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Abstract

Let G = (V,E) be a graph. A partition π = {V1, V2, . . . , Vk} of the vertices
V of G into k color classes Vi, 1 ≤ i ≤ k, is called a quorum coloring if for every
vertex v ∈ V , at least half of the vertices in the closed neighborhood N [v] of
v have the same color as v. In this paper we introduce the study of quorum
colorings of graphs and show that they are closely related to the concept of
defensive alliances in graphs. Moreover, we determine the maximum quorum
coloring of a hypercube.
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1 Introduction to Colorings

LetG = (V,E) be a graph of order n = |V |. For a vertex v ∈ V , the open neighborhood
of v is the set N(v) = {u ∈ V | uv ∈ E} of vertices adjacent to v, and the closed
neighborhood is the set N [v] = N(v) ∪ {v}. For a set S ⊆ V , the open neighborhood
of S is the set N(S) = ∪v∈SN(v), and the closed neighborhood of S is the set N [S] =
N(S) ∪ S. For any subset S ⊆ V , the subgraph induced by S is the graph G[S] with
vertex set S that inherits all edges of G between vertices in S.

A set S is called independent if no two vertices in S are adjacent. The vertex inde-
pendence number, denoted β0(G), equals the maximum cardinality of an independent
set in G.

A graph G is called k-regular if every vertex v ∈ V has degree k, that is |N(v)| = k.
A cubic graph is a 3-regular graph.

Let Kn denote the complete graph of order n, and let Kn denote the complement
of Kn, that is, the graph consisting of n isolated vertices. By the join of two graphs
G and H we mean the graph G + H consisting of the disjoint union of G and H
together with all edges between the vertices in G and the vertices in H. If G consists
of a single vertex v, we just write v +H. By the corona G ◦H of two graphs G and
H we mean the graph obtained from a copy of G by replacing v by v +H, for every
vertex v ∈ V (G).

A P-coloring of a graph G is a partition π = {V1, V2, . . . , Vk} having the property
that every class Vi of π is a set of vertices having some specified property P . The
number k = |π| is the order of the coloring. The minimum order of a P-coloring of a
graph G is called the P-chromatic number and is denoted χP(G).

We say that a P-coloring π = {V1, V2, . . . , Vk} is minimal if the union of any two
color classes Vi ∪Vj is a set that does not have property P . The maximum order of a
minimal P-coloring of a graph G is called the P-achromatic number and is denoted
ψP(G).

We say that a P-coloring π = {V1, V2, . . . , Vk} is proper if every color class Vi is an
independent set. A P-coloring of order k is called complete if for every 1 ≤ i < j ≤ k,
there is a vertex u ∈ Vi and a vertex v ∈ Vj such that u is adjacent to v. The well
studied chromatic number χ(G) equals the minimum order of a proper coloring of G,
while the achromatic number ψ(G) equals the maximum order of a complete proper
coloring.

In this paper we are concerned with the concept of a quorum, which is normally
understood to mean a simple majority, that is, at least half. With this in mind,
consider any P-coloring π = {V1, V2, . . . , Vk} of the vertices of a graph G into k color
classes. For each vertex v ∈ V , if v ∈ Vi we say that v is colored with color i. Define
c[v] to equal the number of vertices in N [v] having the same color as v, including v
itself. We say that a P-coloring π is a quorum coloring if, for every vertex v ∈ V , we
have c[v] ≥ |N [v]|/2, that is, at least half (a quorum) of the vertices in N [v] have the
same color as v. The maximum order of a quorum coloring of G is called the quorum
coloring number of G and is denoted ψq(G), and a quorum coloring of order ψq(G)
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is called a ψq-coloring. Notice that, if every vertex v ∈ V is colored the same, say
color 1, then the coloring is automatically a quorum coloring. Thus, every graph has
a quorum coloring of order 1. Therefore, we seek to color the vertices of V with a
maximum number of colors that results in a quorum coloring.

A concept that is closely related to a quorum coloring, but of slightly different
from, is that of a satisfactory partition. This is due originally to Gerber and Kobler
[3] (see also [4, 5]). Given a set S ⊆ V of a graph G = (V,E), we say that a vertex
v ∈ S is satisfied if it has at least as many neighbors in S as it does in V − S. The
set S is called cohesive if every vertex v ∈ S is satisfied. A bipartition π = {V1, V2}
of V is called a satisfactory partition if every vertex v ∈ V1 is satisfied with respect
to V1 and every vertex w ∈ V2 is satisfied with respect to V2; that is, both V1 and V2
are cohesive sets. This concept was generalized to partitions π = {V1, V2, . . . , Vk} of
arbitrary order by Shafique and Dutton [13].

Thus, the difference between a quorum coloring and a satisfactory partition is that
with quorum colorings at least half of the vertices in the closed neighborhood N [v]
have the same color as v, while in a satisfactory partition, at least half of the vertices
in the open neighborhood N(v) have the same color as v. Since it is known that
certain graphs do not have a satisfactory partition, for example, complete graphs,
the primary focus of research on satisfactory partitions is the complexity question:
given an arbitrary graph G, does G have a satisfactory partition? and on finding
classes of graphs that do or do not have satisfactory partitions. On the other hand,
all graphs have quorum colorings, and the primary focus of quorum colorings is on
the maximum order of a quorum coloring of a given graph.

2 A general setting for quorum colorings

There are several reasons why the study of quorum colorings can be considered to be
”natural.” First, they offer a dual view of the well-studied chromatic number. With
the chromatic number there is no limit on the number of different colors that can
appear in any closed neighborhood, but the objective is to minimize the total number
of colors used. With the quorum colorings there is a limit on the number of different
colors that can appear in any closed neighborhood, but the objective is to maximize
the total number of colors used.

Quorum colorings have a variety of real-world applications. For example, they
are a natural model of quorum sensing in bacteria, in which if sufficiently many
molecules of a given type are in the neighborhood of a community of bacteria, they
will all exhibit a common behavior, for example, emitting luminescence, or launching
a virulent attack [8].

Similarly, the notion of a quorum is widespread in social and political groups,
in which at least some number k of individuals must be present (usually, a simple
majority) in order for certain group actions to be considered ”official.”

The idea of a majority or a quorum in a neighborhood is also found in the concept of
a signed dominating set. A function f : V → {−1,+1} is called a signed dominating
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function on a graph G = (V,E) if for every vertex v ∈ V , we have f(N [v]) ≥ 1, where
f(N [v]) = Σu∈N [v]f(u). Thus, if we define V1 = f−1(+1), and V2 = f−1(−1), then a
signed dominating function can be viewed as a bi-partition π = {V1, V2} of V , such
that a majority of the vertices in every closed neighborhood N [v] are in the set V1,
that is, are assigned the value +1. Signed domination in graphs was introduced by
Dunbar, Hedetniemi, Henning and Slater in [1].

Quorum colorings also apply to the study of wireless sensor networks, in which a
threshold is associated with each sensor node, such that when the inputs from the
neighborhood of a sensor exceed the threshold (or quorum), a signal is sent by the
sensor to a gateway sensor node [12].

Similarly, a set S ⊆ V is called a defensive alliance if for every vertex v ∈ S,
we have |N [v] ∩ S| ≥ |N(v) ∩ (V − S)|. The defensive alliance number denoted
a(G) equals the minimum order of a defensive alliance in G. In a defensive alliance,
at least a simple majority (a quorum) of vertices in the closed neighborhood N [v]
of every vertex v ∈ S are in S. The study of alliances in graphs was introduced
by Hedetniemi, Hedetniemi and Kristiansen in 2004 (cf. [7]). In 2007 Haynes and
Lachniet [6] introduced the alliance partition number ψa(G) of a graph, as follows. A
partition π = {V1, V2, . . . , Vk} such that each block Vi is a defensive alliance is called
an alliance partition. The alliance partition number ψa(G) is the maximum order of
an alliance partition of G. It can be seen from the definitions that a quorum coloring
is the same thing as an alliance partition, that is each class Vi in a quorum coloring
is a defensive alliance in G. Thus, for any graph G, we have ψa(G) = ψq(G).

Although the study of quorum colorings can be viewed from the perspective of
alliances in graphs, most of the motivation for our study of quorum colorings comes
from coloring theory. As such, we will adopt the coloring notation and terminology.

3 Basic properties of quorum colorings

We begin with the most fundamental observations about quorum colorings.

Proposition 1 If G ∪H denotes the disjoint union of two graphs G and H, then

ψq(G ∪H) = ψq(G) + ψq(H).

Proposition 2 Let G be a graph of order n. Tehn ψq(G) ≤ n, and ψq(G) = n if
and only if ∆(G) ≤ 1, that is G consists of isolated vertices and disjoint copies of the
complete graph K2 of order 2.

From these two propositions we can see that the addition of an isolated vertex to a
graph G increases its quorum coloring number by one. But even if a connected graph
G of order n has no isolated vertices, ψq(G) can be arbitrarily close to n.

Proposition 3 Let n ≥ 1 and G = Kn ◦Kn of order n2 + n. Then ψq(G) = n2 + 1.
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Proposition 4 Let G = (V,E) be a graph without isolated vertices, and let π =
{V1, V2, . . . , Vk} be a quorum coloring of G. Then, for every color class Vi, if |Vi| = 1
then the only vertex in Vi is a leaf in G; otherwise |Vi| ≥ 2.

This gives the following upper bound for graphs with minimum degree δ(G) ≥ 2.

Corollary 5 Let G be a graph of order n without isolated vertices or leaves. Then
ψq(G) ≤ bn/2c.

This bound is achieved, for example, by a cycle Cn of even order, in which the
vertices are colored consecutively with pairs of adjacent colors 1, 1, 2, 2, 3, 3, 4, 4, ...;
in this case each vertex v is in a color class of size two, and at least half of the vertices
in N [v] have the same color as v.

This bound can be refined in terms of the defensive alliance number a(G), as follows.
In [2], Fricke, Lawson, Haynes, Hedetniemi and Hedetniemi showed the following.

Theorem 6 Let G be a graph of order n. Then a(G) ≤ dn/2e.

The alliance number provides us with a simple upper bound for the quorum coloring
number.

Proposition 7 Let G be a graph of order n with defensive alliance number a(G) and
without isolated vertices. Then ψq(G) ≤ n/a(G) ≤ bn/2c.

Proof. Let ψq(G) = k, let π = {V1, V2, . . . , Vk} be a ψq-coloring and for 1 ≤ i ≤ k,
let |Vi| = ni. It follows that each color class must be a defensive alliance, and therefore
have at least ni ≥ a(G) vertices. Therefore, n = n1+n2+. . .+nk ≥ ka(G). Therefore,
ψq(G) ≤ n/a(G). 2

In [7], Kristiansen, Hedetniemi and Hedetniemi pointed out that for 4-regular and
5-regular graphs, a(G) = girth(G), where the girth of a graph equals the smallest
order of a cycle in G.

Corollary 8 Let G be a 4-regular or 5-regular graph of order n. Then ψq(G) ≤
n/girth(G).

Another basic property of a ψq-coloring of a graph G is that each color class must
induce a connected subgraph.

Proposition 9 Let G be a graph, and let π = {V1, V2, . . . , Vk} be any ψq-coloring of
G. Then, for every i, 1 ≤ i ≤ k, the induced subgraph G[Vi] is connected.
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Proof. Let π = {V1, V2, . . . , Vk} be a ψq-coloring of a graph G, assume that for
some color class Vi, the subgraph G[Vi] is not connected, and arbitrarily let Vi1 be
a connected subgraph of G[Vi]. Then it can be seen that π = {V1, V2, . . . , Vi1 , Vi −
Vi1 , . . . , Vk} is a quorum coloring of order greater than ψq(G), a contradiction. 2

Another refinement of the upper bound of Corollary 5 is given by the following
result. A matching in a graph G = (V,E) is a set of edges M ⊆ E having the
property that no two edges in M have a vertex in common. We say that the edges
in a matching form an independent set of edges. The matching number β1(G) equals
the maximum cardinality of a matching in G.

Proposition 10 Let G be a graph of order n with minimum degree δ(G) ≥ 2. Then

ψq(G) ≤ β1(G) ≤ bn/2c.

Proof. Let π = {V1, V2, . . . , Vk} be a ψq-coloring of G. Since δ(G) ≥ 2, each
color class Vi has size at least two and induces a connected subgraph, and therefore
contains at least one pair of adjacent vertices. This implies that G contains at least
k independent edges, and therefore has a matching of order at least k. Therefore,
β1(G) ≥ k = ψq(G). 2

It is worth noting that the β1(G) upper bound does not apply to graphs with
δ(G) = 1. For the path P4 of order 4, ψq(P4) = 3 but β1(P4) = 2.

The following result shows that the upper bound in Proposition 10 is sharp for
cubic graphs.

Theorem 11 Let G be a cubic graph. Then ψq(G) = β1(G).

Proof. From Proposition 10 we know that ψq(G) ≤ β1(G). Let β1(G) = k and let
M = {x1y1, x2y2, . . . , xkyk} be a matching of maximum cardinality. Furthermore, let
V (M) = {x1, y1, x2, y2, . . . , xk, yk} and let V − V (M) = {u1, u2, . . . , ur}. It follows
that V − V (M) is an independent set of vertices.

Consider then the partition π = {V1, V2, . . . , Vk} of V (M), where Vi = {xi, yi} for
1 ≤ i ≤ k. We can then augment the partition π to a partition of all of V as follows:
for each vertex ui ∈ V − V (M), for 1 ≤ i ≤ r, arbitrarily select an adjacent vertex,
say xj, and add ui to the class Vj of π. Since G is a cubic graph, each vertex xi and yi
in Vi is adjacent to at most two vertices not in Vi, and thus at least half of the vertices
in their closed neighborhoods have color i. Similarly, each vertex, say ui belongs to a
class containing an adjacent vertex colored the same as ui, and ui can have at most
two neighbors not colored the same as its color. Therefore, π is a quorum coloring of
order k. This implies that ψq(G) ≥ β1(G). 2

Theorem 11 can be extended to 4-regular graphs having no triangles.

Theorem 12 If G is a triangle-free, 4-regular graph, then ψq(G) ≤ β1(G)/2.

6



Proof. Let π = {V1, V2, . . . , Vk} be a ψq-coloring of a triangle-free, 4-regular graph
G. Consider each induced subgraph G[Vi]. Each vertex in G[Vi] will have to have
degree at least two. This means, since G is triangle-free, that |Vi| ≥ 4 and that each
G[Vi] contains at least two independent edges. This in turn means that G has a
matching containing at least 2k edges, that is, β1(G) ≥ 2k = 2ψq(G). 2

For paths and cycles, quorum colorings are slightly different. For example, for the
path P6, the following is a ψq-coloring: {1}, {2, 3}, {4, 5}, {6}.

Proposition 13 Let Pn be the path of order n. Then ψq(Pn) = b(n+ 2)/2c.

Proposition 14 Let Cn be the cycle of order n. Then ψq(Cn) = bn/2c.

It is easy to see that the requirement, that each vertex be in a quorum color class,
prevents the vertices in a complete graph of odd order from being colored with more
than one color.

Proposition 15 For the complete graph Kn of odd order, ψq(Kn) = 1, while for any
complete graph Kn of even order, ψq(Kn) = 2.

Proposition 16 ψq(K1,n) = d(n+ 2)/2e, for the star K1,n.

Proposition 17 For the complete bipartite graph Km,n, where 2 ≤ m ≤ n, ψq(K3,3) =
3, but otherwise ψq(Km,n) = 2.

4 Graphs with ψq(G) = 1

The simple question, which graphs G have ψq(G) = 1?, seems to be very difficult
to answer. In fact we raise it as an interesting algorithmic complexity question, as
follows.

QUORUM-ONE
INSTANCE: Graph G = (V,E).
QUESTION: Is ψq(G) > 1?

We know of only a few classes of graphs for which ψq(G) = 1. We have already
seen the first class, namely complete graphs K2n+1 of odd order. From Theorem 6,
we can conclude the following.

Proposition 18 If G is a graph of odd order n for which a(G) = dn/2e, then
ψq(G) = 1.
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Proof. It follows from the definitions that if π = {V1, V2, . . . , Vn} is a quorum
coloring of order k = ψq(G), then each color class must be a defensive alliance. But
if a(G) = dn/2e and n is odd, then each color class must have strictly more than
half the total number of vertices. Only one color class can have this property, and
therefore ψq(G) = 1. 2

We can also observe the following.

Proposition 19 If G is a graph having order n ≥ 2 and either minimum degree
δ(G) = 0 or δ(G) = 1, then ψq(G) ≥ 2.

A bridge in a connected graph is an edge whose removal disconnects the graph.

Proposition 20 If G is a connected graph having a bridge, then ψq(G) ≥ 2.

A second class of graphs for which ψq(G) = 1 can be constructed using the join
operation.

Proposition 21 For any graph G = Kr +Ks, where r + s is odd, ψq(G) = 1.

Proof. For a graph G = Kr+Ks, where r+s is odd, we can show that a(G) ≥ dn/2e.
From this, it follows from Proposition 18 that ψq(G) = 1. Let V (Kr) = X, and
V (Ks) = Y , and S be a defensive alliance of minimum order a(G), and let u ∈ S.

Case 1. u ∈ X. In this case, |N [u]| = r + s, since u is adjacent to every vertex
v ∈ V − {u}, and r + s is odd. But since u is in the defensive alliance S, we know
that at least half of the vertices in N [u] are in S. Thus, |S| ≥ d(r + s)/2e.

Case 2. u ∈ Y . Since u ∈ S, deg(u) = r, and since at least half the vertices in
N [u] must be in S, there must exist a vertex v ∈ X such that v is adjacent to u and
v ∈ S. But then, as in Case 1 we know that |N [v]| = r + s, and this implies again
that |S| ≥ d(r + s)/2e. 2

It remains for us an open problem to find any other class of graphs for which
ψq(G) = 1.

5 Quorum coloring numbers of for hypercubes

A hypercube or n-cube Qn of dimension n is defined recursively by Q1 = K2 and

Qn = Qn−12K2,

for n > 1, where the Cartesian product G12G2 of two graphs G1 = (V1, E1) and
G2 = (V2, E2) is the graph having vertex set V1 × V2, and two vertices (u1, u2) and
(v1, v2) are adjacent if and only if either u1 = v1 and u2 is adjacent to v2 in G2, or u1
is adjacent to v1 in G1 and u2 = v2.
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Equivalently, the n-cube Qn can be defined to be the graph having 2n vertices,
consisting of all n-tuples of 0’s and 1’s, such that two vertices are adjacent if and
only if their corresponding n-tuples differ in precisely one coordinate.

We need some basic facts of hypercubes. Let u and v be two adjacent vertices in
Qn. Then, by definition, they differ in exactly one coordinate. We say that we can
get from u to v by flipping that coordinate. Thus, we can make any walk in Qn by
consecutively flipping coordinates. Let w and v be two vertices that differ in exactly
i coordinates. Then, to get from w to v, we have to flip at least the coordinates
in which they differ. But flipping these coordinates consecutively only once gets us
already from w to v. Hence their distance is i. This is the so called Hamming distance
on the n-tuples of 0’ and 1’s, which is precisely the graph distance in Qn. Moreover,
if we flip only one coordinate of w in which w and v differ, then we get one step closer
to v. So there are exactly i neighbors of w one step closer to v. Since Qn is bipartite
and n-regular, all other n− i neighbors of w are one step further away from v. These
observations give us Equations (1) and (2) below.

In this section we determine the quorum coloring number of the n-cubes Qn. To
achieve this, we first prove a more general result on subgraphs of Qn with minimum
degree at least k. We need some notation. Let d be the distance function of Qn. For
any subgraph G of Qn, the neighborhood of a vertex x in G is denoted by NG(x).
Note that N(x) is the neighborhood of x in Qn. Fix a vertex v of Qn. The i-th level
Li(v) of v in Qn is defined by

Li(v) = { w | w in Qn such that d(v, w) = i }.

For any vertex w in Li(v) we have the following simple equations

|N(w) ∩ Li−1(v)| = i, (1)

|N(w) ∩ Li+1(v)| = n− i. (2)

In Figure 1 we depict two consecutive levels in Qn as well as in G with respect to a
‘fixed’ vertex v as an aid for reading the proof of the next theorem.

Theorem 22 Let G = (V,E) be a subgraph of Qn with the property that the degree
of each vertex of G is at least k, for some k with 0 ≤ k ≤ n. Then |V | ≥ 2k.

Proof. Let G = (V,E) be a subgraph of Qn with minimum degree at least k. If
k = 0, then, clearly, we have |V | ≥ 1 = 20, and we are done. So let k > 0. Take any
vertex v of G. We write

Ri = Li(v) ∩ V,

for i = 0, 1, . . . n. Then R0 = {v}, and R1 = NG(v), so we have |R0| = 1 and |R1| ≥ k.
Take any i with 0 < i < k. Assume that Ri 6= ∅, and let x be a vertex in Ri. Then,
by Equation (1), we have

|NG(x) ∩Ri−1| ≤ i, (3)
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. . .         ≥ k – i – 1  in  G 

. . .              ≤ i + 1  in  G 

L 1i (v) R 1i  

R i  L i (v) 

. . .         n – i – 1 in  Q n  

. . .              i + 1  in  Q n  

. . .         n – i  in  Q n  

. . .              i  in  Q n  

. . .         ≥ k – i  in  G 

. . .              ≤ i  in  G 

Figure 1: Consecutive levels in Qn and G

and, by the fact that |NG(x)| ≥ k, we have

|NG(x) ∩Ri+1| ≥ k − i. (4)

Since i < k and Ri 6= ∅, it follows from (4) that Ri+1 is also nonempty. So, since
|R1| ≥ k > 0, we deduce that Ri is nonempty, for i = 0, 1, . . . , k. Note that Ri may
be empty for i > k.

Now consider the subgraph H = (Ri ∪ Ri+1, F ) of G induced by Ri ∪ Ri+1 with
0 ≤ i < k. By Equation (3) the vertices in Ri have degree at least k − i in H, and,
by Equation (4), the vertices in Ri+1 have degree at most i + 1 in H. We count the
number of edges in H twice, first by summing the degrees of the vertices in Ri, second
by summing the degrees in Ri+1. Then we get the following lower bound and upper
bound for this number:

|Ri|(k − i) ≤ |F | ≤ |Ri+1|(i+ 1). (5)

Equation (5) gives us

|Ri+1| ≥ |Ri|
k − i
i+ 1

. (6)

Since |R1| ≥ k, it now follows by induction that |Ri| ≥
(
k
i

)
. Indeed, inserting this in

Equation (6), we get

|Ri+1| ≥
(
k

i

)
k − i
i+ 1

=

(
k

i+ 1

)
. (7)

Since V =
⋃n

i=0 Ri, Equation (7) gives us the desired bound: |V | ≥ 2k. 2
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Before proving our next result, we cite some results from the literature. A (0, 2)-
graph is a connected graph in which any two distinct vertices have exactly two com-
mon neighbors or none at all. These were introduced in [9], where it was proved that
they are regular. In [10] the following theorem was proved. This theorem also follows
from results in [9, 11].

Theorem A. Let G be a bipartite (0, 2)-graph of degree k. If G is of order 2k then
G is isomorphic to Qk.

Now we prove the result from which we can deduce the quorum coloring number
of Qn and the structure of any ψq-coloring of Qn.

Theorem 23 Let k be a number with 0 ≤ k ≤ n, and let G = (V,E) be a subgraph
of minimum order of Qn such that the minimum degree in G is at least k. Then G
is isomorphic to Qk.

Proof. First note that any Qk in Qn is a subgraph of minimum degree at least k. So
we have |V | ≤ 2k. Hence, by Theorem 22, we have |V | = 2k. To get this equality, we
must have equalities all over in every step of the proof of Theorem 22. Also we must
have Ri = ∅, for i > k. On the other hand, for any vertex x in Ri with 1 ≤ i ≤ k,
there exist exactly i neighbors in Ri−1, so there is a path from x towards v. Hence
G is connected, and, moreover, any vertex in R2 has exactly two neighbors in R1,
so exactly two common neighbors with v. Clearly any other vertex has no common
neighbor with v. Since v was chosen arbitrarily in G in the proof of Theorem 22, it
follows that any two vertices have two common neighbors or none at all, whence G
is a (0, 2)-graph. So G is regular, and, as there is a vertex of degree k, the graph is
k-regular. Finally, G being a subgraph of Qn, it must be bipartite. So G satisfies all
conditions in Theorem A, and G is a Qk. 2

Take any ψq-coloring of Qn. Due to Proposition 9, any color class induces a con-
nected subgraph of minimum degree at least bn/2c. The subgraph of this kind of
minimum order is Qbn/2c. Since we can partition the vertex set of Qn into 2dn/2e

copies of Qbn/2c, any ψq-coloring of Qn is of this type, and ψq(Qn) = 2dn/2e. Hence
we have the following theorem.

Theorem 24 ψq(Qn) = 2dn/2e, and any ψq-coloring of Qn consists of 2dn/2e disjoint
copies of Qbn/2c.

6 Open Problems

The following problems are suggested from this preliminary study of quorum color-
ings.
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1. Can you characterize the class of graphs for which ψq(G) = 1 or the class of
graphs for which ψq(G) > 1? In fact, can you find any infinite family of graphs
other than those of the form K2n+1 or Kr + Ks for r + s odd and r ≥ 2, for
which ψq(G) = 1?

2. Is ψq(G) = 1 if and only if a(G) = dn/2e and n is odd?

3. If ψq(G) = 1, is diam(G) ≤ 2?

4. Is bdiam(G)/2c ≤ ψq(G)? It is easy to prove the following.

Proposition 25 For any tree T ,

bdiam(T )/2c ≤ ψq(T ).

5. It is easy to see that for any graph G, ψq(G) ≤ ψq(G ◦ K1). But is a more
refined result possible? For example, when is this inequality strict?

6. What is the complexity of the following decision problem:

QUORUM-ONE
INSTANCE: Graph G = (V,E).
QUESTION: Is ψq(G) > 1?

7. What is the complexity of the following decision problem:

QUORUM-K
INSTANCE: Graph G = (V,E), positive integer K ≤ |V |.
QUESTION: Does G have a quorum coloring of order at least K?

8. It is easy to see that for 1-regular graphs G of order n, ψq(G) = n. It is also easy
to determine the value of ψq(G) for any 2-regular graph G. In addition, since
ψq(G) = β1(G) for 3-regular graphs G, it is easy to determine, in polynomial
time, the value of ψq(G) for 3-regular graphs. This leads us to the following
decision problem:

4-REGULAR QUORUM
INSTANCE: A 4-regular graph G = (V,E), positive integer K ≤ |V |.
QUESTION: Does G have a quorum coloring of order at least K?

9. Can you design a linear algorithm for computing the value of ψq(T ) for any tree
T?

10. What are good Gaddum-Nordhaus bounds for ψq(G) + ψq(G) and ψq(G) ×
ψq(G)? We believe that the following is true:

Conjecture 26 For any graph G of order n ≥ 4,

4 ≤ ψq(G) + ψq(G) ≤ n+ 2.
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11. A sub-quorum coloring is an onto partial function p : V → {1, 2, . . . , k} having
the property that for every vertex v ∈ V , if p(v) is defined, then at least half of
the vertices in N [v], that have been colored, have the same color as v. The sub-
quorum coloring number ψsq(G) equals the maximum value k in a sub-quorum
coloring of G. Notice that by definition, ψq(G) ≤ ψsq(G). What can you say
about the sub-quorum coloring number of a graph? For example, it is easy to
see that β0(G) ≤ ψsq(G).

12. A partial quorum coloring is a partition π = {V1, V2, . . . , Vk} having the prop-
erty that each color class Vi contains at least one quorum vertex. The partial
quorum coloring number ψpq(G) equals the maximum value k in a partial quo-
rum coloring of G. Notice that by definition, ψq(G) ≤ ψpq(G). What can you
say about the partial quorum coloring number of a graph?
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