider the labeled 
sequence d, in [0, i] in increasing order, then the PA heuristic amounts to 
matching each successive “ + 1” to the unassigned “ - 1” that is closest to 
its right. If there are no unassigned -l’s to its right, match it the 
rightmost + 1. If such a + 1 also does not exist, then put it in the bin most 
recently opened. If U, is the number of unmatched small di, then one can 
verify that 

n-u, 1 
PA(n) 2 2 - - 

2 

and hence, 

To compute Eu,, we first observe that the sequence of + l’s and - l’s 
can be viewed as a realization of a Bernoulli process [4], defined by a 
sequence ej (j = 1,2, . . . ) consisting of i.i.d. random variables with 
Pr(ei = + 1) = Pr(ej = - 1) = i. (This is a nontrivial statement; we leave 
the proof to the reader [8].) We have that u, = maxask .,J -sJ, with 

Sk = cik,iej, k 2 1 and s0 = 0. Actually, Sk 1 - Sk (i.e., sk has the same 
distribution as -sk), so that it suffices to compute the expectation of 
maxO.k.n{sk). 

According to the theory of fluctuations (cf. [3, p. 287]), we know that 
(assuming n is even) 

(13) 

where generally x+= max(x, 0). 
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Now, using the identity CL prlP( t’-“J = s( y ) (cf. [12, p. 34]), we find 
that 

es,+, = 2 t W2k = 2~1~ 
p=l 

= 2 5 p( 2k )2-2k 

p=l k-p 

Similarly, using the identity 

i (P - I)( 71;) = 22k-3 - 22k-2 + ;(2k _ I)( 2k” -;) 
p=l 

(cf. 112, p. 3411, we obtain 

&&-l= 2-2k+i t (2P - l)( 7:;) 
p=l 

= 2-2k+2 
i (P-14y-3 +2-=+4Jy-J 

p=l 

= 2-tk+2 22k-3 _ 2tk-2 + $(2k 

= 2-2k+‘(2k - l)( ikT;). 

Now, 2-2k( y) = (- l)‘( -:/z) (cf. [5, p. 6311, with ( -:I’) defined as 
(- ix - f - 1). . . (- 3 - k + O/k!, so that (cf. [5, p. 641) 

A similar manipulation with respect to C;i?$&s&-J(2k - 1)) yields as a 



196 CSIRIK ET AL. 

final exact result: 

Using the identities ( iy) = -(n + 2)( .;;?I) and ( n;i/21) = (-n/(n + 

lN( ,::‘) the above expression breaks down to 

Eu, = (n + 2)(2n + 1) 
2n + 2 (-l)n/2+1 i -y, 1 - ; 

(n + 2)(2n + 1) = 2n + 2 ($y1)2-‘“+” - f. (17) 

A refinement of Stirling’s formula (cf. [5, p. 541) then produces as an 
approximation that 

I&u, - (2n/?T)‘/l I a (1% 

for some constant (Y. Hence, 

cq PA( n)) 2 n/2 - B( z&/2) - + 

II n 

( 1 
l/2 2-- - 

2 29lr -a9 (1% 

as was to be proved (cf. (2)). 
We observe that the analysis leading to (19) is valid under much more 

general conditions than imposed here. Rather than independence, all that 
turns out to be needed is exchangeability and a symmetry condition on the 
joint distribution of the item sixes. We do not pursue this generalization in 
detail here. 

For the classical bin packing problem, the expected solution value of the 
binary pairing heuristic is given by n/2 + &(u,/2). Thus, (17) provides an 
exucr expression for this value, improving on the asymptotic estimates that 
have appeared in the literature. 

A variation on the binary pairing heuristic can be used to analyze the 
optimal solution OPT%) of the dual vector packing problem, under the 
assumption that Ui and bi are independently uniformly distributed on 
LO, 11. 

To describe this heuristic, divide [O, 11 x [0, l] into the regions A, and 
B, (k = 0, 1,. . . , m - 11, where 

A,= [o.:] x [:,:I and B,= [;,I] x [z,e] 
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(m arbitrary, but fixed) and label the stochastic pairs (Ui, bi) (i = 1,. . . , n) 

(i) = k if ( aj, bi) E A, U B,-, (k = l,...,m - 1) 

(i) = 0 if (ai, bi) E A, U B,. (20) 

Now it is easy to check that, conditional on (i) = k, ai is still uniformly 
distributed for k = 1,. . . , m - 1. Consider now all the pairs (ai, bi) with 
(i) equal to k (k = 1,. . . , m - l), and apply the pairing heuristic for the 
one-dimensional dual binpacking problem to their first coordinates. 

The number of filled bins then equals at least 1/2(w, - u&, where wk 
is the number of items (ai, bi) with (i) = k and u~,~ is the number of 
unmatched small items among the elements with label (i) = k. 

Hence the total number of filled bins PAV(n) satisfies 

( 
m-l 

~(PAW)) 2 8 c h - u,,,W 
k=l 

= 5 G - mf1P(Uk,,,2), 
k=l 

(21) 

where we use the fact that wk is binomially distributed with parameters it 
and l/m so that &(wk> = n/m. 

We know that (cf. (18)) &(uk, njWk = p) < Cfi for some constant C, 
and hence by Jensen’s inequality 

&(u k,n) 5 c&(A) <c&?-i& = c@. 

Thus, &(PAV(n)) 2 n(m - 1)/2m - $C(m - l>@, or 

(22) 

liminf ~(PW4) m - 1 
22m’ (23) 

n-m n 

so that 

liminf WOW) 1 
2 -. 

n--r- n 2 (24) 

Since it is obvious that lim sup, --L I B(OPTV( n)>/n) zz l/2, we obtain 

lim ~(OPJw4) 1 =- 
2’ (25) 

n-rm n 
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4. THE NEXT FIT HEURISTIC 

A simple and natural solution method for the dual bin packing problem 
is given by an adaption of the well-known next fit heuristic for classical bin 
packing. We continue to assume that item sizes are uniformly distributed 
on [O, 11. 

In a next fit heuristic (NF) for dual bin packing, one opens a bin and 
assigns items in arbitrary order until the sum of their sizes exceeds 1 and 
the bin is covered. The process then repeats itself. This algorithm is also 
discussed in 121. 

The number of items ui assigned to the first bin is equal to inf{k 2 
1 I Cf= iai 2 1). The NF heuristic is such that the same distribution applies 
to the number of items uj assigned to the jth bin, for any j. Since the 
sequence ai,i 2 1, consists of independent and uniformly distributed ran- 
dom variables we obtain that the random variables uj, j = 1,2,. . . are also 
independent and identically distributed. 

Thus, the random solution value NF(n) is related to the renewal process 
R,, associated with the sequence uj and defined by R, = sup{m 2 
OIC&uj I n, ua = O}, in that NF(n) = R,. To compute B(NF(n)), it 
suffices to compute the discrete renewal function cFR,. 

We first observe that &uj = Cy=,l/k! = e, that 8u,’ = 2Z;=ikPr(uj 2 
k} - e = 3e < 00, and that the distribution of uj satisfies the property that 
g.c.d. {nln > 0, Pr{uj = n} > 0) = 1. Hence, the weak renewal theorem (cf. 
[S, p. 3301 immediately yields that 

lim &(NF(n)) 1 =- (26) n-m n e’ 

We obtain a much stronger result by considering lim,,,(B(NF(n)) - 
n/e>. The strong renewal theorem yields (cf. [5, p. 3411) 

lim (G(NF(n)) - t) = 5 - 1. 
n-rm (27) 

In fact, convergence in (27) can be shown to be exponentially fast (cf. [7; 
p. 721. In view of the result from Section 3, (27) implies that the expected 
relative error of the NF heuristic converges to 1 -2/e. 

The weaker result (26) can be generalized to the case in which the item 
sizes are distributed uniformly over the interval [0, U] (U E (0,l)). In that 
case, the right-hand side of (26) has to be replaced by l/p, with 

(28) 

ii = 11/U]. (29) 
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The derivation of this result is based on the result (cf. 16, p. 271) that in 
this case 

and will not be presented here in full detail. 
Again, the analysis leading to the result in (27) can be generalized to 

every distribution on [O, 11 for which 8~: < m and g.c.d.{nln > 0, Pr{v, = 
n) > 0) = 1. In view of the general applicability of renewal theory, this 
should not come as a surprise. 

The obvious extension of the next fit heuristic to the dual vector packing 
problem can be analyzed similarly. Let us assume again that ai and bi are 
independently uniformly distributed on [0, 11. We now have two random 
variables 

t,=inf krll 
i 

iUj21 ) 
i=l 1 

&l 

1 
(31) 

i=l 

and the number of items packed in an arbitrary bin equals maxIt,, tb}. 
Note that by the independence of t, and f, we have 

Pr(max{r,, tb) I f} = Pr(t, I t}Pr{tb 5 t} 

=~(~~i~l}pr(~l~j~l}=(l-~~. (32) 

Hence 

5 P{max(t,, tb) I t)z’ = & - 2e’ + $c -& 
r=o 

(33) 

and this implies, with &> = cSoPr{max(t,, f& = t)r’, that 

1 -P(z) Z’ 

l-z 
e 2e’ - 5 - 

t-0 (t!y * 
(34) 

Now the number of bins used for n items is given by NFV(n) = sup{m 2 
OICi”,o~j s n}, where uj (j 2 1) are independent and identically dis- 
tributed random variables (u,, = 01, with u1 = max{t,, tb). Hence, by the 
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weak renewal theorem, 

lim ~(NJWn)) 1 

n-r- n = g(m4t,, 4J) 

(35) 

Because the distribution function of max{t,, fb) is lattice with the span 
equal to 1, the strong renewal theorem yields that 

&(NFV( TZ)) - ;) = “;i2”l - 1 
1 1 

(36) 

with El = E(max(t,, tb}) = 2e - CTS,l/(t!)2 = 3.1567.. . and E, = 
B((maxb,,t,D2). 

Note that from (34) 

= Ff: 2e’ - 2 ( 
Zf-l 

j=* t!(t - l)! 

1 

= 2e - jgo (t + l)!t! . 

It is also easy to prove that 

cc 

(37) 

C P{max{t,, tb} > t} = +E, - +E, (38) 
r=o 

and, hence, 

E, = 6e - j:. $2 - 2,go ( 1 +:, ItI . . = 10.8488.. . . (3% 

Thus, lim,,,(&(NFV(n)) - (0.3168.. . In) = -0.2974.. . . 
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5. THENEXT FIT DECREASING HEURISTIC 

In this section we adapt and analyze the next fit decreasing heuristic 
(NFD) to our model. Given a list of rr items of size a,, a,, . . . , a, 
(0 5 a, I l), the NFD heuristic for the dual bin packing problem first 
reindexes the elements in decreasing order and then applies the NF 
heuristic to this new list. To analyze the behavior of the expected solution 
value &(NFD(n)), we approximate the performance of the NFD heuristic 
by that of the sliced NFD heuristic with parameter r (SNFD,), in which first 
items larger than l/r are packed according t:, the NFD heuristic, the last 
opened bin is completed by adding elements of decreasing size smaller 
than l/r and any remaining items are packed in groups of size r + 1 
(possibly at the expense of feasibility; but in the limit, this will not hurt). 

The number of bins used by this heuristic on n items is denoted by 
SNFD,(n). It is clear that 4 

SNFD,( n) 2 NFD( rr) W 1) (40) 
and 

lim SNFD,.(n) = NFD(n) (as.). (41) r-m 

Let ki be the number of items whose size falls in the interval (l/(i + 
l), l/i] (i 2 1) and let Ki = ki + ki+, + . . . . Then, for any r > 1, 

kl k2 k-1 Kr 
I 

z + 3 + *** + 
-+- + r, (42) r r+l 

where the last term is included to allow for the rounding errors. 
Since ai are uniformly distributed and independent, we obtain &k, = 

n/(i(i + 1)) and EK, = n/i. Hence, 
r-1 

E(SNFQb)) s n,Fl i(i : 1>2 + n r(r + 1) + r (43) 

and this implies that, if r is suitably chosen as a function of n, then 

lim sup 
WFD(n)) 

n 
52 

1 

n-m i=l i(i + 1)‘. 

Moreover, 

(44) 

NFD(n)z(:-I)+(:-I)+***+(+-1) (45) 
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and we find that 

,iminf aNFD(n)) 
n-t- n 

Since 

i$ j(j : 1)2 = f (f - & - (j : 1)2) i-1 

=2- f.+ 
i=l 

we obtain from (45) and (46) that 

lim B(NFD(n)) 
n-rm n 

= 2 - ; = 0.3551.. . . 

(46) 

IT2 
-> 
6 

(47) 

We note that lim,,, &(NF(n))/n = l/e = 0.3679.. . , so that the ex- 
pected performance of the NF heuristic is better than the (expected) 
performance of the NFD heuristic. For the classical binpacking problem, 
exactly the reverse is true! We have no satisfying intuitive explanation for 
this phenomenon. 

6. CONCLUDING REMARKS 

The probabilistic analysis of the dual bin packing problem, carried out 
in the preceding sections, reveals its connections to the classical bin 
packing problem and, surprisingly, to renewal theory. It also leaves several 
open questions of interest. Perhaps most prominent among these would be 
the challenge to find an on-line heuristic for this problem with better 
expected relative error than the NF heuristic in Section 4. 
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