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1 Introduction

Nonlinearity, structural change, and outliers are prominent features of many economic and

financial time series. Consider, for example, the quarterly industrial production growth

rates for the G7 countries over the period 1961Q2-2004Q1, shown in panel (a) of Figures

1-7: The extended periods of economic expansions with positive average growth rates are

occasionally interrupted by short recessionary periods with negative growth, hinting at the

presence of nonlinear regime-switching. For most countries growth also appears to have

become more stable during the second half of the sample period, suggesting a permanent

structural change in the variability of the series. Finally, the extremely large negative and

positive growth rates in 1968Q2-3 for France, 1969Q4-1970Q1 for Italy, and 1974Q1-2 for

the UK, among others, are indicative of outliers.

To date, nonlinearity, structural change, and outliers are considered mainly in isola-

tion; that is, most empirical research focuses exclusively on one of these properties, using

more or less ad hoc procedures for handling the other features. In empirical studies involv-

ing nonlinear models, for example, it is not uncommon to encounter statements such as:

‘The time series has been adjusted for outliers prior to estimation’. Such an approach is

understandable, given that only few formal attempts have been made to incorporate dif-

ferent features simultaneously in time series models. The exceptions include Lundbergh,

Teräsvirta and van Dijk (2003) and Anderson and Low (2005), who develop smooth tran-

sition models with structural change in the parameters; Chan and Cheung (1994) and

Gabr (1998), who consider outlier-robust GM estimation of threshold and bilinear mod-

els, respectively; and Battaglia and Orfei (2005), who propose an iterative procedure for

outlier detection and estimation in nonlinear time series models. However, the dangers

of focusing on a specific time series feature while virtually ignoring others are evident, as

the neglected properties may seriously distort inference concerning the feature of interest.

For example, outliers may both hide and spuriously suggest the presence of nonlinearity,

see van Dijk, Franses and Lucas (1999) and Koop and Potter (2000). Hence, there is a

need for expanding the time series analyst’s toolkit to enable simultaneous treatment of

different important features, in particular nonlinearity, structural change and outliers.
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The aim of this paper is to show that the class of conditionally linear and Gaussian

state-space models offers a general and convenient framework for this purpose. In partic-

ular, many popular nonlinear time series models, including threshold, smooth transition

and Markov-Switching models, can be written in state-space form. Doing so, it is rela-

tively straightforward to add components that capture structural change in parameters

and intervention effects such as additive and innovation outliers. The state-space repre-

sentations of such models in fact are linear dynamic mixture models, in the sense that

they are linear and Gaussian, conditional on a vector of latent random variables that are

Markov. Estimation and inference in such models has been greatly facilitated by recent

advances in Bayesian statistics. In particular, Gerlach, Carter and Kohn (2000) propose

a statistically efficient Markov Chain Monte Carlo sampling scheme and show how to

implement this in a computationally efficient manner.

We should note at the outset that we are not the first to show that popular nonlinear

time series models can be written in state-space form, see Hamilton (1994) and Kim

and Nelson (1999a), among others. However, it has not been recognized previously that

using the state-space format allows the inclusion of components for structural change and

outliers. Similarly, the advantages of the Bayesian approach for estimation and inference

in nonlinear models have been known for quite some time, see Kim and Nelson (1999a),

Koop and Potter (1999a), and Bauwens, Lubrano and Richard (1999). Conventional

sampling algorithms run into severe problems though when these models are extended to

allow for structural change and outliers. In fact, they often even break down completely.

The sampling algorithm of Gerlach et al. (2000) essentially solves this problem.

The plan of the paper is as follows. Section 2 describes the general state-space frame-

work, and provides three worked examples that demonstrate how this framework can be

used for accommodating outliers and various forms of parameter instability in non-linear

time series models. Section 3 discusses the efficient Bayesian sampling algorithm for esti-

mating the parameters in these models, with additional details provided in the Appendix.

Section 4 illustrates the empirical usefulness of our methodology by estimating a Markov-

Switching model for quarterly industrial production growth rates for the G7 countries,

allowing for additive and innovation outliers and for instability in the mean and volatility
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of growth. Section 5 describes a limited Monte Carlo simulation experiment, which is

used to gauge the small sample properties of our approach. Section 6 concludes.

2 State-space framework

Consider the general state-space model

yt = gt + h′
txt + γtut, (1)

xt = ft + Ftxt−1 + Γtvt, (2)

where {yt}n
t=1 is the observed scalar time series variable of interest, xt is the state vector,

and the errors ut and vt are assumed to be independent and (multivariate) standard

normal. The system matrices gt, ht, γt, ft, Ft, and Γt are determined, up to a set of

unknown parameters θ, by the value of Kt, where K = (K1, . . . ,Kn)′ is an unobserved

first-order Markov process such that p(Kt|K1, . . . ,Kt−1) = p(Kt|Kt−1). Many popular

nonlinear time series models can be expressed in the form of (1) and (2). The following

examples demonstrate that, within this state-space framework, it is fairly straightforward

to generalize these models to accommodate outliers and parameter instability.

Example 1 - Markov-Switching model with structural change in mean: Consider the

first-order autoregressive model with a Markov-Switching mean, as popularized by Hamil-

ton (1989),

yt = µt + φ(yt−1 − µt−1) + σeet, (3)

µt = ν + δKδt, (4)

where et is standard normal, and Kδt ∈ {0, 1} with transition probabilities pij,δ = p(Kδt =

j|Kδt−1 = i) for i, j = 0, 1. Hence, the mean of yt conditional on Kδt (and on all informa-

tion up to and including t− 1) is given by µt, and is equal to ν in case Kδt = 0 and equal

to ν + δ in case Kδt = 1.

The model (3)-(4) can be expressed in the state-space form (1)-(2) by setting xt =

(yt − µt, µt)
′, ut = 0, vt = et, and Kt = Kδt, and defining the system matrices as gt = 0,

ht = (1, 1)′, γt = 0, ft = (0, ν + δKδt)
′,

Ft =

(
φ 0
0 0

)
, and Γt =

(
σe

0

)
.
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Note that in this case only ft depends on the Markov process Kt.

The Markov-Switching model has become very popular for modelling business cycle

asymmetry in output growth yt, where the different states of Kδt correspond with periods

of high and low growth (and are intended to match expansions and recessions). In such

applications the sample period usually covers a long time span, in order to include a

reasonable number of business cycles or regime switches, which is necessary to obtain

accurate estimates of the transition probabilities pij,δ. However, in that case it is not

uncommon to observe structural changes in the ‘base-line’ average growth rate ν during

the sample period, for example due to changes in productivity, see Dolmas, Raj and Slottje

(1999) and Kim and Piger (2002), among others. In the state-space framework we can

allow for such structural instability in ν in a straightforward, yet flexible manner. In

particular, we may replace ν in (4) with νt and model this as νt = νt−1 + σoKoot, where

ot is standard normal and Kot ∈ {0, 1} with transition probabilities pij,o (which may also

be set such that Kot is independent of Ko,t−1). Hence, νt is allowed to change every time

period, but is not forced to change at any point in time. Defining µt = νt + δt with

δt = δKδt, the extended Markov-Switching model is given by

yt = νt + δt + φ(yt−1 − (νt−1 + δt−1)) + σeet, (5)

νt = νt−1 + σoKotot, (6)

δt = δKδt. (7)

It is straightforward to rewrite the model (5)-(7) in the state-space form of (1)-(2) by

setting xt = (yt − νt − δt, νt)
′, ut = 0, vt = (et, ot), and defining the system matrices

accordingly.

Example 2 - Smooth transition models with time-varying parameters : Consider the

first-order smooth transition autoregressive (STAR) model

yt = φ1tyt−1 + φ2tyt−1Λ(st; λ, c) + σeet, (8)

where Λ(st; γ, c) may be the logistic function

Λ(st; λ, c) =
1

1 + exp(−λ(st − c))
, λ > 0, (9)
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and the (observable) transition variable st often is taken to be a lagged dependent variable

yt−d with d > 0, but can also be an exogenous variable (st = zt, say) or time (st = t); see

Teräsvirta (1994) and van Dijk, Franses and Teräsvirta (2002). In the standard STAR

model the autoregressive parameters are assumed to be constant, φit = φi, i = 1, 2, but

recently proposed extensions allow for parameter instability. Lundbergh, Teräsvirta and

van Dijk (2003) develop the time-varying STAR (TV-STAR) model, in which the AR

parameters evolve according to a smooth transition mechanism as φit = φi1 +φi2Λ(t; λ, τ),

where Λ(t; λ, τ) is a logistic function as in (9). This effectively boils down to a single

(potentially) gradual structural change in φi, i = 1, 2, centered at t = τ . Anderson

and Low (2005) consider a more flexible form of instability by assuming that the AR

parameters behave as random walks, that is

φit = φi,t−1 + σoi
oit, i = 1, 2,

where oit is standard normal. Again, it is straightforward to show that this so-called

random walk STAR (RW-STAR) model can be written in the state-space form of (1) and

(2), this time by defining the state vector as xt = (φ1t, φ2t). The model may also be

extended by using mixtures. For example, we could have φit = φi,t−1 + σoi
Koitoit with

Koit ∈ {0, 1}, i = 1, 2, such that the AR parameters are not forced to change continuously.

Example 3 - Threshold model with additive and innovation outliers : When the param-

eter λ in (9) is very large, the logistic function Λ(st; λ, c) effectively becomes an indicator

function I{st>c}, such that the STAR model (8) reduces to a threshold model, see Tong

(1990) for an extensive discussion. The state-space framework is convenient for accom-

modating innovation and additive outliers in such a model. Consider the threshold model

yt = zt + σKatat, (10)

zt = φ1zt−1 + φ2zt−1I{st>c} + σKetet, (11)

where st is observable1, at and et are standard normal, and σ is a common scale factor for

both shocks. Specifying Kat such that Kat = 0 with probability 1 − πa and Kat = ga > 0

with probability πa, the component σKatat in (10) captures additive outliers. Similarly,

1Note that this excludes “self-exciting” threshold models, where st = zt−d for certain d > 0.
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assuming that Ket = 1 with probability 1 − πe and Ket = ge > 1 with probability πe,

innovation outliers are allowed for. This model can be written in the state-space form of

(1)-(2) by setting xt = zt, ut = at, vt = et, Kt = (Kat, Ket)
′, and

gt = 0, ht = 1, γt = σKat,

ft = 0, Ft = φ1 + φ2I{st>c}, and Γt = σKet.

The following section discusses a Bayesian sampling approach that enables efficient

inference on the latent variables and the parameters in nonlinear time series models,

while allowing for outliers and parameter instability, as in the above examples.

3 Sampling methodology

Recent advances in Bayesian statistics have greatly simplified the task of estimating the

parameters in conditionally linear and Gaussian state-space models of the form given in

(1)-(2), where the system matrices depend on the latent Markov process K. In particular,

Gerlach et al. (2000) develop an efficient sampling algorithm for this class of models.

Their contribution is in fact twofold. First, they argue that K should be drawn without

conditioning on the states xt, which is crucial for dealing with additive outliers and sudden

structural breaks. Second, they demonstrate how the number of operations required to

obtain draws of K can be reduced dramatically, from O(n2) to O(n) where n is the

sample size. In addition, draws of the parameters θ, which can be obtained with standard

Bayesian techniques in most cases, are less correlated and hence more efficient, because

these are drawn conditional on K. Therefore, if consecutive draws of K are less correlated,

draws of the other parameters are likely to be as well. The sampling scheme takes the

general form:

1. Draw K conditional on the parameter vector θ and on the data y = (y1, . . . , yn)′.

2. Draw the states x = (x1, . . . ,xn)′ conditional on K, y, and θ.

3. Draw θ conditional on x, y and K.
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Steps 1 and 2 are identical for all models. Step 1 uses the algorithm of Gerlach

et al. (2000), to which we refer for discussion. For completeness, a brief summary of

the algorithm is given at the end of this section, with further details provided in the

Appendix. Step 2 employs the Gibbs sampling procedure of Carter and Kohn (1994),

with the algorithm of Durbin and Koopman (2001) being an interesting alternative. Step

3 is model-dependent. If we draw the parameter vector θ conditional on the states x, we

typically require only standard results in Bayesian inference, at least if conjugate priors

are employed. Alternatively, drawing conditional on K and y with a Metropolis-Hastings

step is also straightforward, as the Kalman filter can be used to evaluate the likelihood

function L(y|θ,K), in which case we do not need step 2 in the algorithm.

The above algorithm can be readily applied for estimating nonlinear time series mod-

els with intervention effects and parameter instability. We demonstrate this below by

examining the sampling algorithm in detail for two of the examples from the previous

section.

Example 1 (ctd.): Consider again Hamilton’s (1989) Markov-Switching model with

instability in mean as given in (5)-(7), but discarding the autoregressive component for

simplicity:

yt = νt + δt + σeet, (12)

νt = νt−1 + σoKotot, (13)

δt = δKδt. (14)

where et and ot are standard normal, Kδt ∈ {0, 1}, with transition probabilities pij,δ =

p(Kδt = j|Kδ,t−1 = i) for i, j = 0, 1, and Kot ∈ {0, 1}. It is convenient and parsimo-

nious to assume that Kot is independent of Kt−1 = (Ko,t−1, Kδ,t−1)
′ and of Kδt, so that

p(Kt|Kt−1) = p(Kot, Kδt|Kt−1) = p(Kot)p(Kδt|Kδt−1).

Let πo ≡ p(Kot = 1) and let θ = (ν0, δ, σe, σo, πo, p00,δ, p11,δ)
′ be the vector of unknown

model parameters. We assume a normal, and possibly dispersed prior on ν0. The prior on

δ is taken to be truncated normal, with support on the negative real line for identification

purposes. The priors for σ2
e and σ2

o are inverse gamma with parameters (Si, ni), i = e, o.

The prior for πo is conveniently expressed through a beta distribution πo ∼ Beta(n0, n1).
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Since the beta distribution is conditionally conjugate for πo, n0 and n1 can be interpreted

as pre-sample occurrences of Kot = j, j = 0, 1.2 Hence, n1/(n0 + n1) is the prior mean of

πo. We suggest to set n0 + n1 equal to 100 or larger when trying to capture infrequent

interventions. Finally, we use independent beta distributions as priors for p00,δ and p11,δ.

The priors for these transition probabilities can be less informative than that for πo, as in

typical applications we may expect to observe a sizable number of regime-switches.

The complete sampling algorithm for this model is:

1. Draw K conditional on θ and y, as in Gerlach et al. (2000).

2. Given K, draw πo, p00,δ and p11,δ. The posterior for πo is beta, while p00,δ and p11,δ

can be drawn efficiently with a Metropolis-Hastings step as explained in Geweke

(2005).

3. Given K and all parameters, draw ν = (ν1, . . . , νn)′ as in Carter and Kohn (1994).

4. Let y∗
t = yt − νt. Then standard conjugate analysis applies to

y∗
t = δt + σeet = δKδt + σeet,

such that it is straightforward to draw σ2
e and δ. A rejection step can be used to

enforce the restriction δ < 0.

5. Finally, let S =
∑n

t=1
I(Kt = 1)(νt − νt−1)

2 and n =
∑n

t=1
I(Kt = 1). Then the

posterior for σ2
o is inverse gamma with parameters (S + So, n + no).

Example 3 (ctd.): Consider again the threshold model with additive and innova-

tion outliers given in (10) and (11). Defining Kt = (Kat, Ket)
′, the support of Kt is

{(0, 1), (0, ge), (ga, 1)}, representing a normal state, an innovation outlier and an additive

outlier, respectively. Note that we do not allow additive and innovation outliers to occur

simultaneously. For convenience, we assume that Kt is an independent sequence; that is,

p(Kt|Kt−1) = p(Kt), with p(0, 1) = π1, p(0, ge) = π2, and p(ga, 1) = π3.

2The interpretability of priors as additional (or pre-sample) observations is a general property of
conjugate distributions (see, for example, Gelman et al., 1995, ch. 2)
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We now give the priors for the parameter vector θ = (z0, c, φ1, φ2, σ, ga, ge, π1, π2, π3)
′.

The prior on z0 can be dispersed, such as z0 ∼ N(0, α2), where α is large relative to σ.

We follow Koop and Potter (1999a,b) (and the frequentist literature) in our specification

of the prior on the threshold c, by requiring at least w% of observations in each regime

and using a uniform distribution on the resulting set of ‘admissible’ values for c. It is

convenient to choose conjugate priors for φ1, φ2, and σ, such as a normal distribution

for φi|σ, i = 1, 2, and an inverse-gamma distribution for σ2. These can also be dispersed

if desired. The priors for ga and ge could be truncated normals or inverse gamma, or

any other distribution with positive support. It is important to make these priors quite

informative when the sample at hand may have only a few, if any, outliers. In practice,

fixing ga and ge works well when trying to capture large outliers, and we will do so in the

empirical application in Section 4.3 The prior on πi, i = 1, 2, 3 is conveniently expressed

through a Dirichlet distribution for p(Kt):

p(Kt) ∼ D(n01, n02, n03).

We suggest to set n0 =
∑

3

i=1
n0i equal to 100 or larger when trying to capture infrequent

interventions.

The complete sampling algorithm for this model is:

1. Given parameters θ and the data y, draw K as in Gerlach et al. (2000).

2. Given K and θ, draw z as in Carter and Kohn (1994).

3. Given K, draw p(Kt). The posterior distribution is Dirichlet

p(π1, π2, π3) ∼ D(n01 + nS1, n02 + nS2, n03 + nS3),

where nSi is the number of in-sample occurrences of state j of Kt, j = 1, 2, 3.

4. Given z, draw c as explained below.

3On the other hand, fixing ga is not advisable when trying to capture a steady stream of small
measurement errors.
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5. Given c, z is linear and Gaussian, and hence the distribution of (σ2, φ1, φ2) con-

ditional on c and z has a standard conjugate form given our choice of priors; see

Bauwens et al. (1999) and Koop and Potter (1999a,b).

The conditional distribution of c given z in step (4) is non-standard, but c can be gen-

erated using a Metropolis-Hastings step. Alternatively, its conditional distribution can be

quickly tabulated at each iteration, as described in Bauwens et al. (1999). As long as the

sample size n is not too large, the latter alternative is computationally attractive, because

a Metropolis-Hastings step for generating c requires a careful design as the conditional

distribution of c is often multimodal.

3.1 Discussion

Bayesian estimation of nonlinear time series models is relatively straightforward in the

absence of outliers and parameter shifts, see Koop and Potter (1999a,b), Bauwens et al.

(1999), and Kim and Nelson (1999a) for threshold, smooth transition and Markov switch-

ing models, respectively. Kim and Nelson (1998) estimate a regime-switching model with

non-observable and time-varying states. Their model is also expressed in the conditionally

linear and Gaussian state-space form of (1) and (2), with all system matrices potentially

depending on a latent Markov vector Kt. The first difference between their work and ours

is that we improve on the sampling of K by using the results in Gerlach et al. (2000).

The second difference is that our approach to modeling structural change is different and

that we place considerable emphasis on outliers, which Kim and Nelson (1998) do not

consider. These two differences are closely related, with the second stemming from the

first. Our algorithm for drawing {Kt}n
t=1 not only increases sampling efficiency, but allows

us to estimate models that cannot be analyzed with Kim and Nelson’s (1998) approach.

More specifically, while their sampler is less efficient than ours for any regime-switching

model with non-constant states, it just cannot handle additive outliers and certain forms

of sudden parameter instability.

The sampling scheme of Kim and Nelson (1998) was a major contribution to the study

of state-space models with Markov switching. However, it is now possible to estimate

a much larger class of conditionally linear and Gaussian state-space models using the
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methodology of Gerlach et al. (2000). Gerlach et al. (2000) draw K without conditioning

on the states, which is statistically more efficient than drawing {Kt}n
t=1 conditionally

on {xt}n
t=1, as in Carter and Kohn (1994) (which Kim and Nelson (1998) follow). The

difference in efficiency can be appreciable when Kt and xt are dependent. In particular,

if the dependence between Kt and xt is sufficiently high, the sampler of Carter and Kohn

(1994) breaks down completely. This situation is particularly relevant for additive outliers,

since these are typically either zero or small (measurement error) but occasionally large,

and for infrequent parameter shifts.

We now describe the sampler of Gerlach et al. (2000). For any variable zt, let zt,T =

(zt, zt+1, ..., zT )′ and z = (z1, z2, ..., zn)′, where n is the sample size. Gerlach et al. (2000)

draw K from

p(Kt|y,Ks6=t) ∝ p(y|K)p(Kt|Ks6=t) ∝ p(yt,n|y1,t−1,K)p(Kt|Ks6=t).

For a given proposed value of Kt, p(Kt|Ks6=t) is easily evaluated from the transition prob-

abilities, and p(yt,n|y1,t−1,K) can be computed with the Kalman filter in conditionally

Gaussian models. Evaluating p(yt,n|y1,t−1,K) through the Kalman filter is straightfor-

ward, but requires O(n) operations, implying O(n2) operations to draw K. Gerlach et

al. (2000)’s second contribution is to provide an algorithm to evaluate p(yt,n|y1,t−1,K) in

one step and thus to draw K in O(n) operations. Since Kt can take a finite number of

values, it can be drawn by computing p(Kt|y,Ks6=t) for all possible values of Kt and then

normalizing. A more detailed description of the sampling algorithm is provided in the

Appendix.

4 G7 industrial production growth

Output growth has been by far the most popular macro-economic application of regime-

switching time series models. In particular, following Hamilton (1989) many attempts have

been made to describe the apparent asymmetric behavior over the business cycle in US

and international output by means of Markov-Switching models, see Clements and Krolzig

(2002), Mills and Wang (2002) and Kim, Morley, and Piger (2005) for recent contributions,
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and Hamilton and Raj (2002) for a survey.4 Structural change in the properties of output

also has been heavily investigated. While initially breaks in the mean of output growth

were emphasized (see Perron, 1989, for example), more recently the focus has shifted to

changes in output volatility (Kim and Nelson, 1999b; McConnell and Perez-Quiros, 2000;

Blanchard and Simon, 2001; Stock and Watson, 2003,2005; among others). The occurrence

of outliers in output has received considerably less attention, although Balke and Fomby

(1994) and van Dijk et al. (1999) document the presence of aberrant observations in GDP

and industrial production, respectively.

The state-space framework considered in this paper allows us to investigate all of the

above-mentioned features simultaneously. Hence, in this section we apply a two-regime

Markov-Switching model, extended to allow for structural changes in the mean and in the

variance and for additive and innovation outliers, to quarterly growth rates of industrial

production (IP) series for the G7 countries over the period 1961Q1-2004Q1.5 In particular,

we consider the model

yt = zt + νt + σtKδtδt + σtKatat, (15)

zt = φ1zt−1 + . . . + φpzt−p + σtKetet, (16)

νt = νt−1 + σtKotot, (17)

σt = σ1I{t≤τ} + σ2I{t>τ}, (18)

δt = δ1I{t≤τ} + δ2I{t>τ}, (19)

where yt is the quarterly IP growth rate in annualized percentage points, and at, et and

ot are standard normal. Switching between the high- and low-growth states is determined

by Kδt ∈ {0, 1}. For identification purposes we assume δt < 0 for all t, such that Kδt = 0

(1) corresponds with the high-growth (low-growth) state. In (15) the parameter δt is

4This approach is not without criticism. Hess and Iwata (1997) and Harding and Pagan (2002), for
example, question the relevance of nonlinear models for describing business cycle properties (such as
length and depth of recessions) of (mostly US) output, arguing that linear AR models capture many
of these properties equally well. However, more recently Galvão (2002) and Morley and Piger (2005)
demonstrate that nonlinear models do perform better in reproducing such features as the variability of
growth rates in different business cycle phases and the strong negative correlation between the severity
of a recession and the strength of the subsequent recovery phase.

5The time series are taken from the OECD Main Economic Indicators, and are seasonally adjusted.
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multiplied by the standard deviation of the innovations σt to make it scale-free. The

innovation variance changes once, at an unknown point τ , while we allow δt to change as

well when σ2
t does. Permanent shifts in the mean growth rate are captured by the time-

varying process νt. This variation is of the mixture type: Kot ∈ {0, 0.3}, where the value

0.3 incorporates the idea that period-to-period changes in mean growth are unlikely to be

very large. It also reflects the notion that some care is required in specifying this part of

the model. In particular, if we allowed for large and frequent permanent changes in the

mean growth rate, it would become more difficult to distinguish between such breaks in νt

and the Markov regime switches in δt, particularly when regimes are very persistent. This

also bears consequences for the prior distribution on p(Kot) discussed below. Additive

outliers are allowed for through Kat ∈ {0, 3, 5}, while innovation outliers are captured

by Ket ∈ {1, 3}, with Ket = 1 representing a regular innovation. The regime-switching

process Kδt is first-order Markov with transition probabilities pij,δ = p(Kδt = j|Kδ,t−1 = i).

Outliers and structural breaks are assumed to be independent of the regime-switching

process, such that p(Kit|Kδt, σt) = p(Kit) for i = a, e and o. For example, the probability

that an additive outlier occurs is the same in the high- and low-growth states, and is

the same before and after the change in σt and δt. Finally, we allow the lag length p

to be a random variable. This is natural in a Bayesian context and avoids the problem

that choosing lag length prior to estimation may lead to an incorrect choice if the sample

contains additive outliers, for example, see Ronchetti (1997).

The model (15)-(19) can be written in the state-space form of (1)-(2) by setting xt =

(µt, zt, . . . , zt−p+1)
′, ut = at, vt = (ot, et), and defining the system matrices as gt = σtKδtδt,

h′
t = (1, 1, 0, . . . , 0)′, γt = σtKat, ft = 0,

Ft =




1 0 0 0 · · · 0 0
0 ρ1 ρ2 ρ3 · · · ρp−1 ρp

0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
...

...
...

... · · · ...
...

0 0 0 0 · · · 1 0




, and Γt =




σtKo,t 0
0 σtKε,t

0 0
...

...
0 0




.

The parameters in the model are θ = (φ1, . . . , φp, p, z0, . . . , z−p, ν0, σ1, σ2, δ1, δ2, τ)′,

together with the parameters governing the distribution of Kt = (Kat, Ket, Kot, Kδt)
′.
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The prior for the lag length p assumes that no lags are skipped; that is, φj 6= 0 ⇒ φi 6= 0

∀i < j. The support of p is given by {0, 1, 2, 3, 4}, with prior probabilities proportional to

{5, 4, 3, 2, 1}. The prior for φ1, . . . , φp given p and σ2
i (i = 1, 2) is

φ1, . . . , φp|p, σ2

i ∼ N(0,
σ2

i

5
Vp

−1),

where Vp is the covariance matrix of (yt−1, . . . , yt−p)
′. This is a version of Zellner’s (1986)

g-prior. We assume that σ2
1 and σ2

2 are independent a priori, each with inverse-gamma

prior

σ2

i ∼ IG(5σ̂2, 5), i = 1, 2,

where σ̂2 is the residual variance from an AR(4) model for yt. The priors for δ1 and δ2

are independent, centered around a value commonly found for quarterly output growth

rates, and only mildly informative; that is δi ∼ N(−2.2, 1), for i = 1, 2. The prior on

τ is uniform on the central 70% of the sample, such that we have at least 15% of the

observations before and after the structural change in σt and δt. Finally, the priors for

(z0, . . . , z−p)
′ and ν0 are normal and independent, centered at zero and over-dispersed.

Let K∗
t = (Kat, Ket, Kot)

′ such that Kt = (K∗′
t , Kδt), and note that K∗

t and Kδt are

independent. The support of K∗
t is given by the five triplets (0,1,0), (0,3,0), (3,1,0), (5,1,0),

and (0,1,0.3), assuming that additive and innovation outliers cannot occur simultaneously

and that outliers do not occur at times when the mean growth rate changes. The prior

probabilities for the five possible states of K∗
t are set equal to 0.95, 0.01, 0.03, 0.005,

and 0.005, with n01 + ... + n05 = 500. Finally, we assume beta priors for the transition

transition probabilities p00,δ and p11,δ governing Kδt, centered around common estimates

for quarterly output growth and only mildly informative; that is, p00,δ ∼ Beta(0.9, 25) and

p11,δ ∼ Beta(0.85, 25).

The sampling algorithm for the Markov-Switching model in Section 3 is now extended

to include the autoregressive component in (16) and the structural change in σt and δt in

(18) and (19):

1. Draw K conditional on θ, p(Kt) and y as in Gerlach et al. (2000).

2. Let y∗
t = yt − σtKatat. Given K draw y∗, ν, and z as in Carter and Kohn (1994).
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3. Given K draw the probabilities for the five states of K∗. The conditional distribution

is Dirichlet

p(K∗
t ) ∼ D(n01 + nS1, n02 + nS2, n03 + nS3, n04 + nS4, n05 + nS5),

where nSj are the sample occurrences of state j for K∗
t .

4. Given K, draw p00,δ and p11,δ using a Metropolis-Hastings step as in Geweke (2005).

5. Draw σ1, σ2, and τ conditional on z and φ1, . . . , φp as in Bauwens et al. (1999).

6. Draw δ1 and δ2 conditional on z, ν and the parameters by applying standard con-

jugate analysis to

z∗t = y∗
t − νt − φ1zt−1 − . . . − φpzt−p = σtδKδt + σtKetet.

By conditioning on the variances σ2
1 and σ2

2, δ1 and δ2 are generated separately based

on the sub-samples {z∗
t }τ

t=1 and {z∗
t }n

t=τ+1, respectively. A rejection step enforces

δj < 0, j = 1, 2.

7. Update the lag length p conditional on x, τ , σ2
1, and σ2

2. For this purpose, define

z̃t = zt/σt such that

z̃|p =
n∏

t=1

1√
2πvt

exp(− f 2
t

2vt

), (20)

where

ft = z̃t − φ1z̃t−1 + . . . + φpz̃t−p, and vt = 1 + z̃t
1

5
Vp

−1z̃′t,

with z̃t = (z̃t−1, . . . , z̃t−p)
′. The result in (20) can be used to tabulate the distribution

of p given z̃ and the prior.

8. Update φ1, . . . , φp conditional on σ1, σ2 and p, applying standard conjugate analysis

to zt.

Table 1 presents the estimation results, in terms of posterior means and standard de-

viations of the unknown parameters, complemented by the graphs in Figures 1-7. Several

interesting conclusions emerge. First, for all countries the model identifies distinct high-

growth and low-growth regimes, in the sense that the posterior mean of Kδt, as shown in
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panel (b) of Figures 1-7, is generally close to either 0 or 1. In fact, the estimates of νt

and δt are such that the regimes for Kδt = 0 and 1 correspond with positive and nega-

tive mean growth rates, respectively. (We return to the properties of νt and δt in more

detail below.) We examine how well these regimes of Kδt match business cycle expan-

sions and recessions, by computing turning points in IP using the quarterly version of the

Bry-Boschan algorithm (BBQ) developed by Harding and Pagan (2002a).6 The resulting

recessions (periods between peaks and troughs) are shown as shaded areas in the graphs.

It is seen that these correspond quite closely with the periods when Kδt = 1 for Canada,

Germany, Italy, the UK and the US.7 The match appears to be less good for France and

Japan. The estimates of the transition probabilities imply reasonable phase lengths. For

the US, the posterior means of p00,δ and p11,δ are such that on average the high-growth

and low-growth regimes last approximately 16 and 5 quarters, respectively. The lengths

of expansions are similar for the other countries (except Italy), while recessions generally

are somewhat shorter.

Second, several additive outliers are identified, see panel (e). Most of these aberrant

observations can be related to atypical economic events, such as the nationwide strikes in

France in 1968Q2, in Italy in 1969Q4, and in the UK in 1972Q1 and 1979Q1, the strike

in the metal industry in Germany in 1984Q2, and the coal miners strike in the UK in

1984-5. The outlier in the UK in 1974Q1 can be explained by the three-day working week

that was introduced in an attempt to restrict energy use to counter the acute power crisis.

Innovation outliers do not seem to be present in the IP series, as the posterior mean of

Ket is very close to 1 for all t and for all countries.

6In the BBQ algorithm turning points are defined as follows. A peak (trough) is said to occur at
quarter t if the level of IP is above (below) the level at t − 2, t − 1, t + 1 and t + 2. This is combined
with censoring rules to ensure that recession phases (between peaks and troughs) and expansion phases
(between troughs and peaks) of the cycle have a minimum duration of two quarters and that complete
cycles have a minimum duration of 5 quarters. See Harding and Pagan (2002b) for an interesting discussion
of the BBQ algorithm vis-à-vis Markov-Switching models.

7For the UK, the model does not “recognize” the short two-quarter recessions identified by the BBQ
algorithm as such, except to some extent the ones occurring in 1984 and 1985. The same applies to
Germany, although in that case there is a moderate increase in the posterior mean of Kδt during short
recessions, see Figure 3(b). On the other hand, it should be noted that the BBQ algorithm appears to be
sensitive to the presence of outliers. For example, when the algorithm is applied to the posterior mean of
the additive outlier corrected series yt − σtKatat, no recessions are identified in 1962-3 and 1982 for the
UK. Similarly, for France the recession in 1967-8 disappears after removing the additive outliers.
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Third, there is strong evidence for a reduction in volatility for all countries. The

posterior means of σ2 are substantially smaller than the posterior means of σ1, with

declines ranging from just over 20% for Canada and Japan to more than 40% for the

other countries, and even 50% for the US. The posterior distributions of the break date

τ , shown in panel (f) of Figures 1-7, indicate that the volatility break occurred during

the first half of the 1980s for all countries except the US. For the US, most posterior

probability mass is located in the second half of the 1970s, while the mode occurs in

1981Q1. Note that this is earlier than the volatility break identified by Kim and Nelson

(1999b) and McConnell and Perez-Quiros (2000), among others, who date it at 1984Q1.

This difference may obviously be due to the additive outliers we identify to have occurred

in 1978Q2, 1980Q2 and 1980Q4.

Fourth, for Canada, France, Japan and the UK we find that δ2 is smaller than δ1 in

absolute value. This strengthens the reduction in the depth of the business cycle, defined

as the difference between average growth in expansions and recessions and measured by

|σtδt|, due to the decline in volatility. For Germany and the US, |δ2| > |δ1|, but the

changes in δt are not sufficiently large to compensate for the reduction in volatility, such

that the business cycle still becomes less deep after the volatility change.

Fifth, for all countries except the US, the ‘baseline’ mean growth rate νt changes

considerably over time, although the patterns of change vary. For France and Germany,

we observe a sharp decline during the 1970s. The same holds for Italy and Japan, although

the change in mean growth in these countries started already in the 1960s and continued

in the 1980s, respectively. For Canada, growth steadily declined over the entire forty year

sample period, although an acceleration occurred during the first half of the 1970s. For

the UK, the decline in mean growth only started after 1985. Finally, for the US at first

sight Figure 7(c) suggests a continuous decline in νt during the first half of the sample

period followed by an increase during the 1990s. However, inspecting the scale of the

vertical axis shows that mean growth was in fact almost constant.

Sixth, the posterior of the lag length p is very close to a degenerate distribution at

p = 0 for France, Germany, Italy and the UK and at p = 1 for Japan and the US. For

Canada, p = 0 and p = 1 each are drawn about half of the iterations. The posterior
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means of φ1 for Japan and the US appear to be reasonable, in the sense that they are in

the range of values commonly found in AR models for quarterly output growth rates.

5 Simulation evidence

Coping with aberrant observations, such as outliers and level shifts, in the context of

linear time series models has been relatively well studied. Various approaches for dealing

with such interventions have been developed, including iterative detection-and-removal

procedures, see Chen and Liu (1993), and robust estimation methods, see Lucas, Franses

and van Dijk (2005). Extending these procedures to nonlinear time series models has

proved difficult so far.8 We would like to emphasize that the state-space approach coupled

with efficient Bayesian estimation is a major step forward in this respect, in the sense that

it can handle quite general forms of outliers and structural change. This section further

illustrates this attractive feature of the state-space approach through a simulation study.

The data generating process (DGP) is a simplified version of the model for the quarterly

IP growth rates given in (15)-(19) and broadly reflects US IP data characteristics. The

sample size is n = 200. The autoregressive order p is 1, with φ1 = 0.5. The structural

break in volatility occurs at τ = 100, with the standard deviation declining from σ1 = 0.1

to σ2 = 0.05. The difference between mean growth rates in the two regimes of Kδt does

not change, such that δ1 = δ2 ≡ δ. We set δ equal to −3, with transition probabilities for

Kδt equal to p00,δ = 0.95 and p11,δ = 0.85. Similarly, we do not consider innovation outliers

by setting Ket = 1 for all t = 1, . . . , n, and there are no changes in the average growth

rate νt (Kot = 0 for all t = 1, . . . , n). We consider three cases in terms of contamination

with additive outliers:

1. None: Katat = 0 for all t = 1, . . . , n.

2. Medium: Five additive outliers are included, with fixed and identical locations and

magnitudes in all samples. We set Katat = −5 for t = 30 and 190, Katat = 5 for

8Recently, Battaglia and Orfei (2005) develop an outlier detection scheme for nonlinear models, but
the usefulness of this approach still needs to be established. Chan and Cheung (1994) and Gabr (1998)
consider a GM approach for (outlier-)robust estimation of threshold and bilinear models, respectively.
However, as shown by Giordani (2005), the applicability of such methods may be limited.
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t = 90, 110 and 130, and Katat = 0 for all other t.

3. Heavy: 20 additive outliers are included; 15 of these with |Katat| = 5 and five with

|Katat| = 7. Their locations and signs are randomized, but kept fixed across samples.

We use 200 replications in the simulation experiment. For each replication we estimate

two models nested within (15)-(19). The only restrictions imposed in the first model are

that innovation outliers are not allowed for (Ket = 1 for all t = 1, . . . , n) and that δt does

not change (δ1 = δ2 ≡ δ), as in the DGP. Structural change in νt as in (17) is included in

the model, and in this respect it differs from the DGP. For computational speed, the lag

length p is not treated as unknown but fixed at the true value 1. The support of K∗
t =

(Kat, Kot)
′ is given by (0,0), (3,0), (5,0), and (0,0.3), with Dirichlet prior, that is p(K∗

t ) ∼
D(0.95n0, 0.03n0, 0.015n0, 0.005n0) and n0 = 500. Note that these prior probabilities

over- and underestimate the true probabilities of an additive outlier in the medium and

heavy contamination cases, respectively. Obviously, this probability is also overestimated

in the no contamination case. The prior probabilities for p00,δ and p11,δ are taken to

be the DGP probabilities, with a mildly informative beta prior, p00,,δ ∼ Beta(0.9, 25) and

p11,δ ∼ Beta(0.85, 25). The prior for δ is normal, centered at −3 with a standard deviation

equal to 1. The prior on µ0 is sparse. The second model does incorporate regime-switches

through Kδt and a one-time change in volatility σt, but does not allow for additive outliers

and mean shifts; that is, Kat = 0 and Kot = 0 for t = 1, . . . , n. Prior specifications are

identical to those for the first model.

Each model is estimated using 1000 iterations after a short burn-in period of 100.

This is more than sufficient to arrive at the invariant distributions, particularly since

estimation is initialized from the true parameter values and the correct states.9 Table

2 summarizes the simulation results, by showing averages of the posterior means of the

unknown parameters in the two models across the 200 replications, together with the

corresponding root mean square error (RMSE). In addition, we report a statistic that

measures the ability of the models to identify the regimes of Kδt correctly. Let µt =

9This should not be a problem since it is applied to both models, and therefore it should not affect
the comparison.
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νt + σtKδtδt. We compute µDGP
t using the true values of νt, σt, δ and Kδt, and µM

t as the

average value (across iterations) of µt in the estimated models. We then obtain the RMSE

of µt as the square root of the average of (µDGP
t − µM

t )2 across observations t = 1, . . . , n

and across the 200 samples. The resulting number (which should be compared with the

standard deviation of the innovations) indicates how accurately the model is estimating

the local mean of the process, and is therefore informative on how well it captures the

regime-switching nonlinearity. Finally, for the first model we report the average fraction of

correctly detected outliers (CDO), computed as the average number of iterations for which

the model identifies an additive outlier (Kat 6= 0) at locations where these indeed occur.

For the DGP with no contamination, we report the average posterior mean probability of

occurrence of an additive outlier.

These results lead to the following three conclusions. First, allowing for additive out-

liers in the model is not harmful when in fact there is no outlier contamination in the

DGP. The average posterior means of all parameters are close to their true values for

both models, while the RMSEs are of comparable magnitude. The parameter δ seems to

be affected most, with the average posterior mean being somewhat below the true value,

while the RMSE for this parameter in the model including outlier effects is higher than in

the model without. Note that the average posterior mean probability of occurrence of an

additive outlier, reported in the last row (CDO), is equal to 0.025, compared with a prior

probability of 0.045. Second, in the presence of additive outliers, ignoring these in the

model leads to quite severe biases in the parameter estimates. In particular, the autore-

gressive parameter φ is biased towards zero, while the standard deviations of the shocks σ1

and σ2 are inflated. This corresponds with well-known results from robust estimation of

linear autoregressive models, see Denby and Martin (1979) and Bustos and Yohai (1986).

We also observe that δ is biased towards zero, while the transition probabilities p00,δ and

p11,δ are underestimated, suggesting too frequent regime switches. Third, correctly ac-

counting for additive outliers in the model removes most of these problems. The average

posterior means for the first model indicate some bias in the parameter estimates, but

these are of a much smaller magnitude than in the model that does not account for the

outliers. This also leads to more accurate estimates of the local mean of the series, as
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shown by the substantial reduction in RMSE for µt. Finally, we note that, on average,

more than 80% of the outliers are correctly identified.

6 Conclusion

This paper argues that the class of conditionally linear and Gaussian state-space models

is well-suited for treating nonlinearity, structural change and outliers in time series si-

multaneously. Popular nonlinear time series models, such as threshold, smooth transition

and Markov-Switching models, can be written in state-space format. It is then relatively

straightforward to augment these models with components that capture structural change

and outliers. The examples in Section 2 illustrate the general modelling framework and

demonstrate that common types of intervention effects, such as additive and innovation

outliers, and parameter instability, such as instantaneous structural breaks and random

walk type behavior, are easily accommodated.

We advocate the use of Bayesian techniques for estimation and inference in such linear

dynamic mixture models. In particular, the contribution of Gerlach et al. (2000) enables

dealing with additive outliers and sudden structural breaks in these models in the first

place. Furthermore, it provides an efficient implementation of the required Markov Chain

Monte Carlo sampling scheme that converges rapidly to the posterior distribution.

The application of our approach to quarterly IP growth rates for the G7 countries

demonstrates its empirical usefulness. Using the state-space framework, we simultaneously

identify nonlinear regime-switching, structural changes in mean and in volatility, and

additive outliers in these series.
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Appendix A The Gerlach et al. (2000) sampling al-

gorithm

This Appendix briefly describes the sampling algorithm developed by Gerlach et al. (2000),

slightly modified as we impose independence between innovations in the transition and measure-

ment equations.
Consider the conditionally Gaussian state-space model

yt = gt + h′
txt + γtut (A.1)

xt = ft + Ftxt−1 + Γtvt (A.2)

where ut and vt are independent and standard normal and the system matrices gt, ht, γt, ft, Ft

and Γt may all depend on the vector Markov process Kt.
The sampling scheme of Gerlach et al. (2000) generates Kt from the density p(Kt|y,Ks6=t)

for t = 1, . . . , n without conditioning on the states xt. The crucial thing to notice is that

p(Kt|y,Ks6=t) ∝ p(y|K)p(Kt|Ks6=t)

∝ p(yt|y1,t−1,K1,t)p(yt+1,n|y1,t,K)p(Kt|Ks6=t), (A.3)

where for any variable zt, zt,T = (zt, zt+1, ..., zT )′ and z = (z1, z1, ..., zn)′, where n is the sample
size. For each value of Kt, the right side of (A.3) is evaluated as follows. The term p(Kt|Ks6=t)
is obtained from the prior. The term p(yt|y1,t−1,K1,t) is obtained from p(xt−1|y1,t−1,K1,t−1)
using one step of the Kalman filter. Traditional sampling algorithms use n − t + 1 steps of the
Kalman filter given the current values of Kt,n to obtain the term p(yt+1,n|y1,t,K). Therefore
it requires O(n) operations to generate each Kt, and hence O(n2) operations to generate K.
The crucial innovation of Gerlach et al. (2000)’s algorithm is that the term p(yt+1,n|y1,t,K)
is obtained in one step after an initial set of backward recursions. This reduces the number of
operations required to generate the complete vector K to O(n). Before giving the recursion for
generating K, we state several crucial results that are used in the algorithm. Proofs of these
lemmas can be found in Gerlach et al. (2000).

Lemma 1 Let Nt+1 = var(yt+1|xt,K
1,t+1). Then

Nt+1 = h′
t+1Γt+1Γ

′
t+1ht+1 + γ2

t+1

and

E(xt+1|xt,yt+1,K) = at+1 + At+1xt + Bt+1yt+1

var(xt+1|xt,yt+1,K) = Ct+1C
′
t+1

where

at+1 = (I − Bt+1h
′
t+1)ft+1 − Bt+1gt+1

At+1 = (I − Bt+1h
′
t+1)Ft+1

Bt+1 = Γt+1Γ
′
t+1ht+1N

−1
t+1

Ct+1C
′
t+1 = Γt+1(I − Γ′

t+1ht+1N
−1
t+1

h′
t+1Γt+1)Γ

′
t+1. (A.4)

22



The expression on the right hand side of (A.4) can be factored as Ct+1C
′

t+1 where the matrix
Ct+1 is either null or has full column rank. Then

xt+1 = at+1 + At+1xt + Bt+1yt+1 + Ct+1ζt+1,

where ζt ∼ N(0, I), independent of xt and yt+1 (conditional on K).

Lemma 2 For t = 1, . . . , n − 1, the density p(yt+1,n|xt,K) is independent of K1,t and can
be expressed as

p(yt+1,n|xt,K) ∝ exp{−1

2
(xtΩtxt − 2µ′

txt)},

where Ω and µ are computed recursively starting from

Ωn = 0, µn = 0,

and moving backward

Ωt = A′
t+1(Ωt+1 − Ωt+1Ct+1D

−1
t+1

C′
t+1Ωt+1)At+1 + F′

t+1ht+1N
−1
t+1

h′
t+1Ft+1,

µt = A′
t+1(I − Ωt+1Ct+1D

−1
t+1

C′
t+1)(µt+1 − Ωt+1(at+1 + Bt+1yt+1))

+ F′
t+1ht+1N

−1
t+1

(yt+1 − gt+1 − h′
t+1Ft+1)

where
Dt+1 = C′

t+1Ωt+1Ct+1 + I.

Lemma 3 Let mt = E(xt|y1,t,K), Vt = var(xt|y1,t,K) and rt = var(yt|y1,t−1,K). The Kalman
filter for the state-space model (A.1) is given by

Rt = h′
tFtVt−1F

′
tht + h′

tΓtΓ
′
tht + γ2

t , (A.5)

mt = (I − Jth
′
t)(ft + Ftmt−1) + Jt(yt − gt)/rt (A.6)

Vt = FtVt−1F
′
t + ΓtΓ

′
t − JtJ

′
t/rt (A.7)

where
Jt = FtVt−1F

′
tht + ΓtΓ

′
tht.

The conditional density p(yt|y1,t−1,K1,t) is given by

p(yt|y1,t−1,K1,t) ∝ r
−1/2

t exp(− 1

2rt
(yt − gt − h′

tft + h′
tFtmt−1)

2). (A.8)

We can write Vt = TtT
′
t, where the matrix Tt has full column rank (if Vt 6= 0) or is null (if

Vt = 0). Then, conditional on K,
xt = mt + Ttξt,

where ξt ∼ N(0, I) and independent of y1,t.

Lemma 4 Using the results of Lemma 3, it follows that

p(yt+1,n|y1,t, K) =

∫
p(yt+1,n|xt,K

t+1,n)p(ξt|K1,t)dξt

∝ |T′
tΩtTt|−1/2 exp{−1

2
(m′

tΩtmt − 2µ′
tmt − φ′

t(T
′
tΩtTt + I)−1φt)}, (A.9)

where
φt = T′

t(µt − Ωtmt).
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The recursion for generating K in O(n) operations comprises two main steps:

1. Given the current value of K, calculate Ωt and µt for t = n−1, . . . , 1, using the recursions

in Lemma 2.

2. Given E(x0) and var(x0), perform the following for t = 1, . . . , n:

(a) Obtain rt, mt and Vt from mt−1 and Vt−1 as in Lemma 3.

(b) Obtain p(yt|y1,t−1,K1,t) as in Lemma 3, and p(yt+1,n|y1,t,K) as in Lemma 4.

(c) Obtain p(Kt|y,Ks6=t) for all values of Kt by normalization of

p(Kt|y,Ks6=t) ∝ p(yt|y1,t−1,K1,t)p(yt+1,n|y1,t,K)p(Kt|Ks6=t).

Then draw Kt.

(d) Update mt and Vt as in Lemma 3, using the generated value of Kt.
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Table 1: Empirical results

Parameter Canada France Germany Italy Japan UK US
σ1 5.22 6.22 6.66 8.34 6.28 5.43 5.03

(0.54) (0.67) (0.63) (1.07) (0.71) (0.56) (0.74)

σ2 4.10 3.70 3.91 4.67 4.77 3.04 2.47
(0.49) (0.36) (0.47) (0.49) (0.50) (0.33) (0.21)

δ1 −2.28 −2.38 −1.44 −1.46 −3.47 −2.19 −2.58
(0.61) (1.11) (0.41) (0.54) (0.68) (0.55) (0.84)

δ2 −2.00 −1.30 −2.54 −1.56 −2.55 −2.08 −3.72
(0.43) (0.50) (0.50) (0.38) (0.69) (0.54) (0.48)

p = { 0 0.40 0.96 0.98 0.94 0.00 0.95 0.00
1 0.58 0.04 0.02 0.06 0.97 0.05 0.99

φ1 0.21 0.00 0.00 −0.01 0.58 0.01 0.60
(0.20) (0.03) (0.03) (0.05) (0.10) (0.05) (0.08)

p00,δ 0.91 0.90 0.90 0.81 0.97 0.93 0.96
(0.05) (0.09) (0.04) (0.06) (0.02) (0.03) (0.02)

p11,δ 0.80 0.75 0.74 0.73 0.85 0.78 0.83
(0.06) (0.09) (0.06) (0.06) (0.05) (0.06) (0.05)

The table presents posterior means of the parameters in the model (15)-(19) estimated for
quarterly IP growth rates for the G7 countries over the period 1961Q2-2004Q1. Posterior
standard deviations are given in parentheses.
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Table 2: Simulation results

True None Medium Heavy
Parameter Value With Without With Without With Without

δ −3.000 −3.298 −3.069 −3.314 −2.803 −3.585 −2.255
(0.416) (0.288) (0.399) (0.385) (0.623) (0.814)

φ1 0.500 0.520 0.501 0.527 0.419 0.576 0.180
(0.074) (0.071) (0.078) (0.114) (0.108) (0.322)

σ1 0.100 0.100 0.105 0.099 0.121 0.094 0.206
(0.008) (0.009) (0.008) (0.022) (0.012) (0.106)

σ2 0.050 0.050 0.051 0.048 0.063 0.044 0.093
(0.004) (0.004) (0.004) (0.013) (0.006) (0.043)

τ 100 99.31 100.47 99.24 106.02 98.96 93.41
(3.618) (3.444) (4.097) (7.272) (3.829) (9.076)

p00,δ 0.950 0.951 0.951 0.946 0.938 0.925 0.890
(0.015) (0.014) (0.016) (0.019) (0.029) (0.069)

p11,δ 0.850 0.837 0.834 0.825 0.805 0.786 0.706
(0.034) (0.034) (0.042) (0.050) (0.070) (0.151)

RMSE(µt) 0.054 0.052 0.052 0.063 0.061 0.087
CDO 0.025 0.831 0.822

Note: The table presents results from the Monte Carlo simulation, where 200 samples of length
n = 200 are generated from the model nested in (15)-(19) as described in the text. Three levels of
additive outlier contamination are considered: “None”, “Medium” (five AOs of absolute magnitude
|Katat| = 5) and “Heavy” (20 AOs; 15 with |Katat| = 5 and five with |Katat| = 7). The cells contain
averages of the posterior means of the parameters in the models with and without components that
capture additive and innovation outliers (columns “With” and “Without”, respectively), with root
mean square error (RMSE) in parentheses. RMSE(µt) is defined as as the square root of the average
of (µDGP

t − µM
t )2 across observations t = 1, . . . , n and across samples, where µt = νt + σtKδtδt and

µDGP
t and µM

t are computed using the true and estimated parameters, respectively. CDO denotes the
average fraction of correctly detected outliers (CDO), computed as the average number of iterations
for which the model identifies an additive outlier (Katat 6= 0) at locations where these indeed occur.
For the DGP with no contamination, CDO is the average posterior mean probability of occurrence
of an additive outlier.
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Figure 1: The graphs summarize the results of estimating the Markov-Switching model
with outliers and structural change in mean and variance as given in (15)-(19) for quarterly
Canadian IP growth rates over the period 1961Q2-2004Q1. The different panels contain:
(a) the quarterly growth rate series yt; (b) the posterior mean of the regime-switching
process Kδt; (c) the posterior mean of the AO-corrected series yt − σtKatat (thin solid
line) together with the posterior mean of µt = νt + σtKδtδt (thick solid line); (d) the
posterior mean of νt; (e) the posterior means of Kat (dashed line) and Ket (solid line);
and (f) the posterior distribution of τ . Shaded areas indicate recessions as determined by
the BBQ algorithm of Harding and Pagan (2002).
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Figure 2: The graphs summarize the results of estimating the Markov-Switching model
with outliers and structural change in mean and variance as given in (15)-(19) for quarterly
French IP growth rates over the period 1961Q2-2004Q1. See Figure 1 for details.
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Figure 3: The graphs summarize the results of estimating the Markov-Switching model
with outliers and structural change in mean and variance as given in (15)-(19) for quarterly
German IP growth rates over the period 1961Q2-2004Q1. See Figure 1 for details.
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Figure 4: The graphs summarize the results of estimating the Markov-Switching model
with outliers and structural change in mean and variance as given in (15)-(19) for quarterly
Italian IP growth rates over the period 1961Q2-2004Q1. See Figure 1 for details.
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Figure 5: The graphs summarize the results of estimating the Markov-Switching model
with outliers and structural change in mean and variance as given in (15)-(19) for quarterly
Japanese IP growth rates over the period 1961Q2-2004Q1. See Figure 1 for details.

34



-30

-20

-10

0

10

20

30

40

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

(a) Quarterly growth rate yt

0.0

0.2

0.4

0.6

0.8

1.0

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

(b) Markov regime Kδt

-15

-10

-5

0

5

10

15

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

(c) Conditional mean µt = νt + σtδtKδt

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

(d) Base-line growth rate νt

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

(e) Outliers Kat and Ket

0.0

0.2

0.4

0.6

0.8

1.0

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

(f) Variance break date τ

Figure 6: The graphs summarize the results of estimating the Markov-Switching model
with outliers and structural change in mean and variance as given in (15)-(19) for quarterly
UK IP growth rates over the period 1961Q2-2004Q1. See Figure 1 for details.
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Figure 7: The graphs summarize the results of estimating the Markov-Switching model
with outliers and structural change in mean and variance as given in (15)-(19) for quarterly
US IP growth rates over the period 1961Q2-2004Q1. See Figure 1 for details.
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