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1 Introduction

The amount of evidence for the presence of permanent structural change and busi-

ness cycle asymmetries in macroeconomic time series such as output, inflation and un-

employment is ever increasing; see Stock and Watson (1996) and Marcellino (2002a),

among many others. As these features cannot be adequately captured with conventional

linear autoregressive models with constant parameters (AR), it comes as no surprise

that the use of nonlinear time series models is becoming more and more widespread.

The most popular alternative models can roughly be divided in two groups. On the

one hand, linear models which allow for infrequent permanent structural changes in the

parameters have been used extensively; see Culver and Papell (1997), Bai, Lumsdaine

and Stock (1998), and Papell, Murray and Ghiblawi (2000) for recent examples. On

the other hand, nonlinear models that allow for some sort of regime-switching have

been applied to describe the different dynamic behavior of macroeconomic time series

during recessions and expansions, including Markov switching autoregressive (MS-AR)

models, self-exciting threshold autoregressive (SETAR) models, and smooth transition

autoregressive (STAR) models, see Granger (2001) for a recent survey.

The existence of such a wide variety of alternative models naturally poses the ques-

tion how different models should be compared and evaluated in empirical research. One

possibility is to consider the relative out-of-sample forecasting performance of compet-

ing models. Most studies that have taken this route have concentrated on comparing

different models in terms of point forecasts; see Clements and Krolzig (1998), Stock

and Watson (1999) and Marcellino (2002b) for recent examples. As summarized in De

Gooijer and Kumar (1992) and Ramsey (1996), a general finding in the forecasting lit-

erature is that non-linear models do not render more accurate point forecasts than their

linear competitors. The evidence from more recent studies such as the ones cited above

does not appear to be at odds with this conclusion. Recently, the idea has arisen that

non-linear models may be more suitable for describing the uncertainty around point

forecasts, as suggested by Pesaran and Potter (1997), for example. This has led to a

small but growing number of empirical studies comparing the forecasting performance

of linear and non-linear models in terms of interval forecasts and density forecasts;

see Clements and Smith (2000, 2001), Boero and Marrocu (2002) and Clements et al.

(2003), among others. From these and other studies it appears that indeed nonlinear

models may be superior to linear benchmark models in those respects.

Most previous studies have been limited, not only in the sense that they focus on

evaluation of the models in the terms of point or interval or density forecasts only, but

also because they usually involve only a pairwise comparison of alternative models, e.g.
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AR vs. SETAR, or SETAR vs. MS-AR, etc. In addition, they tend to exclusively focus

on US data; notable exceptions include Byers and Peel (1995) and Marcellino (2002b).

What appears to be missing in the literature is a thorough evaluation of the forecasting

abilities of alternative models in a more general setting, where the performance of linear,

structural change, and nonlinear models is compared in terms of point forecasts as well

as interval and density forecasts, both for US and other countries’ data. In this paper

we fill this gap by examining the relative out-of-sample forecasting performance of

linear AR models, structural change models, SETAR models, and two MS-AR models

for h-month growth rates of industrial production from the G7 countries in terms of

point, interval, and density forecasts.

Our most important conclusions can be summarized as follows. The results of point

forecast evaluation tests support the established notion in the forecasting literature

that the linear AR model is a robust forecasting device, which is rarely beaten by

nonlinear models. By contrast, we find that the Markov switching models render more

accurate interval and density forecasts than the other models, including the linear AR

model. This rather encouraging finding supports the idea that nonlinear models may

outperform their linear competitors in terms of describing the uncertainty around future

realizations of a time series.

The remainder of the paper is structured as follows. In Section 2, we discuss the

industrial production data. The five different models under evaluation are described in

Section 3. In Section 4 we provide details on the recursive procedure that is used to

specify the models, to estimate the model parameters and to obtain the out-of-sample

forecasts. In Section 5, we discuss the evaluation criteria that are used to compare

the models in terms of point, interval and density forecasts. Section 6 contains the

empirical results and, finally, Section 7 concludes.

2 Data

We examine seasonally adjusted monthly industrial production (IP) series for the G7

countries Canada (CA), Germany (DE), France (FR), Italy (IT), Japan (JP), United

Kingdom (UK), and United States (US). The data are taken from the OECD Main

Economic Indicators. The sample period runs from January 1960 to December 2000

(492 observations), except for Canadian industrial production, which starts in January

1961. The data are transformed to monthly growth rates by taking first differences of

logarithms.

The series are adjusted for outliers, which we identified as those observations falling
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outside the ±3 standard deviation band around the mean growth rate, computed over

the complete sample period, following Simpson, Osborn and Sensier (2001), among

others. The relevant observations are adjusted by linear interpolation of the original

IP series in levels. The number of observations that are identified as aberrant is fairly

small.∗ In particular, after January 1976, which marks the beginning of the forecasting

period, we adjust only 1 observation for Germany and 2 for the UK. We arguably used

information from the full sample for the outlier identification and, hence, this proce-

dure would not have been feasible in “real-time” forecasting. However, the alternative

approach to identify aberrant observations recursively as the in-sample period expands

gives identical results.

3 Models

In this section we briefly describe the five different univariate time series models under

scrutiny: a linear autoregressive model, an autoregressive model with multiple struc-

tural changes, a self-exciting threshold autoregressive model, and two variants of the

Markov switching autoregressive model. For more elaborate discussions of the nonlinear

models, we refer to Krolzig (1997), Tong (1990) and Franses and van Dijk (2000).

3.1 Linear autoregressive model

A linear autoregressive (AR) model for the monthly IP growth rate series is given by

∆yt = φ0 + φ1∆yt−1 + . . . + φp∆yt−p + εt, t = 1, . . . , T, (1)

where yt denotes the log-level of the time series of interest, ∆ denotes the first differ-

encing operator, defined by ∆kyt ≡ yt − yt−k for all k 6= 0 and ∆ ≡ ∆1, εt ∼ iid(0, σ2)

is a disturbance term, and T denotes the sample size.

In the recursive specification procedure to be discussed in the next section, we use

the Bayesian Information Criterion (BIC) to determine the lag order p in (1),

BIC(p) = T ln σ̂2(p) + (p + 1) ln T, (2)

with the minimum and maximum orders set equal to pmin = 0 and pmax = 12, respec-

tively.

∗The number of identified outliers is equal to 0 for Canada, Japan, and the US, 2 for France and
Italy, 3 for Germany, and 6 for the UK.
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3.2 Autoregressive model with multiple structural changes

An autoregressive model with m structural changes (MSC) reads

∆yt





φ1,0 + φ1,1∆yt−1 + . . . + φ1,p∆yt−p + σ1ηt, if 1 < t ≤ τ1,

φ2,0 + φ2,1∆yt−1 + . . . + φ2,p∆yt−p + σ2ηt, if τ1 < t ≤ τ2,
...

φm,0 + φm,1∆yt−1 + . . . + φm,p∆yt−p + σmηt, if τm−1 < t ≤ T ,

(3)

where τ1, . . . , τm−1 denote the m − 1 break points, and ηt ∼ iid(0, 1). We use the

procedures developed by Bai and Perron (1998) to specify an adequate model as follows.

First, we select the lag order p by minimizing the BIC for the linear AR model (1) as

above. Second, we apply the sequential test procedure of Bai and Perron (1998) to

determine the number of structural breaks. This means that we test for one break at a

time, i.e. conditional on finding a first break we test for the presence of a second break

and so on, until no further breaks are found or the pre-specified maximum number of

breaks is reached. In the sequential break testing procedure, we restrict the maximum

number of breaks to 5, require the smallest segment to contain at least 15% of the

available observations and use a 5% significance level throughout. Once the number of

breaks is determined we apply the repartition procedure discussed in Bai and Perron

(1998) to fine-tune the break dates. The out-of-sample forecasts are obtained from

either the model estimated for the last segment, if any breaks are detected, or from the

linear AR model estimated for the complete sample, if no breaks are detected.

3.3 Self-exciting threshold autoregressive model

A two-regime self-exciting threshold autoregressive model is given by

∆yt

{
φ1,0 + φ1,1∆yt−1 + . . . + φ1,p∆yt−p + σ1ηt, if ∆dyt−1 ≤ r,

φ2,0 + φ2,1∆yt−1 + . . . + φ2,p∆yt−p + σ2ηt, if ∆dyt−1 > r,
(4)

where r is the threshold value and ηt ∼ iid(0, 1). Note that we allow for regime-

dependent heteroskedasticity in the shocks εt ≡ σiηt for i = 1, 2. For the transition

variable that governs changes in regime we use the first lag of the d-period growth rate

∆dyt−1, following Hansen (1997) and Koop and Potter (1999), among others.

The autoregressive order p and the length of the difference d in (4) are determined

jointly by minimizing the BIC

BIC(p, d) = T1 ln(σ̂2
1(p, d)) + T2 ln(σ̂2

2(p, d)) + (p + 1) ln T1 + (p + 1) ln T2, (5)

where T1 =
∑T

t=1 I[∆dyt−1 ≤ r], with I[A] the indicator function for the event A,

equals the number of observations in the “lower” regime, and T2 = T − T1, σ̂2
1(p, d) =
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∑T

t=1 I[∆dyt−1 ≤ r]ε̂2
t (p, d) is the estimate of the residual variance in the lower regime

and σ̂2
2(p, d) is defined similarly. The notation ε̂t(p, d) is used to highlight the fact that

the residuals and corresponding variances are computed conditional on fixed values of

p and d. The BIC(p, d) criterion is minimized by varying p from pmin = 0 to pmax = 12,

and d from dmin = 1 to dmax = 12.

3.4 Markov switching autoregressive models

We employ two variants of the Markov switching autoregressive model. Using notation

from Krolzig (1997), the first model is referred to as MSIAH, which means that we

allow for regime-dependent intercepts (I), autoregressive parameters (A), and variances

(H), similar to the SETAR model above. The second Markov switching model is the

popular model introduced by Hamilton (1989), denoted as MSMH, which allows for

regime-specific means (M) and variances (H) with the autoregressive parameters kept

constant.

The MSIAH model is given by

∆yt = φst,0 + φst,1∆yt−1 + . . . + φst,p∆yt−p + σst
ηt, (6)

where ηt ∼∼ iid N(0, 1) and st is an unobserved two-state first-order Markov process

with transition probabilities Pr[st = j|st−1 = i] = pij, i, j = 1, 2. The autoregressive

order p is selected by minimizing the BIC over the range of pmin = 0 to pmax = 12.

The MSMH model reads

∆yt − µst
= φ1(∆yt−1 − µst−1

) + . . . + φp(∆yt−p − µst−p
) + σst

ηt. (7)

One of the key features of this model is that the conditional density of ∆yt depends

not only on the current regime st, but also on the regimes that prevailed during the

most recent p periods st−1, . . . , st−p. This is in sharp contrast to the MSIAH model

as given in (6), where the conditional density of ∆yt depends on the current regime

only. The fact that we have to keep track of the last p regimes implies that using high

autoregressive orders in MSMH-type models is not advisable due to induced parameter

inflation and local optima of the likelihood function. Therefore, the autoregressive

order is determined by minimizing the BIC, allowing p to vary between 0 and 6.

Finally, estimation of both Markov switching models is carried out by means of the

Expectation-Maximization (EM) algorithm together with the smoothing filter of Kim

(1994), see Hamilton (1994, Chapter 22) for details.
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4 Recursive specification, estimation, and forecast-

ing

Specification, estimation, and forecasting are done recursively on an expanding window

of observations, starting with 1960.1-1975.12 and ending with 1960.1-2000.11. As we

allow for a maximum lag order of 12 in all models (except MSMH), the first window cor-

responds with an effective sample size of R = 179 observations (one observation is lost

by taking first differences). For each window and model, we select the autoregressive

order (and identify the number of structural changes for the MSC model), estimate the

model parameters and compute point, interval, and density forecasts of the h-month

growth rates {∆hyt = yt−yt−h}
R+P
t=R+h for h = 1, . . . , 12, where P = 300. This procedure

gives us Ph = P − (h − 1) forecasts for the h-month growth rate, h = 1, . . . , 12.

Under the assumption of normally distributed error terms there exist analytic ex-

pressions for the point, interval, and density forecasts for the linear AR model. However,

this generally is not true if the assumption of Gaussianity is relaxed and/or if nonlinear

models are considered. We follow the usual practice and obtain the forecasts of inter-

ests by means of Monte Carlo simulation. More precisely, for each model estimated

for a given window containing, say, T observations, we simulate 100.000 future paths

of the monthly growth rate series up to 12 months ahead, where we draw innovations

for each of the models as follows. For the linear AR model we obtain the innovations

by drawing with replacement from the vector of the residuals {ε̂t}
T
t=1. For the MSC

model, we obtain the innovations in two steps: first, we standardize the residuals for

the different segments using the segment-specific standard deviations σ̂j, j = 1, . . . ,m,

where m is the number of detected structural breaks plus one; second, we draw the

innovations from the pooled vector of standardized residuals {η̂t}
T
t=1 multiplied by the

estimated standard deviation of the last segment, σ̂m. We follow a similar procedure in

case of the SETAR model, where we first standardize the residuals using the regime-

specific standard deviations, and secondly, we obtain the regime-specific innovations by

resampling from this vector of standardized residuals multiplied by the relevant stan-

dard deviations. For the Markov switching models we obtain innovations by drawing

them directly from the standard normal density and multiplying these by the estimated

regime-specific standard deviations.

Finally, we should remark that both in constructing and evaluating the out-of-

sample forecasts, we treat the point estimates of the model parameters as the true

population values. This assumption can be relaxed, as discussed in van Dijk, Teräsvirta

and Franses (2002) and McCracken and West (2002).

6



5 Forecast evaluation

In this section we discuss the evaluation criteria used to compare the predictive per-

formance of the time series models in terms of point forecasts, interval forecasts, and

density forecasts.

5.1 Point forecasts

Let {∆hŷ
(i)
t|t−h

}R+P
t=R+h denote the sequence of forecasts of the h-month growth rate ∆hyt

of length Ph = P − (h − 1), obtained from model Mi. The corresponding forecast

error is denoted e
(i)
t|t−h

= ∆hyt −∆hŷ
(i)
t|t−h

. For evaluation of point forecasts, we consider

the popular Mean Squared Forecast Error, MSFE= 1
Ph

∑R+P

t=R+h

(
∆hyt − ∆hŷ

(i)
t|t−h

)2

, and

the Mean Absolute Forecast Error, MAFE= 1
Ph

∑R+P

t=R+h

∣∣∣∆hyt − ∆hŷ
(i)
t|t−h

∣∣∣. To assess the

statistical significance of differences in these measures for two competing models Mi and

Mj we use the test of equal forecast accuracy developed by Diebold and Mariano (1995).

Let g(e
(i)
t|t−h

) denote the loss associated with the forecast of the h-month growth rate

∆hyt from Mi. The null hypothesis of equal forecast accuracy for models Mi and Mj

is given by E

[
g(e

(i)
t|t−h

)
]

= E

[
g(e

(j)
t|t−h

)
]
. Put differently, defining the loss differential as

dt ≡ g(e
(i)
t|t−h

)− g(e
(j)
t|t−h

), equal forecast accuracy implies E[dt] = 0. Given a covariance-

stationary sequence of loss differentials {dt}
R+P
t=R+h of length Ph, the Diebold-Mariano

(DM) statistic for testing the null hypothesis of equal forecast accuracy is given by

DM =
d√

̂V
(
d
)

d
→ N (0, 1) , (8)

where d is the sample mean loss differential d = 1
Ph

∑R+P

t=R+h dt, and where ̂V (d) is a

consistent estimate of the asymptotic variance of d. The latter usually is computed as

an unweighted sum of the sample autocovariances up to order h − 1, that is,

̂V (d) =
1

Ph

(
γ̂0 + 2

h−1∑

k=0

γ̂k

)
, (9)

where γ̂k = 1
Ph

∑R+P

t=R+h+k

(
dt − d

) (
dt−k − d

)
, assuming that the forecast errors for the

h-month growth rate exhibit serial dependence up to order h− 1. We apply the modi-

fications suggested by Harvey, Leybourne and Newbold (1997) to correct the tendency

of the Diebold-Mariano statistic to be oversized in small- and medium-size samples

and to account for the possibility that forecast errors are fat-tailed. In particular, the
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original Diebold-Mariano statistic (8) is multiplied by the correction factor

CF =

(
Ph + 1 − 2h + h(h − 1)/Ph

Ph

)
, (10)

and the resulting statistic MDM=CF × DM is compared with critical values from the

Student’s t distribution with (Ph − 1) degrees of freedom.

In addition, we compare point forecasts from different models by means of forecast

encompassing tests. Mi is said to forecast encompass the competing model Mj if the

forecasts from Mj contain no useful information on top of that contained in the forecasts

from Mi. Essentially, a test for forecast encompassing can be based on the composite

forecast ∆hŷ
(c)
t|t−h

, constructed as a linear combination of the forecasts from Mi and Mj,

∆hŷ
(c)
t|t−h

= α∆hŷ
(j)
t|t−h

+ (1 − α)∆hŷ
(i)
t|t−h

, (11)

where the coefficient α denotes the optimal weight attached to Mj’s forecast. In this

context, Mi forecast encompasses Mj if α = 0. We use the test put forward by Harvey,

Leybourne and Newbold (1998). These authors showed that a test for forecast encom-

passing can be carried out conveniently within the testing framework of Diebold and

Mariano (1995) by computing (8) with dt = e
(i)
t|t−h

(e
(i)
t|t−h

− e
(j)
t|t−h

). The test is modi-

fied by incorporating the amendments suggested for the Diebold-Mariano test of equal

forecast accuracy discussed above.

Finally, we consider the forecast encompassing test for the case of K ≥ 2 competing

forecasts developed in Harvey and Newbold (2000). The corresponding composite

forecast can be written as follows

∆hŷ
(c)
t|t−h

= α1∆hŷ
(1)
t|t−h

+ . . . + αK−1∆hŷ
(K−1)
t|t−h

+ (1 − α1 − ... − αK−1)∆hŷ
(K)
t|t−h

. (12)

In this case, the null hypothesis is that model MK forecast encompasses all other K−1

models, which can be expressed as α1 = . . . = αK−1 = 0 in (12). Defining the (K−1×1)

vector Dt with elements djt = e
(K)
t|t−h

(e
(K)
t|t−h

− e
(j)
t|t−h

) for j = 1, ..., K − 1, the suggested

statistic for testing of zero mean of this vector is

MS =
DV̂ −1D

(K − 1)(Ph − 1)(Ph − K + 1)
, (13)

where the (K −1)×1 vector D consists of the sample means of djt for j = 1, . . . , K −1

and V̂ is the sample covariance matrix constructed using the Newey-West estimator

with Bartlett kernel in order to account for the possible serial dependence in the forecast

errors.† We follow the suggestions of Harvey and Newbold (2000) to multiply the test

†Using a rectangular kernel with truncation lag h − 1 to estimate V does not guarantee that the
computed sample covariance matrix is positive-definite in finite samples
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statistic MS by the correction factor CF given in (10) and obtain critical values from

the FK−1,Ph−K+1 distribution.

5.2 Interval forecasts

Christoffersen (1998) argues that a good interval forecast should possess two essential

properties. First, its empirical coverage should be close to the nominal coverage prob-

ability. Second, in the presence of (conditional) heteroskedasticity, the interval should

be narrow in tranquil periods and wide in volatile periods. Put differently, the inci-

dence of observations falling inside or outside the interval forecast should be spread out

evenly over the sample and not come in clusters. To assess these two properties for the

interval forecasts obtained from the various models, we apply the Pearson-type χ2 tests

developed in Wallis (2002). While these are asymptotically equivalent to the likelihood

ratio tests put forward in Christoffersen (1998), the advantage of the Pearson-type tests

is that they allow calculation of exact p-values when the number of forecasts is limited.

This is relevant for our multiple-month growth rate forecasts, as explained below.

First consider the evaluation of interval forecasts for one-month growth rates. Let

Lt|t−1(q) and Ut|t−1(q) denote the lower and upper limits of the interval forecast of ∆yt

made at time t− 1, for a given nominal coverage probability q. Define the sequence of

indicator functions {It|t−1}
R+P
t=R+1 of length P1 = P , where It|t−1 takes the value 1 when

the realization ∆yt lies inside the forecast interval and 0 otherwise. The procedure of

Wallis (2002) consists of three tests: a test of correct unconditional coverage, a test

of independence, and a test of correct conditional coverage. All three tests have the

common form

X2 =
∑

(O − E)2/E, (14)

measuring the discrepancy between the observed outcome (O) and the expected out-

come (E) under the appropriate null hypothesis. The test of correct unconditional

coverage compares the sample proportion of times that the interval forecast includes

the realization ∆yt, denoted as π̂, with the nominal coverage probability q, where π̂ is

computed as

π̂ =
n1

n0 + n1

,

where n1 =
∑R+P

t=R+1 It|t−1 and n0 = P − n1. Under the null hypothesis of correct

unconditional coverage, the expected frequencies of observing the actual value ∆yt

inside and outside the interval forecast are equal to m1 = qP and m0 = (1 − q)P ,
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respectively. The test statistic for unconditional coverage is given by

X2 =
P (π̂ − q)2

q(1 − q)
=

2∑

i=1

(ni − mi)
2

mi

. (15)

In the test of correct unconditional coverage only the overall number of interval

“hits” matters. The test fails to capture potential temporal dependence in the binary

indicator sequence {It|t−1}
R+P
t=R+1, which reveals itself in the fact that ones and zeros tend

to cluster instead of being spread out evenly across the sample. In order to detect such

dynamics, a test for independence may be performed, which is based on the number

of transitions nij of It|t−1 from “state” i to “state” j, for i, j = 0, 1. The observed

contingency matrix is

Π̂O =

[
n00 n01

n10 n11

]
. (16)

In this case, the expected frequencies are equal to mijP (ni+

P
)(

n+j

P
), with ni+ = ni0 +ni1

and n+j = n0j + n1j, i, j = 0, 1, being the relevant row and column sums in Π̂O,

respectively. The resulting test statistic is given by

X2 =
2∑

i=1

2∑

j=1

(nij − mij)
2

mij

. (17)

Finally, the test for correct conditional coverage combines the tests of correct uncon-

ditional coverage and of independence. The test statistics is computed as in (17), where

the observed transition counts are taken from (16), while the expected frequencies mij

are now obtained from

Π̂E
cc =

[
(1 − q)(n00 + n01) q(n00 + n01)
(1 − q)(n10 + n11) q(n10 + n11)

]
.

The test statistics of correct unconditional coverage and of independence have

asymptotic χ2 distributions with 1 degree of freedom, while the test of correct con-

ditional coverage follows an asymptotic χ2 distribution with 2 degrees of freedom. In

small samples the use of exact p-values might be desirable, as discussed in Wallis (2002).

Extending the above tests for evaluation of interval forecasts for the h-month

growth rate with h > 1 is not straightforward, as the corresponding indicator sequence

{It|t−h}
R+P
t=R+h is expected to exhibit serial dependence up to order (h−1) under the null.

Here we adopt the approach advocated by Diebold, Gunther and Tay (1998) in the con-

text of evaluation density forecasts, by partitioning {It|t−h}
R+P
t=R+h, into h sub-groups of

independent observations (IR+h|R, IR+2h|R+h, . . .), (IR+1+h|R+1, IR+1+2h|R+1+h, . . .), . . .,

(IR+(h−1)+h|R+(h−1), IR+(h−1)+2h|R+(h−1)+h, . . .). We then perform the interval evalua-

tion tests on each of these sub-groups, using a significance level of α/h, and reject the
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null hypothesis of correct calibration of the interval forecasts if the null hypothesis is

rejected for at least one the h tests performed. This procedure ensures that the overall

size of the test procedure is bounded by the selected significance level α. Note that

the number of forecasts in the sub-groups quickly becomes smaller as h increases, from

150 for h = 2 to to 25 for h = 12, demonstrating the relevance of the small sample

argument in favor of the Pearson-type tests discussed above.

5.3 Density forecasts

A density forecast is an estimate of the probability distribution of the future realization

of the time series being forecast. Density forecasts thus provide a complete description

of the uncertainty associated with future predictions. In that respect, density forecasts

can be considered as a further elaboration upon interval forecasts, which specify only

a single confidence interval for a given coverage probability for the variable of interest.

Evaluation of density forecasts is considered in Diebold et al. (1998). First, consider

the evaluation of density forecasts of the 1-month growth rate ∆yt. Let pt|t−1(·) be the

1-step ahead density forecast made ad time t−1 by a particular model and ft(·) be the

true predictive density of ∆yt. Diebold et al. (1998) suggest to compare pt|t−1(·) with

ft(·) via the probability integral transform (PIT) zt|t−1 of the actual realization of ∆yt

with respect to the density forecast pt|t−1(·):

zt|t−1 =

∫ ∆yt

−∞

pt|t−1 (u) du ≡ Pt|t−1 (∆yt) , (18)

where Pt|t−1(·) denotes the CDF corresponding with pt|t−1(·) Under the null hypothesis

of equivalence of the density forecast and the true predictive density, i.e., pt|t−1(·) =

ft(·), the sequence of probability integral transforms
{
zt|t−1

}R+P

t=R+1
is independently

uniformly distributed on the [0,1]-interval, iid U [0, 1]. We assess the uniformity of

the sequence
{
zt|t−1

}R+P

t=R+1
using the Kolmogorov-Smirnov (KS) test statistic, which

compares the maximum deviation of the empirical cumulative density function from

the theoretical one, where the appropriate critical value is calculated by means of the

analytical formula provided in Miller (1956).

The KS test is based on the assumption of independence. While this may not be an

unreasonable assumption in case of density forecasts for the 1-month growth rate, it is

likely to fail when we consider h-month growth rate forecasts. Again, we follow the sug-

gestion of Diebold et al. (1998) and partition the sequence
{
zt|t−h

}R+P

t=R+h
into the h sub-

groups (zR+h|R, zR+2h|R+h, . . .), (zR+1+h|R+1, zR+1+2h|R+1+h, . . .), . . ., (zR+(h−1)+h|R+(h−1),

zR+(h−1)+2h|R+(h−1)+h, . . .), for which the assumption of independence can be main-

tained. We perform a KS-test at significance level α/h on each of the partitioned

11



groups and reject the null hypothesis of correct calibration of the density forecasts if

the null hypothesis is rejected at least once for the h tests performed.

We examine the maintained assumption of independence by testing for autocor-

relation in the partitioned sequences of
{
zt|t−h

}R+P

t=R+h
using the Ljung-Box test with

the significance level α/h with h = 1 − 12 for power transformations of the demeaned

sequences (zt|t−h − zt|t−h)
k for k = 1, . . . , 4.

Berkowitz (2001) suggests to apply the inverse normal cumulative density function

transformation to the sequence of
{
zt|t−1

}R+P

t=R+1
. Given that under the null hypothesis

the sequence
{
zt|t−1

}R+P

t=R+1
is iidU [0, 1], the sequence of transformed PIT’s

{
z∗t|t−1

}R+P

t=R+1

is iidN (0, 1). Berkowitz (2001) suggests that normality tests may possess better power

properties than that of the KS test. In this paper we test for normality of
{

z∗t|t−h

}R+P

t=R+h

using the test statistic suggested in Doornik and Hansen (1994) (DH). For multiple-

step ahead density forecasts, we test the normality assumption after partitioning the

corresponding sequences as discussed above.

6 Empirical Results

In this section we discuss the empirical results of the forecasting exercise. First, how-

ever, some remarks concerning the in-sample estimates of the various models are in

order. For all models, the selected autoregressive order p is small, usually equal to 1 or

2 and never exceeding 4. The sequential break tests of Bai and Perron (1998) generally

indicate the presence of a single structural change in the IP growth rates. Only for

Japan and the US two breaks are detected when the estimation window extends to

the 1990s. The estimated break dates differ widely, ranging from 1969 for the US to

1984 for Germany and the UK. The regimes in the Markov switching models are fairly

persistent. The staying probability for the high-growth “expansionary” regime typi-

cally is larger than 0.95, while for the low-growth “recessionary” regime it lies between

0.8 and 0.9, confirming the established notion that recessions are shorter in duration

than expansions. Finally, the length of the difference d used for the threshold variable

∆dyt−1 in the SETAR models is fairly small for most countries and estimation win-

dows - between 3 and 6 months. The threshold estimate generally is quite close to 0,

indicating that the implied regimes closely correspond with recessions and expansions.
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6.1 Evaluation of point forecasts

Table 1 reports the ratios of the MSFE for a given horizon h relative to the MSFE

of the AR model with constant parameters, which is taken as the benchmark model.‡

The rank reported in parentheses is such that the model with the smallest MSFE is

assigned rank 1, the second smallest rank 2, etc. Table 2 reports the average rank

across forecast horizons h = 1 − 6, h = 7 − 12, and h = 1 − 12.

Several conclusions emerge from these tables. First, note that the ratios reported

in Table 1 generally are close to 1, indicating that the MSFE’s for the different models

do not differ dramatically. Second, the linear AR model has the lowest MSFE on

average, see the final column of Table 2. For the shorter forecast horizons h = 1 − 6

the MSMH model is second-best, whereas for longer forecast horizons h = 7 − 12 the

SETAR model comes second, although it should be noted that the average ranks of

the different nonlinear models are rather close. Third, the performance of nonlinear

models varies substantially across series and across horizons. For example, the SETAR

model performs relatively poorly for France, the UK and the US, whereas it is the best-

performing model for Canada and Japan. Similarly, for Germany the SETAR model

ranks second-lowest for shorter forecast horizons but is superior to the other models

for horizons h = 7− 12. A similar observation can be made for the MSC model, which

shows good performance for Italy and especially the UK, but renders by far the most

inaccurate point forecasts for Canada and the US.

Table 3 provide pairwise model comparisons in terms of MSFE summarized across

series and across models, respectively. The entries in the upper panel indicate the

number of horizons for which a given row model i has produced smaller MSFE than

column model j, where the numbers in parentheses indicate the number of times the

difference between the two MSFE values was found to be statistically significant at the

conventional 5% level according to the Diebold-Mariano test.

As expected, the linear AR model has the highest score, followed by the MSMH

model for shorter forecast horizons and by the SETAR model for longer forecast hori-

zons. According to the upper panel, most of the rejections of the null hypothesis of

equal forecast accuracy occurred when tested against the MSIAH model. The entries

of the lower panel indicate the number of times a row model rendered a smaller MSFE

value than all other models for a given time series. As seen, the rejection rate is not

uniform across the different time series. For Canada, Germany, Italy, Japan and the

US none or rather few rejections occurred, whereas the opposite is the case for France

‡Results for the MAFE criterion are qualitatively similar and not shown here to save space. Detailed
results are available upon request.
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and the UK.

Tables 4 and 5 summarize the results of the pairwise and multiple forecast en-

compassing tests, respectively. The entries in the upper panel of Table 4 indicate the

number of times the null hypothesis that row model i forecast encompasses column

model j is rejected. The bottom panel of this table shows the number of rejections in

the pairwise forecast encompassing test that occurred for row model i for a particular

time series. The results of the pairwise forecast encompassing test reinforce the earlier

conclusions: the AR model dominates the other models both for shorter- and longer

forecast horizons, in the sense that it tends to forecast encompass other models and

at the same time it is not encompassed by other models. The MSMH model seems to

be second-best at the shorter forecast horizons whereas the SETAR model takes the

second place at the longer forecast horizons. As seen from Table 5, the null hypothe-

sis that the AR model forecast encompasses all other models simultaneously is rarely

rejected. However, the same is true for the MSMH and MSIAH models and for the

SETAR model at longer forecast horizons.

In sum, the results of the point forecast evaluation seem to be in line with previous

findings in the literature, in that the linear AR model seems to be a robust forecasting

device. It provides point forecasts that are often found to be superior to those of the

structural change and nonlinear models, across different forecast horizons and across

different countries. At the same time, the performance of non-linear models like MSMH

and SETAR seems to depend heavily on the forecast horizon as well as the particular

time series in question.

6.2 Evaluation of interval forecasts

Table 6 summarizes the outcomes of the interval forecast evaluation tests for nominal

coverage probabilities of 50%, 75% and 90%. Because the number of forecasts is quite

large for one-step ahead forecasts (P1 = 300) we applied asymptotic critical values for

h = 1 and calculated exact p-values only for h = 2 − 12. Table entries indicate the

number of rejections of the respective null hypotheses of correct unconditional cover-

age, independence and correct conditional coverage at the 5% significance level. The

ranking of the models radically changes compared to that based on the point forecast

evaluation discussed above. The MSMH and MSIAH models offer the best performance

almost uniformly across the three tests and nominal coverage levels considered. The

tests of correct unconditional coverage indicate that the Markov switching models have

empirical coverage rates that are closest to the nominal ones. Also when testing of in-

dependence the MSMH and MSIAH models offer favorable performance compared with
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the competing models. It is then not surprising that the tests of correct conditional

coverage suggest that the MSMH and MSIAH models outperform the other models.

Also note that the linear AR model offers rather disappointing performance, which is

either worst or next to worst.

6.3 Evaluation of density forecasts

Tables 7 and 8 provide results of the density forecast evaluation using the Kolmogorov-

Smirnov and Doornik-Hansen tests, applied to the PIT and its inverse normal cumula-

tive density function transformation. Table entries indicate the number of rejections of

the null hypothesis of correct forecast density calibration at the 5% significance level.

The results from the DH test are largely in line with the interval forecast evaluation

tests, in the sense that the MSMH and MSIAH models are coined as the best models

in terms of forecast densities. By contrast, the results of the KS test suggest that the

MSC model provides the most accurate density forecasts.

In order to decide which test results to rely on, consider Table 9. The entries in this

table denote the number of times that the actual h−period growth rate is completely

outside the empirical forecast densities of each models, implying that the PIT is equal

to 0 or 1. § The results depicted in Table 9 indicate that this number is rather large

for the MSC model for Germany, Japan and the US. At the same time, for the MSMH

and MSIAH models the actual observation falls outside the empirical density only once.

For this reason, in forecast density evaluation we favor the performance of the Markow

switching models over that of the MSC model.

As a final step in evaluating the density forecasts, we compute the Ljung-Box test

for first-order autocorrelation in the partitioned PIT sequences. The results of this test

are shown in Table 10. The incidence of the rejections of the null hypothesis of no

autocorrelation using the 5% significance level varies from one time series to another.

The number of rejections for MSMH and MSIAH is comparable with those for other

models for odd values of k = 1, 3 and somewhat lower for even values of k = 2, 4.

Our conclusions based on the results in these tables can be summarized as follows.

The evidence of the KS test in favor of the MSC model is undermined by the rather

large number of actual observations of the h−period growth rates that fall outside of the

empirical forecast densities. The DH tests indicate that the nonlinear Markov switching

models produce superior density forecasts compared to the other models, including the

§Clearly, in this case application of the inverse normal cumulative density function transformation
yields z∗

t|t−h
= ±∞, which invalidates the use of the DH normality test. In order to make the DH test

operational again we substituted the PIT with values close to 0 and 1.
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linear AR model. This is confirmed by the LB test for first-order autocorrelation, which

demonstrates that the MSMH and MSIAH models perform no worse or even somewhat

better than the other models.

7 Conclusions

We have investigated the relative forecasting performance of linear autoregressive (AR)

models, models with structural changes (MSC), self-exciting threshold autoregressive

(SETAR) models, and Markov switching autoregressive models (MSIAH and MSMH)

for h−month growth rates of industrial production of the G-7 countries for the period

1960.1 - 2000.12. We have evaluated and compared point, interval, and density forecasts

generated from these models.

Our findings can be summarized as follows. The linear AR model seems to be quite

a robust forecasting device, at least when it comes to point forecasting. The AR point

forecasts were mostly found to be superior to those from the other models considered

according to MSFE. This finding holds both at the shorter- and longer horizons as well

as for different time series. The MSMH model is the best performing nonlinear model

at shorter forecast horizons and the SETAR model at longer horizons. At the same time

the performance of the SETAR model depends crucially on the time series in question,

i.e. for some series it is ranked as the best model while for others it shows the worst

performance. The remaining MSC and MSIAH models do not perform particularly well

across all horizons and series considered. These results are confirmed by the Diebold-

Mariano test of equal forecast accuracy and tests of forecast encompassing.

Both Markov switching models produce superior interval forecasts when compared

to those from the other models, including the linear AR model. This finding holds

irrespective of the nominal coverage probability considered. Finally, on the basis of

density forecast evaluation tests the MSMH model followed by the MSIAH model are

the best performers as well. This is a rather encouraging finding and supports the

idea that nonlinear models may perform better than linear competitors in terms of

describing the uncertainty around future realizations of a time series.
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Table 1: Point Forecast Evaluation: MSFE Ratio and Rank
Forecast horizon h

1 2 3 4 5 6 7 8 9 10 11 12
Canada AR 1.00(3) 1.00(3) 1.00(2) 1.00(2) 1.00(2) 1.00(2) 1.00(2) 1.00(2) 1.00(2) 1.00(2) 1.00(2) 1.00(2)

MSC 1.03(5) 1.04(5) 1.03(5) 1.06(5) 1.07(5) 1.07(5) 1.09(5) 1.10(5) 1.12(5) 1.14(5) 1.15(5) 1.17(5)
SETAR 1.00(4) 0.98(1) 0.98(1) 0.96(1) 0.95(1) 0.95(1) 0.95(1) 0.97(1) 0.97(1) 0.97(1) 0.96(1) 0.96(1)
MSIAH 0.98(1) 1.00(2) 1.01(3) 1.03(3) 1.02(4) 1.03(4) 1.03(4) 1.04(4) 1.06(4) 1.07(4) 1.08(4) 1.08(4)
MSMH 0.99(2) 1.01(4) 1.03(4) 1.03(4) 1.01(3) 1.02(3) 1.02(3) 1.03(3) 1.05(3) 1.06(3) 1.07(3) 1.07(3)

Germany AR 1.00(3) 1.00(1) 1.00(2) 1.00(2) 1.00(2) 1.00(3) 1.00(2) 1.00(2) 1.00(2) 1.00(2) 1.00(2) 1.00(2)
MSC 1.01(4) 1.02(4) 1.01(4) 1.02(3) 1.02(5) 1.03(5) 1.02(4) 1.03(4) 1.03(4) 1.04(4) 1.04(4) 1.05(4)

SETAR 1.02(5) 1.03(5) 1.03(5) 1.03(5) 1.01(3) 0.99(1) 1.00(1) 0.99(1) 0.99(1) 0.99(1) 1.00(1) 0.99(1)
MSIAH 0.99(2) 1.01(3) 0.99(1) 0.99(1) 0.99(1) 1.00(2) 1.01(3) 1.02(3) 1.02(3) 1.02(3) 1.03(3) 1.03(3)
MSMH 0.99(1) 1.01(2) 1.01(3) 1.02(4) 1.02(4) 1.02(4) 1.03(5) 1.03(5) 1.04(5) 1.05(5) 1.05(5) 1.06(5)

France AR 1.00(1) 1.00(1) 1.00(1) 1.00(1) 1.00(2) 1.00(2) 1.00(2) 1.00(1) 1.00(1) 1.00(1) 1.00(1) 1.00(1)
MSC 1.01(3) 1.00(2) 1.00(2) 1.01(3) 1.01(3) 1.01(3) 1.01(3) 1.01(3) 1.01(3) 1.01(3) 1.01(3) 1.01(3)

SETAR 1.09(4) 1.14(5) 1.11(5) 1.09(5) 1.06(4) 1.04(5) 1.04(4) 1.05(5) 1.05(4) 1.05(4) 1.05(4) 1.04(4)
MSIAH 1.11(5) 1.03(4) 1.08(4) 1.06(4) 1.07(5) 1.04(4) 1.08(5) 1.05(4) 1.09(5) 1.05(5) 1.07(5) 1.06(5)
MSMH 1.00(2) 1.01(3) 1.00(3) 1.00(2) 1.00(1) 1.00(1) 1.00(1) 1.00(2) 1.01(2) 1.00(2) 1.00(2) 1.00(2)

Italy AR 1.00(1) 1.00(2) 1.00(3) 1.00(4) 1.00(4) 1.00(4) 1.00(3) 1.00(4) 1.00(4) 1.00(4) 1.00(4) 1.00(4)
MSC 1.00(3) 0.98(1) 0.96(1) 0.99(2) 0.99(2) 0.99(3) 1.00(4) 0.98(3) 0.97(2) 0.96(2) 0.94(2) 0.93(2)

SETAR 1.03(5) 1.01(4) 0.99(2) 0.98(1) 0.98(1) 0.97(1) 0.97(1) 0.95(1) 0.95(1) 0.94(1) 0.93(1) 0.93(1)
MSIAH 1.02(4) 1.02(5) 1.02(5) 1.02(5) 1.02(5) 1.02(5) 1.01(5) 1.01(5) 1.01(5) 1.01(5) 1.01(5) 1.01(5)
MSMH 1.00(2) 1.00(3) 1.01(4) 1.00(3) 0.99(3) 0.98(2) 0.98(2) 0.98(2) 0.98(3) 0.98(3) 0.98(3) 0.98(3)

Japan AR 1.00(2) 1.00(2) 1.00(1) 1.00(1) 1.00(1) 1.00(1) 1.00(1) 1.00(1) 1.00(1) 1.00(1) 1.00(1) 1.00(1)
MSC 1.00(1) 1.00(1) 1.00(2) 1.00(2) 1.00(2) 1.00(2) 1.00(2) 1.00(2) 1.00(2) 1.00(2) 1.00(2) 1.00(2)

SETAR 1.04(5) 1.03(5) 1.04(5) 1.04(5) 1.04(5) 1.04(5) 1.04(5) 1.04(5) 1.04(5) 1.03(5) 1.03(5) 1.03(5)
MSIAH 1.03(4) 1.02(4) 1.03(4) 1.02(4) 1.03(4) 1.03(4) 1.03(4) 1.03(4) 1.01(3) 1.00(3) 1.01(3) 1.00(3)
MSMH 1.00(3) 1.00(3) 1.02(3) 1.01(3) 1.01(3) 1.02(3) 1.02(3) 1.02(3) 1.02(4) 1.01(4) 1.02(4) 1.02(4)

UK AR 1.00(3) 1.00(2) 1.00(2) 1.00(2) 1.00(2) 1.00(2) 1.00(2) 1.00(2) 1.00(2) 1.00(2) 1.00(2) 1.00(2)
MSC 1.00(4) 1.00(1) 1.00(1) 1.00(1) 1.00(1) 1.00(1) 1.00(1) 1.00(1) 1.00(1) 1.00(1) 1.00(1) 1.00(1)

SETAR 1.03(5) 1.03(5) 1.05(5) 1.05(5) 1.08(5) 1.07(5) 1.06(5) 1.05(5) 1.04(5) 1.04(5) 1.04(5) 1.04(5)
MSIAH 1.00(2) 1.02(4) 1.02(4) 1.02(4) 1.02(4) 1.02(4) 1.02(4) 1.02(4) 1.02(4) 1.02(4) 1.02(4) 1.02(4)
MSMH 0.99(1) 1.01(3) 1.01(3) 1.01(3) 1.01(3) 1.01(3) 1.01(3) 1.01(3) 1.01(3) 1.01(3) 1.02(3) 1.02(3)

US AR 1.00(2) 1.00(2) 1.00(1) 1.00(1) 1.00(1) 1.00(1) 1.00(1) 1.00(1) 1.00(1) 1.00(1) 1.00(1) 1.00(1)
MSC 1.07(5) 1.10(5) 1.12(5) 1.13(5) 1.15(5) 1.16(5) 1.17(5) 1.17(5) 1.19(5) 1.21(5) 1.22(5) 1.24(5)

SETAR 1.03(4) 1.04(3) 1.04(3) 1.03(3) 1.04(3) 1.03(3) 1.03(3) 1.03(3) 1.03(3) 1.04(3) 1.05(3) 1.05(3)
MSIAH 1.03(3) 1.06(4) 1.07(4) 1.08(4) 1.08(4) 1.08(4) 1.07(4) 1.07(4) 1.08(4) 1.07(4) 1.07(4) 1.08(4)
MSMH 0.98(1) 1.00(1) 1.02(2) 1.02(2) 1.02(2) 1.02(2) 1.02(2) 1.02(2) 1.02(2) 1.02(2) 1.03(2) 1.03(2)

Notes: Table entries are the ratio of the MSFE for BP, SETAR, MSIAH, and MSMH models to those of the benchmark AR model. Numbers in
parentheses indicate the assigned rank, where 1 corresponds to the model with smallest MSFE, 2 to the second smallest, etc.
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Table 2: Point Forecast Evaluation: MSFE Average Rank

CA DE FR JP IT UK US Average
h = 1 − 6

AR 2.33 2.17 1.33 3.00 1.33 2.17 1.33 1.95
MSC 5.00 4.17 2.67 2.00 1.67 1.50 5.00 3.14

SETAR 1.50 4.00 4.67 2.33 5.00 5.00 3.17 3.67
MSIAH 2.83 1.67 4.33 4.83 4.00 3.67 3.83 3.60
MSMH 3.33 3.00 2.00 2.83 3.00 2.67 1.67 2.64

h = 7 − 12
AR 2.00 2.00 1.17 3.83 1.00 2.00 1.00 1.86

MSC 5.00 4.00 3.00 2.50 2.00 1.00 5.00 3.21
SETAR 1.00 1.00 4.17 1.00 5.00 5.00 3.00 2.88
MSIAH 4.00 3.00 4.83 5.00 3.33 4.00 4.00 4.02
MSMH 3.00 5.00 1.83 2.67 3.67 3.00 2.00 3.02

h = 1 − 12
AR 2.17 2.08 1.25 3.42 1.17 2.08 1.17 1.90

MSC 5.00 4.08 2.83 2.25 1.83 1.25 5.00 3.18
SETAR 1.25 2.50 4.42 1.67 5.00 5.00 3.08 3.27
MSIAH 3.42 2.33 4.58 4.92 3.67 3.83 3.92 3.81
MSMH 3.17 4.00 1.92 2.75 3.33 2.83 1.83 2.83

Notes: Table entries indicate the average rank assigned to a given model for a certain time series
over the specified forecast horizons according to the MSFE. For further details see Table 1.
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Table 3: Point Forecast Evaluation: Pairwise DM Test with Quadratic Loss

AR BP SETAR MSIAH MSMH Total

h = 1 − 6
AR 0(0) 30(2) 32(4) 34(7) 32(0) 128(13)
MSC 12(0) 0(0) 25(3) 23(5) 18(0) 78(8)
SETAR 10(0) 17(0) 0(0) 18(0) 11(0) 56(0)
MSIAH 8(0) 19(0) 24(1) 0(0) 8(0) 59(1)
MSMH 10(0) 24(0) 31(3) 34(5) 0(0) 99(8)
h = 7 − 12
AR 0(0) 31(0) 24(0) 42(7) 35(0) 132(7)
MSC 11(1) 0(0) 18(0) 24(6) 22(0) 75(7)
SETAR 18(0) 24(0) 0(0) 29(2) 18(0) 89(2)
MSIAH 0(0) 18(0) 13(0) 0(0) 10(0) 41(0)
MSMH 7(0) 20(0) 24(0) 32(5) 0(0) 83(5)
h = 1 − 12
AR 0(0) 61(2) 56(4) 76(14) 67(0) 260(20)
MSC 23(1) 0(0) 43(3) 47(11) 40(0) 153(15)
SETAR 28(0) 41(0) 0(0) 47(2) 29(0) 145(2)
MSIAH 8(0) 37(0) 37(1) 0(0) 18(0) 100(1)
MSMH 17(0) 44(0) 55(3) 66(10) 0(0) 182(13)

CA DE FR JP IT UK US Total

h = 1 − 6
AR 16(0) 17(0) 22(6) 12(0) 22(1) 17(2) 22(4) 128(13)
MSC 0(0) 5(0) 14(3) 18(0) 20(1) 21(4) 0(0) 78(8)
SETAR 21(0) 6(0) 2(0) 16(0) 0(0) 0(0) 11(0) 56(0)
MSIAH 13(0) 20(0) 4(1) 1(0) 6(0) 8(0) 7(0) 59(1)
MSMH 10(0) 12(0) 18(6) 13(0) 12(1) 14(1) 20(0) 99(8)
h = 7 − 12
AR 18(0) 18(0) 23(3) 7(0) 24(0) 18(4) 24(0) 132(7)
MSC 0(0) 6(0) 12(0) 15(0) 18(0) 24(7) 0(0) 75(7)
SETAR 24(2) 24(0) 5(0) 24(0) 0(0) 0(0) 12(0) 89(2)
MSIAH 6(0) 12(0) 1(0) 0(0) 10(0) 6(0) 6(0) 41(0)
MSMH 12(0) 0(0) 19(2) 14(0) 8(0) 12(3) 18(0) 83(5)
h = 1 − 12
AR 34(0) 35(0) 45(9) 19(0) 46(1) 35(6) 46(4) 260(20)
MSC 0(0) 11(0) 26(3) 33(0) 38(1) 45(11) 0(0) 153(15)
SETAR 45(2) 30(0) 7(0) 40(0) 0(0) 0(0) 23(0) 145(2)
MSIAH 19(0) 32(0) 5(1) 1(0) 16(0) 14(0) 13(0) 100(1)
MSMH 22(0) 12(0) 37(8) 27(0) 20(1) 26(4) 38(0) 182(13)

Notes: Table entries in the upper panel are the number of times that row model i has a smaller MSFE value
than column model j, summarized across all countries. The number of rejections of equal forecast accuracy
in terms of MSFE of row model i and column model j by the Diebold-Mariano test at the 5% significance
level are shown in parentheses. Table entries in the lower panel indicate the number of times that row model
i produced a smaller MSFE value of than all other models for a particular country. Numbers in parentheses
are rejection rates of Diebold-Mariano test for equal forecast accuracy of row model i and all other models
for a particular time series at the 5% significance level.
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Table 4: Point Forecast Evaluation: Pairwise Forecast Encompassing Test

AR BP SETAR MSIAH MSMH Total

h = 1 − 6
AR − 8 5 3 3 19
MSC 18 − 20 20 16 74
SETAR 28 24 − 16 23 91
MSIAH 28 21 12 − 26 87
MSMH 4 11 9 5 − 29
h = 7 − 12
AR − 11 6 0 0 17
MSC 9 − 10 4 8 31
SETAR 8 2 − 1 7 18
MSIAH 19 12 12 − 20 63
MSMH 6 8 12 1 − 27
h = 1 − 12
AR − 19 11 3 3 36
MSC 27 − 30 24 24 105
SETAR 36 26 − 17 30 109
MSIAH 47 33 24 − 46 150
MSMH 10 19 21 6 − 56

CA DE FR JP IT UK US Total

h = 1 − 6
AR 4 5 0 8 0 2 0 19
MSC 14 13 1 18 0 4 24 74
SETAR 5 13 20 7 14 20 12 91
MSIAH 6 7 18 21 6 14 15 87
MSMH 11 3 0 9 0 6 0 29
h = 7 − 12
AR 0 0 0 12 0 5 0 17
MSC 2 3 0 6 0 0 20 31
SETAR 0 0 3 0 0 6 9 18
MSIAH 8 1 12 18 0 17 7 63
MSMH 8 4 0 12 1 2 0 27
h = 1 − 12
AR 4 5 0 20 0 7 0 36
MSC 16 16 1 24 0 4 44 105
SETAR 5 13 23 7 14 26 21 109
MSIAH 14 8 30 39 6 31 22 150
MSMH 19 7 0 21 1 8 0 56

Notes: Table entries in the upper panel are the number of rejections of the null hypothesis that
row model i forecast encompasses column model j by the pairwise encompassing test at the 5%
significance level, summarized across countries. Entries in the bottom panel are the number of
rejections of the null hypothesis that row model i forecast encompasses all other models in a pairwise
contest at the 5% significance level.
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Table 5: Point Forecast Evaluation: Multiple Forecast Encom-
passing Test

CA DE FR JP IT UK US Total

h = 1 − 6
AR 2 1 0 0 1 0 0 4
MSC 5 1 6 0 1 0 2 15
SETAR 2 1 3 1 3 0 0 10
MSIAH 0 0 2 1 1 1 0 5
MSMH 3 0 1 0 0 0 0 4
h = 7 − 12
AR 0 0 0 0 0 1 0 1
MSC 0 0 6 0 0 1 0 7
SETAR 0 1 0 0 0 2 0 3
MSIAH 0 1 0 0 0 3 0 4
MSMH 0 1 0 0 0 2 0 3
h = 1 − 12
AR 2 1 0 0 1 1 0 5
MSC 5 1 12 0 1 1 2 22
SETAR 2 2 3 1 3 2 0 13
MSIAH 0 1 2 1 1 4 0 9
MSMH 3 1 1 0 0 2 0 7

Notes: Table entries are the number of rejections of the null hypothesis that
row model i forecast encompasses all other models simultaneously at the 5%
significance level, according to the multiple forecast encompassing test.
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Table 6: Interval Forecast Evaluation: Tests of Correct Unconditional Coverage, Independence and Correct Conditional
Coverage

Correct Unconditional Coverage Independence Correct Conditional Coverage
CA DE FR JP IT UK US Total CA DE FR JP IT UK US Total CA DE FR JP IT UK US Total

Nominal Coverage 50%

AR 1 4 3 5 5 10 7 35 1 2 0 1 0 2 2 8 3 3 2 5 6 10 10 39
BP 5 1 4 0 5 7 7 29 2 1 0 1 0 0 2 6 7 2 2 1 6 5 7 30

SETAR 1 2 2 7 4 5 4 25 1 1 0 1 0 3 2 8 2 2 0 7 3 5 6 25
MSIAH 0 4 2 1 0 2 4 13 1 3 0 1 0 1 6 12 1 6 2 1 0 3 9 22
MSMH 2 1 2 4 0 2 3 14 1 2 0 1 0 1 4 9 1 2 2 4 0 1 10 20

Nominal Coverage 75%

AR 0 2 5 1 6 7 6 27 4 5 1 2 0 3 3 18 3 5 4 2 4 4 6 28
BP 0 0 5 0 6 5 5 21 2 2 1 1 0 3 7 16 1 2 5 1 4 4 7 24

SETAR 2 1 3 4 5 3 4 22 3 0 0 3 0 4 1 11 0 0 4 3 3 4 2 16
MSIAH 2 2 3 2 2 1 5 17 0 1 0 1 0 2 3 7 0 3 3 1 0 1 5 13
MSMH 0 1 4 4 2 1 4 16 2 4 0 2 0 1 1 10 0 3 2 4 0 1 3 13

Nominal Coverage 90%

AR 0 0 5 0 2 0 3 10 1 1 0 2 0 1 1 6 2 1 1 1 1 1 3 10
BP 0 0 5 5 2 0 1 13 2 3 0 2 0 1 2 10 3 5 2 6 1 1 3 21

SETAR 0 0 4 0 3 0 0 7 0 1 1 1 0 1 0 4 0 1 1 1 1 1 0 5
MSIAH 0 1 1 2 2 0 0 6 1 0 1 1 0 1 0 4 1 0 0 1 0 1 0 3
MSMH 0 0 1 0 0 0 0 1 1 1 0 2 0 1 0 5 1 1 0 1 0 1 0 4

Notes: Table entries are the number of rejections of the tests of correct unconditional coverage (left panel), independence (middle), and correct
conditional coverage (right), summarized for all h = 1, 2, . . . , 12 using the 5% significance level.
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Table 7: Density Forecast Evaluation: Kolmogorov-Smirnov test for IID Uniformity
of PIT

h
CA DE FR JP IT UK US Total 1-6 7-12

AR 1 0 6 9 5 1 1 23 18 5
MSC 0 0 0 0 5 0 0 5 5 0
SETAR 1 0 11 5 5 0 0 22 13 9
MSIAH 3 1 6 11 6 0 3 30 23 7
MSMH 0 0 5 5 8 0 0 18 13 5

Notes: Table entries are the number of rejections of the null hypothesis that the probability
integral transform is uniformly distributed by the Kolmogorov-Smirnov test at the 5% significance
level, summarized across forecast horizons (left) or across countries (right).

Table 8: Density Forecast Evaluation: Doornik-Hansen test for normality of inverse
normal CDF of PIT

h
CA DE FR JP IT UK US Total 1-6 7-12

AR 1 4 0 3 4 10 4 26 15 11
MSC 6 5 0 1 4 8 11 35 14 21
SETAR 7 1 0 2 3 11 0 24 12 12
MSIAH 7 1 0 1 2 4 3 18 9 9
MSMH 3 1 0 1 1 3 1 10 4 6

Notes: Table entries are the number of rejections of the null hypothesis that the inverse nor-
mal cumulative density function transformation of the probability integral transform is normally
distributed by the Doornik-Hansen test at the 5% significance level, summarized across forecast
horizons (left) or across countries (right).

Table 9: Density Forecast Evaluation: Incidence of PIT being equal to 0 or 1

h
CA DE FR JP IT UK US Total 1-6 7-12

AR 2 0 0 2 2 3 0 9 9 0
MSC 2 22 0 11 2 3 25 65 30 35
SETAR 0 1 1 2 2 6 1 13 13 0
MSIAH 0 0 0 0 0 1 0 1 1 0
MSMH 0 0 0 0 0 1 0 1 1 0

Notes: Table entries are the number of times the actual values of the h−period growth rates
fall outside the empirical density forecasts, summarized across forecast horizons (left) or across
countries (right).
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Table 10: Density Forecast Evaluation: Ljung-Box test for first-order autocorrela-
tion in PIT

h
CA DE FR JP IT UK US Total 1-6 7-12

k = 1
AR 0 0 1 4 1 1 0 7 7 0
MSC 0 0 1 2 1 1 4 9 7 2
SETAR 0 1 0 4 1 0 0 6 6 0
MSIAH 2 1 1 4 0 0 1 9 9 0
MSMH 1 2 1 4 0 0 0 8 8 0

k = 2
AR 1 2 1 2 1 7 6 20 18 2
MSC 1 5 1 1 1 4 9 22 15 7
SETAR 5 0 0 2 0 8 1 16 13 3
MSIAH 4 1 0 1 0 1 6 13 8 5
MSMH 1 1 0 2 0 1 4 9 6 3

k = 3
AR 1 1 1 3 1 1 1 9 9 0
MSC 1 2 0 0 1 1 7 12 5 7
SETAR 3 2 1 3 0 1 0 10 9 1
MSIAH 4 1 2 3 0 1 0 11 10 1
MSMH 1 2 1 4 0 1 0 9 9 0

k = 4
AR 3 2 1 3 0 8 5 22 17 5
MSC 4 5 1 1 0 5 11 27 15 12
SETAR 6 1 1 2 0 7 2 19 15 4
MSIAH 6 1 0 2 0 2 3 14 10 4
MSMH 3 2 0 2 0 2 3 12 9 3

Notes: Table entries are the number of rejections of the null hypothesis of no first-order autocor-
relation in power transformations of the demeaned PIT (zt|t−h−zt|t−h)k with k = 1, 2, 3, 4 by the
Ljung-Box test at the 5% significance level, summarized across forecast horizons (left) or across
countries (right).
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