
Unifying LL and LR parsing

Wim Pijls

Erasmus University Rotterdam, P.O.Box 1738,

3000 DR Rotterdam, The Netherlands.

wimp@cs.few.eur.nl

Abstract

In parsing theory, LL parsing and LR parsing are regarded to be two
distinct methods. In this paper the relation between these methods is cla-
ri�ed.
As shown in literature on parsing theory, for every context-free grammar,
a so-called non-deterministic LR(0) automaton can be constructed. Here,
we show, that traversing this automaton in a special way is equivalent to
LL(1) parsing. This automaton can be transformed into a deterministic
LR-automaton. The description of a method to traverse this automaton re-
sults into a new formulation of the LR parsing algorithm. Having obtained
in this way a relationship between LL and LR parsing, the LL(1) class is
characterised, using several LR-classes.

1 Introduction

In the theory of parsing, the two main methods are LL and LR parsing respecti-
vely. The LL method is implemented mostly by the recursive descent technique.
LR parsing is implemented mainly as a stack algorithm, governed by a so-called
action/goto-matrix representing the LR automaton. In a lot of text books on
parsing or formal language theory, both methods are explained extensively.
For every context-free grammar, a deterministic LR-automaton can be built. LR
parsing is a special way of traversing this automaton. See e.g. [Aho], [Grune] or
[Sippu]. Besides, also a non-deterministic LR-automaton can be constructed, see
e.g. [Grune] or [Sippu]. (Both kinds of automatons di�er from those, which are
used to recognize a regular language.) The main result of our paper is the observa-
tion that LL(1) parsing is equivalent to a way of traversing the non-deterministic
automaton, whereas LR parsing is equivalent is equivalent to traversing the de-
terministic automaton. This relationship is exploited to derive correspondances
between LL(1) and LR grammar classes.

Now, we discuss some preliminaries. We consider context-free grammars fVN ; VT ;
P , Zg, where VN is the set of non-terminals, VT the set of terminals (or tokens),
P the set of productions, and Z is the start symbol. V � and V �

T denote the set
of strings consisting of symbols in V and VT respectively. A greek symbol will
denote an element of V �. We demand that the start symbol Z occurs in only one

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/19185208?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


production, Z ! A$, where $ denotes the end-of-input. For simplicity, we will
de�ne a grammar by its productions.
We assume that in each parsing algorithm a global variable previous is declared,
referring to strings in V �

T . Furthermore, a procedure shift is assumed to be de-
clared which takes the next symbol from the input �le and appends this symbol
to previous. So the string in the variable previous consists of all symbols already
proceeded. The variable nextsymbol refers at each time to the next symbol to be
proceeded. Hence the procedure shift a�ects the value of nextsymbol.

The following grammar G will be used as running example in this paper.

Z ! X$
X ! yY j vY w
Y ! xX j �

In Section 2, we recapitulate the non-deterministic automaton. We will show
that recursive descent parsing for LL(1) grammars is a special walkthrough of
such an automaton. In Section 3 we consider the deterministic automaton. We
present a description of traversing such an automaton, whereby we achieve a new
formulation of LR parsing. In Section 4, correspondances between some grammar
classes are discussed.

2 Non-deterministic automatons and LL(1) parsing

In this section, we recapitulate the notion of a non-deterministic automaton (here
abbreviated as NA), as discussed earlier in among others [Grune] and [Sippu].
We will show, that a new parsing algorithm is obtained by traversing the au-
tomaton in a special fashion. This new algorithm is equivalent to the recursive
descent algorithm.

For every context-free grammar an NA can be constructed. An NA is a directed
graph, whereby the nodes and arcs are called states and transitions respectively.
An outgoing arc of a state s is also called an exit of s. This situation is similar to
NFA's, used for regular grammars [Aho]. The transitions in an NA are accom-
pamied by one symbol, which, di�erent from NFA's, may be a non-terminal. In
general, each transition is marked by an element of VT [ VN [ f�g. Each state
contains an item with the general form A! � ��, where A! �� is a production.
So, there is a one-to-one correspondance between the states and the items, and
hence, one state can be identi�ed with one item. An item of the form A ! ��
is called an �-item. Items with � = � or �-items are called reduce-items. The
transitions are determined by the following rules.

- If � = b with b 2 VT , there is only one exit, to a state with item A! �b�.

- If � = � and � = B, (hence the item has the form A ! �B), then there
are outgoing �-transitions, one for each production B ! �, ending at a
state with item B ! ��. Furthermore, there is also an exit, marked by B,
to a state with item A! B � .

2



- A state with a reduce-item has no exits.

For a state s and a symbol X 2 V , X 6= �, goto(s;X) denotes the state at the end
of the transition from s, marked by X . Because of the �-transitions, the automa-
ton is called non-deterministic. For grammar G, the resulting NA is depicted in
Figure 1.

After recapitulating the notion of a non-deterministic automaton, we now in-
troduce some enhancements in order to obtain a deterministic algorithm. The
states or items are labeled with First and Follow sets. For the de�nition of
First(�) with � 2 V �, or Follow(A) with A 2 VN , used in De�nition 1, we refer
to [Aho, Grune].

De�nition 1 For a state s containing an item T of the form A ! � � �, we
de�ne First(s) = First(T ) = First(�) and Follow(s) = Follow(T ) = Follow(A).

We will de�ne a walk through the automaton. For this walk, the following inter-
pretation holds: if we are in a state with item A ! � � �, we are attempting to
recognize A ! ��, whereby � has already recognized and � is still to be recog-
nized; choosing some �-exit from an item A ! � �B to a new state containing
B ! �� means that we guess that a string r in the front of remaining input
matches � and consequently B. The fashion in which the automaton has to be
walked through, is expressed formally by the procedure parse, presented in Figure
2. This procedure has one input parameter s of the state type, or alternatively, of
the item type, because states and items can be identi�ed in a non-deterministic
automaton. There is one output parameter, success, of the type boolean. In the
formal speci�cation of parse, we assume that the value of previous on entry and
on exit is denoted by previous1 and previous2 respectively. Furthermore, in the
speci�cation and in the code of parse, the item in s is assumed to be of the form
A! � �B. The formal speci�cation of parse is as follows.

pre: � matches a tail string of previous1;

post: if succes=true, then a string r 2 V �

T exists, such that previous1+r =previous2
and B

�

) r;
if success=false then such a string r does not exist.

The algorithm may be non-deterministic, due to the fact that more than one
�-transition can be chosen in some state. The absence of any non-deterministic
choice between �-transitions is equivalent to the LL(1)-property.

Theorem 1 The code of the procedure parse is correct for LL(1) grammars.

Proof(sketch)
First, we prove partial correctness, i.e. the the procedure meets the speci�cation,
provided that every call terminates. Second, termination is proven.
It can be shown easily that the precondition holds for every subcall in the body
of parse, provided that the precondition is satis�ed for the main call and the
postcondition is satis�ed for each former subcall. Furthermore, it can also be

3



�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Z! � X $

X! � y Y X! � v Y w

X!y � Y X!v � Y w

X! y Y � Y ! � x X Y! �� X! v Y � w

Y! x � X

Y! x X �

X! v Y w �

��������)

PPPPPPPPq

? ?

�
�
�
�
�
�

A
A
A
A
A
AU

�
�
�
�
�
�

J
J
J
J
J
Ĵ

?

?

?

�
�

�
�HHHHHHHHHHHHj

�
�

�
�

�
�

��=

� �

y v

� � � �Y Y

x

X

w

�
�
�
�
�
�
�
�- -Z! X �$ Z! X $ �

to s1 to s2

s1 s2

s0
X $

6 6

� �

Figure 1: A non-deterministic automaton.

4



procedure parse(in s:state, out success:boolean);

if the item in s is a reduce-item then

success:=true;

else if B 2 VT and B =nextsymbol then

[ s':= goto (s, nextsymbol);

shift;

parse(s', success);

]

else if B 2 VT and B 6= nextsymbol then

success:=false;

else if B 2 VN then

[ s':= a new state reached via an �-transition,

such that nextsymbol in First(s'),

or � in First(s') and nextsymbol in Follow(s');

parse(s', success);

if success then parse(goto(s, B), success);

]

Figure 2: Traversing the non-deterministic automaton

shown easily, that the postcondition holds for the main call, if the postcondition
is satis�ed for every subcall. So, partial correctness is proven.
Now we prove termination. If the execution does not terminate, we have cycling
in the the recursion, i.e. states in a cycle of the graph are parameter in a parse
call repeatingly and no edge in the cycle is marked by a terminal symbol. At
least one state in the cycle contains an item of the form A! �. It follows that
a derivation exists: A

�

) �A� and �
�

) �, where � is a string consisting of the
symbols marking the edges of the cycle. Therefore, if the execution does not ter-
minate, the grammar exhibits so-called (hidden) left recursion. Such a grammar
gives conicts and does not belong to LL(1). 2

Parsing an input string is equivalent to invoking parse(s0, success), where s0
denotes the state with item Z ! �A$. It is trivial that the precondition is sa-
tis�ed for this call. When this call terminates and success=true, a string or �le
matching A$ has been recognized. It follows, that the entire input has been
recognized, because the $-sign is assumed to occur only at the end of an input
�le or input string. For LL(1)-grammars the parsing algorithm of this section is
equivalent to the recursive descent algorithm.

3 Deterministic automatons and LR parsing

The non-deterministic automaton can be transformed into a deterministic one.
This transformation is identical to the fashon in which an NFA for scannning
regular expressions is converted into a DFA [Aho]. The resulting automaton is a

5



so-called LR automaton, cf. [Aho, Grune, Sippu]. For our grammar G, this LR
automaton is shown in Figure 3.

Every state contains a set of items. In such a set, so-called core items can
be distinguished, cf. [Aho]. In s0, the start state, there is by de�nition one core
item: Z ! �X$. In the other states, those items where the dot is not at the
start of the right hand side, are de�ned to be core items. It follows that every
reduce-item is either a core item or an �-item. Notice that an �-item is never a
single item in a state. As we will show in the next section, for an LL(1)-grammar,
every state in the LR-automaton, contains exactly one core item.

In a state, reduce/reduce or shift/reduce conicts can occur, see [Aho, Grune,
Holub]. To diminish the number of occurrences of such a conict, additional
conditions can be formulated, under which reduction of an item is permitted.
According to the strength of these conditions, several classes are distinguished,
viz. LR(0), SLR(1) and LALR(1), where LR(0) � SLR(1) � LALR(1). A gram-
mar belongs to LR(0), SLR(1) or LALR(1), if no state of the automaton has
conicts, using the LR(0), SLR(1) or LALR(1) condition respectively for permit-
ting reductions.

The parse procedure of the previous section can be transformed into a new pro-
cedure, appropriate for deterministic automatons. The new body is shown in
Figure 4. We assume that the procedure is applied only to conict-free automa-
tons, i.e. conditions for permitting reductions are utilized, such that no conicts
are left. There is one extra output parameter T , of the type item. T 0 is a local
variable of the same type. T has an output value only if success=true on exit.
For a core item T of the form A ! �B � , pred(T ), the predecessor of T , is
de�ned as the item of the form A ! � � B. Hence pred(T ) is not de�ned for
the core item in the start state Z ! �A$. The value of the call left-hand-side(T )
with T an item, is a non-terminal to be stored into the local variable N . The
meaning of this function is self-explanatory. The formal speci�cation of the call
parse(s, succes, T ) is the following.

pre: For every core item A! � � � in s, � matches a tail string of previous1

post: if succes=true, then T is a core item; let T be given by A! � � �; a string
r 2 V �

T exists, such that �
�

) r and previous1+r =previous2;
if success=false, a core item T and a string r with the above property do
not exist.

Theorem 2 The code of the procedure parse is correct for grammars in LR(0),
SLR(1) and LALR(1), in case the reduction criterion for LR(0), SLR(1) and
LALR(1) respectively is applied.

Proof(sketch)
The structure of this proof is identical to that of Theorem 1. Partial correctness,
is proven similarly.

6



�
�

�
�

�
�

�
�

�
�

�
�

X! y Y � X! v Y � w

X! v Y w �

?
w

�
�
�
�
�
�
�
�-Z! X�$ Z! X$ �

'

&

$

%

-
'

&

$

%
'

&

$

%

'

&

$

%

�
�

�
��+

HHHHHHHj

@
@
@
@
@@R

�
�

�
�

��	

Z! � X $

X! � y Y

X! � v Y w

X! y � Y

Y! � x X

Y! ��

X! v � Y w

Y! � x X

Y! ��

Y! x � X

X! � y Y

X! � v Y w

�
�
�
�
���

J
J
J
J
JĴ

to s1 to s2

s1 s2

s0
X $

y v

Y x x Y

6 6

y v

�
�

�
�Y! x X �

?
X

Figure 3: A deterministic automaton

7



procedure parse(in s:state; out success:boolean, T:item);

if reduction of an item T' of s is permitted then

[ success:=true;

T:=T';

]

else if there is an exit marked with nextsymbol then

[ s':=goto(s,nextsymbol);

shift;

parse(s', success, T');

if success then T:=pred(T');

]

else success:=false;

while success and T is not a core-item in s do

[ N:=left-hand-side(T);

parse(goto(s,N), success, T');

if success then T:=pred(T');

]

Figure 4: Traversing the deterministic automaton

There are two causes for the procedure to run in�nitely. First the recursion cy-
cles, and second, the same item T 0 is returned twice by a subcall parse in the
while loop, without shifting any symbol in the mean time. In the �rst case,
there is a derivation A

�

) �A� with �
�

) �, but � 6= �, where � is equal to the
string consisting of the symbols along the edges in the cycle. A grammar, which
admits such a derivation, is ambiguous and gives conicts in the aforementioned
LR classes. In the second case, a non-terminal N with N =left-hand-side(T 0) is
recognized twice, without shifting symbols in the mean time. It follows that a
derivation of the form N

�

) N exists. Grammars with such a derivation are not
taken into account. 2

The call parse(s0; success; T ) is equivalent to the LR parsing algorithm. The
state parameters in the recursion stack during execution of this call form ac-
tually the states stack of LR parsing. For an LR(1) automaton, the code of
Figure 4 is useful too. In the code of Figure 4, reduce has priority in case of a
shift/reduce conict. By interchanging the �rst two if-statements, the priority is
interchanged.

4 Characterisations of LL(1), using LR classes

In this section, we will investigate the following problem: for which LR reduction
criterion is a deterministic automaton of a grammar G conict-free, provided
that the NA of G is conict free. Hence, we will utilize the LL(1) property in
order to characterize some LR classes, because the NA of G is conict free if an

8



only if G is in LL(1).
For a given grammar G the non-deterministic automaton is denoted by NG and
the deterministic automaton by DG. We assume that each item in each state in
DG is enhanced with the so-called LALR(1) look-ahead set, cf. [Aho, Grune]. This
set is used for LALR(1) grammars to decide whether a reduction is permitted.
For illustration, we mention that the LALR(1) look-ahead set of every item in s1
is equal to f$g; the non-core items in s2 have a look-ahead set equal to fwg. The
LALR(1) look-ahead set of an item I in a state s of DG is denoted by LAs(I).
It holds in general that Follow(I) =

S
fLAs(I) j s in DGg.

De�nition 2 For every item T in a state s of DG, a quantity Fs(T ), and for
every item T in NG, a quantity F 0(T ) is de�ned. Both are subsets of VT . These
quantities are de�ned in the following way:

a) if � 62 First(T ), then Fs(T ) = F 0(T ) =First(T );

b) if � 2 First(T ), then Fs(T ) = First(T )[LAs(T )nf�g and
F 0(T ) = First(T )[Follow(T )nf�g.

Note that, if T is a reduce-item, Fs(T ) =LAs(T ) and F 0(T ) =Follow(T ). Since
LAs(T ) �Follow(T ) for any T in a state s of DG, also Fs(T ) � F 0(T ).
A pair of items T1 and T2 with the form A ! ��1 and A ! ��2 respectively is
called a brother pair. Two brothers in one state of DG have the same LA-set.
The absence of any non-determinism in the code of Figure 2 is equivalent to the
condition F 0(T1) \ F 0(T2) = ; for any brother pair T1 and T2. Therefore, in the
proof of Lemma 1, this condition is used as an alternative of the LL(1) property.

Lemma 1 A grammar G is in LL(1) if and only if Fs(T1)\ Fs(T2) = ; for any
brother pair T1 and T2 in any state s of DG.

Proof

only-if part
Follows immediately from the property F 0(T1)\F

0(T2) = ; and the set inclusion
Fs(T ) � F 0(T ) for any s and any T .

if part (by contradiction)
Assume that there is conict in an item T of N(G), due to the fact that there are
�-transitions to T1 and T2 respectively, such that a symbol a 2 F 0(T1) \ F 0(T2).
Then T1 and T2 are brothers of each other. If a 2First(T1)\ First(T2), then
a 2 Fs(T1) \ Fs(T2) and a contradiction is obtained. Hence at least one of
the two First items does not include a. Without loss of generality we assume
that a 62 First(T1). In that case a belongs to Follow(T1). Due to the general
relation Follow(T1) =

S
fLAs(T1) j s in DGg, there is a state �s in DG, such

that a 2LA�s(T1). It follows that a 2 F�s(T1). Since T2 is a brother of T1 in
�s, also a 2LA�s(T2). If � 62First(T2), then F 0(T2) = F�s(T2) =First(T2) and
a 2 F�s(T2). If � 2First(T2), then LA�s(T2) � F�s(T2) and a 2 F�s(T2). Again
we have a 2 F�s(T1) \ F�s(T2). Contradiction. 2

9



Let H(s) for a state s in DG denote the subgraph in NG of items correspon-
ding to the items of s. An item T in H(s), s a state in DG, such that T has no
outgoing edges in H(s) is called an end item of H(s). Hence, an end item is a
reduce-item or a so-called shift item, i.e. an item of the form A ! � � a� with
a 2 VT .
If a 2 Fs(T ) for some symbol a, then a occurs in at least one set Fs(T

0) with T 0

a successor item of T in H(s). It follows that a path P exists in H(s) from T to
an end item, such that a 2 F (I) for each item I in P .
Conversely, if a 2 Fs(T ), then a is in at least one set Fs(T

0) with T 0 a predecessor
of T in H(s). Consequentlty, if a 2 Fs(T ), then there is a path P from a core
item to T such that a 2 F (I) for each item I in P .
If in a state s F (I1) \ F (I2) = ; for any pair end items I1 and I2, then s has
no shift/reduce or reduce/reduce conicts in LALR. In the remainder of this
section we pay special attention to states with one core item. In view of this
property, beside shift/reduce or reduce/reduce conicts in LALR, we also de-
�ne shift/shift conicts. A state s has a shift/shift conict, if s contains two
shift items of the form A ! �a� and A0 ! �a�0 with a 2 VT . The occurence
of a shift/shift conict between two shift items I1 and I2 is equivalent to the
property First(I1)\First(I2). If a shift/shift conict occurs, there is no proper
conict, but a successor state of s has at least two core items. The absence of
any conict of any kind for an LALR(1) grammar is equivalent to the property
Fs(I1)\Fs(I2)) = ; for any pair end items I1 and I2 in any state s. The absence
of any conict of any kind for a SLR(1) grammar is equivalent to the property
F 0(I1) \ F 0(I2)) = ; for any pair end items I1 and I2 in any state s.

De�nition 3 A non-terminal N is called a dummy non-terminal, if there are
derivations A

�

) N� and A
�

) N�0, and N ! � is the unique production for N .

Lemma 2 A grammar G is in LALR(1) and every state s has exactly one core
item if and only if G has no dummy terminals and Fs(T1)\Fs(T2) = ; for every
pair brothers T1 and T2 in every state s of the LR-automaton.

Proof

only-if part
If G has dummy non-terminals, i.e., there are derivations A

�

) N� and A
�

) N�0,
then a state containing B ! � � A�0 has an exit, marked by N , to a successor
state with core items A! N � � and A! N � �0 Therefore, we conclude that G
has no dummy-terminals.
In general, for a state s in DG without outgoing edges in DG, each core item is
a reduce-item. Since there is exactly one core item, the result holds trivially in
any state without outgoing edges, i.e. without successors states.
We prove by contradiction that the result holds in any state s with at least one
successor. Assume that a 2 Fs(T1) \ Fs(T2) with a 2 VT and T1 and T2 a bro-
ther pair in a state s with at least one successor. There are paths from T1 and
T2 to an end item such that a 2 F (I) for every item I in each path. If these
paths do not meet each other, we have two end items I1 and I2 in s, such that
a 2 Fs(I1) \ Fs(I2). Then an LALR(1) conict occurs in s or a successor state

10



of s has more than one core item. If the paths meet each other, then consider
in each path the last item before the meeting point. These items are called I1
and I2. Let A denote the left hand side of the �rst common item of both paths.
Then both I1 and I2 have a transition, marked by A, to another state, which
consequently has more than one core item. Contradiction.

if part (by contradiction)
In start state s0, there is one core item.
Assume that a symbol a and two end items I1 and I2 in s0 exist with a 2
Fs(I1) \ Fs(I2), or that a transition, marked by a non-terminal P , exist to a
successor state of s0 with at least two core items. In the last case, there are two
items I1 and I2 in s0 of the form A! �P� and A0 ! �P�0 respectively. Since P is
not dummy, a symbol a 2 VT exist with a 2First(P ) and hence a 2 F (I1)\ I(2).
In both cases, there are paths from the core item to I1 and I2 respectively, such
that a 2 F (I) for every item I in each path. The last common item of these
paths has two successors I 0 and I 00 with a 2 Fs(I

0) \ Fs(I
00). This contradicts

the premiss. We conclude that the result holds for s0. Since we have proved that
every successor state s of s0 in DG has one core item, we can prove similarly that
the result holds for s. It follows that the result holds for every state in DG. 2

Theorem 3 A grammar G is in LL(1) and has no dummy non-terminals if and
only if G is in LALR(1) and every state s of DG has exactly one core item.

Proof

Follows immediately from Lemma's 1 and 2. 2

If T is an item in a graph H(s) with s any state in DG for a grammar G, and the
successor items are T1; T2; : : : ; Tk, then always Fs(T ) �

Si=k
i=1 Fs(Ti). If moreover

Fs(Ti) \ Fs(Tj) = for any pair brothers Ti and Tj , 1 � i; j � k, then
Si=k
i=1 Fs(Ti)

is a partition of Fs(T ). It follows that, for a state s with exactly one core item
and with the property Fs(T1)\ Fs(T2) = ; for any brother pair T1; T2, H(s) is a
tree, corresponding to partitioning sets repeatedly. Conversely, if a grammar is
in LALR(1) and H(s) is a tree, it can be shown that Fs(T1)\Fs(T2) = ; for any
brother pair T1; T2. We conclude that the following statement holds: a grammar
G without dummy non-terminals is in LL(1) if and only if G is LALR(1) and
H(s) is a tree for any state s of DG.

Theorem 4 A grammar G is in LL(1) and has no �-productions if and only if
G is in LR(0) and the LR-automaton has exactly one core item in each state.

Proof

If G is in LL(1) and G has no �-productions, then, by Theorem 3, G is in LALR(0)
and the LR-automaton has exactly one core item in each state. If a state has
one core item, an �-item must be involved in any shift/reduce or reduce/reduce
conict. Since there are no �-items, G is in LR(0).
If G is in LR(0), then G cannot have �-productions, since every �-item causes a
conict in LR(0). Since G is also in LALR(1) and each state has one core item,
G is in LL(1). 2

11



Theorem 5 A grammar G is in LL(1) and has dummy non-terminals if and
only if G is in LR(1) and every state s in the LR(1)-automaton has exactly one
core item.

Proof

If G has one core item in LALR(1), then G has one core item in LR(1). Hence
the only if part is trivial.
If every LR(1) state has one core item, then every LALR(1) state has one core
item. Then in an LR(1) or an LALR(1) state a reduce/reduce conict can oc-
cur only between �-items. Transforming an LR(1) automaton into an LALR(1)
automaton may introduce reduce/reduce conicts, in general. It can be shown
easily, that in the particular case that an LR(1) automaton has one core item
in every state, a new reduce/reduce conict between �-items cannot be introdu-
ced. (This proof resembles the if part proof of Lemma 1 or the proof of the fact
that the transition from LR(1) to LALR(1) introduces no shift/reduce conicts.)
Hence an LR(1) grammar with one core item in each state is in LALR(1) and has
one core item in each LALR(1) state. Now, the if part follows from Theorem 3. 2

Let two end items I1 and I2 be given in a state of a grammar with Fs(I1) \
Fs(I2) = ;. then these items have no LALR(1) conict. If � 2First(I1), then
LAs(I1) � Fs(I1). Since Fs(I1) \ Fs(I2)) = ;, for any symbol a with a 2 Fs(I2),
also a 62LAs(I1). It is possible that a 2Follow(I1). In that case we have a conict
in SLR(1). This situation is illustrated by the following grammars G1 and G2.

G1 : Z ! X$ G2 : Z ! X$
X ! xY j x0V w X ! xY j x0V w

Y ! V v j Ww Y ! V v j w
V ! v0 j � V ! v0 j �
W ! w0 j �

In SLR(1), the state with core item X ! x � Y , has a reduce/reduce conict in
G1 and a shift/reduce conict in G2. Hence these grammars do not belong to
SLR(1). If the production X ! x0V w is deleted from each grammar, w is no
longer in Follow(V ) and the conict is resolved. Since for both G1 and G2 each
LR state has exactly one core item, both grammars are in LL(1), by Theorem
3. Clearly, the set of SLR(1) grammars with exactly one core item in each state
cannot be characterized easily, using LL(1).

Now we focus on grammars with dummy non-terminals. We shall discuss such
grammars briey, because it is always possible to avoid dummy non-terminals,
even if we need markers. (See [Aho] for the de�nition of a marker.) Let G be
a grammar in LL(1) without dummy non-terminals. Let G0 be any grammar
obtained by inserting dummy non-terminals in some productions of G. Then G0

is in LL(1) if and only if G is in LL(1). The LR automaton of G has exactly
one core item in each state. However, this property needs not to be valid for G0.

12



Consider the following example.

Z ! X$
X ! Px j Py
P ! �

There is a state with core items X ! P � x and X ! P � y. In general, when
introducing dummy non-terminals, so-called dummy states arise in the LR au-
tomaton. A dummy state is a state containing core items T1; T2; : : : ; Tn with
Ai ! � � �i; Vi such that �

�

) � is the only derivation for � (i.e. � only matches
the empty string). For an LALR(1) grammar, Fs(T

0)\Fs(T
00

j ) = ;, where T 0 and
T 00 are core items in any dummy state s. If dummy non-terminals are used, we
must replace Lemma 2 with another one. A grammar G is in LR(1) or LALR(1)
and every state s of the LALR- or LR(1)-automaton respectively has one core
item or is a dummy state with the additional property that Fs(T

0) \ Fs(T
00) = ;,

for any pair core items T 0 and T 00 in s, if and only if Fs(T1) \ Fs(T2) = ; for
every brother pair T1 and T2 in a state s of the LR-automaton. Theorems 3 and
5 must be modi�ed accordingly. It is also possible, if dummy non-terminals are
used, to rede�ne the construction of LR-states. This construction can be rede�-
ned in the sense that a dummy state that is a successor of a state s, is included
entirely in s.

5 Concluding remarks

In section 2 we observed that LL parsing is actually a walk through a non-
deterministic automaton. In section 3 we presented a new formulation of the
LR parsing algorithm. A recursive formulation of bottom-up parsing has been
presented earlier in a di�erent way, and has been called recursive ascent parsing;
see [Krus], [Penello] and [Roberts]. In section 4 we showed that LL(1) is a par-
ticular subclass of LALR(1). Consequently, the recursive descent algorithm for
LL(1) grammars can be viewed as a special implementation of the recursive LR
algorithm for a particular subclass in LALR(1), viz. the subclass of grammars
with exactly one core item in each state. For this subclass of LALR(1), the LR
algorithm constructs the syntax tree in a top-down manner.

Since LL(1) is a well-de�ned special case of LALR(1), there is no longer need of
LL(1) parser generators. Because the LR parser, applied to an LL(1) grammar,
constructs the syntax tree in a top-down manner, such a parser can deal with an
L-attributed de�nition [Aho] very well.

If the parse procedure for LL-parsing is non-deterministic, we must investigate all
possible combinations of choices. This can be performed in a depth-�rst manner,
i.e. backtracking, or in a breadth-�rst manner. For depth-�rst, it is necessary
that the grammar is not left-recursive, i.e., the NA contains no terminal-free
cycles. In [Sippu] a general transformation scheme is presented to eliminate left-
recursion.
Similarly, if conicts are not solved, in LR-parsing all possible combinations can

13



be performed in a depth-�rst manner, i.e. backtracking, or in a breadth-�rst
manner. Two breadth-�rst algorithms are the Earley algorithm [Earley] and the
Tomita algorithm [Tomita]. These are very similar to each other, as shown in
[Sikkel]. For e�ciency, the di�erent possibilities, to be investigated, are synchro-
nized by the input of the next character. This feature is applied in the Earley as
well as in the Tomita algorithm.

References

[Aho] A.V.Aho, R. Sethi, J.D. Ullman, Compilers, Principles, Techni-
ques and Tools, Addison-Wesley, 1986.

[Earley] J.C. Earley, An e�cient context-free parsing algorithm, Comm.
ACM (1970) 13(2) pp. 94-102.

[Grune] D. Grune and C. Jacobs, Parsing Techniques, a practical guide,
Ellis Horwood 1990.

[Holub] A.I. Holub, Compiler Design in C, Prentice Hall.

[Krus] F.E.J. Kruseman Aretz, On a recursive ascent parser, Informa-
tion Processing Letters 1988 (29) pp. 201-206

[Leerm-92a] R. Leermakers, L. Augusteijn, F.E.J. Kruseman Aretz, A func-
tional LR parser, Theoretical Computer Science, 1992 (104) pp.
313-323.

[Leerm-92b] R. Leermakers, Recursive ascent parsing, from Earley to Marcus,
Theoretical Computer Science, 1992 (104) pp. 299-312.

[Penello] T.J. Penello, Very Fast LR Parsing, Sigplan Notices, 1986 (21-7)
pp.141-151.

[Roberts] G.H. Roberts, Recursive Ascent, An LR Analog to Recursive Des-
cent, SIGPLAN Notices, 1988 (23-8) pp. 23-29.

[Sippu] S. Sippu and E. Soisalon-Soininen, Parsing Theory, two volumes,
Springer Verlag, 1990.

[Sikkel] K. Sikkel, Cross-Fertilization of Earley Tomita, Memoranda In-
formatica 90-69, University of Twente, Department of Computer
Science, 1990.

[Tomita] M. Tomita, E�cient Parsing for Natural Language, A fast algo-
rithm for Practical Systems, Kluwer Academic Publishers, 1986.

14


