
Measuring volatility with the realized range∗

Martin Martens†

Econometric Institute

Erasmus University Rotterdam

Dick van Dijk‡

Econometric Institute

Erasmus University Rotterdam

Econometric Institute Report EI 2006-10

February 2006

Abstract
Realized variance, being the summation of squared intra-day returns, has
quickly gained popularity as a measure of daily volatility. Following Parkinson
(1980) we replace each squared intra-day return by the high-low range for
that period to create a novel and more efficient estimator called the realized
range. In addition we suggest a bias-correction procedure to account for the
effects of microstructure frictions based upon scaling the realized range with
the average level of the daily range. Simulation experiments demonstrate
that for plausible levels of non-trading and bid-ask bounce the realized range
has a lower mean squared error than the realized variance, including variants
thereof that are robust to microstructure noise. Empirical analysis of the
S&P500 index-futures and the S&P100 constituents confirm the potential of
the realized range.

Keywords: Realized volatility; high-low range; high-frequency data; market
microstructure noise, bias-correction.
JEL Classification: C14, C15, C53.

∗We thank Peter Hansen, participants at the International Conference on Finance in Copen-
hagen (September 2-4, 2005), the special issue guest editors Herman van Dijk and Philip Hans
Franses, and two anonymous referees for useful comments and suggestions. Any remaining errors
are ours.

†Econometric Institute, Erasmus University Rotterdam, P.O. Box 1738, NL-3000 DR Rot-
terdam, The Netherlands, Phone: +31 10 408 1285, Fax: +31 10 408 9162, E-mail:
mmartens@few.eur.nl

‡Econometric Institute, Erasmus University Rotterdam, P.O. Box 1738, NL-3000 DR Rot-
terdam, The Netherlands, Phone: +31 10 408 1263, Fax: +31 10 408 9162, E-mail:
djvandijk@few.eur.nl (corresponding author)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/19185188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

Measuring and forecasting volatility of financial asset returns is important for portfo-

lio management, risk management and option pricing. By now it is well established

that volatility is both time-varying and, to a certain extent, predictable. An im-

portant issue is how to measure ex-post volatility, which is necessary for proper

evaluation of competing volatility forecasts, among other purposes. Recently much

research has been devoted to the use of high-frequency data for measuring volatil-

ity. In particular, the sum of squared intra-day returns, called realized variance, is

rapidly gaining popularity for estimating daily volatility. In theory, the realized vari-

ance is an unbiased and highly efficient estimator, as illustrated in Andersen et al.

(2001b), and converges to the true underlying integrated variance when the length

of the intra-day intervals goes to zero, see Barndorff-Nielsen and Shephard (2002).

In practice, market microstructure effects such as bid-ask bounce pose limitations

to the choice of sampling frequency. Returns at very high frequencies are distorted

such that the realized variance becomes biased and inconsistent, see Bandi and Rus-

sell (2005a,b), Äıt-Sahalia et al. (2005), and Hansen and Lunde (2006b). Popular

choices in empirical applications are the five- and thirty-minute intervals, which are

believed to strike a balance between the increasing accuracy of higher frequencies

and the adverse effects of market microstructure frictions, see e.g. Andersen and

Bollerslev (1998), Andersen et al. (2001a), Andersen et al. (2003), and Fleming et

al. (2003).

An alternative way of measuring volatility is based on the difference between the

maximum and minimum prices observed during a certain period. Parkinson (1980)

shows that the daily (log) high-low range, properly scaled, not only is an unbiased

estimator of daily volatility but is five times more efficient than the squared daily

close-to-close return. Correspondingly, Andersen and Bollerslev (1998) and Brandt

and Diebold (2006) find that the efficiency of the daily high-low range is between

that of the realized variance computed using 3-hour and 6-hour returns.

This paper starts from the crucial observation that Parkinson’s result concerning
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the relative efficiency of the high-low range applies to any interval, in particular

also to the intra-day intervals employed by the realized variance. That is, in theory,

for each intra-day interval the high-low range is a more efficient volatility estimator

than the squared return over that interval. We therefore suggest to measure daily

volatility by the sum of high-low ranges for intra-day intervals. The resulting es-

timator, which we dub ‘realized range’, should be more efficient than the realized

variance based on the same sampling frequency. Indeed, in concurrent independent

work, Christensen and Podolskij (2005) derive the theoretical properties of the real-

ized range, similar to Barndorff-Nielsen and Shephard (2002) for realized variance.

In an ideal world (continuous trading, no market frictions) the realized range is five

times more efficient than the corresponding realized variance, and converges to the

integrated variance at the same rate. At the same time, in such an ideal world there

seems to be no need to consider the realized range, as the true daily volatility can

be approximated arbitrarily closely by the realized variance using higher and higher

frequencies. However, it is often claimed that the daily range is more robust against

the effects of market microstructure noise than the realized variance, see Alizadeh

et al. (2002) and Brandt and Diebold (2006), among others. Obviously, the realized

range will be affected more heavily by microstructure noise as each of the intra-day

ranges is contaminated. Nevertheless, in realistic settings it is an open question as

to whether the realized variance or the realized range renders a superior measure of

daily volatility. In this paper we attempt to shed light on this question.

Our approach is based upon Monte Carlo simulation and an empirical analysis

for S&P500 index-futures and the individual stocks in the S&P100 index. The

simulation experiments reveal that both realized range and realized variance are

upward biased in the presence of bid-ask bounce. We find that in fact the realized

range is affected more than the realized variance at the same sampling frequency.

Infrequent trading induces a downward bias in the realized range, while it does not

affect the realized variance. In case the price path is not observed continuously the

observed minimum and maximum price over- and underestimate the true minimum

and maximum, respectively, such that the observed range underestimates the true
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range.

We consider a bias-adjustment procedure for the realized range estimator, which

involves scaling the realized range with the ratio of the average level of the daily

range and the average level of the realized range. This is based upon the idea that the

daily range is (almost) not contaminated by microstructure noise and thus provides

a good indication of the true level of volatility. In the simulation experiments,

we find that the scaled realized range is more efficient than the (scaled) realized

variance estimator based on returns sampled at considerably higher frequencies.

Comparing the scaled realized range with popular corrections of the realized variance

for microstructure noise, we find that it outperforms kernel-based estimators, as

considered by Barndorff-Nielsen et al. (2004) and Hansen and Lunde (2005, 2006b),

and is competitive to the two time-scales estimator of Zhang et al. (2005).

The empirical analysis confirms that for both measuring and forecasting volatility

the (scaled) realized range can compete with and often improves upon realized vari-

ance estimators at popular sampling frequencies, including the versions that correct

for microstructure noise. This is slightly more so for more actively traded stocks.

The remainder of this paper is organized as follows. Section 2 defines the realized

range, including the suggested bias-adjustment procedure to counter the adverse

effects of market microstructure noise. Section 3 describes the design and results of

the simulation experiments that illustrate the properties of the realized range in the

presence of market microstructure frictions. Section 4 presents the empirical results

for the S&P500 index-futures, both concerning basic properties of the realized range

and a comparison between realized range and realized variance. Section 5 extends

the comparison to the constituents of the S&P100 index. Finally Section 6 concludes.

2 The realized range estimator

Let the security price Pt at time t follow the geometric Brownian motion

dPt = µPtdt + σPtdBt, (1)
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where µ denotes the drift term, σ is the constant volatility parameter and Bt is a

standard Brownian motion. By Ito’s lemma, the log price process log Pt follows a

Brownian motion with drift µ∗ = µ− σ2/2 and volatility σ. For ease of notation we

normalize the daily interval to unity. Then for the i-th interval of length ∆ on day

t, for i = 1, 2, . . . , I with I = 1/∆ assumed to be integer, we observe the last price

in that interval Ct,i = Pt−1+i∆, the high price Ht,i = sup(i−1)∆<j<i∆ Pt−1+j and the

low price Lt,i = inf(i−1)∆<j<i∆ Pt−1+j . If the drift µ∗ is equal to zero, an unbiased

estimator of the variance during interval i, σ2∆, is the squared return,

r2
t−1+i∆,∆ = (log Ct,i − log Ct,i−1)

2, (2)

which has variance equal to 2σ4∆2. Parkinson (1980) proposes the scaled high-low

range estimator for the variance,

(log Ht,i − log Lt,i)
2

4 log 2
, (3)

which is also unbiased if µ∗ = 0, but has variance (9ξ(3)/((4 log 2)2) − 1)σ4∆2 ≈
0.407σ4∆2, where ξ(3) =

∑∞

k=1 1/k3 is Riemann’s zeta function. Hence the variance

(and the mean squared error) of the squared return (2) is about five times larger

than that of the high-low estimator (3).

If we are interested in estimating the daily variance, we can aggregate either

squared intra-day returns to obtain the so-called realized variance RV ∆
t or high-low

ranges for intra-day intervals to obtain the realized range RR∆
t :

RV ∆
t =

I∑

i=1

r2
t−1+i∆,∆, (4)

RR∆
t =

1

4 log 2

I∑

i=1

(log Ht,i − log Lt,i)
2. (5)

If prices follow the continuous geometric Brownian motion with drift µ = σ2/2 and

constant volatility σ as specified in (1), it is straightforward to show that both

RR∆
t and RV ∆

t are unbiased and consistent estimators of the daily variance σ2.

In addition, the relative efficiency result stated before for the squared daily return

versus the daily high-low range continues to hold for RV ∆
t and RR∆

t : the variance

of the realized variance is 2σ4∆ vis-à-vis 0.407σ4∆ for the realized range.
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A few remarks concerning the (realized) range estimators are in order. First,

Garman and Klass (1980) suggest to further improve efficiency by utilizing the open

and close prices in addition to the high and low prices. Assuming that the first price

in the i-th interval, Ot,i, is identical to the last price in the (i− 1)-st interval, Ct,i−1,

their minimum variance unbiased estimator for the volatility during the i-th interval

of day t is given by

0.511(log Ht,i − log Lt,i)
2 − 0.383(log Ct,i − log Ct,i−1)

2

− 0.019[(log Ct,i − log Ct,i−1)(log Ht,i + log Lt,i − 2 log Ct,i−1)

− 2(log Ht,i − log Ct,i−1)(log Lt,i − log Ct,i−1)], (6)

which is theoretically 7.4 times more efficient than the squared return in (2). They

also propose a “practical” estimator achieving virtually the same efficiency, which

is simply a linear combination of the high-low range and the squared close-to-close

return:

0.5(log Ht,i − log Lt,i)
2 − (2 log 2 − 1)(log Ct,i − log Ct,i−1)

2. (7)

In the context of the daily range, Brown (1990) and Alizadeh et al. (2002) argue

against the use of open and close prices, based on the fact that these are heavily

contaminated by market microstructure effects. This argument applies only to the

open and close prices of a trading day, and as such it does not carry over to the

context of the realized range, where open and close prices of the intra-day intervals

are ‘regular’ prices observed throughout the day. Indeed, we included realized range

estimators based on (6) and (7) in the simulation experiments discussed in the next

section, and found that they further improve the efficiency relative to RR∆
t defined in

(5). Detailed results are not reported here for space considerations, but are available

upon request.

Second, the assumption of zero drift, µ∗ = µ − σ2/2 = 0 in (1), is crucial for

the unbiasedness and consistency of the high-low range in (3). Rogers and Satchell
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(1991) were the first to relax this assumption and suggested the estimator

(log Ht,i − log Ct,i−1)(log Ht,i − log Ct,i)

+ (log Lt,i − log Ct,i−1)(log Lt,i − log Ct,i), (8)

which is independent of the drift µ and is only slightly less efficient than the Garman-

Klass estimator in (6) in case µ = σ2/2. Subsequently, Kunitomo (1992) and Yang

and Zhang (2000) put forward alternative estimators that allow for non-zero drift,

essentially by considering a transformed price process to eliminate the drift.1

Finally, and most important for our purposes, Christensen and Podolskij (2005)

establish consistency of the realized range estimator RR∆
t as defined in (5) for the

integrated variance under the assumption that the log price follows a continuous

sample path martingale, that is

log Pt = log P0 +

∫ t

0

µsds +

∫ t

0

σs−dBs, for 0 ≤ t < ∞,

where the instantaneous mean µ = {µt}t∈[0,∞) is a locally bounded predictable pro-

cess, the spot volatility σ = {σt}t∈[0,∞) is a càdlàg process, Bs again is a standard

Brownian motion, and σs− = limt↑s σt. Under the additional assumptions that µ

is continuous and σ is everywhere invertible, the asymptotic distribution of RR∆
t

is shown to be mixed normal, with σ governing the mixture. This result is impor-

tant for two reasons. First, it allows for general specifications of the drift µ, which

is possible thanks to the fact that the mean component vanishes sufficiently fast as

∆ → 0. Second, the range estimator traditionally has been analyzed under the strict

assumption that volatility is constant (at least within a trading day). The results

of Christensen and Podolskij (2005) demonstrate that the realized range estimator

remains consistent in the presence of stochastic volatility. The conditions on σ are

in fact rather weak, and allow for models with leverage, long-memory, jumps and

diurnal effects.

1Bali and Weinbaum (2005) provide a thorough comparison of all the different daily range
estimators mentioned here.
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2.1 Bias-correcting the realized range

The effects of microstructure noise such as bid-ask bounce on realized variance esti-

mators has been studied intensively, see Barndorff-Nielsen et al. (2004), Bandi and

Russell (2005a,b), Zhang et al. (2005), and Hansen and Lunde (2006b), among oth-

ers. As mentioned before, the realized range may also be expected to suffer from

market microstructure effects. In case prices are observed continuously, the high

price is likely to be an ask while the low price is likely to be a bid such that the

observed range overestimates the true range by exactly the spread. As this will be

the case for each intra-day interval, this may cause a substantial upward bias in the

realized range for high sampling frequencies. One may attempt to correct for this

bias by subtracting the spread from each intra-day range, as suggested by Brandt

and Diebold (2006) in the context of the daily high-low range estimator. However, in

practice prices are not observed continuously such that the high price may actually

be a bid with a certain probability that depends on the trading intensity, complicat-

ing this bias-adjustment. In addition, as mentioned before infrequent trading itself

induces a downward bias in the realized range, as the observed minimum and maxi-

mum price over- and underestimate the true minimum and maximum, respectively.

Two procedures have been suggested for correcting the downward bias in the

range due to infrequent trading. First, Rogers and Satchell (1991) derive expressions

for the expected difference between the observed high and low prices and their true

but unobserved counterparts. For the i-th interval during day t, the (log of the)

observed high and low price, Ht,i and Lt,i are equal to

log Ht,i = log H∗
t,i − δH and log Lt,i = log L∗

t,i + δL,

where H∗
t,i and L∗

t,i are the true maximum and minimum prices, respectively. Under

the assumption of equidistant prices, Rogers and Satchell (1991) show that E[δH ] =

E[δL] = aσ/
√

Ni with a =
√

2π(1
4
− (

√
2 − 1)/6], and E[δ2

H ] = E[δ2
L] = bσ2/Ni

with b = (1 + (3π/4))/12, where Ni is the number of prices observed during the i-th

interval. Using this result, it is straightforward to derive that a bias-corrected version
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of the high-low range estimator given in (3) is the positive root of the equation

σ̂2 =
(b + a2)

2Ni log 2
σ̂2 +

a(log Ht,i − log Lt,i)√
Ni log 2

σ̂ +
(log Ht,i − log Lt,i)

2

4 log 2
. (9)

Second, Christensen and Podolskij (2005) argue that the downward bias in the

(realized) range is caused by the fact that the scaling factor 4 log 2 in (3) is not

appropriate in the presence of infrequent trading. This factor derived by Parkinson

(1980) is equal to the second moment of the range of a standard Brownian motion

Bt, that is E[s2
B] = 4 log 2, where

sB = sup
0≤s,t≤1

(Bt − Bs). (10)

Christensen and Podolskij (2005) suggest to replace this factor by the expected value

of the squared range of a Brownian motion that is observed Ni times, the number

of observations during the i-th intra-day interval. In case of equidistant prices, for

example, this boils down to

E

[
max

1≤k,l≤Ni

(Bl/Ni
− Bk/Ni

)2

]
.

Unreported results from the simulation experiments in the next section show that

both bias-correction procedures work adequately, in that they remove the downward

bias in the realized range estimators due to infrequent trading to a large extent, even

for the highest frequencies. The Christensen-Podolskij procedure achieves a slightly

lower RMSE than the Rogers-Satchell procedure. A limitation of both correction

procedures is, however, that they cannot cope with the upward bias induced by bid-

ask bounce. Hence, we suggest an alternative bias-correction procedure by scaling

the realized range with the ratio of the average level of the daily range and the

average level of the realized range over the q previous trading days. That is, the

scaled realized range is defined as

RR∆
S,t =

(∑q
l=1 RRt−l∑q
l=1 RR∆

t−l

)
RR∆

t , (11)

where RRt ≡ RR1
t denotes the daily range. This is based upon the idea that the

daily range is (almost) not contaminated by microstructure noise and thus provides
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a good indication of the true level of volatility. An important choice to be made

when implementing this bias-adjustment is of course the number of trading days q

used to compute the scaling factor. If the trading intensity and the spread do not

change for the asset under consideration, q may be set as large as possible in order

to gain accuracy. Of course, in practice both features tend to vary over time, which

suggests that only the recent price history should be used and q should not be set

too large. We return to this issue below.

We close this section by discussing several alternatives for bias-correcting the

RV ∆
t estimator that have been put forward recently and that will be included in the

subsequent analysis. First, the scaling procedure suggested for the realized range

also can be applied to the realized variance estimator. That is, the scaled realized

variance, RV ∆
S,t, may be obtained from (11) by replacing RR with RV . See Hansen

and Lunde (2005) for a theoretical justification of this scaling estimator.

Second, the effect of bid-ask bounce (and presumably other types of microstruc-

ture noise) can be removed by adding autocovariances to the realized variance. In

particular, we consider the RV ∆
AC1,t estimator, which incorporates the first-order

autocovariance,

RV ∆
AC1,t =

I∑

i=1

r2
t−1+i∆,∆ + 2

I∑

i=2

rt−1+i∆,∆rt−1+(i−1)∆,∆. (12)

We refer to Barndorff-Nielsen et al. (2004) and Hansen and Lunde (2005, 2006b) for

an in-depth analysis of the properties of this realized variance estimator.

Third, Zhang et al. (2005) develop the so-called two time-scales (TTS) estimator,

which combines realized variance estimators obtained from returns sampled at two

different frequencies. In particular, the realized variance estimator obtained using

a certain (low) frequency is corrected for bias due to microstructure noise using

the realized variance obtained with the highest available sampling frequency. The

essential argument is that the low-frequency estimator renders a biased estimate of

the true integrated variance with the bias being a function of the variance of the noise

in the return processes. The realized variance estimator using the highest possible

frequency consistently estimates this noise variance and can therefore be used to
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reduce and potentially even eliminate the bias of the low-frequency estimator. In

addition, subsampling is used to reduce the variance of the low-frequency realized

variance estimator as follows. Assume that we observe N + 1 equidistant prices

during the trading day, where N is an integer multiple of I, the number of intra-day

intervals corresponding to a particular sampling frequency. In that case, the grid of

intervals of length ∆ = 1/I can be laid over the trading day in N/I different ways.

For example, in case prices observed once every minute, for the realized variance

based on the five-minute sampling frequency rather than starting with the interval

9:30-9:35 one could also start with 9:31-9:35, 9:32-9:37, 9:33-9:38 or 9:34-9:39. In

this way five ‘subsamples’ are created and each of these can be used to compute

the realized variance. The final realized variance is then taken to be the average

across subsamples. A practical problem with this procedure is how to treat the

loose ends at the start and the end of the trading session. Here we omit these and

proportionally inflate the realized variances for the missing part of the trading day.

Based on the above, the two time-scales estimator RV ∆
TTS,t is obtained as

RV ∆
TTS,t =

N

N − I

(
RV ∆

Subs,t −
I

N
RVMax,t

)
, (13)

where RV ∆
Subs,t is the subsampling estimator using returns over intervals of length ∆

with I = (I − 1) + I/N being the average number of intraday return observations

used by each of the realized variance estimators used in the subsampling process, and

RVMax,t is the realized variance based on the highest possible sampling frequency

using all N return observations.

3 Simulation

We simulate prices for 24-hour days, assuming that trading can occur round the

clock. For each day t, the initial price is set equal to 1, and subsequent log prices

are simulated using

log Pt+j/J = log Pt+(j−1)/J + εt+j/J , j = 1, 2, . . . , J, (14)
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where J is the number of prices per day. To approximate the ideal situation with

continuous trading and no market frictions we simulate 100 prices per second, such

that J = 8, 640, 000 as there are 86,400 seconds in a 24-hour day. The shocks εt+j/J

are independent and normally distributed with mean zero and variance σ2/(D · J),

where total annualized standard deviation σ of the log price process is set equal to

0.21 (21%), and D is the number of trading days in a year, which we set equal to

250. We simulate prices for 5000 trading days in all experiments reported below.

To illustrate the promise of realized range as a measure of (daily) volatility we

compute both the realized range and the realized variance for the prices simulated

in the ideal world as described above. To do so we divide the trading day into x-

minute intervals, which is called the x-minute frequency. For example when x = 1

we divide the 24-hour day into 1440 1-minute intervals. For the realized variance

the squared 1-minute returns are summed to obtain the realized variance at that

frequency. For the realized range the high and low are computed per 1-minute

interval and the resulting 1-minute ranges are summed to obtain the realized range

for the day. We also consider the scaled versions of the realized range and the

realized variance computed according to (11). In subsequent experiments with non-

trading and bid-ask bounce, the characteristics of these microstructure frictions are

identical for all trading days, such that we can use a large number of trading days q

to compute the scaling factor. We therefore set we set q = 5000 to fully explore the

possibilities of the scaling bias-adjustment procedure. The sensitivity of the results

with respect to the value of q is discussed in more detail below. Finally, the RV ∆
AC1,t

kernel-based estimator and the two time-scales estimator RV ∆
TTS,t are included. For

the latter we use all observed prices to compute the realized variance at the highest

possible frequency to obtain an accurate estimate of variance of the measurement

noise, and implement the subsampling estimator by shifting the intra-day intervals

ten seconds at a time. For each selected frequency we compute the mean and Root

Mean Squared Error (RMSE) for the various volatility estimators, taken over 5000

simulated trading days. The results are presented in Table 1.

- insert Table 1 about here -
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For x = 1440 minutes (the final row in the table) the realized range equals

the daily high-low range and the realized variance equals the daily squared return.

As expected the RMSE of the range is substantially lower at 2.564 than that for

the daily squared return at 5.664, reflecting the fact that the daily range is five

times more efficient than the daily squared return. Akin to the findings of Andersen

and Bollerslev (1998) and Brandt and Diebold (2006) the realized variance requires

the 4-hour (240 minutes) frequency to achieve a similar RMSE as the daily range.

Obviously in this case the RMSE of the realized range is always substantially lower

than that of the realized variance at the same frequency. We also observe that the

RMSE of the TTS estimator is lower than the RMSE of the corresponding realized

variance estimator, because of the reduction in variance due to the subsampling

used. This is not sufficient though to achieve the same efficiency as the realized

range estimator. Finally, in the absence of microstructure noise, the RMSE of the

RV ∆
AC1,t estimator is about 1.7 times the RMSE of the standard realized variance,

cf. the theoretical results of Hansen and Lunde (2005, 2006b).

From Table 1 it appears that the realized range is slightly downward biased for

the highest frequencies (the true variance is 4.41). This is inherent to the nature of

the high-low range: In case the price path is not observed continuously (in our case

we observe ‘only’ 6000 prices per minute) the observed minimum and maximum

over- and underestimate the true high and low prices, respectively, such that the

observed range underestimates the true range. To investigate this problem in more

detail Table 2 shows the results when infrequent trading occurs, such that the price

is observed on average only every τ = 10 seconds. That is, given the simulated paths

underlying Table 1, the probability to observe the price is equal to π = 1/(100τ).

- insert Table 2 about here -

The results for the realized range show that the RMSE first declines when in-

creasing the sampling frequency up to the 30-minute frequency. Then it increases

again for higher frequencies because the increase in the bias due to non-trading (and

hence underestimating the range for each intra-day interval) then outweighs the re-
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duction in the standard deviation of the estimates. The different realized variance

estimators are not affected by infrequent trading, except for a slight increase in the

(standard deviation and thus in) RMSE. As a result at the 30-minute frequency,

for example, the realized range still is a more accurate volatility measure than the

corresponding realized variance, but at the 5-minute frequency the realized variance

has a substantially lower RMSE than the realized range. Of course the exact fre-

quency at which one estimator improves over the other will depend on the trading

intensity. For example when observing a price on average every second the realized

range improves over the realized variance up to the 5-minute frequency. Unreported

results using the bias-correction procedures of Rogers and Satchell (1991) and Chris-

tensen and Podolskij (2005), which are explicitly designed for handling the effects of

infrequent trading, shows that both procedures work satisfactorily, in the sense that

they largely remove the bias in the realized range estimators, even for the highest

frequencies. The results for RR∆
S,t in Table 2 demonstrates that scaling the realized

range does not eliminate the bias completely, which is due to the fact that the daily

range also is somewhat biased downward due to the infrequent trading. In terms of

RMSE, the scaling procedure is slightly better than the Rogers-Satchell procedure,

and only slightly worse than the Christensen-Podolskij procedure. For example, at

the 5-minute frequency the RMSE of RR∆
S,t is equal to 0.205, compared to 0.229

and 0.187 for the bias-corrected realized range estimators based upon (9) and (10),

respectively.

As noted in the previous section, the number of trading days q used to compute

the scaling factor for RR∆
S,t is a crucial choice to be made. If the trading intensity

and the spread are constant over time, q may be set large in order to gain accuracy.

On the other hand, when the magnitude of these microstructure frictions varies

over time, only the recent price history should be used and q should be set fairly

small. Figure 1 shows the RMSE of the scaled realized range for the experiment with

infrequent trading as a function of q, with the rightmost point of each line showing

the RMSE for q = 5000 as given in Table 2. The RMSE monotonically declines as

q increases, but the largest gains occur up to q = 500, beyond which the RMSE
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more or less stabilizes. Also note that the reduction in RMSE due to increasing q is

largest for higher sampling frequencies.

- insert Figure 1 about here -

Next, we consider the effects of bid-ask bounce. For this purpose we assume that

transactions take place either at the ask price or at the bid price, which are equal to

the true price plus and minus half the spread, respectively. Hence, if a transaction

occurs at t+ j/J , the actually observed price P ∗
t+j/J is equal to Pt+j/J + s/2 (ask) or

Pt+j/J −s/2 (bid), where s is the bid-ask spread and Pt+j/J is the true price obtained

from (14). As in Brandt and Diebold (2006), we set s = 0.0005 (or 0.05% of the

starting price of 1) and assume that bid and ask prices occur equally likely.

The results in Table 3 show that as expected both realized range and realized

variance suffer upward bias, which gets worse as the sampling frequency increases.

The bias in the realized range is caused by the fact that in the limit the observed

range will overestimate the true range by exactly the spread, as the maximum price

will be an ask and the minimum price will be a bid. The realized variance is biased

upwards because half of the times (when the return is computed from bid to ask or

from ask to bid) the squared bid-ask spread is included. The realized range is affected

more by the bid-ask bounce than the realized variance, when comparing them at

the same sampling frequency. In this particular parameter setting the realized range

outperforms the realized variance up to the 1-hour (60-minute) frequency. For higher

sampling frequencies the RMSE of the realized variance is lower. Scaling the realized

range works remarkably well, in the sense that the bias is removed completely and

the RMSE values are brought back to the original level observed for RR∆
t in the

ideal case without bid-ask bounce shown in Table 1, or even slightly below. The

unreported results for the bias-correction procedures of Rogers and Satchell (1991)

and Christensen and Podolskij (2005) show that logically they completely fail to

correct for the bid-ask bounce effects. Scaling the realized variance also removes a

large part of the bias, but at frequencies higher than 60 minutes, say, the RSME

remains substantially higher than the RMSE of RV ∆
t in Table 1. As expected, both
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RV ∆
TTS,t and RV ∆

AC1,t are robust to the presence of bid-ask bounce. Note that the

scaled realized range outperforms the TTS estimator (and therefore the kernel-based

estimator as well) at all frequencies considered.

- insert Table 3 about here -

Finally, we consider the realistic situation where both bid-ask bounce and in-

frequent trading are present, combining the specifications for these two frictions as

discussed before. Results of this experiment are shown in Table 4. The realized

range still suffers from an upward bias, but of a considerably smaller magnitude

than in the case of bid-ask bounce only due to the off-setting negative bias induced

by infrequent trading. As a result, the realized range now has a lower RMSE than

the realized variance up to the 30-minute frequency, as well as at the 1-minute fre-

quency. In addition the overall minimum RMSE is obtained at 0.749 for the realized

range at the 45-minute frequency. For the realized variance the optimal frequency

is the 10-minute frequency for which the RMSE is 0.717, hence only slightly smaller

than that for the optimal realized range. Also here we find that scaling the realized

range works adequately in removing the bias and bringing the RMSE of the RR∆
S,t

estimator down to the levels originally observed in the case of no market microstruc-

ture frictions. Finally, again we observe that the two time-scales estimator and the

kernel-based estimator remain unbiased, but their RMSEs are higher than those of

the scaled realized range.

- insert Table 4 about here -

Concluding, the simulation experiments quite convincingly demonstrate the po-

tential of the realized range as a measure of volatility. In case of continuous trading

and no market frictions it always improves upon the popular realized variance when

using the same sampling frequency. In reality trading is discontinuous and observed

prices are bid and ask prices. In that case scaling the realized range with the average

(relative) level of the daily range is an effective procedure to remove the induced bias

and restore the efficiency of the realized range. Of course these results are obtained
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assuming a specific price process that may affect the results. In particular, we have

assumed that the microstructure noise is temporally independent and independent

from the true price process. As discussed in Hansen and Lunde (2006b), there is

substantial empirical evidence against both these assumptions at ultra-high frequen-

cies. Further investigation of the properties of the realized range estimator under

more general specifications of the noise process is therefore warranted. As such it

will also be interesting to look at its performance for actual market data in Sections

4 and 5 below.

4 S&P500 index futures

The S&P500 index-futures contract is the largest equity futures contract in the

world. It is trading virtually round the clock, with floor trading on the Chicago

Mercantile Exchange (CME) from 9:30 to 16:15 Eastern Standard Time (EST), and

electronic trading on GLOBEX almost 24 hours a day apart from Friday evening

to Sunday evening. Our sample contains transaction prices and bid and ask quotes

running from 4 January 1999 to 23 February 2004. The S&P500 futures contract

has maturities in March, June, September and December. We always use the most

liquid contract (usually until 1 week before the maturity of that contract) and make

sure that when changing from one contract to the next, we never compute returns

based on prices from two different contracts. For the 1289 days in the sample period

this results in on average 3,223 transaction prices during floor trading from 9:30 to

16:15 EST and 1,802 transactions during the remainder of the day with a substantial

number taking place in the run-up to the opening of the New York Stock Exchange

(NYSE) at 9:30 EST. The spread is relatively small but varies considerably over time.

For example, for the September 2001 contract the average spread (based on bid and

ask quotes with the same time stamp to the nearest second) is 0.443 index-points on

an average futures price of 1190 (0.037%), whereas for the December 2003 contract it

is 0.220 on an average price of 1039 (0.018%). Hence such a liquid contract does not

exactly reflect the ideal situation with continuous trading and no market frictions,
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but it is not far off either. In Section 5 we will repeat some of the analysis below for

the S&P100 index constituents that provide much more noisy data. The variation

in the average spread implies that the ratio of the average level of the daily range

relative to the average level of the realized range changes over time. For this reason

we compute the scaling factor for RR∆
S,t in (11) using the previous q = 66 trading

days or approximately three months.

4.1 Characteristics of realized range

Initially we follow Andersen, Bollerslev, Diebold and Ebens (2001) (henceforth

ABDE) by documenting the characteristics of the realized range defined in (5) mea-

sured using five-minute intervals from 9:30-16:15 EST (as in ABDE) and 15-minute

intervals from 16:15 to 9:30 EST. For comparison we also include the properties of a

number of other estimators. Table 5 shows selected sample statistics for the squared

daily returns, r2
t , the realized range (RR∆

t ), the realized variance (RV ∆
t ), the scaled

realized range and realized variance (RR∆
S,t and RV ∆

S,t), the two time-scales estimator

(RV ∆
TTS,t) and the kernel-based estimator (RV ∆

AC1,t).

- insert Table 5 about here -

The mean daily squared (close-to-close) return is 1.792 implying an annualized

standard deviation for the S&P500 index of around 21.4%. The mean realized vari-

ance is close to this (1.818), whereas as expected the realized range has a lower

average at 1.533. Hence it seems that bid-ask bounce is not a crucial issue at the se-

lected sampling frequency, whereas not observing a continuous path of prices causes

a downward bias in the realized range. This problem will obviously increase for

higher frequencies. We return to this point below when considering results for other

sampling frequencies. Here we note that scaling the realized range with the ratio of

the average level of the daily range for the previous q = 66 days, as in (11), increases

the average to 1.750, more in line with the realized variance.

Both the realized variance and the realized range are right-skewed and leptokur-

tic, although less so for the realized range than for the realized variance. The stan-
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dard deviation of the daily squared returns is 3.263, substantially higher than the

standard deviation of the realized variance at 1.879. This is in line with the notion

that both measures are unbiased but realized volatility is less noisy. The standard

deviation of the TTS estimator is only slightly lower at 1.840, while that of the

kernel-based RV ∆
AC1,t estimator is higher at 1.942. This also suggests that the effects

of microstructure noise are limited for the S&P500 index-futures contract. Finally,

we observe that the realized range is even less noisy with a standard deviation of

1.408. Even after adjusting for the bias the standard deviation remains below that

of the realized variance at 1.678, underlining the potential of the realized range

estimator.

ABDE report that daily returns standardized with the realized standard devia-

tions are approximately Gaussian for the 30 Dow Jones stocks. Table 6 reports the

corresponding results for the realized range. The results in the first column for the

daily returns show that normality is rejected at conventional significance levels. For

the daily returns standardized with the square root of the (scaled) realized range,

however, the sample kurtosis is reduced to 2.814 (2.800) from 4.310 for the raw re-

turns. Note that the Jarque-Bera test statistic is asymptotically χ2(2), with a 5%

critical value of 5.99 (1%: 9.21). Hence for the daily returns standardized with the

(square root of the) (scaled) realized range the null hypothesis of normality cannot

be rejected. In contrast, for the daily S&P500 returns standardized with the (scaled)

realized standard deviation the null of normality is rejected at the 5% significance

level.

- insert Table 6 about here -

We examine the effect of the sampling frequency on the properties of the realized

range by varying the length of the intra-day intervals. For the floor trading period be-

tween 9:30 and 16:15 EST (405 minutes) we consider x ∈ {1, 2.5, 5, 15, 27, 33.75, 45, 81, 405}
minutes, and for the electronic trading period from 16:15 to 9:30 EST (1035 minutes)

we consider x ∈ {5, 15, 45, 115, 207, 1035} minutes. All 54 combinations are tracked.

For a selection of these combinations, Table 7 reports the mean and standard devi-
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ation of the realized range and the realized variance and the scaled versions thereof,

as well as the two time-scales estimator and the first-order kernel-based estimator.

- insert Table 7 about here -

For both the realized range and the realized variance the standard deviation de-

creases for higher sampling frequencies, as expected. At the same time, the mean

of the realized range decreases, suggesting that the downward bias induced by in-

frequent trading dominates the upward bias due to bid-ask bounce. For the realized

variance the mean actually increases for the highest sampling frequencies. This is

also expected because bid-ask bounce will play a relatively more important role at

those frequencies, while realized variance is not affected by infrequent trading. We

also observe a considerable (and unexpected) increase in the mean for the two time-

scale estimator as the sampling frequency increases. Scaling (again using q = 66)

stabilizes the mean of both realized range and realized variance across frequencies,

but comes at the cost of an increased standard deviation. Note though that at high

sampling frequencies the standard deviation of the realized range remains below that

of all realized variance estimators, including the two time-scales estimator.

4.2 Measuring and forecasting: realized range vis-à-vis re-

alized variance

The ultimate objective is to find the most accurate way of measuring and forecasting

volatility. How to decide, however, on the best volatility measure if we need that

measure to evaluate the candidates? To avoid biasing the results one way or another

when comparing realized variance and realized range, we follow Beckers’ (1983)

ideas. Beckers (1983) compares the predictive ability of the squared daily close-to-

close return and the daily high-low range estimator, testing each one as a predictor

of itself and of the alternative volatility measure. The comparison is implemented

by regressing each of the variance estimators on either its own lagged value or its

competitor’s. If one volatility measure dominates the other, one would expect to see

a higher R2 for that approach regardless of the choice of the left-hand-side variable
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in the regression. Similarly an encompassing regression can be used. Here the same

procedure will be applied, but now for comparing the (scaled) realized range with

the (scaled) realized variance and with the TTS estimator. Since potential biases

are not captured by the regression R2, in addition we also inspect the Mean Squared

Error (MSE) and the Mean Absolute Error (MAE). To test the significance of the

differences between realized variance and realized range the Diebold and Mariano

(1995) test statistic is used. Let yt be the realized variance or the realized range on

day t, and let ŷit and ŷjt denote the forecasts (one is lagged realized variance or the

lagged TTS estimator, the other lagged realized range). The test statistic is

DM =
d√

V̂ (dt) /T

d→ N (0, 1) , (15)

where d is the sample mean loss differential d = 1
T

∑T
t=1 dt, and where V̂ (dt) is a

consistent estimate of the asymptotic variance of dt. Given that we only consider

one-step ahead forecasts, we use V̂ (d) = 1
T

∑T
t=1

(
dt − d

)2
. The loss differential

series dt depends on the evaluation criterion for the forecast errors. In particular:

R2 : dt =
(yt − α̂i − β̂iŷit)

2 − (yt − α̂j − β̂j ŷjt)
2

1
T

∑T
t−1(yt − y)2

,

MSE : dt = (yt − ŷit)
2 − (yt − ŷjt)

2,

MAE : dt = |yt − ŷit| − |yt − ŷjt|.

In these three cases rejecting the null hypothesis that d = 0 implies that there is a

significant difference between forecast i and forecast j. Harvey et al. (1998) propose

a similar test for encompassing regressions based on,

ENC : dt = (ŷjt − ŷit)(yt − ŷit).

Here rejecting the null hypothesis indicates forecast j has useful information not

already impounded in forecast i.

Beckers (1983) basically uses the lagged (raw) variance measures as forecasts for

the current variance. In addition the analysis will be repeated following Fleming et

al. (2003) in adjusting the conditional variances and producing rolling forecasts based
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on exponentially declining weights, building upon the work by Foster and Nelson

(1996) and Andreou and Ghysels (2002) on rolling volatility estimators. Consider

the following model for close-to-close returns,

rt = σtzt,

with zt ∼ iid(0, 1) and

σ2
t = exp(−α)σ2

t−1 + α exp(−α)Vt−1, (16)

where Vt is the measure of volatility for day t used to update the conditional vari-

ances. In our case that could be the squared close-to-close return, the daily high-low

range, the (scaled) realized range, the (scaled) realized variance or the two time-

scales estimator. Following Fleming et al. (2003), we adjust the conditional vari-

ances in (16) obtained using the ‘raw’ realized range and realized variance for bias

by scaling with the conditional variances based on the daily counterparts, as in (11),

i.e. the daily squared returns for the realized variance and the daily high-low range

for the realized range. We set the number of trading days q used to estimate the

bias adjustment coefficient to 66 as before. The decay parameter α and the bias ad-

justments (which are functions of α) are estimated simultaneously using maximum

likelihood for the full sample. To load the conditional variances in (16) we use the

first 100 realized ranges (variances), and we also drop those 100 observations from

the analysis to preserve the same ‘forecast’ period.

To compare the realized range and realized variance estimators with the proce-

dure outlined above several variants are tested. First, three sampling frequencies

are considered: 1/5 (one-minute intervals from 9:30-16:15 EST, five-minute intervals

from 16:15-9:30 EST), 5/15, and 27/45 minutes. Second, the issue of market closure

is addressed by not only looking at the close-to-close 24-hour day, but also only at the

open-to-close period (9:30-16:15 EST for the S&P500 index-futures, 9:30-16:00 EST

for the individual stocks in Section 5). Third, closely related to this is the presence

of large outliers in especially the realized variance series of the individual stocks for

the close-to-close period, often caused by a large overnight return. Therefore next
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to the unadjusted series results are also reported when all variance measures are

truncated at the median plus or minus four times the median absolute deviation.2

The results for the S&P500 index-futures are reported in Tables 8 to 13. Re-

gardless of the sampling frequency, the outlier adjustments, or close-to-close versus

open-to-close, the unadjusted realized range performs significantly better than the

realized variance with only a few exceptions, as shown in Table 8. The main ex-

ceptions are at the one-minute frequency with realized variance as the forecasting

target yt and the MSE or MAE as performance measures. This can be explained

by the fact that the realized range is severely downward biased at the one-minute

frequency as shown in Table 7. The logical next step is therefore to look at the scaled

versions of the realized variance and the realized range in Table 9. Here we do see

an improved performance of the realized range at the one-minute frequency. The

overall picture remains that the (scaled) realized range is superior. The encompass-

ing regressions even suggest the (scaled) realized variance contains no incremental

information beyond that already captured by the (scaled) realized range.

- insert Tables 8-10 about here -

In the simulation experiments in Section 3 we found that the TTS estimator

came closest to the performance of the scaled realized range in the presence of

market microstructure noise. Table 10 reports the corresponding results for the

S&P500, showing that also for this empirical application the TTS estimator does a

better job than the (scaled) realized variance. Still the number of significant results

in Table 10 is 61-4 in favour of the scaled realized range. This is perhaps a bit

surprising in light of the simulation results. In our opinion, it mainly illustrates the

robustness of scaling as a bias-adjustment procedure compared to a bias-corrected

estimator based on specific model assumptions. The data generating process in

our simulation experiment exactly satisfies the conditions under which the TTS

estimator was derived, but the actual data probably do not completely adhere to

2See Hansen and Lunde (2006a) and Patton (2005) for extensive discussion of pitfalls in forecast
evaluation for volatility models, when a proxy is substituted for the unobserved volatility.
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those conditions.

So far we considered random walk forecasts. Tables 11 to 13 provide the cor-

responding results for the rolling forecasts following the procedure of Fleming et

al. (2003). Here the improved forecast performance of the (scaled) realized range

relative to the (scaled) realized variance and the TTS estimator are even more pro-

nounced than before. Counting the number of significant results across the entire

table we now get 74-5 in Table 11 (was 77-6 in Table 8), 92-0 in Table 12 (was 80-1

in Table 9), and 82-0 in Table 13 (was 61-4 in Table 10), all in favour of the realized

range.

- insert Tables 11-13 about here -

5 S&P100 constituents

Obviously the analysis in the previous section only considers 1 particular asset,

the S&P500 index-futures, which is an extremely liquid asset with a small bid-ask

spread. With the main issue at stake being whether the realized range better deals

with market microstructure than the realized variance this could provide a biased

picture. For that reason we also consider the individual stocks in the S&P100 index

(constituents in June 2004), where the data consists of open, high, low and close

transaction prices at the one-minute frequency. For most stocks the sample period

runs from April 9, 1997, to June 18, 2004 (1808 daily observations). Table 14 reports

some sample statistics on the distribution of the 100 (scaled) realized ranges based

on the five-minute frequency from 9:30 to 16:00 EST, in addition to the close-to-open

squared return. This table is similar in nature to the one in ABDE for the realized

variance of the 30 Dow Jones stocks.

- insert Table 14 about here -

The average realized range at 4.798 and the average standard deviation of the

range at 3.637 are both larger for the individual stocks compared to that for the

S&P500 index-futures. The large skewness and kurtosis is partly the result of large
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overnight returns after disappointing firm-specific news announcements. The general

features are similar for the scaled realized range. Obviously for stocks where the

infrequent trading bias dominates the mean is scaled upwards (e.g. in the lowest

percentile), and for stocks where the bid-ask bounce bias dominates the mean is

scaled downwards (e.g. in the highest percentile).

Again we compare the realized range and realized variance, along the lines de-

scribed in Section 4. We do not consider the two time-scale estimator here as the

highest available sampling frequency only is one minute. The results are presented

in Table 15 to 17, where we record a DM test either as a win for realized variance

(1-0), a win for realized range (0-1), or undecided (0-0) using a 5% significance level

in a one-sided test. Note that for the encompassing test it is possible that both score

a win (1-1). The results in Table 15 indicate that in particular for the popular five-

and 30-minute frequencies the realized range performs significantly better than the

realized variance. Only for the one-minute frequency the realized variance performs

significantly better than the realized range when realized variance is used to evalu-

ate both, whereas the realized range outperforms the realized variance when realized

range is used to evaluate both. Of all significant differences 80% are in favour of the

realized range.

- insert Tables 15-16 about here -

Table 16 shows the results for the scaled versions of the realized variance and

the realized range. The results are similar to the ones in 15 in the sense that still

about 80% of the significant differences are in favour of the scaled realized range.

There are, however, a few notable differences. Most of these occur when using the

MSE and MAE, where the volatility measure that is not used as the forecast target

is now more often winning. A logical explanation for this is that these measures

increase for large differences in the levels of the actual volatility and the forecast.

As we already have seen in the simulation experiments at the highest frequencies

we consider here the realized range has a higher average than the realized variance

in the presence of both non-trading and bid-ask bounce. This difference is removed
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when using the scaled versions.

Producing rolling forecasts following Fleming et al. (2003), Table 17 clearly

favours the realized range. Now 88% of all significant results favour the realized

range. The additional gains come especially for the R-squared and the encompass-

ing regression measures.

- insert Table 17 about here -

To further analyse the effect of non-trading on the realized range, we look at

the relation between trading activity in a stock and the win-loss ratio. In particular

we construct a variable that counts per stock the number of wins for the realized

variance minus the number of wins for the realized range, taken over all instances

covered by Tables 15 to 17 (so open-to-close, with and without outliers, etc.). We

measure trading activity by the average number of minutes per day without a trade.

When regressing the win-loss difference on this (non-)trading activity variable we

find a statistically significant negative relationship. Hence, the realized range is more

likely to win if a stock is more actively traded. Obviously in this case we move closer

to the S&P500 example where results were strongly in favour for the realized range.

6 Concluding remarks

In this paper we studied the properties and merits of the ‘realized range’, a measure

of daily volatility computed by summing high-low ranges for intra-day intervals. In

theory the high-low range is a more efficient estimator of volatility than the squared

return. Hence, just like the daily high-low range improves over the daily squared

return, the ‘realized range’ should improve over the ‘realized variance’ obtained by

summing squared returns for intra-day intervals. Theoretically that is. In practice we

need to account for market frictions such as bid-ask bounce and infrequent trading.

For this purpose, we proposed a bias-adjustment procedure for the realized range

estimator, which involves scaling the realized range with the ratio of the average

level of the daily range and the average level of the realized range.
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A simulation experiment first confirms that in theory indeed the realized range is

a better volatility measure than the realized variance when using the same sampling

frequency. This no longer is true for the highest sampling frequencies in the case of

infrequent trading as this leads to a downward bias in the realized range and does

not affect the realized variance. When allowing for bid-ask bounce both realized

range and realized variance are upward biased, but the realized range suffers more

as the minimum (maximum) is often half a spread below (above) the true minimum

(maximum). In the presence of these market microstructure frictions, scaling the

realized range with the average (relative) level of the daily range turns out to be an

effective procedure to remove the induced bias and restore the efficiency of the real-

ized range. In particular, the scaled realized range outperforms popular corrections

of the realized variance for microstructure noise, including the two time-scales esti-

mator of Zhang et al. (2005) and the kernel-based estimators considered by Hansen

and Lunde (2006b).

For the S&P500 index-futures we come closest in practice to the ideal situation of

continuous trading and no market frictions. As expected the simulation results are

confirmed in that the (scaled) realized range improves significantly over the (scaled)

realized variance as well as the two time-scales estimator as a measure for daily

volatility. For the constituents of the S&P100 index all ingredients of market frictions

are present, with bid-ask bounce, discontinuous trading and large (overnight) jumps.

The results are more mixed here, but realized range still significantly improves over

realized variance for the popular sampling frequencies of five and 30 minutes.
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Table 1: Realized range and realized variance with continuous trading and no market frictions

Frequency RR∆
t RR∆

S,t RV ∆
t RV ∆

S,t RV ∆
TTS,t RV ∆

AC1,t

(minutes) Mean RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE

1 4.333 0.105 4.299 0.135 4.411 0.155 4.317 0.197 4.413 0.145 4.429 0.258
2 4.356 0.112 4.299 0.150 4.418 0.213 4.318 0.242 4.421 0.185 4.448 0.389
3 4.368 0.128 4.299 0.165 4.428 0.269 4.319 0.289 4.428 0.224 4.448 0.468
4 4.379 0.143 4.300 0.179 4.441 0.325 4.320 0.337 4.435 0.259 4.444 0.547
5 4.382 0.156 4.299 0.189 4.431 0.347 4.317 0.358 4.439 0.287 4.434 0.615

10 4.402 0.217 4.300 0.240 4.432 0.501 4.320 0.502 4.436 0.406 4.378 0.915
15 4.405 0.271 4.300 0.288 4.419 0.638 4.317 0.636 4.425 0.510 4.456 1.130
20 4.409 0.314 4.302 0.326 4.411 0.740 4.325 0.734 4.410 0.603 4.514 1.304
30 4.409 0.393 4.298 0.400 4.435 0.908 4.315 0.893 4.441 0.749 4.455 1.585
45 4.425 0.490 4.301 0.489 4.493 1.148 4.322 1.109 4.475 0.933 4.332 1.929
60 4.425 0.579 4.299 0.574 4.444 1.315 4.316 1.283 4.445 1.079 4.292 2.190
90 4.435 0.714 4.300 0.701 4.420 1.625 4.320 1.591 4.401 1.338 4.214 2.538

120 4.418 0.827 4.297 0.813 4.372 1.809 4.317 1.789 4.360 1.528 4.146 2.792
180 4.399 1.005 4.300 0.989 4.313 2.192 4.319 2.195 4.305 1.800 4.149 3.454
240 4.362 1.128 4.296 1.116 4.230 2.423 4.311 2.465 4.251 2.048 4.242 3.913
360 4.341 1.317 4.294 1.306 4.192 2.878 4.311 2.954 4.233 2.627 4.307 4.687
720 4.331 1.889 4.298 1.877 4.318 4.330 4.330 4.347 4.231 4.190 4.323 5.664

1440 4.287 2.564 4.287 2.564 4.323 5.664 4.323 5.664 4.323 5.664 4.323 5.664

Note: The table shows the results of a simulation experiment where 5000 days of 8,640,000 (log) prices (100 prices per second) are
simulated from a normal distribution with mean zero and variance 4.41 (21% standard deviation on an annual basis). All prices are
observed. For each day the realized range (RR∆

t ), the scaled realized range (RR∆

S,t), the realized variance (RV ∆
t ), the scaled realized

variance (RV ∆

S,t), the two time-scales estimator (RV ∆

TTS,t) and the first-order kernel-based estimator (RV ∆

AC1,t) are computed for

various sampling frequencies shown in column 1. RR∆

S,t and RV ∆

S,t are obtained from (11) with q = 5000 (with RR replaced by RV

for the scaled realized variance).
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Table 2: Realized range and realized variance with infrequent trading

Frequency RR∆
t RR∆

S,t RV ∆
t RV ∆

S,t RV ∆
TTS,t RV ∆

AC1,t

(minutes) Mean RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE

1 2.633 1.778 4.317 0.137 4.412 0.162 4.262 0.217 4.411 0.154 4.409 0.282
2 3.034 1.379 4.317 0.157 4.409 0.229 4.263 0.267 4.411 0.202 4.407 0.396
3 3.241 1.174 4.316 0.177 4.413 0.281 4.261 0.310 4.410 0.240 4.403 0.481
4 3.372 1.046 4.316 0.192 4.406 0.323 4.258 0.348 4.409 0.274 4.409 0.554
5 3.468 0.953 4.318 0.205 4.407 0.361 4.263 0.380 4.408 0.303 4.414 0.623

10 3.712 0.730 4.314 0.266 4.402 0.509 4.253 0.517 4.411 0.419 4.431 0.889
15 3.835 0.633 4.318 0.313 4.421 0.626 4.265 0.622 4.417 0.517 4.452 1.086
20 3.903 0.594 4.314 0.356 4.412 0.721 4.253 0.713 4.422 0.598 4.451 1.281
30 3.995 0.566 4.318 0.426 4.438 0.893 4.271 0.871 4.429 0.734 4.455 1.589
45 4.074 0.582 4.319 0.512 4.437 1.094 4.264 1.062 4.439 0.915 4.443 1.942
60 4.121 0.628 4.320 0.592 4.439 1.283 4.265 1.241 4.442 1.069 4.433 2.216
90 4.175 0.724 4.316 0.715 4.432 1.585 4.260 1.531 4.445 1.332 4.390 2.745

120 4.216 0.815 4.322 0.817 4.423 1.815 4.272 1.759 4.434 1.561 4.421 3.127
180 4.246 1.010 4.327 1.020 4.403 2.270 4.276 2.209 4.417 1.955 4.501 3.782
240 4.275 1.151 4.329 1.161 4.417 2.598 4.297 2.530 4.413 2.309 4.514 4.233
360 4.298 1.429 4.335 1.439 4.445 3.213 4.294 3.106 4.474 2.942 4.450 5.078
720 4.354 2.024 4.342 2.019 4.430 4.503 4.319 4.392 4.453 4.524 4.342 6.186

1440 4.353 2.799 4.353 2.799 4.342 6.186 4.342 6.186 4.342 6.186 4.342 6.186

Note: The table shows the results of a simulation experiment where 5000 days of 8,640,000 (log) prices (100 prices per second) are
simulated from a normal distribution with mean zero and variance 4.41 (21% standard deviation on an annual basis). Subsequently,
with probability π = 0.001 we observe a price and with probability 1 − π we do not. For each day the realized range (RR∆

t ),
the scaled realized range (RR∆

S,t), the realized variance (RV ∆
t ), the scaled realized variance (RV ∆

S,t), the two time-scales estimator

(RV ∆

TTS,t) and the first-order kernel-based estimator (RV ∆

AC1,t) are computed for various sampling frequencies shown in column 1.

RR∆

S,t and RV ∆

S,t are obtained from (11) with q = 5000 (with RR replaced by RV for the scaled realized variance).
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Table 3: Realized range and realized variance with bid-ask bounce

Frequency RR∆
t RR∆

S,t RV ∆
t RV ∆

S,t RV ∆
TTS,t RV ∆

AC1,t

(minutes) Mean RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE

1 14.682 10.273 4.490 0.099 8.913 4.514 4.319 0.196 4.419 0.217 4.429 0.389
2 11.024 6.616 4.490 0.109 6.664 2.277 4.320 0.247 4.426 0.215 4.450 0.467
3 9.579 5.172 4.490 0.121 5.931 1.564 4.321 0.294 4.432 0.241 4.445 0.532
4 8.772 4.366 4.490 0.132 5.565 1.224 4.320 0.337 4.438 0.270 4.444 0.605
5 8.237 3.832 4.490 0.142 5.331 1.013 4.320 0.362 4.442 0.295 4.437 0.663

10 6.999 2.603 4.491 0.193 4.883 0.725 4.322 0.501 4.440 0.409 4.382 0.945
15 6.479 2.094 4.491 0.240 4.721 0.746 4.321 0.633 4.428 0.512 4.460 1.149
20 6.182 1.809 4.492 0.280 4.632 0.810 4.327 0.735 4.414 0.604 4.514 1.328
30 5.832 1.490 4.489 0.354 4.586 0.950 4.319 0.889 4.444 0.750 4.460 1.606
45 5.572 1.283 4.492 0.447 4.591 1.178 4.322 1.104 4.478 0.934 4.337 1.945
60 5.410 1.184 4.490 0.533 4.518 1.336 4.319 1.279 4.449 1.080 4.293 2.201
90 5.232 1.126 4.490 0.666 4.471 1.644 4.323 1.591 4.404 1.339 4.213 2.548

120 5.104 1.123 4.488 0.782 4.410 1.826 4.317 1.791 4.363 1.528 4.149 2.805
180 4.954 1.192 4.490 0.966 4.338 2.201 4.321 2.194 4.308 1.800 4.148 3.468
240 4.839 1.257 4.487 1.099 4.246 2.425 4.311 2.460 4.254 2.048 4.249 3.932
360 4.727 1.405 4.485 1.300 4.201 2.885 4.314 2.957 4.236 2.627 4.316 4.696
720 4.602 1.948 4.489 1.894 4.325 4.343 4.331 4.353 4.234 4.191 4.327 5.679

1440 4.478 2.613 4.478 2.613 4.327 5.679 4.327 5.679 4.327 5.679 4.327 5.679

Note: The table shows the results of a simulation experiment where 5000 days of 8,640,000 (log) prices (100 prices per second) are
simulated from a normal distribution with mean zero and variance 4.41 (21% standard deviation on an annual basis). All prices are
observed, but are converted to bid and ask prices (with equal probability) by either subtracting or adding half the spread s = 0.005
(on a starting price of 1). For each day the realized range (RR∆

t ), the scaled realized range (RR∆

S,t), the realized variance (RV ∆
t ),

the scaled realized variance (RV ∆

S,t), the two time-scales estimator (RV ∆

TTS,t) and the first-order kernel-based estimator (RV ∆

AC1,t)

are computed for various sampling frequencies shown in column 1. RR∆

S,t and RV ∆

S,t are obtained from (11) with q = 5000 (with RR

replaced by RV for the scaled realized variance).
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Table 4: Realized range and realized variance with infrequent trading and bid-ask bounce

Frequency RR∆
t RR∆

S,t RV ∆
t RV ∆

S,t RV ∆
TTS,t RV ∆

AC1,t

(minutes) Mean RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE

1 8.243 3.836 4.472 0.097 8.913 4.515 4.263 0.213 4.415 0.205 4.419 0.401
2 7.073 2.667 4.473 0.110 6.664 2.280 4.264 0.265 4.416 0.219 4.402 0.475
3 6.562 2.158 4.472 0.127 5.917 1.553 4.263 0.310 4.414 0.250 4.410 0.541
4 6.258 1.856 4.472 0.140 5.529 1.190 4.258 0.349 4.412 0.279 4.414 0.605
5 6.056 1.657 4.473 0.156 5.311 1.001 4.264 0.381 4.411 0.306 4.417 0.667

10 5.553 1.172 4.471 0.216 4.853 0.717 4.255 0.519 4.414 0.420 4.436 0.923
15 5.344 0.984 4.474 0.267 4.723 0.742 4.266 0.626 4.420 0.518 4.463 1.112
20 5.212 0.877 4.471 0.310 4.636 0.793 4.255 0.715 4.425 0.598 4.454 1.302
30 5.066 0.784 4.474 0.385 4.597 0.944 4.274 0.872 4.432 0.735 4.457 1.606
45 4.950 0.749 4.474 0.474 4.537 1.129 4.262 1.064 4.442 0.915 4.445 1.957
60 4.881 0.765 4.476 0.556 4.518 1.306 4.266 1.238 4.445 1.069 4.435 2.225
90 4.794 0.824 4.471 0.683 4.486 1.607 4.259 1.532 4.448 1.332 4.393 2.760

120 4.755 0.904 4.478 0.790 4.464 1.828 4.274 1.756 4.437 1.561 4.417 3.138
180 4.686 1.077 4.481 0.999 4.429 2.279 4.276 2.205 4.420 1.955 4.506 3.787
240 4.657 1.214 4.484 1.147 4.434 2.604 4.296 2.526 4.416 2.309 4.518 4.240
360 4.609 1.483 4.490 1.434 4.460 3.223 4.296 3.107 4.477 2.942 4.453 5.087
720 4.574 2.075 4.498 2.035 4.436 4.510 4.318 4.391 4.456 4.524 4.340 6.189

1440 4.509 2.844 4.509 2.844 4.340 6.189 4.340 6.189 4.340 6.189 4.340 6.189

Note: The table shows the results of a simulation experiment where 5000 days of 8,640,000 (log) prices (100 prices per second) are
simulated from a normal distribution with mean zero and variance 4.41 (21% standard deviation on an annual basis). Subsequently
with probability π = 0.001 we observe a price and with probability 1− π we do not, while the observed prices converted to bid and
ask prices (with equal probability) by either subtracting or adding half the spread s = 0.005 (on a starting price of 1). For each
day the realized range (RR∆

t ), the scaled realized range (RR∆

S,t), the realized variance (RV ∆
t ), the scaled realized variance (RV ∆

S,t),

the two time-scales estimator (RV ∆

TTS,t) and the first-order kernel-based estimator (RV ∆

AC1,t) are computed for various sampling

frequencies shown in column 1. RR∆

S,t and RV ∆

S,t are obtained from (11) with q = 5000 (with RR replaced by RV for the scaled
realized variance).
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Table 5: Unconditional daily S&P500 volatility distributions

r2
t RR∆

t RR∆
S,t RV ∆

t RV ∆
S,t RV ∆

TTS,t RV ∆
AC1,t

Mean 1.792 1.533 1.750 1.818 1.824 1.784 1.673
StDev 3.263 1.408 1.678 1.879 1.967 1.840 1.942
Skewness 4.622 4.251 4.159 4.967 4.658 5.244 5.594
Kurtosis 36.14 32.10 29.99 41.32 35.71 45.34 49.87
Maximum 41.15 16.20 19.24 24.17 21.56 23.51 24.74
Minimum 0.00 0.122 0.118 0.108 0.081 0.110 0.073

Note: The table shows sample statistics of the daily squared return, the realized range (RR∆
t ), the

scaled realized range (RR∆

S,t obtained from (11) with q = 66), the realized variance (RV ∆
t ), the scaled

realized variance (RV ∆

S,t obtained from (11) with q = 66 and RR replaced by RV ), the two time-scales

estimator (RV ∆

TTS,t) and the first-order kernel-based estimator (RV ∆

AC1,t) for the S&P500 index-futures
from 4 January 1999 to 23 February 2004 (1289 trading days). The sampling frequency is five minutes
from 9:30-16:15 EST and 15 minutes from 16:15-9:30 EST.

Table 6: Unconditional daily S&P500 return distributions

rt rt/
√

RR∆
t rt/

√
RR∆

S,t rt/
√

RV ∆
t rt/

√
RV ∆

S,t

Mean −0.0163 0.0185 0.0184 0.0199 0.0226
StDev 1.339 1.091 1.034 1.011 1.035
Skewness 0.0723 0.1384 0.1305 0.1408 0.1442
Kurtosis 4.310 2.814 2.800 2.748 2.756
Jarque-Bera 93.31 5.966 5.807 7.677 7.670
Maximum 5.737 3.500 3.175 3.043 3.077
Minimum −6.415 −3.121 −3.063 −2.739 −2.867

Note: The table shows sample statistics of the daily return, and the daily return standardized with
the square root of the realized range (RR∆

t ), the scaled realized range (RR∆

S,t obtained from (11) with

q = 66), the realized variance (RV ∆
t ), or the scaled realized variance (RV ∆

S,t obtained from (11) with
q = 66 and RR replaced by RV ) for the S&P500 index-futures from 4 January 1999 to 23 February
2004 (1289 observations). The sampling frequency is five minutes from 9:30-16:15 EST and 15 minutes
from 16:15-9:30 EST.
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Table 7: Mean and standard deviation S&P500 realized range and variance

Day/night
Frequency RR∆

t RR∆
S,t RV ∆

t RV ∆
S,t RV ∆

TTS,t RV ∆
AC1,t

1/5 1.288 1.751 1.945 1.832 1.870 1.897
(1.183) (1.710) (1.911) (1.926) (1.773) (1.971)

5/15 1.533 1.750 1.818 1.824 1.784 1.673
(1.408) (1.678) (1.879) (1.967) (1.840) (1.942)

15/15 1.591 1.746 1.703 1.827 1.667 1.686
(1.518) (1.717) (1.868) (2.104) (1.744) (2.068)

27/45 1.662 1.745 1.707 1.825 1.566 1.710
(1.674) (1.796) (2.007) (2.275) (1.704) (2.032)

45/115 1.691 1.743 1.725 1.830 1.403 1.705
(1.743) (1.830) (2.208) (2.489) (1.611) (2.296)

405/1035 1.733 1.730 1.807 1.801 1.808 1.808
(2.079) (2.041) (3.210) (3.148) (3.213) (3.213)

Daily 1.731 1.792
(2.190) (3.263)

Note: Mean and standard deviation (in parentheses) for the realized range (RR∆
t ), the scaled

realized range (RR∆

S,t obtained from (11) with q = 66), the realized variance (RV ∆
t obtained

from (11) with q = 66 and RR replaced by RV ), the scaled realized variance (RV ∆

S,t), the

two time-scales estimator (RV ∆

TTS,t) and the first-order kernel-based estimator (RV ∆

AC1,t) for the
S&P500 index-futures for different sampling frequencies. The sample period runs from 4 January
1999 to 23 February 2004 (1289 observations). Sampling frequencies are denoted by the length
of the sampling intervals in minutes from 9:30-16:15 EST (first number) and 16:15-9:30 EST
(second number). For example, 1/5 implies the one-minute frequency is used during the ‘day’
and the five-minute frequency during the ‘night’. Under ‘Daily’ Parkinson’s daily high-low range
is reported for realized range, and the daily squared return for the realized variance.
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Table 8: Forecasting S&P 500 index-futures volatility: realized range vs. realized variance

Outlier Freq yt = RV ∆
t yt = RR∆

t

Var corr. (min) R2 MSE MAE ENC R2 MSE MAE ENC

No 1/5 0.995 0.814 0.000 0.018-0.056 0.997 0.998 1.000 0.000-0.970
5/15 0.961 0.985 1.000 0.002-0.695 0.977 0.999 1.000 0.001-0.988

Close- 27/45 0.994 0.992 1.000 0.005-0.981 0.989 0.992 1.000 0.005-0.980
to-

close Yes 1/5 0.698 0.000 0.000 0.000-0.000 0.697 1.000 1.000 0.000-1.000
5/15 0.947 0.987 0.634 0.000-0.000 0.993 1.000 1.000 0.000-0.978

27/45 1.000 1.000 1.000 0.000-0.968 1.000 1.000 1.000 0.000-0.940

No 1/5 0.998 0.871 0.000 0.020-0.183 0.998 0.997 1.000 0.001-0.979
5/15 0.960 0.986 1.000 0.005-0.908 0.971 0.997 1.000 0.002-0.993

Open- 27/45 0.993 0.987 1.000 0.009-0.978 0.986 0.987 1.000 0.009-0.977
to-

close Yes 1/5 0.320 0.000 0.000 0.000-0.000 0.843 1.000 1.000 0.000-1.000
5/15 0.993 1.000 0.929 0.000-0.000 1.000 1.000 1.000 0.000-1.000

27/45 1.000 1.000 1.000 0.000-1.000 1.000 1.000 1.000 0.000-1.000

Note: The table summarizes the relative forecasting performance of the realized range (RR∆
t ) and the

realized variance (RV ∆
t ). The table reports p-values of the MDM test of equal predictive accuracy and

forecast encompassing. p-values below q (above 1− q) indicate that the null hypothesis of equal R2 (MSE
or MAE) can be rejected in favor of the lagged realized variance (realized range) as a predictor having
a higher R2 (or smaller MSE or MAE) than the lagged realized range (realized variance) at the 100q%
significance level. For example, the first number in the table (1-minute daytime frequency, 5-minute night
frequency; R2 criterion; realized variance the target), i.e. 0.991, indicates that the lagged realized range has
a significantly higher R2 than the lagged realized variance at the 0.9% (1 - 0.991) significance level. For the
encompassing regression test (ENC) there are two numbers. The first (second) reflects whether the lagged
realized variance (range) has a significant contribution after the lagged realized range (variance) is already
included. Here a high p-value rejects the null that the second forecast has no incremental information so
for both we look for high p-values to reject the null.
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Table 9: Forecasting S&P 500 index-futures volatility: scaled realized range vs. scaled realized
variance

Outlier Freq yt = RV ∆
S,t yt = RR∆

S,t

Var corr. (min) R2 MSE MAE ENC R2 MSE MAE ENC

No 1/5 0.972 0.968 0.975 0.011-0.886 0.993 0.984 1.000 0.006-0.945
5/15 0.948 0.993 1.000 0.002-0.883 0.989 0.998 1.000 0.001-0.978

Close- 27/45 0.987 0.986 1.000 0.010-0.971 0.986 0.988 1.000 0.009-0.977
to-

close Yes 1/5 0.194 0.789 0.417 0.000-0.012 0.849 1.000 1.000 0.000-0.280
5/15 0.666 0.992 0.875 0.000-0.010 0.999 1.000 1.000 0.000-0.328

27/45 1.000 1.000 1.000 0.000-0.860 1.000 1.000 1.000 0.000-0.983

No 1/5 0.968 0.971 0.999 0.011-0.907 0.994 0.994 1.000 0.003-0.982
5/15 0.913 0.987 1.000 0.006-0.919 0.960 0.996 1.000 0.003-0.986

Open- 27/45 0.980 0.993 1.000 0.004-0.978 0.986 0.995 1.000 0.003-0.987
to-

close Yes 1/5 0.001 0.436 0.178 0.000-0.000 0.662 1.000 1.000 0.000-1.000
5/15 0.731 1.000 0.988 0.000-0.052 1.000 1.000 1.000 0.000-1.000

27/45 1.000 1.000 1.000 0.000-0.998 1.000 1.000 1.000 0.000-1.000

Note: The table summarizes the relative forecasting performance of the scaled realized range (RR∆

S,t) and

the scaled realized variance (RV ∆

S,t) obtained from (11) with q = 66. See Table 8 for further details.

Table 10: Forecasting S&P 500 index-futures volatility: scaled realized range vs. two time-
scales estimator

Outlier Freq yt = RV ∆
TTS,t yt = RR∆

S,t

Var corr. (min) R2 MSE MAE ENC R2 MSE MAE ENC

No 1/5 0.993 0.933 0.363 0.022-0.794 0.998 0.971 1.000 0.010-0.907
5/15 0.991 0.973 0.995 0.014-0.935 0.996 0.978 1.000 0.011-0.947

Close- 27/45 0.965 0.688 0.820 0.035-0.250 0.943 0.778 0.993 0.013-0.305
to-

close Yes 1/5 0.520 0.237 0.005 0.000-0.000 0.985 1.000 1.000 0.000-0.228
5/15 0.927 0.819 0.651 0.000-0.002 1.000 0.998 1.000 0.000-0.119

27/45 1.000 0.016 0.052 0.000-0.000 1.000 0.990 1.000 0.000-0.000

No 1/5 0.983 0.839 0.305 0.117-0.763 0.991 0.892 1.000 0.080-0.845
5/15 0.990 0.963 0.992 0.025-0.937 0.997 0.972 1.000 0.020-0.953

Open- 27/45 0.982 0.733 0.833 0.039-0.309 0.970 0.862 1.000 0.012-0.428
to-

close Yes 1/5 0.841 0.666 0.079 0.000-0.000 1.000 1.000 1.000 0.000-0.914
5/15 0.944 0.959 0.943 0.000-0.016 1.000 1.000 1.000 0.000-0.786

27/45 1.000 0.201 0.535 0.000-0.000 1.000 1.000 1.000 0.000-0.000

Note: The table summarizes the relative forecasting performance of the scaled realized range (RR∆

S,t)

obtained from (11) with q = 66 and the two time-scales estimator (RV ∆

TTS,t). See Table 8 for further
details.
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Table 11: Forecasting S&P 500 index-futures volatility: rolling forecasts from realized range
vs. realized variance

Outlier Freq yt = RV ∆
t yt = RR∆

t

Var corr. (min) R2 MSE MAE ENC R2 MSE MAE ENC

No 1/5 0.997 0.763 0.918 0.011-0.015 0.997 0.999 1.000 0.000-0.993
5/15 0.961 0.772 1.000 0.000-0.027 0.988 1.000 1.000 0.000-0.902

Close- 27/45 0.996 0.999 1.000 0.000-0.979 0.989 0.999 1.000 0.000-0.979
to-

close Yes 1/5 1.000 1.000 1.000 0.000-1.000 1.000 0.000 0.000 0.004-0.000
5/15 1.000 1.000 1.000 0.000-1.000 1.000 1.000 0.988 0.000-0.009

27/45 1.000 1.000 0.998 0.000-0.985 1.000 1.000 1.000 0.000-0.997

No 1/5 0.981 0.982 0.997 0.004-0.600 0.986 0.132 0.383 0.035-0.008
5/15 0.874 0.944 0.959 0.009-0.347 0.938 0.789 0.953 0.007-0.006

Open- 27/45 0.992 0.978 0.933 0.003-0.364 0.992 0.976 0.979 0.004-0.401
to-

close Yes 1/5 0.999 1.000 1.000 0.000-1.000 1.000 0.000 0.000 0.437-0.000
5/15 0.995 1.000 1.000 0.000-0.999 1.000 0.998 0.951 0.000-0.000

27/45 1.000 1.000 0.955 0.000-0.731 1.000 1.000 0.995 0.000-0.891

Note: The table summarizes the relative forecasting performance of the bias adjusted rolling forecasts
obtained from the realized range (RR∆

t ) and the realized variance (RV ∆
t ). See Table 8 for further details.

Table 12: Forecasting S&P 500 index-futures volatility: rolling forecasts from scaled realized
range vs. scaled realized variance

Outlier Freq yt = RV ∆
S,t yt = RR∆

S,t

Var corr. (min) R2 MSE MAE ENC R2 MSE MAE ENC

No 1/5 0.991 0.961 0.994 0.001-0.102 0.998 0.999 1.000 0.000-0.903
5/15 0.900 0.689 0.997 0.012-0.066 0.990 0.991 1.000 0.000-0.484

Close- 27/45 0.985 0.976 1.000 0.004-0.810 0.987 0.992 1.000 0.002-0.937
to-

close Yes 1/5 1.000 1.000 1.000 0.000-1.000 1.000 1.000 1.000 0.000-1.000
5/15 1.000 1.000 1.000 0.000-1.000 1.000 1.000 1.000 0.000-1.000

27/45 1.000 1.000 1.000 0.000-1.000 1.000 1.000 1.000 0.000-1.000

No 1/5 0.947 0.976 0.999 0.007-0.828 0.975 0.974 1.000 0.005-0.611
5/15 0.928 0.966 0.994 0.010-0.805 0.967 0.973 0.999 0.006-0.620

Open- 27/45 0.973 0.975 0.977 0.007-0.850 0.992 0.983 0.997 0.004-0.763
to-

close Yes 1/5 1.000 1.000 1.000 0.000-1.000 1.000 1.000 1.000 0.000-1.000
5/15 0.994 1.000 1.000 0.000-1.000 1.000 1.000 1.000 0.000-0.999

27/45 0.996 1.000 0.998 0.000-0.999 1.000 1.000 1.000 0.000-0.998

Note: The table summarizes the relative forecasting performance of the bias adjusted rolling forecasts
obtained from the scaled realized range RR∆

S,t and the scaled realized variance (RV ∆

S,t) obtained from (11)
with q = 66. See Table 8 for further details.
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Table 13: Forecasting S&P 500 index-futures volatility: rolling forecasts from scaled realized
range vs. two time-scales estimator

Outlier Freq yt = RV ∆
TTS,t yt = RR∆

S,t

Var corr. (min) R2 MSE MAE ENC R2 MSE MAE ENC

No 1/5 0.968 0.339 0.753 0.007-0.000 0.999 0.986 1.000 0.000-0.043
5/15 0.993 0.914 0.999 0.000-0.003 1.000 0.999 1.000 0.000-0.039

Close- 27/45 0.997 1.000 1.000 0.000-0.957 0.992 0.987 1.000 0.000-0.518
to-

close Yes 1/5 0.996 1.000 1.000 0.000-1.000 1.000 1.000 1.000 0.000-1.000
5/15 0.999 1.000 1.000 0.000-1.000 1.000 1.000 1.000 0.000-1.000

27/45 0.998 1.000 0.849 0.000-0.009 0.999 1.000 1.000 0.000-1.000

No 1/5 0.963 0.967 0.996 0.004-0.305 0.988 0.994 1.000 0.001-0.872
5/15 0.892 0.952 0.968 0.009-0.355 0.962 0.984 0.998 0.005-0.772

Open- 27/45 0.971 0.876 0.821 0.006-0.055 0.956 0.982 0.983 0.004-0.733
to-

close Yes 1/5 0.990 1.000 1.000 0.000-1.000 1.000 1.000 1.000 0.000-1.000
5/15 0.989 1.000 0.999 0.000-0.986 0.999 1.000 1.000 0.000-0.999

27/45 0.996 0.958 0.414 0.000-0.000 0.997 1.000 0.999 0.000-0.997

Note: The table summarizes the relative forecasting performance of the bias adjusted rolling forecasts
obtained from the scaled realized range RR∆

S,t obtained from (11) with q = 66 and the two time-scales

estimator (RV ∆

TTS,t). See Table 8 for further details.

Table 14: S&P 100 stocks: unconditional daily volatility distributions (realized range)

RRt RRS,t

Mean StDev Skew. Kurt. Mean StDev Skew. Kurt.
Min 1.254 1.438 2.164 9.508 1.368 1.395 2.122 10.24
0.10 2.192 2.039 2.989 16.71 2.175 2.064 3.185 19.38
0.25 2.589 2.593 3.471 23.23 2.750 2.660 3.772 25.93
0.50 3.553 3.611 4.415 38.75 3.430 3.765 4.598 41.07
0.75 5.037 6.393 7.400 93.66 5.483 7.097 7.355 94.04
0.90 9.770 11.56 12.58 242.4 8.888 10.85 12.16 244.18
Max. 20.66 54.61 36.23 1454 17.76 56.82 36.02 1423.8

Mean 4.798 6.372 6.711 120.1 4.625 6.429 6.768 116.22
StDev 3.637 7.960 6.226 243.8 3.210 8.061 5.994 231.99

Note: The table summarizes the distributions of the daily volatilities of the 100 S&P100 index
constituents. The realized range (RRt) is calculated based on five-minute intervals and the close-
to-open squared return. The scaled realized range (RRS,t) is obtained using (11) with q = 66.
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Table 15: Forecasting S&P 100 stock volatility: realized range vs. realized variance

Outlier Freq yt = RV ∆
t yt = RR∆

t

Var corr. (min) R2 MSE MAE ENC R2 MSE MAE ENC

No 1 61−5 44−1 90−0 48−26 54−10 5−66 0−92 29−89
5 50−3 4−33 8−55 28−73 46−6 0−71 0−98 23−96

Close- 30 8−13 0−60 0−99 24−99 5−20 0−68 0−100 21−100
to-

close Yes 1 74−6 82−3 94−1 5−1 38−26 0−97 0−100 0−90
5 35−15 30−43 37−30 3−15 9−42 0−98 0−100 0−93

30 0−94 0−99 1−99 0−88 0−99 0−100 0−100 0−98

No 1 37−6 50−0 90−0 34−10 2−38 2−78 0−93 18−91
5 2−51 4−47 9−63 17−58 1−75 0−83 0−100 11−97

Open- 30 0−79 0−82 0−98 12−100 0−90 0−86 0−99 8−100
to-

close Yes 1 47−7 90−1 97−1 5−0 2−82 0−100 0−100 0−91
5 1−56 36−37 37−33 0−9 0−97 0−100 0−100 0−95

30 0−99 0−98 1−97 0−86 0−100 0−100 0−100 0−99

Note: The table summarizes the relative forecasting performance of the realized range (RRt) and the
realized variance (RVt). The entries show the number of times realized variance wins and the number
of times realized range wins (out of a possible 100, significant differences based on Diebold-Mariano
statistic at the 5% significance level). For example, the entry 61-5 (left uppercorner) indicates that with
the realized variance (at 1-minute frequency) as the target, the lagged realized variance as a predictor
has a significantly larger (smaller) R2 than the lagged realized range for 61 (5) stocks. See Table 8 for
further details.
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Table 16: Forecasting S&P 100 stock volatility: scaled realized range vs. scaled realized variance

Outlier Freq yt = RV ∆
S,t yt = RR∆

S,t

Var corr. (min) R2 MSE MAE ENC R2 MSE MAE ENC

No 1 38−5 20−10 10−60 60−60 35−5 38−7 50−31 75−47
5 24−6 25−8 5−58 65−43 25−6 40−3 41−31 79−33

Close- 30 5−19 24−6 11−31 68−38 5−25 33−3 13−34 75−29
to-

close Yes 1 17−23 0−94 0−97 0−73 16−28 44−46 41−49 17−28
5 1−62 0−99 0−100 0−63 3−61 26−56 20−63 3−19

30 0−93 0−99 0−99 0−19 0−96 3−86 0−91 0−9

No 1 9−36 1−75 0−97 6−86 4−45 29−40 35−52 29−48
5 1−73 0−82 0−98 8−89 2−81 19−49 17−69 20−46

Open- 30 0−82 0−74 0−94 10−84 0−89 3−60 0−92 10−64
to-

close Yes 1 5−63 0−100 0−100 0−96 5−63 38−55 34−56 16−44
5 0−92 0−100 0−100 0−96 0−93 20−67 18−77 2−42

30 0−98 0−100 0−100 0−62 0−99 1−95 0−98 0−40

Note: The table summarizes the relative forecasting performance of the scaled realized range (RR∆

S,t) and

the scaled realized variance (RV ∆

S,t) obtained from (11) with q = 66. See Tables 8 and 15 for further details.

Table 17: Forecasting S&P 100 stock volatility: rolling forecasts from realized range vs.
realized variance

Outlier Freq yt = RVt yt = RRt

Var corr. (min) R2 MSE MAE ENC R2 MSE MAE ENC

No 1 14−12 9−16 11−29 54−65 11−15 9−16 10−50 58−70
5 7−25 2−22 0−58 43−83 5−25 3−21 3−66 43−81

Close- 30 3−25 0−34 0−59 35−86 3−36 1−44 2−69 32−84
to-

close Yes 1 2−67 0−98 0−93 0−98 0−75 36−56 42−44 27−48
5 0−89 0−99 0−93 0−97 0−92 21−63 31−49 12−47

30 0−92 0−99 2−72 0−94 0−95 0−87 8−62 0−67

No 1 3−37 9−20 13−35 43−59 2−50 5−28 6−65 28−76
5 0−59 0−48 0−82 12−83 1−67 0−69 0−88 11−89

Open- 30 0−63 0−69 0−90 10−95 0−77 0−81 0−95 9−96
to-

close Yes 1 3−59 0−99 0−98 0−99 2−73 37−53 40−51 34−48
5 0−81 0−100 0−98 0−100 0−90 25−63 28−55 15−53

30 0−94 0−100 0−75 0−95 0−99 1−88 7−72 0−71

Note: The table summarizes the relative forecasting performance of the bias adjusted rolling forecasts
obtained from the realized range (RR∆

t ) and the realized variance (RV ∆
t ). See Tables 8 and 15 for further

details.
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Figure 1: RMSE of the scaled realized range RR∆
S,t obtained from (11) as a function

of q, for sampling frequencies as listed in the first column of Table 2. The sampling
frequency increases from the top line to the bottom.
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