Eur. Transp. Res. Rev. (2017) 9: 38
DOI 10.1007/s12544-017-0254-8

@ CrossMark

ORIGINAL PAPER

An approach to geometry-based dynamic location

referencing

Riidiger Ebendt! © . Louis Calvin Touko Tcheumadjeu’

Received: 27 July 2016 / Accepted: 20 June 2017 / Published online: 20 July 2017

© The Author(s) 2017. This article is an open access publication

Abstract

Introduction An important requirement for knowledge
infrastructures in smart cities is the continuous updating
of location-based information. Protocols for dynamic loca-
tion referencing like e.g. OpenLR or AGORA-C tackle
the problem of accurately matching locations between dis-
similar digital maps. They are map-agnostic and aim at
limiting the amount of descriptive data to reduce band-
width. However, there are applications for which the weaker
requirement of map-independence is completely adequate,
and for some there are even no restrictions in bandwidth
(e.g. in the EC-funded project ROSATTE, and in the DLR
projects MobiLind and KeepMoving), and with relaxed con-
straints it is possible to learn from methods in similar
areas like road network matching and map conflation, in
order to achieve a more accurate solution. Following this
path, this paper presents a map-independent approach devel-
oped in the ongoing DLR project .MoVe, which can be
combined with a bandwidth-efficient dynamic location ref-
erencing method like e.g. OpenLR to target applications
with bandwidth restrictions.

Methods The proposed new approach works line-oriented
and is guided by a measure of geometric dissimilarity. It is a

This article is part of Topical Collection on Smart cities and
transport infrastructures

b4 Riidiger Ebendt
Ruediger.Ebendt@dlr.de

Louis Calvin Touko Tcheumadjeu

Louis.ToukoTcheumadjeu @dlr.de

German Aerospace Center, Institute of Transportation
Systems, Rutherfordstr. 2, 12489 Berlin, Germany

top-down approach, recursively splitting up the source route
into parts, thereby following a divide-and-conquer strategy
to reduce the problem until it can be solved trivially.
Results 1Tt is currently capable of mapping closed line loca-
tions (i.e. circular routes, representing either the boundaries
of areas or the tours of e.g. delivery trucks) from a TeleAt-
las map to a NAVTEQ map on-the-fly with a success rate of
97.5% (OpenLR: only 82.5%), and also capable of mapping
short line locations (i.e. linear routes) on-the-fly between the
same maps, with a success rate of 99.7% (OpenLR: 91.9%).
Conclusion In conclusion, the new approach to match lin-
ear or circular routes between two dissimilar maps is highly
accurate and map-independent, but access to both involved
maps is required. The approach can also be combined with
a bandwidth-efficient dynamic location referencing method
like e.g. OpenLR to obtain a compact format before the
descriptive data is transmitted.

Keywords Location based services - Digital road maps -
Dynamic location referencing - OpenLR - Road network
matching

1 Introduction

Municipal leaders, politicians, civic planners and other key
stakeholders in cities are now looking to enable the vision
of a “knowledge infrastructure”, i.a. by deploying location
based services. Location based services can help in bet-
ter governance, planning and functioning of smart cities.
An important requirement is the continuous updating of
location-based information for transport users.

With many questions arising during this mission, there is
a strong interest in protocols for dynamic location referencing

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s12544-017-0254-8&domain=pdf
http://orcid.org/0000-0002-3565-7024
mailto:Ruediger.Ebendt@dlr.de
mailto:Louis.ToukoTcheumadjeu@dlr.de

38 Page 2 of 30

Eur. Transp. Res. Rev. (2017) 9: 38

like e.g. OpenLR and AGORA-C: they are addressing the
problem of accurately matching locations between dissim-
ilar digital maps. They are needed since “conventional
geo-referencing methods using coordinates or a pre-defined
set of identifiers have structural limitations; they may fail to
match the same location in different maps due to discrep-
ancies with respect to level of detail, spatial and temporal
accuracy, and semantic dissimilarities” [18]. For example,
location references based on road names and house numbers
could fail due to misspellings and notation differences, see
e.g. [27].

Location references solely based on geographical coordi-
nates (e.g., WGS84 coordinates) also have severe problems.
Often there are significant offsets between different maps
or topological differences due to varying accuracy of the
digitalisation from analogue map data, different manufac-
turing methods, and changes of the road network over time
[27]. Therefore, a geographical coordinate located on a road
in one map might be situated off-road in another. Moreover,
there may be roads which only exist in one of two different
maps (this holds even for different releases of maps from
the same vendor).

For example, an intersection, modelled as a simple inter-
section in one map, might be represented by a complex
intersection in another map. An additional problem is raised
from differences in the representation of roundabouts: since
some vendors use patterns to represent them, a roundabout
might be exactly circular in a first map, whereas in a second
one the roundabout was digitalised in its real world geom-
etry which can be elliptically [27]. Finally, irrespective of
the aforementioned deviations between maps, a location ref-
erence solely based on a geographical coordinate may not
be unique. For instance, take the case of referencing loca-
tions on two motorways crossing without allowing access to
each other. At the place of the crossing, the same coordinate
would stand for two separate locations on different motor-
ways [27]. In all these cases a geographical coordinate is not
sufficient for a reliable location reference.

Moreover, there are also problems with the well-
established RDS-TMC service: location codes are stored in
a predefined TMC location table. This results in the need
to incorporate this common set of location codes in all map
databases. Therefore the TMC approach requires a signifi-
cant amount of overhead and maintenance efforts over time,
see e.g. [18, 27]. For these structural and practical reasons,
the use of RDS-TMC is restricted to European major roads,
such as the motorway network, the national main roads,
and only some important parts of urban roads. This means
that large portions of the road network are left uncovered,
whereas every location in a map (including locations cover-
ing minor roads) can be transferred using a dynamic location
referencing protocol like OpenLR or AGORA-C: such pro-
tocols describe how to match locations between dissimilar

@ Springer

digital maps on-the-fly [18, 27]. They are map-agnostic in
the sense that

(a) they are map-independent, i.e. they do not require
maps from a specific vendor

(b) neither the encoder nor the decoder knows about both
used maps, but rather the encoder only accesses the
source map, and the decoder only accesses the target
map.

There are many use cases for dynamic location referenc-
ing. For example, the transferred information can consist
of the current traffic situation at a certain location, a traf-
fic forecast or special alerts [32]. In a typical use case for
a smart city, such location content must be shared effec-
tively between applications for navigation, transportation
management, or wireless location-based services.

On the other hand, all approaches to dynamic location
referencing have the disadvantage of possibly failing to
properly encode and decode a location in some cases. Also,
since no pre-coded location tables are used, a dynamic ref-
erencing method needs to transmit more information per
location than a conventional method. Therefore, a dynamic
location referencing method needs to achieve an acceptable
level of performance in terms of

(1) hitrate
(2) data size per location reference (message size)

Hit rate is the percentage of “hits” during dynamic loca-
tion referencing, where a “hit” means either a correctly
identified location or a location correctly identified as
not being present in the decoder map [43]. As a gener-
ally agreed industry goal, a dynamic location referencing
method should perform at a hit rate of 95% and message
size should be below 50 bytes on average [17, 27, 43].

The AGORA-C method is reported to have achieved the
industry goal of an acceptably small message size and a
sufficiently high hit rate [42, 43].

TomTom has provided test results for OpenLR, e.g.
using a source map from TeleAtlas and a target map from
NAVTEQ: success rates of 93% were achieved both for
TMC paths and non-TMC paths [29]. Here, “success rate”
is the percentage obtained by only counting the correctly
decoded locations, i.e. those where encoder and decoder
location were equal, and dividing this number by the num-
ber of all locations that could be decoded (for a discussion of
the difference to the definition of “hit rate”, see Section 4.1).

In contrast to other approaches to dynamic location refer-
encing like AGORA-C which have licensing fees meaning
extra cost, e.g. [37], OpenLR is a royalty-free, open stan-
dard under a creative commons license (CC BY-ND 3.0
[5]), and therefore fosters interoperability and promotes free
choice between different vendors and technology solutions
[12].

Eur. Transp. Res. Rev. (2017) 9: 38

Page 3 0f 30 38

Summarised, current methods for dynamic location
methods either imply the extra cost of licensing fees, or do
not fully meet the aforementioned industry goal yet, or suf-
fer from both these drawbacks. The starting point for the
present paper then is the observation that for a number of
applications a map-independent (cf. part (1) of the previous
definition of “map-agnostic”) dynamic location referenc-
ing method is completely adequate. That is, an omniscient
matching centre with access to both maps can be used.
Moreover, even part (1) of the aforementioned industry
goal, i.e. a message size below 50 bytes on average, is not
relevant, if bandwidth is not restricted: e.g. in the afore-
mentioned EC-funded project ROSATTE [25], static data is
sent from a public authority to a map provider, and in two
DLR projects, MobiLind and the ongoing project .MoVe,
route-based data from a traffic information provider is trans-
formed from one well-known map to another, and often
this transformation takes place on the same server. For
such applications, it is possible to learn from methods in
similar areas like road network matching (RNM) and map
conflation, in order to achieve a more accurate solution.

A first approach is to obtain a permanent static mapping
by use of RNM: since an omniscient matching center has
access to both maps, a RNM algorithm (e.g. [23, 44]) can be
used to establish such a mapping from the source map to the
target map. It provides M : N mappings (M > 1, N > 0)
of every road segment in the source map, represented by
a graph edge, to zero or more road segments in the target
map. This mapping can be used to map a queried route in
the source map to a corresponding route in the target map
on the fly by “glueing together” the individual matches for
the edges of the route.

Throughout the paper, this approach will be referred to
as the “RNM-based approach”. This approach is appealing,
but has several drawbacks: establishing a static mapping by
RNM means

(i) using a less accurate algorithm not tailored towards
the mapping of routes

(ii)) high maintenance cost because of the necessary pre-
processing, and longer time for a transition to a new
pair of maps;

(iii) extra memory requirement for the static mapping,
higher initialization time since for a good perfor-
mance the mapping must be reloaded into main
memory every time the server is restarted;

(iv) high implementation effort, due to the lack of avail-
able open source implementations.

Regarding point (i) it can be noted that e.g. the most recent
algorithm DSO in [44] aims to match fragmented linear
objects and matching areas. However, the matching cer-
tainty and accuracy is hard to be ensured in this case as
the fragmented objects provide little contextual information

[44]. The main use case in several projects of German
Aerospace Center is dynamic location referencing (DLR),
i.e. traffic information like e.g. the information about con-
gested stretches of road is location-referenced using short
routes. In such a DLR-context, a successful match always
means a complete match, i.e. partial matches are not of
interest and are considered as a failed match (see also the
introduction to Section 4). Moreover, a qualitative compar-
ison in Section 4.2.4 shows that the algorithm proposed in
this paper has a higher success rate than DSO, due to the fact
that it considers the route as a whole rather than just glueing
together individual edge matches.

Regarding point (ii), notice that e.g. [23] reports a run
time of around two hours to match 100,000 road segments
on a standard IPC. The time for an additional interactive
editing of the results may even take several days.

This paper presents an approach called “Geometry
InterMapMatching Extension” (GIMME) which follows
this path but aims to overcome the aforementioned disad-
vantages. It has been developed in the ongoing DLR project
LMoVe. It assumes that the requirement of a map-agnostic
method (in the sense of the previous definition) can be
dropped, but still provides a map-independent approach. It
is tailored towards the on-the-fly matching of short routes,
with respect to both execution speed and accuracy. GIMME
is a dynamic method, i.e. it does not use a static mapping.
Therefore no preprocessing is required. Consequently, set-
ting up or resetting a matching center for a new pair of maps
can be done much faster, and requires less memory. GIMME
can be expected to have a better success rate than the RNM-
based approach (see Section 4.2). On the other hand, the
error detection rate of GIMME can be lower than for the
RNM-based approach. However, the first quality measure,
i.e. the success rate, is a much more important measure in
practice (see also Section 4.2.4). If the error detection rate is
of concern, GIMME can also serve as a temporary replace-
ment for the RNM-based approach during its preprocessing
step when resetting to new maps.

Neither GIMME nor the RNM-based approach is target-
ing minimal bandwidth. Nonetheless, both approaches can
be combined with a bandwidth-efficient dynamic location
referencing method like e.g. OpenLR to address applica-
tions with bandwidth restrictions (see Section 3.5). GIMME
is currently capable of mapping closed line locations (i.e.
circular routes, representing either the boundaries of areas
or the tours of e.g. delivery trucks) from a TeleAtlas
map to a NAVTEQ map on-the-fly with a success rate of
97.5% (OpenLR: only 82.5%), and also capable of mapping
short line locations (i.e. linear routes) on-the-fly between
the same maps, with a success rate of 99.7% (OpenLR:
91.9%). When mapping longer linear routes consisting of
20 road segments between the two maps, GIMME showed
a success rate of 98.0%, whereas the estimated success rate

@ Springer

38 Page 4 of 30

Eur. Transp. Res. Rev. (2017) 9: 38

of the RNM-based approach with DSO (“RNMpgp”) is only
92.3%, a difference of 5.7%. For routes with 25 segments,
GIMME has a success rate of 93.8%, whereas the estimated
success rate for RNMpgg is only 90.5%.

The paper is structured as follows: in Section 2, necessary
background from location referencing, road network match-
ing, map conflation, and a geometry-based approach to
matching of single edges between maps is given. The latter
approach is extended to a new algorithm matching complete
routes in Section 3. Next, in Section 4, the accuracy of
the new algorithm is compared to that of OpenLR and
of RNMpgo. Finally, the work is concluded in Section 5.

2 Related work and background

To keep the paper self-contained, necessary background and
related work is briefly reviewed in this section.

2.1 Types and use cases of locations

Typically, the following locations are distinguished [18, 32]:

— point locations,
— line (or linear) locations, and
— area locations.

Point locations are zero-dimensional elements in a map
that specify a geometric location. An example for a service
involving point locations is the search for nearby point-
of-interest (POI) objects. Other examples are e.g. locating
petrol stations and speed cameras [32].

Line (or linear) locations are one-dimensional elements
in a map describing roads or a list of connected roads, and
are used during e.g. route guidance: recommended routes
are calculated based on the current traffic situation. That
way, route guidance is adjusted to incoming information
such as traffic jams. In this, dynamic traffic information is
incorporated into route calculation, and the respective addi-
tional new information is location-related (e.g., information
about a congested stretch of road). Every such location-
based information must be transferred to some processing
unit, often a server at a centre, performing the route cal-
culation. In turn, the calculated recommended routes then
serve to redirect traffic flows in order to relieve overloaded
roads, and clearly they are location-based information them-
selves. Recommended routes are displayed on websites or
in mobile applications, and often a reliable way to trans-
fer them from a sender, e.g. the centre, to the respective
receivers, e.g. the PNDs, is also needed for them.

In the OpenLR standard, area locations are two-
dimensional parts of the surface of the earth which are
bounded by a closed curve. An area location may cover
parts of the road network but does not necessarily need to.

@ Springer

Examples for area locations not covering the network are
areas describing woodland, a sea or an agrarian country.
Other more typical use cases for area locations are: a Wi-Fi
hotspot with its signal range, weather information, weather
reports about e.g. average rainfall for every cell of a grid,
low emission zones, areas affected by weather or environ-
mental conditions (bad weather, smog), flood areas, areas
that are congested (due to any cause, e.g. traffic overload,
public event, or disaster), administrative areas, pedestrian
areas, large crowds of people, areas that are blocked for
traffic, and areas subject to city toll [32].

According to the OpenLR White Paper v1.5 [32],
“OpenLR can handle locations which are bound to the road
network but also locations which can be everywhere on
earth (not bound to the road network)”. If they are not bound
to the road network, a location is represented by sequences
of WGS84 coordinates (sometimes plus additional parame-
ters describing the extent of the location). In OpenLR, the
only area locations that are bound to the road network are
closed line locations. They reference the area defined by
a closed path (i.e. a circuit) in the road network [32]. The
boundary always consists of road segments. Besides areas,
a closed line location may also describe the course of a tour,
e.g. a tour of freight vehicles starting and ending at a depot,
or even the course of a marathon.

In AGORA-C, area locations are represented either in
terms of concatenated line locations representing the area’s
outline (i.e., explicitly composed) or by means of a set of
locations of any type contained within the represented area
(i.e., implicitly composed) [18].

2.2 Dynamic location referencing

This section gives a brief overview of previous work
on dynamic location referencing. Related work includes
the ILOC concept (“Intersection LOCation” [9]), devel-
oped in the EVIDENCE project (“Extensive Validation
of IDENTtification Concepts in Europe” [24], 1997-1998),
extended ILOC [2], SPOT (“SPacial Object Tags” [7]),
ROSA (“Reconstruction of Objects on a Second mAp” [6]),
the Routing Point or Pivot Point approach of Siemens VDO
[16], the Extended Geometry or GOODLANE approach
of Bosch [15], the AGORA location referencing method,
developed in the AGORA project (“Implementation of
Global 10cation Referencing Approach” [8, 19], 2000-
2002), with its successor AGORA-C [18, 42, 43] devel-
oped in the mobile.info project ([4], 2004—2007), MEI-LIN
(“MEthod for Identifying Locations In road Networks”
[41]), and OpenLR (hinting at “Open Location Referenc-
ing”)[32].

An ILOC (Intersection LOCation) is a junction where
two or more intersecting roads with different road descrip-
tors (e.g., different street names) meet. In the ILOC

Eur. Transp. Res. Rev. (2017) 9: 38

Page 50f30 38

approach, the location of the ILOC is directly referenced
by a WGS84 coordinate, and then the direct reference
is extended with additional information like three road
descriptors of connecting roads. This helps to avoid ambi-
guity [9]. The ILOC concept was implemented and tested
in the EVIDENCE project, and hit rates of about 80% were
achieved [24, 43].

The extended ILOC approach uses the ILOC codes of
the location’s bounding intersections for determining the
expansion of the location [27], and at the same time is based
on the geometry of a location and descriptive elements [43].
Of note is that a variant of extended ILOC has been devel-
oped into TPEG-Loc, part 6 of the TPEG Generation 1
standard, which had been issued as ISO standard ISO/TS
18234-6 [8, 20, 22, 33].

ROSA, developed around the time of the AGORA
project, is in essence a variant of Extended ILOC, and max-
imum hit rates of about 85% were reported [6, 43]. Accord-
ing to [43], “[...] the Routing Point approach [is based]
on connectivity and route calculation, and the Extended
Geometry approach on the matching of characteristic geom-
etry”. According to [27], “the main idea of these approaches
[i.e., extended ILOC, Pivot Point, and GOODLANE] was to
select special points of the road network and supply them
with certain attributes to make them easily identifiable”. For
a detailed description of these methods, see [8].

The SPOT approach of Bosch generates three compo-
nents of a location reference: position, object type, and
descriptor. After transmission of the reference, a “search
window” is generated around the position in the decoder
map. Then, all objects of the requested object type are
requested within the search window, the given descriptor is
verified with the descriptors of the collected objects, and
finally that object in the search window is selected which
matches the descriptor [7].

In the AGORA project an attempt was made to com-
bine three dynamic location reference methods, namely
the aforementioned extension of the ILOC approach, the
Pivot Point approach and the GOODLANE approach. The
resulting hit rate was good enough to meet the stated
industry goal in terms of a 95% hit rate [17, 27], but the
message size was unacceptably high [42, 43]. Therefore
in the successor AGORA-C (the “C” stands for “com-
pact”, akin to a reduced message size, and also hints at
“ALERT-C”, the official name for the TMC standard [43]),
complexity was reduced by focussing on two approaches
only, the ILOC extension and the Pivot Point approach.
The AGORA-C method is reported to have achieved the
industry goal of an acceptably small message size and a
sufficiently high hit rate [42, 43]. It is of note that the
method is in the process of being accepted as ISO standard
ISO/DIS 17572-3 [21], which was successfully approved
as a Draft International Standard by ISO and will be

issued as an International Standard pending final approval
[18, 37].

Rather than aiming at reduction of message size, MEI-
LIN puts more emphasis on a better identification of the
surrounding road network of the location in order to facil-
itate identifying the correct lanes. As the key idea, “[...]
one special point is chosen which is either in or close to
the location to be referenced. Rooted at this point, a tree
is built up in the surrounding road network following cer-
tain rules. The vertices of the tree are points on connected
roads which have a certain driving distance from the root”
[27]. After transmission, the coordinate is placed into the
decoder map. Within a certain search area around that coor-
dinate potential root points are chosen on the map, and “the
same algorithm as on the encoder side is used to build up a
tree rooted at each of the chosen points” [27]. After that, the
resulting trees are matched with the transmitted information.
Since the tree can grow large if a longer location needs to be
encoded, splitting the locations and using multiple smaller
trees might be necessary [27].

OpenLR is an open standard for dynamic location refer-
encing, i.e. for encoding, transmitting, and decoding loca-
tion references in digital maps [31]. It was launched by
TomTom International B.V. in September 2009 and devel-
oped for the use case of transferring traffic information
from a centre to in-vehicle systems, built-in or used as an
add-on (PND, Smart Phone). OpenLR is published as an
open-source framework, including a reference implemen-
tation of the proposed standard (in contrast, no reference
implementation is publicly available for any of the afore-
mentioned approaches). Everyone is invited to contribute to
this open source software project and to enhance the existing
solution.

The standard addresses the problem of accurately match-
ing locations between dissimilar digital maps, enabling a
reliable data exchange for many different types of location
information, and cross-referencing through maps of differ-
ent vendors, versions, or different cartographic standards
[31]. OpenLR has been certified by the Travellers Infor-
mation Services Association (TISA) [35] as an industry
standard (TPEG-OLR [34]) which is part of the UML-
based TPEG structure generally known as TPEG Gener-
ation 2 (TPEG2). Moreover, the OpenLR extension for
DATEX II [11] makes it possible to use DATEX II [10]
with an extended location referencing model containing
OpenLR. OpenLR has a growing number of users [30].
Users include the Swedish Transport Administration who is
using OpenLR in its DATEX II services, GEWI who devel-
ops TIC, a commercial off-the-shelf software platform used
to process data for information services, TrafficNet who is
South Africa’s largest supplier of Traffic and Travel News to
the Broadcast and Media Industry, and other leading com-
panies in the field of vehicle tracking, traffic-related data

@ Springer

38 Page 6 of 30

Eur. Transp. Res. Rev. (2017) 9: 38

warehouses, and geographic information systems (GIS).
OpenLR has also been used in project ROSATTE (“ROad
Safety ATTributes exchange infrastructure in Europe” [25],
2008-2010): a first benefit was that no licensing fees had to
be paid, and a second, that the effort needed to implement
encoders and decoders was significantly reduced because
a framework of Java components is provided [28]. The
results were positive: for example, OpenLR location refer-
ences created from two different maps describing a spatial
extend of a speed limit (update), could be decoded on a third
independent map with average location matching rates of
over 90% (28, 36].

The main idea of OpenLR for locations which are bound
to the road network (such as line locations or closed line
locations, describing an area bounded by a closed path,
i.e. a circuit of road segments) is covering the location
completely with a concatenation of (several) shortest-paths.
Each shortest-path is specified by information about its start
line and its end line, given as so-called location reference
points (LRPs): an LRP describes an object in a digital map
which consists of coordinates and additional information
about a line in the map, and every single LRP specifies a
position or a line in a digital map. The resulting set of LRPs
uniquely identifies the location. The path described by such
a location reference (the “location reference path”) may be
longer than the original location and offsets trim this path
down to the size of the location path [32].

2.3 Road network matching

This section briefly outlines background from the three
most-cited works in road network matching. The reviewed
methods are usually used in the context of combining two
distinct maps into one new map (map conflation). More-
over, a previous geometry-based approach to match single
edges between two maps, “Geometry Matching”, is briefly
reviewed. The results of this method are the starting point
for the proposed approach GIMME. The first and the third
method, i.e. “Iterative Closest Points” and the “Delimited-
Strokes-Oriented Approach”, have mainly been included to
complement and complete the understanding of the second
method, “Buffer Growing”. Buffer growing, a line-oriented
bottom up method, is the approach most similar to GIMME,
which is a recursive top-down method (see Section 3).

2.3.1 Iterative closest point

Iterative Closest Point (ICP) was formulated in [1] as a
generic algorithm to match two clouds of points by mini-
mizing the difference between them.

Subsequently, it has been adopted in the field of road
network matching [38]: first all nodes of the two net-
works are extracted and then correspondences of nodes

@ Springer

between the two resulting datasets are established by com-
bining initial thresholds for dissimilarity measures based on
the Euclidean distance, the number of incident edges (i.e.
the valence), and the angle differences between emanat-
ing edges. Next, if line segments are enclosed between two
nodes of one dataset, they are matched to those enclosed by
the corresponding nodes. The rationale is that if two roads
from different datasets have corresponding start and end
nodes, then there is a high likelihood that the roads them-
selves are corresponding counterparts [44]. The algorithm
re-computes the initial thresholds based on data of the
first computed node correspondences, and then iterates the
approach with stepwise relaxed constraints. This works
well when matching whole roads since this only requires
establishing the node correspondences between intersec-
tions. However, finding the respective correspondences for
the remaining start and end nodes in two digital road maps
from different vendors is more difficult. The reason is
that the geometry of road segments (e.g., length and the
number of segments per road) varies strongly among dif-
ferent maps. In contrast to the line-oriented BG algorithm
in Section 2.3.2, ICP is designed for the larger data sets
involved when matching large portions of two road maps
and therefore seems to be more appropriate for map confla-
tion than for matching individual line or area locations.

2.3.2 Buffer growing

Buffer Growing (BG) [39] is an efficient algorithm for the
general task of line matching [44]. BG accounts for the
aforementioned problem of possible significant differences
between corresponding line segments with respect to their
start and end points and their lengths (cf. Section 2.3.1)
by introducing the concept of a growing buffer. At start,
I:N, N > 1 correspondences between line segments are
considered: a spatial buffer around the one source seg-
ment is defined, and for a valid correspondence all N
target segments must be completely confined to this buffer.
If no fitting target segment can be found in the current
buffer, it is stepwise expanded until a respective number of
target segments can be found [40]. This process also facil-
itates computing M:1 or M:N, M > 1 correspondences
(i.e., matching of complete routes): for this purpose, new
logical integrities are built from previously found corre-
spondences, which are then subject to new applications of
BG in subsequent steps.

After the Buffer Growing process, a list of potential can-
didates for the matching reference is computed. The list
may be ambiguous and typically contains a large number
of matching candidates. By computing the geometric and
topologic similarity between each matched pair, the best
matching candidate can be confirmed as the final solution
[45].

Eur. Transp. Res. Rev. (2017) 9: 38

Page 70f 30 38

2.3.3 Delimited-stroke-oriented approach

The basic idea of the Delimited-Stroke-Oriented (DSO)
approach is to exploit contextual information as much as
possible. For this purpose, a kind of pre-processing step
identifies potential “[...] fundamental elements at more
abstracted levels”, i.e. a “series of conjoint road objects
[chained together and acting] as the fundamental element
in the matching process” [44]. For this purpose, the Delim-
ited Strokes are progressively constructed at three different
levels: on the first level, a Delimited Stroke represents a
series of connected segments which have “good continu-
ity” to each other (which means that one segment follows
the other in almost the same direction), and are delimited
by “efficient terminating nodes” (which are either promi-
nent crossings with at least 4 incident nodes or dead-ends),
whereas on the second level it is an arbitrary series (i.e.,
sharp turns are now allowed) which is delimited by arbitrary
crossings or dead-ends. Only on the third level single road
segments (edges) are considered.

Experimental results showed that the outlined contextual
approach increases the accuracy of road network matching
significantly [44]. Of course, this algorithm is designed for
matching a whole map to another (i.e., for map conflation),
and requires a significant amount of pre-processing. It is left
to show that there can also be benefits for the on-the-fly
matching of single line or area locations between dissimilar
maps (i.e., for the more focused problem addressed in this

paper).
2.3.4 Geometry matching

In [26], digital road networks have been benchmarked with
respect to their fitness for route finding and traffic simula-
tion. For this purpose, a geometry-based approach was used
to match single edges (not complete routes) in a source map
to one or more edges in a target map (thereby establishing
1:N but not M:N, M > 1 relationships). In the following,
the basic ideas of this algorithm called Geometry Matching
(GM) are given briefly.

A geometry-based dissimilarity measure for pairs of
source and candidate edges is given which is mainly based
on three criteria:

(i) average distance
(i) angular difference, and
(iii) length of the mutual projection of the candidate and
the source edge,

respectively. At first, a proximity search is done in the tar-
get map within a certain radius around the position of the
start node of the source edge, and the dissimilarity measure
is computed for the found edges. All edges with a dissimi-
larity measure above a certain threshold are excluded from

the candidate list. To determine a 1:N, N > 1 relation-
ship for a source edge, the first best edge is determined as
the candidate with the highest measure, and the result list is
initialised as the singleton with this best edge. Then, a forwards
and a subsequent backwards search are performed in an
iterative manner, using the topology of the target map:

Firstly, the candidate list is re-initialised with those out-
going edges of the current best edge, for which the dissim-
ilarity measure is good (i.e. low) enough, and ordered with
respect to the measure. Then, a new best edge is calculated
and appended to the result list, and so on until an empty can-
didate list is encountered. Secondly, an analogous process
starts with the incoming edges of the current best edge until
termination. In the end, the result list is either empty if no
candidates could be found, or is a sequence of one or more
connected edges forming a stretch of road in the target map
corresponding to the source edge.

Summarised, the GM method resembles the idea of the
BG algorithm (see Section 2.3.2), although no building of
new logical integrities from previously found correspon-
dences takes place here, and consequently no M:N, M > 1
correspondences, i.e. no matches for complete routes are
constructed. It is worth mentioning that GM uses both geo-
metric and topological attributes of the edges. The use of a
threshold for the average distance between source and can-
didate edges is an interesting novelty (see Section 4.1 for
the details), since previous methods were using measures on
top of the Hausdorff or the Fréchet distance.

3 Geometry InterMapMatching Extension
(GIMME)

This section introduces the proposed new approach called
“Geometry InterMapMatching Extension” (GIMME). It is
divided into five subsections: Section 3.1 presents the algo-
rithm, and Section 3.2 concludes the presentation of the
algorithm with further remarks. GIMME uses GM to cal-
culate the list of potential candidates, and therefore, the
presentation of GIMME is concluded by a brief review of
GM’s thresholds for exclusion of a candidate in Section 3.3.
Then, Section 3.4 demonstrates the presented algorithm by a
worked example. Next, Section 3.5 discusses how GIMME
can be combined with a bandwidth-efficient dynamic loca-
tion referencing method like e.g. OpenLR to target applica-
tions with bandwidth restrictions.

3.1 Algorithm
In this section, first the idea of the algorithm is derived
from key observations made for the problem at hand. Next,

pseudo-code is given for the algorithm GIMME. Regarding
the variable names in the pseudo code, capital Latin letters

@ Springer

38 Page 8 of 30

Eur. Transp. Res. Rev. (2017) 9: 38

are used for sets (e.g. for a set of solutions, i.e. a set of edge
lists), whereas small Latin letters are used for set elements,
associative arrays, lists, and for natural numbers.

Similar to the BG algorithm (see Section 2.3.2), it works
line-oriented and is guided by a measure of geometric dis-
similarity. Another analogy is that (partial) solutions are
only considered when they are topologically connected.
However, in contrast to the BG algorithm, which is expand-
ing and combining partial solutions bottom up, GIMME is a
top-down approach, recursively splitting up the source route
into parts, thereby following a divide-and-conquer strategy
to reduce the problem until it can be solved trivially.

Divide-and-conquer algorithms are known to make effi-
cient use of memory caches: once a sub-problem is small
enough, it and all its sub-problems can be solved within the
cache, without accessing the slower main memory [14].

GIMME builds upon the results of the GM algorithm
(see Section 2.3.4): GM computes an ordered list of candi-
date edges (or “candidate list” for short) for every edge of
the source route (or “source edge” for short), and returns
an associative array relating every source edge to a corre-
sponding candidate list. The order in each such candidate
list is with respect to the dissimilarity to the source edge,
see Section 3.3. The aforementioned array is essentially
a “pool” of eligible candidate edges, and the objective
of GIMME is to construct a best match for the whole
route by drawing (zero, one, or more than one) candidate
edge(s) from the pool for every source edge, and by finding
the best possible combination of them. The following key
observations lay the ground for the new algorithm:

(i) Firstly, in the context of this paper, source and tar-
get routes must be directed paths, i.e. finite sequences
of edges connecting a sequence of vertices where the
first and the last vertex may coincide. It is of note
that cycles have not been excluded here, and that the
edges must represent road segments which are con-
nected in such a way, that a vehicle can drive on them
in the driving direction, that is, from the start of the
first segment to the end of the last segment.

(i) Secondly, there must be a non-empty candidate list
for every source edge: if this is not the case, then there
is at least one source edge which cannot be matched
to any edge in the target map. Consequently, also
the whole route cannot be matched. Notably, partial
matches are not of interest here, complying with the
fact that the intended use case is dynamic location
referencing (see the introduction to Section 4).

(iii) There are M:N relations between source and target
edges. This means that for a single source edge 1:n
relations must be established, where N > n > 0.
For an example of the case n = 0, consider e.g.
a 3:2 relation between source and target edges: if

@ Springer

all source edges are mapped to at least one tar-
get edge, then there must be one destination edge
occurring twice in the resulting target route. This
means that this target route cannot be homologous.
Notice that the fact that a source edge might not
become mapped to any target edge does not con-
tradict (ii): also in this case eligible candidates for
the respective edge do exist, but all these candi-
dates are “consumed” for other (i.e. incident) source
edges.

(iv) Of note is that the order of a candidate list has noth-
ing to do with that of the edge sequence of a directed
path. This is because the candidates are ordered with
respect to dissimilarity to the source edge. Therefore,
GIMME considers the set of candidates in a candi-
date list, i.e. the order of the elements in the list is not
used (cf. Algorithm 2, line 9). To build the final target
route by combining partial sequences drawn from the
pool of candidates for every individual source edge,
GIMME considers all permutations of subsets of a
candidate list, including the empty set because of the
case n = 0 in (iii). Since this seems to introduce
a very complex step to the algorithm, the following
observation is exploited to ensure efficiency of the
approach:

(v) Since the final route must be a directed path, it is not
necessary to consider partial sequences for which it
is already known that this property does not hold.

(vi) Point (v) gives rise to the following recursive formulation:

1. The final target route is constructed by trying
to connect partial routes (i.e., partial solutions)
for the head and tail of the list of source edges.
Whenever a current partial solution for the head
can be connected topologically to a partial solu-
tion for the tail (cf. Algorithm 2, line 32), then
we have a match for the whole source route, and
this solution is stored as a potential solution.

2. More precisely, the partial solutions for the head
are computed by subsequently considering all
permutations of subsets of its candidate list (cf.
Algorithm 2, line 13 and line 18). To cover the
case n = 0 in (iii), GIMME also considers the
empty subset as a possible (partial) solution for
the head, but only if the current head solution can
also be used as the prefix of a solution for the tail.
A test for this is performed in Algorithm 2, line
28. If it succeeds, GIMME stores the correspond-
ing solution for the tail (i.e. without a preceding
match for the head) as a possible solution (cf.
Algorithm. 2, line 29).

3. Only connected permutations (i.e. directed
paths) are considered (cf. (v) and Algorithm

Eur. Transp. Res. Rev. (2017) 9: 38

Page 9 0of 30 38

2, line 14). The partial solutions for the tail
are computed by invoking the outlined algo-
rithm recursively on the tail. Every recursive
call returns a list of all (partial) solutions found
(where a solution respects (v) by construc-
tion), and the calling code then checks each
returned solution for the tail for topological
connectedness with the current solution for the
head (cf. Algorithm 2, line 32). The boundary
case of the recursion is reached when the tail has
shrunk to an empty list (for which an empty list
of solutions is returned, cf. Algorithm 2, line 3).
4. Finally, from the list of solutions for the whole
route returned at the topmost calling level, the
best solution must be chosen. Currently, the best
solution is defined as the largest admissible solu-
tion (i.e. one that is a longest list) for line
locations (cf. Algorithm 1, line 11), and as the
first found cyclic path for closed line locations
(cf. Algorithm 1, line 13). A largest admissible
solution is preferable because such a solution is
more likely to cover the whole source route (i.e.
to not miss any part of it). For an explanation
of the term admissible, see (vii). In the (rare)
case that there is more than one largest admissible
solution, currently one is simply picked randomly.

(vii) A solution is admissible, if and only if (a) it respects
(i1), i.e. for every source edge at least one correspond-
ing candidate edge is used in it (but not necessarily
for that respective source edge, see the case n = 0 in
(iii)), and (b) the length of the solution does neither
exceed 120% nor fall below 80% of the length of the
source route matched by this respective solution.

Notice that a solution is already a directed path by construc-
tion; hence this is not required again in (vii). This also holds
for partial solutions. That way partial solutions are excluded
early if they cannot be completed to a solution for the whole
route, and are never considered again at a shallower calling
level of the recursion.

This helps keeping the list of partial solutions returned
by a recursive call (and all efforts depending on the size of
this list, corresponding to the effort of a divide-and-conquer
algorithm for combining the partial solutions) small. To
reduce the number of recursive calls, the result of each
recursive call for a list of source edges e is cached, using e
as the key (cf. Algorithm 2, line 37). This corresponds to a tech-
nique of divide-and-conquer algorithms called memoization,
i.e. identifying and saving the solutions to overlapping subprob-
lems resulting from the branched recursion. Algorithm 2
starts by checking whether a previously computed solution
for e already exists in the cache (cf. line 6). After each run of
Algorithm 2, the cache is cleared (cf. Algorithm 1, line 7).

Algorithm 1 Compute the GIMME match of a (line or
closed line) location, given as a list of source edges in a
source map, in a destination map, and return it as a list of
destination edges

Precondition: ¢ is a list of edges in the source map, and
t € {LINE, CLOSED_LINE}

1: function GIMMEMATCH(e, t)

2: m <—GEOMETRYMATCHES (¢)
3: if m.SIZE # e.SIZE then > A match is needed for
every source edge, cf. (ii)
4 return NULL > No match
5 end if
6: S <—SOLUTIONS(e, m) > S is a set of edge lists
7 CLEARCACHE() > Clear the result cache, cf.
Algorithm 2
8: if S.ISEMPTY() then
9: return NULL > No match
10: else if t = LINE then
11: s < LARGESTADMISSIBLESOLUTION(e, m, S)
12: else >t = CLOSED_LINE
13: s <—FIRSTCLOSEDLINESOLUTION(S)
14: end if
15: return s > Solution s is a list of edges

16: end function

3.2 Further remarks

This section gives further implementation details and dis-
cusses the requirements regarding digital road maps.

In Algorithm 1, line 3 the result of the GM algorithm
(cf. Section 2.3.4) is checked for completeness (cf. (ii)), i.e.
GIMMEMATCH returns a null value if there is a source edge
for which GM could not return a candidate list. Notice that
candidate lists returned by GM are never empty, but rather
the entry for the respective source edge is missing in the
returned associative array.

Further, it is of note that the algorithm adds the current
potential solution for the head if no solution for the tail can
be found (cf. Algorithm 2, lines 24 and 25): this occurs at
the boundary case of the recursion, and whenever the can-
didate edges for the tail have already been “consumed” by
matches for the first source edges. As long as for every edge
of the tail at least one of their candidate edges has been
used, this might still be a valid solution (cf. iii). Therefore,
GIMME adds it tentatively in Algorithm 2, line 25. On the
other hand, some of these smaller potential solutions may
actually not be valid solutions. The current modus operandi
of GIMME is to sort them out later by choosing a largest
admissible solution as the final solution for the source route
(cf. Algorithm 1, line 11). As had already been mentioned,

@ Springer

38 Page 10 of 30

Eur. Transp. Res. Rev. (2017) 9: 38

Algorithm 2 Construct all possible matches for a source
route from the map of candidate lists, return them as a set of
edge lists

Precondition: ¢ is a list of edges in the source map, m is
an associative array mapping the source edges in e to lists
of candidate edges in the destination map

1: function SOLUTIONS(e, m)
2 if e.ISEMPTY() then
3 return (/) > Boundary case of the recursion
4: end if

5: if ISCACHED(e) then

6.

7

8

return CACHELOOKUP(e) > Return cached result

end if
: f <e.GET(0) > f: first source edge
9: M <SET(m.GET(f))>M: set of matching candidates for f
10: n <—e.SI1ZE()
11: X <0 > X: set of extended solutions, initially empty

12: P <CONSTRUCTPOWERSET(M) o P =2M M: set of
matching candidates for f

13: forall S € P do > S loops over all subsets of P

14: D <~ CONNECTEDPERMUTATIONS(S) > D: set of
directed paths, cf. Algorithm 3

15: if D.ISEMPTY() then

16: continue

17: end if

18: for all d € D do > d loops over all directed paths of D,
holds head solution

19: T < > T: setof solutions for the tail of e, initially
empty

20: if n > 1 then > Tests whether passed source route
has a second edge

21: t <—e.SUBLIST(1, n) > ¢: tail of e

22: T <-SOLUTIONS(f, m) > Recursive call, T is a
set of edge lists

23: end if

24: if 7.1ISEMPTY() then © Tests whether there are no
solutions for the tail

25: X <X U{d} > Addedge listd (current head
solution) to the set X

26: else

27: for all s € T do > s loops over all solutions in 7'

28: if s. HASPREFIX(d) then > Tests whether s
subsumes head solution d

29: X <X U {s} > Add edge list s to the set
X

30: end if

31: end for

32: L < LEFTEXTENSIONS(d, T) © L is a set of
edge lists, cf. Algorithm 4

33: X «<XUL > Add all newly found
left-extended paths to X

34: end if

35: end for

36: end for

37: CACHEINSERT (e, X)

38: return X > X: set of edge lists (each of them representing

a possible match)
39: end function

a largest admissible solution is preferable in any case. This
is because such a solution is more likely to cover the whole
source route (i.e. to not miss any part of it). Further, it is
not a problem in practice if it is longer than the source route
since then offsets from the start of the first target edge and/or
from the end of the last target edge (i.e. offsets trimming the
path down to the size of the location path, cf. Section 2.2)
can be provided together with the matched route.

Moreover, these offsets are already calculated by the GM
algorithm ([26]), and henceforth it is sufficient to simply
pass them from the matching result of GM to GIMME (see
also the worked example in Section 3.4). This is straight-
forward, and no further instructive code for this has been
included in the pseudo code. As for closed line solutions, no
offsets need to be calculated since the routes are circular. In
this case, Algorithm 1 only needs to look for the first poten-
tial solution which meets the requirement of representing a
cyclic path (cf. Algorithm 1, line 13).

Algorithm 3 Construct all connected permutations for a set
of edges, i.e. all permutations corresponding to a directed
path in the underlying directed graph, and return the corre-
sponding directed paths as a set of edge lists

Precondition: S is a set of edges
1: function CONNECTEDPERMUTATIONS(S)

2 if S.ISEMPTY () then
3 return ¢
4 end if
5 X <0 > X: set of extended solutions, initially
empty
6: foralle € S do
7: R <S5\ {¢} > R:remaining set without edge e
8: D < NULL
9: if not R.ISEMPTY() then
10: D < CONNECTEDPERMUTATIONS(R)
Recursive call on remainder R
11: end if
12: if D = NULL then > D = NULL: call in line
10 has not been executed
13: return {(e)} > Returning a set of lists,
containing only list (e)
14: else
15: L < LEFTEXTENSIONS((¢), D) > Lisa
set of edge lists, cf. Algorithm 4
16: X «<XUL > Add all newly found
left-extended paths to X
17: end if
18: end for
19: return X

20: end function

@ Springer

Eur. Transp. Res. Rev. (2017) 9: 38

Page 11 of 30 38

Algorithm 4 Let a directed path be represented by a list
of directed edges. For each path in a given set of directed
paths, try to extend it to the left by a given directed path (i.e.,
extend a path if the last edge of the given path is connected
to the first edge of this path), and then return the set of all
paths that could be extended (i.e., a set of edge lists)

Precondition: e is a list of edges, D is a set of edge lists,
each such list forming a directed path in the underlying
directed graph

1: function LEFTEXTENSIONS(e, D)

2 X < > X:set of extended paths, initially empty
3: foralld € D do > d: edge listin D
4 | <—e.GET(e.SIZE() — 1) > [: last edge of e
5 if ISCONNECTED(/, d) then > Tests whether [
is connected to first edge of d

6: x <d.copY() > A shallow copy (e.g. Java:
clone()) is intended here

7: X.PREPEND(e) © Prepend all elements of e
(e.g. Java: addAll(0, e))

8: X <X U {x} > X: set of lists, i.e. of all
(extended) paths

9: end if

10: end for

11: return X

12: end function

The GM algorithm used by GIMME calculates distances
between vertices, angles between edges, and the area of a
mutual projection of edges. Moreover, GM calculates the
difference between the functional road class (FRC) of the
source edge and the FRC of a candidate edge, and then inte-
grates this difference with a certain weight into a weighted
sum for the candidate rating [26], see also the next section,
Section 3.3. Therefore, GIMME requires the maps to have
information annotated with the vertices and edges which
allow for all these calculations, and in sufficient precision.
These requirements are met if the coordinates of the road
network nodes are stored as WGS84 coordinates (the accu-
racy should not be less than decamicrodegrees for each
value), and if every road segment has a functional road
class value indicating its importance in the network. Notice
that these are actually less requirements than for OpenLR
which also requires maps to have form of way (FOW)
values for every road segment. Digital road maps from well-
known vendors like TomTom/TeleAtlas, HERE/NAVTEQ,
and the collaborative project OpenStreetMap comply with
these requirements.

3.3 Dissimilarity threshold

While GM [26] computes a dissimilarity measure and then
orders the candidates in the candidate list with respect to

this measure, GIMME currently does not use this order (see
Section 3.1). Nonetheless, GIMME uses GM to calculate
the list of potential candidates, and GM’s thresholds for
exclusion of a candidate from the candidate list are briefly
reviewed in the following.

Figure 1a exemplifies a pair of a source edge and a cor-
responding candidate edge. Figure 1b shows the angle «
between the two edges, and their mutual projection. The
length of the projection of the candidate to the source (i.e.
reference) edge is called the reference length, shown in
Fig. 1c together with the intersection of the areas confined
to the edges and the perpendiculars of their mutual projec-
tion, respectively. The average distance a is defined as the
ratio ? of this area A and the reference length /.

Moreover, two compound dissimilarity measures are cal-
culated. The first is purely geometrical and the second also
integrates Aprc, the absolute difference of the functional
road class (FRC) value between the candidate edge and the
source edge. A candidate is excluded if at least one of its
dissimilarity measures is above a numerical threshold:

D=a+4+a-a+a
a - Afrc
2
The angle « is assumed to be given in rad. The thresholds
for inclusion of a candidate in the candidate list are:

D =a+a a+

a) Maximum average distance a: 20 m

b) Maximum angle a: 40° = 0.698 rad

¢) Minimum mutual projection length: 3 m
d) Maximum for D: 30

e) Maximum for D’: 40

The thresholds and weights have been calibrated during
the evaluation of various digital road maps from different
vendors with respect to their geometrical features. Dur-
ing this evaluation, all edges of different pairs of maps
of Brunswick, Germany, and as a second test case also of
Hanover, Germany, have been matched with GM, respec-
tively [26]. L.a. the average distance between homologous
edges can be significantly more than 10 m, due to varying
accuracy of the digitalisation from analogue map data, and
due to different manufacturing methods [26]. Moreover, in
one map a road may be represented by dual carriageways
with a physical barrier separating the carriageways, but as
a bidirectional road in another. GM accounts for this by
tolerating the resulting larger angular differences between
homologous roads ([26], see also Fig. 14 in Section 4.2.5).

3.4 A real-world worked example
This section demonstrates the proposed algorithm GIMME

with a small real-world example. GIMME is used to match
a stretch of road in a TeleAtlas map of Potsdam, Germany

@ Springer

38 Page 12 of 30

Eu

=

Transp. Res. Rev. (2017) 9: 38

Fig.1 Aspects of
geometry-based dissimilarity
thresholds

source
edge

(a)

(Friedrich-List-Strafie between Nuthestrale and Rudolf-
Breitscheid-Straf3e), consisting of two road segments, to a
NAVTEQ map of Potsdam (see Fig. 2).

We denote the two road segments (or edges in the under-
lying graph, respectively) by a and b (see the upper TeleAt-
las part in Fig. 2). The driving direction is from a to b, and
b is an outgoing edge of a. In the following, it is described
how GIMME matches the short route (a, b) to two road seg-
ments (edges) in the NAVTEQ map, denoted x and y. The
driving direction here is from x to y, and y is an outgo-
ing edge of x. Candidate edge x has a mutual projection
length above the threshold of 3 m with source edge a (the
remaining dissimilarity measures given in Section 3.3 do

TeleAtlas

Edge: a b
NAVTEQ:

4

Edge: (z| v

I
I
I
I
1
1
1
I
I
I
I
)
I
I
I
I
1
i

Fig. 2 A worked example: matching a stretch of road in Potsdam,
Germany (Friedrich-List-StraBe between Nuthestrale and Rudolf-
Breitscheid-Stralle) with GIMME

@ Springer

proj.
source

reference
edge

length

(b)

not exceed the respective maximum values, respectively),
but not with source edge b. In contrast, candidate edge y
has a mutual projection length above the threshold with both
source edges a and b (and also the remaining dissimilar-
ity measures do not exceed the respective maximum values,
respectively).

Therefore, besides the longest (and therefore best) target
route (x, y), also a route consisting of only the candidate
edge y (i.e. the route (y)) will be considered as a possible
solution during the matching process of GIMME.

GIMME is invoked by a call to GIMMEMATCH with
parameters e = (a, b) (the list of edges), and ¢+ = LINE
(the type of the location, i.e. a linear route). After a call to
the GM algorithm with argument e, map m is assigned to
an associative array: m = {a : (x,y),b : (y)}. Here, x, y
denote the candidate edges identified by the GM algorithm
(see the lower NAVTEQ part in Fig. 2). NAVTEQ-edges x
and y are connected in driving direction, i.e. y is an outgo-
ing edge of x. Map m maps edge a to the list of candidates
(x,y), and edge b to (y), that is, to a singleton with only
one candidate (NAVTEQ-edge y). No details of operation
of the GM algorithm are given here (see Section 2.3.4 and
[26] for more details about GM). In line 6 of Algorithm 1
(GIMMEMATCH), Algorithm 2 (SOLUTIONS) is called with
parameters e and m.

This is a recursive algorithm, and the shallowest calling
level has been invoked. This calling level will be referred to
as level 0. During the run of the algorithm, level 0 will recur-
sively call SOLUTIONS, thereby invoking a deeper calling
level, which will be referred to as level 1, and so on.

In level 0, solutions for head and tail of e, the passed
source route, are considered subsequently. The code starts
by addressing the head: for this purpose, M is assigned to
the set of candidates for the first element of e = (a, b), i.e.
for a. That is, according to map m, M is assigned to {x, y}.
Next, the power set of M is computed in line 12 of Algo-
rithm 2, and assigned to P, i.e. P = {0, {x}, {v}, {x, ¥}}.

Now S loops over all subsets of P, starting by § = ¢.
Here, nothing has to be done (see lines 15 - 17). Next,
S = {x}, and via a call to CONNECTEDPERMUTATIONS,
D is assigned to the set of all directed paths which are
constructable with S, thatis, D = {(x)}.

Eur. Transp. Res. Rev. (2017) 9: 38

Page 13 of 30 38

Now d loops over all directed paths in D. In other words,
d loops over all possible solutions for the head of the route e,
constituted by candidates of the currently considered subset
S. There is only one iteration with d = (x). The tail of list
e = (a, b) passed to level O is assigned to ¢, i.e. t = (b).
To address the tail, SOLUTIONS is called recursively on the
tail in line 22, that is, ¢ is passed as the formal parameter
e = (b), the same map m is passed, and level 1 is invoked.

Inlevel 1, M is assigned to {y} since the first element of
e = (b) is b and since m maps b to (y) . Next, the power set
P is computed as P = {#, {y}}, and again S loops over all
subsets of P, starting by S = . Again, nothing has to be
done here. In the next iteration, S = {y}, and D is calculated
as D = {(y)} by a call to CONNECTEDPERMUTATIONS.

Now there is again only one iteration for loop variable
d with d = (y). The tail of list e = (b) is the empty
list, and therefore no recursion on the tail takes place (see
line 20). Therefore, the current solution for the head of the
level 1 route (i.e. d = (y)) is added in line 24 to the tenta-
tive set of solutions X (which had initially been initialized
as the empty set), i.e. X = {(y)}. Another side effect is
that lines 26 to 34 are not executed: since no solutions have
been found for the tail of the level 1 route, there is no need
to check for possible connections between the current head
solution (d = (y)) and tail solutions. Consequently, no
more solutions are found on this level, and level 1 returns
X = {(y)} as the set of solutions found for e = (b). Notice
that before returning to level O this solution is inserted into
the cache with the key (b) (see line 37).

Execution returns to level 0, back to the iteration with
S = {x}, and to the (one) iteration of the inner loop in line
18 with d = (x). Lines 26 to 34 first check whether the
current head solution is a prefix of a tail solution (which is
not the case for head solution d = (x) and tail solutions
T = {(y)}), and then call subroutine LEFTEXTENSIONS in
line 32 (with parameters d = (x) and T = {(y)}) which
subsequently attempts to topologically connect the current
solution for the head to solutions for the tail. Since edge y
is an outgoing edge of edge x in driving direction (see Fig.
2), this works for d = (x) and the tail solution (y), and
hence the new solution (x, y) is added to the tentative set of
solutions X. Since X had been initialized as the empty set,
itis X = {(x, y)}.

In level 0, execution continues to loop over all subsets of
P,i.e § = {y}, followed by the assignments D = {(y)},d =
(v), and again the recursive call on the tail of e = (a, b), i.e.
on t = (b). In line 6, level 1 of SOLUTIONS immediately
returns X = {(y)} since this solution had been inserted into
the cache with the key () in a previous call on level 1 (see
above).

Back at level 0, the returned solution is assigned to 7, i.e.
T = {(y)}. Since T is not empty, the algorithm now checks
whether the current head solution is a prefix of a tail solution

in line 28. This is the case since d = (y) is a prefix of
(v) > {(y)} = T. Therefore, (y) is added to X = {(x, y)},
and we have X = {(x, y), (¥)}. The subsequent call to LEF-
TEXTENSIONS in line 32 on the arguments d = (y) and
T = {(y)} yields the empty set since there is no topological
connection between the last edge of the current head solu-
tion, i.e. between y, and a tail solution in T = {(y)} (see
Fig. 2). Thus, at the end of the iteration with D = {(y)} and
d = (y), X remains unchanged, i.e. X = {(x, y), ()}.

The next considered subset of P is S = {x, y}, and thus
we have the assignments D = {(x,y)} and d = (x,y),
respectively, followed by the recursive call on the tail of e =
(a, b), i.e. on t = (b). Like before, level 1 of SOLUTIONS
immediately returns X = {(y)} from the cache.

Back at level 0, the returned solution is assigned to 7,
ie. T = {(y)}. Firstly, d = (x,y) is not a prefix of
a solution in T = {(y)}. Secondly, there is no topologi-
cal connection between the last edge of the current head
solution, i.e. between y, and a tail solution in 7 = {(y)}
(see Fig. 2). Consequently, X remains unchanged, and we
have X = {(x,y), (y)} as the final set of solutions for
e = (a, b) on level 0. This set is returned to Algorithm 1
(GIMMEMATCH), and assigned to S.

Since S is non-empty, and since the type of location
is T = LINE, LARGESTADMISSIBLESOLUTION is called
with parameters e = (a, b), the same map m as before, and
with § = {(x, y), (¥)}. The largest admissible solution is
(x,y), and this solution is returned as the final match for
(a, b), together with a positive offset of 27 meters and a
negative offset of 18 meters. The offsets had been calcu-
lated before by GM for each candidate edge, and are passed
through additional attributes in m (which is a technical detail
that, for brevity, has not been addressed in the instructive
code of Algorithm 1).

Figure 3 summarises how the initial problem of the
worked example is divided into smaller subproblems. This
results in a total of |e| = n = 2 recursive calls of Algorithm
2 (SOLUTIONS) on the subproblems (tails), returning a non-
empty set of solutions which has actually been computed
during the respective call, i.e. which is not directly returned
from the result cache. In this paper, we call such calls rele-
vant since they are “doing the actual work™: more precisely,
a recursive call is called relevant, if (i) it is invoked dur-
ing the matching process of a non-empty and successfully
matched source route, and if (ii) it does not return a result
found in the result cache, and if (iii) it returns a non-empty
list of solutions.

The initial source route and the tails on which Algorithm
2 has been invoked by a relevant call, are marked with left
arrows pointing to them.

It is of note that always n relevant recursive calls of
Algorithm 2 are executed if a source route is matched suc-
cessfully (i.e. this is not a property specific to only the

@ Springer

38 Page 14 of 30

Eur. Transp. Res. Rev. (2017) 9: 38

source route:

(a,b) «—
head: tail:
— (z) (b) <
head: tail:
(y) ()
boundary
case
head: tail:

— () (b)

cache hit

head: tail:
— (2, y) (b)

cache hit

Fig. 3 Dividing the initial problem and recursive calls on the subprob-
lems for the worked example in Fig. 2

demonstrated example). This is because for n > 0 the initial
call on e = (ey, ..., e,) always calls the algorithm recur-
sively on (ey, .. ., e,) for every candidate solution for (ey),
and the first such call already induces a chain of n — 1 sub-
sequent recursive calls on increasingly short tails (i.e. calls
on(ey,...,ey), ..., (e,).Since e is assumed to be success-
fully matched, every such call must return a non-empty list
of solutions, and therefore every such list of solutions is
inserted into the result cache with the respective key. In par-
ticular, the list of solutions for the subproblem (ea, ..., e;,)
is cached with this subproblem as the key. Therefore, any
further recursive call of the initial call on (e, ..., e;,) is not
relevant since the solution is immediately returned from the
cache.

This property of always having n relevant recursive calls
for a successful match will also play an important role
in the discussion of the amortised average run time in
Section 4.2.3.

3.5 Combining GIMME with a bandwidth-efficient
method

Notice that GIMME needs access to both the source and
the target map. This requirement is met whenever an omni-
scient matching centre with access to both maps can be
used. If location references need to be transmitted from a
sender to a receiver, the algorithm can compute the matches
at the receiving side, using both maps. The input of GIM-
MEMATCH is essentially a list of edges. In the case of a
matching centre, there is usually a common main memory

@ Springer

for sender and receiver instances, and then this list can be
represented as e.g. a list of instance variables pointing to
edge objects in main memory (then assuming that the maps
have been loaded into an object-oriented structure of vertex
and edge objects, see e.g. [13]).

In the case that sender and receiver are not running on the
same machine, a list of edge IDs for the respective source
map format can be used. Usually, transmission of this ID list
will require (much) more bandwidth than e.g. transmitting
the small set of intermediate LRPs used by an OpenLR ref-
erence to uniquely identify the location (where these LRPs
represent a concatenation of shortest-paths covering it, see
Section 2.2). Indeed this is prohibitive to a direct usage of
GIMME if bandwidth is restricted for one or more trans-
mission lines between sender and receiver. Fortunately, it is
possible to obtain a compact format for the descriptive data
before transmission. For this purpose, GIMME is combined
with a bandwidth-efficient dynamic location referencing
method like e.g. OpenLLR. More precisely:

It is well-known that dynamic location referencing pro-
tocols usually work perfectly (i.e. with an accuracy of
100%) if source and target map coincide (e.g. this is the
case for OpenLR). This can be exploited for avoiding the
transmission of the whole list of edge IDs over a bandwidth-
restricted line: instead, e.g. a compact OpenLR reference
is created in the source map at the sender side, and trans-
mitted over the respective line. The receiver side holds the
same source map, and so the OpenLR reference can be cor-
rectly decoded in it. Thereby the list of edges of the encoded
route is recreated, represented as e.g. a list of instance vari-
ables pointing to edge objects. This list can now be passed to
GIMME (e.g., as an instance variable via the internal main
memory of the receiving server) without having to respect
any further bandwidth requirements, and usually without
any decrease in accuracy.

A certain drawback is the increased run time of the
decoder, since every location needs to be decoded two times,
first with e.g. OpenLR and second with GIMME. Notice
that the sender side runs e.g. an OpenLR encoder, and the
receiver side runs e.g. an OpenLR decoder and GIMME.
Moreover, the receiver side running GIMME needs access
to (an identical copy of) the source map, and to the destina-
tion map.

4 Evaluation

This section describes the results of an evaluation of the pro-
posed algorithm GIMME. In a first subsection, Section 4.1,
evaluation measures are defined, which correspond to well-
known measures in e.g. binary classification in Machine
Learning. The second subsection, Section 4.2, gives the
results of experiments in terms of the introduced evaluation

Eur. Transp. Res. Rev. (2017) 9: 38

Page 15 of 30 38

measures. For the experiments, the proposed algorithm
GIMME and OpenLR have been used to match

— short line locations (linear routes) consisting of up to 5
road segments

— closed line locations (i.e., tours or circular routes) con-
sisting of up to 69 road segments

between a TeleAtlas and a NAVTEQ map of the city of
Potsdam, Germany.

Run time measurements give a comparison of run times
for GIMME and OpenLR, and demonstrate the linear rela-
tion between route length and run time of GIMME. This
linear relation then is subject to a more formal discussion of
the amortised average run time in Section 4.2.3. Finally, the
section discusses the results of previous experiments with
RNM algorithms, and compares them to the obtained results
for GIMME.

The outlined experimental setup complies with the use
of GIMME for dynamic location referencing (DLR), which
has been the main use case in several projects of German
Aerospace Center: in the projects MobiLind, KeepMoving,
and I.MoVe, traffic information like e.g. the information
about congested stretches of road, or the spatial extent of
a whole congestion area needed to be processed as incom-
ing OpenLR-references like e.g. OpenLR line locations or
closed line locations (please recall that closed line loca-
tions are area locations which can be used to describe
two-dimensional parts of the surface of the earth, see
Section 2.1). During the projects, these references had been
encoded in a TeleAtlas map, but the used process chain
required to decode them in a NAVTEQ map.

Moreover, the design of the setup is such that it is
very similar to the setups in previous works in the con-
text of DLR. This has the advantage of making our results
comparable to previously reported results.

Notice that protocols for DLR usually encode the whole
stretch of road or the whole area in question in one single
location reference, which they transmit in one piece from
sender to receiver. That means, a location is not split into
e.g. multiple individual edges, and then distributed across
a respective number of location references. This would
mean unnecessary overhead, contradicting the aim of band-
width reduction: e.g. OpenLR achieves a compact format by
encoding linear or circular routes as sequences of intermedi-
ate location reference points (LRPs, see Section 2.2). Their
number is usually much smaller than the number of edges.
Moreover, every message has a header, and thus sending
multiple messages would mean increasing the overhead.

In the scenario of an omniscient matching centre with
access to both the source and the target map, there are no
restrictions for the bandwidth. Nonetheless it is still advan-
tageous to match complete locations instead of matching
single edges: matching complete (linear or circular) routes

with GIMME (cf. Section 3.1) instead of matching individ-
ual edges can yield more accurate results. This is because
the algorithm keeps multiple matching candidates per edge,
and since a best combination of candidates for all route
edges is constructed. That way, GIMME is capable of cor-
recting a wrong choice subsequently, until a best admissible
(i.a. directed) path in the target map has been found (for
more details, see Section 4.2.4).

It is of note that, in the context of this paper, a suc-
cessful match always means a complete match, i.e. partial
matches are not of interest and are considered as a failed
match. This complies with the usual approach in DLR:
matching failures, i.e. unmatched location references can
easily be suppressed or replaced at the application level,
e.g. a traffic-monitoring application can always drop an
unmatched reference to a congested stretch of road, or per-
haps replace it by a less accurate, more general textual
warning. In contrast, basing traffic information on a par-
tial match holds the risk of providing wrong information to
the user during e.g. route guidance or navigation. This is
the main reason why DLR-protocols like e.g. OpenLR usu-
ally discard partial matches and simply report them as a
decoding error.

4.1 Evaluation measures

Let n be the total number of locations as sent in a test. For
the scope of this test, let np be the number of positives, i.e.
the number of matched routes, and let n, be the number
of negatives, i.e. the number of routes which could not be
matched. Let ng, denote the number of true positives, i.e. the
number of correctly matched routes where source and target
route were homologous. Let nf, denote the number of false
positives, i.e. the number of matched routes where source
and target route were not homologous. Further, let ny, be the
number of true negatives, i.e. the number of routes truthfully
identified as not having a homologous counterpart in the tar-
get map, and let ng, be the number of false negatives, i.e. the
number of routes which could not be matched although they
have a homologous counterpart in the target map. For a real-
world evaluation, these numbers are subject to the following
constraints:

n=np+ny, >0
np = Ny >0
Ny >Ny >0

Further, let ny = ny, + ny. The percentage hit rate gpj,
success rate gguccess, and error detection rate Gerror_detection
are defined by

ne
it = ~* - 100% 1)

@ Springer

38 Page 16 of 30

Eur. Transp. Res. Rev. (2017) 9: 38

I’ltp

{success = - 100% ()
np
Nn

Gerror_detection = — + 100% 3)
Np

respectively, where gniy = 100% if n = 0 and gpj; is

undefined for n < 0, and analogously for ggccess and
{error_detection -

Notice that the hit rate, success rate, and the error detec-
tion rate correspond to the well-known evaluation measures
“accuracy”, “precision”, and “negative predictive value” for
a confusion matrix in e.g. Machine Learning, respectively.

The hit rate is combining the two aspects of good perfor-
mance of a dynamic location referencing method, namely
correct location decoding and truthful detection of absence
of a homologous counterpart in the target map. This how-
ever introduces a subtle dependency on the particular maps,
together with the tested locations, e.g. on the ratio of true
positives to true negatives in a particular constellation.
Giving both success and error detection rates separately
instead has also the advantage of providing more detailed
information about the two different aspects of quality.

4.2 Experimental results

This section describes the results of experiments with
GIMME and OpenLR, and also gives a comparison to pre-
vious RNM approaches. In detail, the section is divided
into subsections as follows: Firstly, Section 4.2.1 gives
the results of experiments that have been conducted with
OpenLR, with a hybrid of OpenLR and GIMME, and with
GIMME standalone, applied to randomly generated line and
closed line locations (in contrast to AGORA-C, a reference
implementation of OpenLR is publicly available [31]). Sec-
ondly, Section 4.2.2 gives a comparison of run times for
GIMME and OpenLR, and demonstrates the linear relation
between route length and run time of GIMME. This lin-
ear relation then is subject to a more formal discussion in
Section 4.2.3, which considers the amortised average run
time. Next, Section 4.2.4 discusses the results of previous
experiments with RNM algorithms, and compares them to
the obtained results for GIMME. Finally, Section 4.2.5 gives
depicted examples for successful matches of line and closed
line locations as resulting from GIMME, and also discusses
a situation where GIMME fails to find the correct match,
and how to remedy it.

4.2.1 Quantitative comparison of GIMME and OpenLR
with respect to evaluation measures

In previous experiments described in the literature, the
results of applying AGORA-C and OpenLR to line loca-
tions have been assessed [17, 29, 43]: In [29], i.a. 1,000
randomly selected line locations in The Netherlands have

@ Springer

been encoded in a TeleAtlas map, and then decoded in
a NAVTEQ map. In [43], i.a. 881 randomly selected line
locations in The Netherlands have been processed in the
opposite direction, i.e. encoded in a NAVTEQ map, and then
decoded in a TeleAtlas map. These locations each consisted
of a set of one to five connected edges forming a path in the
road network.

In order to arrive at comparable results, an experimental
setup similar to the setups in the aforementioned previous
works seemed preferable. OpenLR has the advantage of a
publicly available reference implementation, and therefore
it was decided to compare GIMME with OpenLR. To be
in line with the approach in [29], encoding was done in a
TeleAtlas map, and decoding in a NAVTEQ map. Firstly,
1,000 short routes in a TeleAtlas map of Potsdam, Germany
(TA 2012.06), consisting of 1 to 5 road segments like in [43]
have been created randomly. They comprised of 2.84 edges
on average, and have been created without any further struc-
tural restriction. Consequently, the generated routes were
allowed to intersect themselves, and also to be circular as a
special case of a linear route. Nonetheless, the vast majority
of generated routes were non-circular and did not intersect
themselves. All generated routes have a start node and an
end node, and are lists of edges representing road segments
which are connected in such a way, that a vehicle can drive
on them in the driving direction, that is, from start to end.

Secondly, 1,000 closed line locations have been gen-
erated randomly in the same TeleAtlas map for Potsdam.
Essentially, they are linear routes where start and end node
coincide. In effect, closed lines are circular, and form a
special case of linear routes. Again, closed lines are lists
of edges representing road segments, and a vehicle can
drive on them in the driving direction from start to end.
Different from a non-circular route, a vehicle can also con-
tinue to drive past the end, thereby starting a next “round”,
and so on. They have been created such that a location
boundary does not intersect itself, and such that the loca-
tions are as small as possible: that way, the experiments
could be conducted under conditions comparable to those
for the aforementioned experiments (e.g., [29, 43]). More
precisely, the generated closed line locations comprised of
18.55 edges on average, the number of connected edges
forming the respective closed paths in the road network
ranged from 2 to 69. Notice that in order to generate such a
large sample of 1,000 randomly generated closed line loca-
tions, more than the maximum of five connected edges as in
the evaluation of [43] had to be allowed for: this is simply
because such a large number of distinct short closed lines
does not exist in the road network of Potsdam, Germany.

All of the 1,000 generated random line locations and all
of the 1,000 closed line locations have been encoded suc-
cessfully. Three experiments have been conducted for each
of the two location sets.

Eur. Transp. Res. Rev. (2017) 9: 38

Page 17 of 30 38

Fig. 4 Distribution of total 0 500

location lengths in the first average

0.1

1000 1500 2000 2500 3000 3500

location set (line locations)

0.09

T T T
mmmmm Distribution of route lengths

0.08

0.07

0.06

0.05

Probability of length

0.04

0.03

0.02

0.01

0 500

The lengths of the routes in the first set ranged from 5.0
m to 3,387.0 m (254.73 m on average). For the distribution
of the route lengths in the generated sample, see Fig. 4 (for
the cumulated distribution, see Fig. 5).

For the first experiment, each route in the first set was
encoded with OpenLR 1.4.2 in the TeleAtlas map, and
then decoded in the NAVTEQ map. The observed success

1000 1500 2000 2500 3000 3500

Route length [m]

and error detection rates were 91.9%, and 55.9%, respec-
tively (for the definition of the two rates see Section 4.1).
Both rates have been determined by manual inspection of
the respective source and (potential) target routes using
TomTom’s MapViewer tool (see Fig. 6).

For the second experiment, GIMME has been applied to
all routes of the first set which OpenLLR had not been able

Fig. 5 Cumulative distribution 1
of route lengths in the first

location set (line locations), for

lengths between 0 to 3,000 m

0.8 [

0.4 f

Cumulative probability of length

02 |-f-

— Cumulative distribution of route IengthsI

0 500

1000 1500 2000 2500 3000
Route length [m]

@ Springer

38 Page 18 of 30

Eur. Transp. Res. Rev. (2017) 9: 38

Fig. 6 Comparison of matched
routes in a TeleAtlas map (top)
and a NAVTEQ map (bottom) of
Potsdam, Germany

[OpentR - Map Viewer
e Edt Help

mouse position: 13.03766/52.38545 (105368]
———T—r

o workspace hel

...........

| (€)2012, TomTom International

to decode in the target map (i.e., a hybrid approach of first
using OpenLR and then GIMME has been applied). For this
purpose, GIMME was given full access to both the source
and target map. In contrast, OpenLR as a map-agnostic
dynamic location referencing protocol has only access to the
source map at the sender side, and to the target map on the
receiver side. This is sufficient for OpenLR since OpenLR
only transfers intermediate location referencing points as
map-independent WGS84 positions, in order to limit the
amount of descriptive data (cf. Section 2.2).

As a result, the hybrid approach decoded 149 more
routes, and all of them correctly (which has been vali-
dated by manual inspection). This is an increase in correctly
decoded routes of 31.2%. As a consequence, the success and
the error detection rate of the hybrid approach was 94.2%
and 65.0%, respectively.

In the third experiment, GIMME was used as a stand-
alone algorithm to find matches in the NAVTEQ map for
the same set of 1,000 routes in the TeleAtlas map. This
resulted in a success rate of 99.7%, and in an error detec-
tion rate of 69.0% (as determined by manual inspection).
Compared to the previous run with OpenLR, 100 or 21.0%
more routes could be decoded correctly by GIMME. When
comparing to the previous run with the hybrid approach,
the hybrid yielded 49 more correctly decoded routes than
GIMME stand-alone.

To understand this, first note the following: although
GIMME has a better error detection rate than OpenLR, it is
still prone to false negatives, and even more so is OpenLR.
However, since GIMME and OpenLR are very different
methods, this does not necessarily mean that GIMME and

@ Springer

OpenLR will falsely report negatives for the same locations.
But rather GIMME might fail to decode a location which
OpenLR decodes correctly, and (probably more frequently)
it might be vice versa. And since the hybrid approach will
report a negative (i.e., a failure to decode a location) only
if both OpenLR and GIMME failed to decode the location,
the frequency of successful (and correct) decodings will be
higher than for GIMME stand-alone. This seems to be an
advantage of the hybrid approach. However, both the suc-
cess rate and the error detection rate lie between those for
OpenLR and for GIMME. This may be due to the fact that
the measured numbers ny and ny, are influenced by the
lower accuracy of OpenLR (cf. Egs. 2 and 3).

The success and error detection rates resulting from the
first three experiments are summarised in Table 1. For the
definition of the success rate and the error detection rate, see
Egs. 2-3.

The second set of test locations consisted of 1,000 ran-
domly generated closed line locations. The circuit lengths
ranged from 271.0 m to 3,833.0 m (1,469.24 m on average).
For the distribution of the circuit lengths in the gener-
ated sample, see Fig. 7 (for the cumulated distribution, see
Fig. 8).

Table 1 Success and error detection rates for line locations

Method success rate [%] error detection rate [%]
OpenLR stand-alone 91.9 55.9
Hybrid OpenLR/GIMME 94.2 65.0
GIMME stand-alone 99.7 69.0

Eur. Transp. Res. Rev. (2017) 9: 38

Page 19 of 30 38

Fig. 7 Distribution of circuit

0 500 1000 1500 2000 2500 3000 3500 4000
lengths in the second location average
set (closed line locations) 0.025 ! i trib .
mmmmm Distribution of circuit lengths
0.02 [t R e R R
£
S 0,015 o
o
ks
2
E
8
O 0.01
a
0.005
. | |
0 500 1000 1500 2000 2500 3000 3500 4000

The next three experiments were analogous to the first
three, as the only difference was that they have been con-
ducted with the closed line locations of the second set
instead. In detail: for the fourth experiment, the set of closed
line locations has been encoded with OpenLR 1.4.2 in the
TeleAtlas map, and then decoded in the NAVTEQ map. For
the fifth experiment, the aforementioned hybrid approach of

Fig. 8 Cumulative distribution

Circuit length [m]

first using OpenLR and then GIMME has been applied to
the set of closed line locations. As a result, GIMME decoded
182 more closed lines, and all but 3 of them correctly
(which has been validated by manual inspection). This is
an increase in correctly decoded closed lines of 44.1%. In
the sixth experiment, GIMME was used as a stand-alone
algorithm to find matches in the NAVTEQ map for the set

T T T
—— Cumulative distribution of circuit lengths

of circuit lengths in the second
location set (closed line
locations), for lengths between 0
to 3,500 m
0.8 -
<
)
c
K]
G L
> 0.6
3
®©
Qo
[<]
a
(0]
2 04|
K]
>
€
>
(@)
0.2
0
0 500

100

0 1500 2000

Circuit length [m]

2500 3000 3500

@ Springer

38 Page 20 of 30

Eur. Transp. Res. Rev. (2017) 9: 38

of 1,000 closed line locations in the TeleAtlas map. Com-
pared to the previous run with OpenLR, 95 or 23.4% more
closed lines could be decoded correctly by GIMME. That is,
the hybrid approach showed properties analogous to those
for line locations (i.e., the hybrid approach yields more
correctly decoded closed lines than GIMME stand-alone,
although the overall success rate of the hybrid approach is
lower than for GIMME). The success and error detection
rates for the last three experiments are given in Table 2.

To summarise: The results of the three methods are of
different accuracy (in terms of success and error detection
rate). The results of GIMME stand-alone have the high-
est accuracy, followed by the accuracy of the results of the
hybrid approach, and the lowest accuracy has been achieved
with OpenLR. Of note is that the hybrid approach yields
the highest absolute number of correctly decoded locations.
However, the use of OpenLR as part of it also introduces a
higher number of false positives than GIMME stand-alone,
which is the reason why the success rate of the hybrid
approach is lower than for GIMME, though (cf. Eq. 2). The
increase in accuracy as obtained by GIMME seems to be
significantly larger for longer routes than for short routes. In
other words, whereas OpenLR shows a clear degradation of
accuracy with increasing length of the routes, there is only
a small such degradation for GIMME.

4.2.2 Run time measurements

Firstly, the run times of processing the two sample sets (see
Section 4.2.1), each with 1,000 locations, with the meth-
ods OpenLR, the hybrid approach, and GIMME (with and
without caching), have been measured. The locations were
loaded from hard disk, where they have been stored in XML
format (one file per location). Since the respective loading
times are significant, the results in Table 3 are given exclud-
ing and including the time for “I/O” (for brevity, “I/O” here
refers to the loading times, plus the time for processing the
location data by an XML parser), respectively. The exper-
iments have been conducted on an IPC with an Intel Core
i7-3770, 4x @3.40GHz CPU, with 16 GiB main memory,
4x 64 KiB L1 cache, 4x 256 KiB L2 cache, and 8 MiB L3
cache. OpenLR and GIMME were both built with Java, and
have been running within the same execution environment
and OS (Ubuntu Linux).

Table 2 Success and error detection rates for closed line locations

Method success rate [%] error detection rate [%]
OpenLR stand-alone 82.5 18.4
Hybrid OpenLR/GIMME 87.2 28.0
GIMME stand-alone 97.5 21.2

@ Springer

In the following, the given percentages all refer to the
run times excluding the time spent for loading the location
files from hard disk. While there is only a small benefit
of the result caching (see e.g. Algorithm 2, line 6) when
decoding only short line locations (only 3.9%), the gain in
performance is large when decoding the longer closed line
locations: GIMME without result caching required about
8.5 hours to decode the set of closed line locations, whereas
it only took 361 seconds (not much more than 6 minutes)
with the result cache, i.e. a speed-up of more than 85X. The
hybrid approach has longer run times than OpenLR stand-
alone (39.0% longer for line locations, and 115.7% longer
for closed line locations). Since the hybrid approach addi-
tionally calls GIMME on those locations which OpenLR
failed to decode, this is an expected result. For the short
line locations, the run time of stand-alone GIMME (with
caching) equals that of OpenLR (without using the cache, it
was 8.5% longer). On the other hand, for the longer closed
line locations, the run time of GIMME (with caching) was
95.1% larger than that of OpenLR. Hence, at least for longer
routes, the significant increase in accuracy comes at the
price of a longer run time.

Secondly, to investigate in the relation between route
length and run time of GIMME, additional experiments
have been conducted. Routes have been matched between
the same two maps as in Section 4.2.1, consisting of dif-
ferent fixed numbers of distinct edges. These routes have
been generated randomly, and besides the requirement of
their fixed length, no further structural restriction has been
applied. In each case 1,000 random routes consisting of 1,
5, 10, 15, 20 and 25 edges have been generated. The mea-
sured run times are depicted in Fig. 9 (green curve). The run
time decreases with numbers of segments beyond 20, i.e. the
respective curve is not monotonically increasing. Instead it
is shaped like a parabola with a downwards opening.

The reason for this behaviour is that the probability of a
positive match for a route is decreasing with the number of
segments in it: the longer a considered source route is, the
more unlikely it is that a homologous counterpart exists in
the target map. In effect, the measured run time is that for
a decreasing number of positives, plus the run time for the
remaining number of negatives. The run time is dominated
by the effort for the positives since on average, Algorithm 2
needs less time to identify a negative than a positive: for a
negative, e.g. recursive calls on route tails (cf. Algorithm 2,
line 22) tend to return less solutions, or even no solutions
at all, saving effort in lines 26 - 34 of the algorithm. More-
over, for many of the non-existing routes, GIMME can
identify a negative quickly in line 3 of Algorithm 1, that
is, using the fact that the GM algorithm already identifies
non-existence of a match (for single edges) by a quick prox-
imity search. The contribution of these routes to the run time
is negligible.

Eur. Transp. Res. Rev. (2017) 9: 38

Page 21 of 30 38

Table 3 Run times of the
various methods for line and
closed line locations

Run times for 1, 000. ..

line locations [s] closed line locations [s]

excl. I/O incl. I/O excl. I[/O incl. I/O
OpenLR stand-alone 82 174 185 445
Hybrid OpenLR/GIMME w/ cache 114 206 399 659
GIMME stand-alone w/ cache 82 174 361 621
GIMME stand-alone w/o cache 89 181 30,692 30,952

The blue curve depicted in Fig. 9 shows a standardised
run time, expressing how run time would evolve for 1,000
GIMME positives. It has been calculated from the measured
run time by the following formula:

1, 000

np

Istandardised = * Imeasured_for_positives (€]

where fiyeasured_for_positives denotes the run time measured for
the positives (i.e for the routes with a match in the target
map) only.

The standardised run time is linearly increasing with the
number of segments. The orange curve depicted in Fig. 9
shows a linear fit of the run time, using the function y =~
21.62 - x + 5.06.

During the previous experiment, also the run time of
GIMME without the run time for calls of GM had been
measured. It turned out that the run time of GM largely
dominates the total run time of GIMME: the percentage of
the run time for GM on the total run time of GIMME was
99.8%. To arrive at more reliable measurements for the run
time of GIMME without the run time for GM, a second,
similar series of experiments has been conducted with the
same range of fixed numbers of route segments, but this
time for 10,000 randomly generated routes each. The run
times have been standardised like in Eq. 4, now using 10,000
in the enumerator instead of 1,000. They are shown in Fig.
10 (blue curve), together with a linear fit (dashed orange
curve), using the function y &~ 0.45 - x + —0.24.

As can be seen in Figs. 9 and 10, the relation of the (stan-
dardised) run time of GIMME to the route lengths is linear,
regardless whether it is measured with or without the run
times for calls of the GM algorithm.

In order to shed more light on this empirical result, the
next section discusses the amortised average run time of
Algorithm 2 (SOLUTIONS) in a more formal way. For this
purpose, i.a. the relation of two quantities to the route length
must be known. These quantities are being processed by
Algorithm 2. The first is | M |, the number of candidates of a
source edge, and the second is |T'|, the number of returned
solutions for the tail.

There is no obvious way to state useful (i.e. tight) theo-
retical bounds for |M| and |T'|. Instead, both quantities have
been analysed empirically, and with randomly generated
input: Firstly, for real-world urban road networks, the can-
didate lists M are usually rather short. In our experiments
(see Section 4.2) their length did not exceed a maximum
length of C = 3. Secondly, the total number of returned
solutions for the tail during all recursive calls to Algorithm
2, has been observed for the first series of experiments
with 1,000 lineear locations each, but such that only the
positives contributed to this total count. In other words,
locations that were not successfully matched (i.e. negatives)
did not conribute to the total count, which is denoted with
Tobserved_for_positives i the following. Then, a standardisation
analogous to Eq. 4 has been applied (see Eq. 5).

1, 000

np

Tstandardised = Tobservedfor,positives 5

In Fig. 11, the blue curve shows that Topserved_for_positives
increases linearly with the route length. The dashed orange
curve gives a linear fit using the function y ~ 3559.02 - x +
—3517.75.

To obtain the average number of returned solutions for
the tail for one of the experiments with a fixed route length,
an observed total must be divided by the number of loca-
tions, 1,000, and also by the respective route length n. The
factor % accounts for the fact that for every successfully
matched source route exactly n relevant recursive calls of
Algorithm 2 (SOLUTIONS) have been executed (for more
details, see the discussion of Fig. 3 in the worked example
in Section 3.4, and see Section 4.2.3). The mean 7 sandardised
of the six average numbers for the respective fixed route
lengths 1,5, ..., 25 is T sandardised = 3.26 + o with a small
standard deviation o ~ 0.14. This means that, empirically
and on average, only slightly more than 3 solutions have
been returned for each recursive call on a tail, and that this
rate does not increase with the number of segments in the
source route.

The empirical results for C and for T standardiseds respec-
tively, will be subject to further discussion in the next
section.

@ Springer

38 Page 22 of 30

Eur. Transp. Res. Rev. (2017) 9: 38

Fig. 9 Measured run time, 600
standardised run time, and linear

fit of the standardised run time

of GIMME, applied to 1,000

line locations with various 500 |

T
Measured run time
—4&— Standardised run time

numbers of segments.

Linear fit of standardised run time /n

”

400

300

200

Run time of GIMME for 1,000 random routes [s]

100

4.2.3 Amortised average run time

This section discusses the amortised average run time of
GIMME in more formal terms, using the empirical results
for C and T gandardised Of the previous section, Section 4.2.2.
The following more theoretical results have been confirmed
by the experimental results of the previous section, and shed
more light by explaining them.

10 15 20 25
Number of route segments

Algorithm 1 first calls GEOMETRYMATCHES. This rou-
tine applies the GM algorithm ([26], see also Section 2.3.4)
to all n edges of the source route e¢ and constructs the
respective candidate lists. Since GM does the work for
every of the n source edges separately, i.e. each time work-
ing on an input of constant size, a linear (worst-case and
average) run time should be expected. Further, also the
percentage of the run time for GM on the total run time

Fig. 10 Standardised run time, 12 '
and linear fit of the standardised

run time of GIMME without run

time of GM, applied to 10,000

line locations with various 10 |

numbers of segments

Run time of GIMME w/o run time of GM for 10,000 random routes [s]

T T
—4A— Standardised run time
Linear fit of standardised run time

@ Springer

10 15 20 25
Number of route segments

Eur. Transp. Res. Rev. (2017) 9: 38

Page 23 of 30 38

Fig. 11 Total number of 90000

returned solutions for the tail,
standardised with respect to

T T T
—A&— Standardised number of returned tail solutions
Linear fit of standardised number of returned tail solutions

1,000 successfully matched 80000 -

random line locations, with

various numbers of segments, 70000

respectively

60000

50000

40000

30000

Total number of returned tail solutions

20000

of GIMME is of interest. Both has been measured during
experiments given in Section 4.2.2, confirming the theoreti-
cal expectations of a linear relation between the runtime for
GEOMETRYMATCHES and the route length.

The second routine called by Algorithm 1 is Algorithm
2 (SOLUTIONS). This is the actual divide-and-conquer algo-
rithm in question, and the remainder of the section will
focus on analysing its average run time behaviour (see
below). Moreover, Algorithm 1 calls LARGESTADMISSI-
BLESOLUTION and FINDFIRSTCLOSEDLINESOLUTION:
their (worst-case and average) run time is linear in the length
of their input, the set of solutions returned by the first recur-
sive call in line 6 of Algorithm 1. By the empirical result
from Section 4.2.2 for T siandardised We know that on average,
the size of this set does not increase with n, the source route
length. Rather the average size is asymptotically bounded
by a small constant (slightly above 3), and thus the afore-
mentioned two routines run in amortised constant average
time.

In order to settle the run time behaviour of a divide-
and-conquer algorithm like SOLUTIONS, one needs to solve
the underlying recurrence. The terms of this recurrence are
describing the computational cost for (i) dividing the input
problem and for (ii) combining the partial solutions.

In brief, the cost of dividing the input e of Algorithm
2 (SOLUTIONS) into head and tail is that of list operations
with constant run time. The cost for combining the par-
tial solutions does not directly depend on n, the size of the
input source route e. Instead this cost depends on (i) |M]|,
the number of candidates, because all sizes of lists and sets,
and with it also the number of iterations in the respective

10 15 20 25
Number of route segments

loops of the program code, depend on this number; and on
(i) |T|, the number of solutions returned by a recursive
call (the responsible code is found in the lines 26 - 34 of
Algorithm 2).

More precisely: The cache operations in lines 5, 6, and
37 in Algorithm 2 are assumed to have amortised constant
average run time. The computation of the power set of the
set of candidates in line 12 of Algorithm 2 (SOLUTIONS)
is done with a well-known recursive standard implementa-
tion for this task (no instructive pseudo code is given). It has
the expected run time of M = @2°) where C is the
empirical maximum length of a candidate list determined
in Section 4.2.2. Further, GIMME has to consider a maxi-
mum of Z,?:O % permutations of subsets of a candidate list
(see e.g. [3]). Both stated terms may appear large, but with
our result C = 3 (see previous section) it is 2¢ = 8 and
Yo % = 16.

Hence the total number of considered directed paths d €
D (line 18 in Algorithm 2) for all subsets S € P (line 13 in
Algorithm 2) is bounded by 16.

Algorithm 2 uses Algorithm 3 (CONNECTEDPERMUTA-
TIONS) to construct the set of connected permutations for
a set of edges. Subsequently, Algorithm 3 is called on
each subset of the respective candidate set. It generates
the connected permutations using the following recurrent
relation:

Let € be a set of edges. A connected permutation of €,
say 7, is either (e) if € = {e} (i.e. € is singleton), or there
must be e € € such that there is a connected permutation
of € \ {e}, say p, such that the permutation resulting from
prepending e to p equals .

@ Springer

38 Page 24 of 30

Eur. Transp. Res. Rev. (2017) 9: 38

The (worst-case and average) run time for the call of
Algorithm 3 in line 14 is constant since the length of its
input is constantly bounded, as are the inputs of Algorithm
4 (LEFTEXTENSIONS) called within Algorithm 3 (line 15):
|S] is bounded by C = 3, a singleton with only one edge is
passed to Algorithm 4 together with D, and | D| is bounded
by (C — 1) =2! =4,

In more detail: the run time of Algorithm 4 is in O (|e| -
|D]) where e is the first and D is the second param-
eter of LEFTEXTENSIONS. This is because in the worst
case, |e| elements in e are prepended to a copy of d €
D in |D] iterations of the loop (prepending a single ele-
ment is done in constant time). Notice that the run time
of creating the shallow copy of the list d in line 6 of
Algorithm 4 is constant (i.e. essentially only an object
maintaining the list is “cloned”, holding a constant number
of maintenance and reference fields, pointing to e.g. first
and last list element, respectively). Regarding Algorithm
3, it is straightforward to see that the number of recur-
sive calls to Algorithm 3 for a subset of maximal size
3 is bounded by 10. Since there are at most 8 subsets,
the total number of calls to Algorithm 3 is bounded by
8 - 10 = 80 during the execution of one call of Algorithm 2
(SOLUTIONS).

Then, in lines 26 - 34 of Algorithm 2, GIMME checks
every combination of a solution for the head for topo-
logical connectedness with a returned solution for the tail
(the number of which typically remains small since only
topologically connected paths are returned). The related
work is done (i) in a loop for all solutions s € T (lines
27 - 31 in Algorithm 2), (ii) in the call to Algorithm 4
(LEFTEXTENSIONS) in line 32 in Algorithm 2), and (iii) in
line 33 in Algorithm 2 which adds newly found solutions
(i.e. lists of edges) as new elements to X, the tentative list of
solutions (a list of edge lists).

Regarding (i), the run time of this loop is in O (|T'|) since
in the worst case, during each of the |7| iterations of the
loop, one more element (a solution s € T) is added to set X,
an operation of constant run time.

Regarding (ii), by a previous consideration we already
have that the run time of Algorithm 4 is in O (|e|-|D|) where
e is the first and D is the second parameter of LEFTEX-
TENSIONS (see above). Therefore, the run time for (ii) is in
O(|d|-|T]) = O(|T]) since d is a directed path constructed
from at most C = 3 candidates for the head of the source
route.

Regarding (iii), the operation of adding |L| elements to
the set X runs in O (|7T'|) since |L| < |T| elements are added
in constant run time each.

By the empirical result from Section 4.2.2 for T standardised
we know that the average of |T'| is asymptotically bounded
by a small constant, and thus the operations of (i), (ii), and
(iii) all run in amortised constant average time.

@ Springer

Summarised, a relevant call to Algorithm 2 (SOLUTIONS,
a recursive divide-and-conquer algorithm) has

(a) constant (worst case and average) time cost for divid-
ing the problem, and

(b) amortised constant average time cost for combining
the partial solutions.

The sum of both costs is an amortised constant average cost,
which will be denoted by c,.

By a result of Section 3.4, we have that n relevant recur-
sive calls of Algorithm 2 are executed if a source route is
matched successfully, or, as the corresponding recurrence,

Tn) =1-Th—1)+c,
=n-cq

= O()

That is, SOLUTIONS has an amortised average run time in
® (n) for successful matches.
A successful match of GIMME has

(i) aworst-case and average time cost in ® (n) for GEOM-
ETRYMATCHES using GM, and
(i) an amortised average time cost in ®(n) for SOLU-
TIONS, and
(iii) amortised constant average time costs for either
LARGESTADMISSIBLESOLUTION or FIRSTCLOS-
EDLINESOLUTION.

In total, GIMME has an amortised average time cost in
O(n).

These more formal results are confirmed by the linear run
time behaviour observed during the experiments described
in Section 4.2.2. Note that for a failed match, the run time
can only be smaller, and therefore in this case GIMME has
a worst-case run time in O (n).

4.2.4 Qualitative comparison of GIMME
and the RNM-based approach

A majority of the recent road network matching
(RNM) approaches are based on Buffer Growing (BG),
cf. Section 2.3.2, Iterative Closest Point (ICP), cf.
Section 2.3.1, or the combination and evolution of them
[44]. The two most recent ones are the Delimited-Stroke-
Oriented (DSO) algorithm [44] (see also Section 2.3.3), and
NetMatcher [23].

Unfortunately, open source reference implementations
are not available for the aforementioned RNM approaches.
DSO as well as NetMatcher are quite complex algorithms,
which makes a re-implementation very costly. Conse-
quently, reference matching results allowing for a quantita-
tive comparison to GIMME for the same pair of maps are
very expensive to obtain.

Eur. Transp. Res. Rev. (2017) 9: 38

Page 25 of 30 38

Thus, this section gives a comparison of GIMME and
the RNM-based approach on more qualitative terms. It is
based on previously reported results and on the results of
Section 4.2.1.

For a description of DSO, see Section 2.3.3. Like
ICP, NetMatcher matches vertices first, and subsequently
matches edges that are connected to matched vertices. Net-
matcher assumes maps from the same vendor with different
levels of detail, which is a strong limitation. Therefore, a
qualitative comparison in terms of evaluation measures will
focus on comparing GIMME to the RNM-based approach
with DSO (RNMpso), since DSO (like GIMME) has no
such restriction. On the other hand, run times for DSO are
reported only for small map sections around 6,000 edges
in Munich [44]. In contrast, the run times reported for Net-
Matcher were measured for road maps of a more practical
size around 100,000 edges. Therefore, in Section 1 we have
referred to the run times reported for NetMatcher.

In [44], evaluation measures are reported for the follow-
ing experiment with DSO: sections of maps for Munich,
Germany from TeleAtlas and NAVTEQ describing the road
network in the downtown area have been matched. From all
experiments described in [44], this is the one most similar
to the first experiment described in Section 4.2.1: in both
experiments, a TeleAtlas map for a road network in a Ger-
man city is matched to the respective NAVTEQ map. On
the other hand, neither the same pair of maps nor the same
city or comparable map sizes have been used. Hence, the
reported results only allow for a qualitative comparison.

During the aforementioned experiment, the success rate
of DSO has been reported as 99.6% (termed “matching
correctness” in [44]). This rate reflects the probability of
matching an edge of the road network successfully (i.e.,
correctly) with DSO. As before, we refer to RNMpgso as
the RNM method establishing the required static mapping
with DSO. The approach RNMpgp matches a linear route
in the source map consisting of m edges to the target
map by matching all of its edges individually to the target
map, using the established static mapping, and by “glueing
together” the corresponding edges or lists of edges to the
final target route. The probability of a successful match can
be estimated to 0, 996 since all individual edge matches

must be successful for a successful match of the route.
Notice that GIMME does more than merely glueing together
matched edges: instead it keeps multiple matching candi-
dates per edge, and then a “best” combination of candidates
for all route edges is constructed. This helps to match e.g.
long parallel roads with a short average distance to each
other (a more detailed explanation follows below).

Moreover, for the aforementioned experiment with DSO,
the following numbers of “proper non-matches” (i.e., true
negative matches), and of false negative matches have been
reported in [44]: ng, = 521, ng = 122, The respective error
detection rate is % ~ 0.810 = 81.0%. Consequently,
for RNMpso the probability of truthfully identifying a route
as not having a homologous counterpart in the target map
should be at least 81.0%: this is because a source route
has no counterpart in the target map if at least one of its
edges has no counterpart(s) in the target map, and because
the probability of correctly classifying a first such edge is
approximately 81.0%. Theoretically, if this first edge has
been misclassified, i.e. if it rather has a match in the target
map, the route could still be correctly identified as having no
counterpart, if other edges without counterpart(s) exist in it.
For some pairs of maps, this effect could cause an increase
of the error detection rate.

These numbers now allow for a qualitative compari-
son with GIMME: during the experiments described in
Section 4.2.2, matching routes consisting of different fixed
numbers of edges with GIMME, also the resulting suc-
cess rates and error detection rates have been determined
by manual inspection. The number of positive matches (i.e.
np) drops below 100 for routes with more than 25 seg-
ments: as has already been observed during the experiments
described in Section 4.2.2, the longer a considered source
route is, the more unlikely it is to find a correct match
for it in the target map. Due to this drop, accuracy statis-
tics for longer routes would not be reliable anymore, and
thus longer routes have not been considered. Table 4 shows
the observed success and error detection rates of GIMME,
together with the estimated success and error detection rates
for RNMpso. GIMME vyields higher success rates than
estimated for RNMpgo, respectively. For a number of seg-
ments in the range of 1 to 20, the success rate of GIMME

Table 4 Success rates
(Gsuccess) and error detection

rates (¢error_detection) for line
locations with various fixed

Number of segments

GIMME
Gsuccess [%]

RNMpso (estimated)

Qerror,detection [%] qSLlCCCSS [%] Qerdeetection [%]

numbers of segments 1 99.7
5 99.7
10 99.6
15 99.0
20 98.0
25 93.8

69.0 99.6 81.0
69.0 98.0 81.0
69.0 96.1 81.0
69.0 94.2 81.0
69.0 92.3 81.0
69.0 90.5 81.0

@ Springer

38 Page 26 of 30

Eur. Transp. Res. Rev. (2017) 9: 38

Fig. 12 Matching a circular
route around “Stern-Center”,
Potsdam, Germany, passing

TeleAtlas:

“Nuthestral3e”, “Sternstrae”,

“Konrad-Wolf-Allee”, and
“Zum Kirchsteigfeld” (purple:
route segments, blue: segments
within the area surrounded by
the closed line location, red:
outer segments adjacent to the
route segments)

degrades more slowly with the number of segments than
the success rate of RNMpgo: e.g. for routes with 20 seg-
ments, GIMME has a success rate of 98.0% , whereas the
estimated success rate for RNMpgo is only 92.3%, a dif-
ference of 5.7%. GIMME has a success rate of 93.8% for
routes with 25 segments, whereas the estimated success rate
for RNMpgo is only 90.5%. The success rate of GIMME is
better because the algorithm keeps multiple matching can-
didates per edge, and since a best combination of candidates
for all route edges is constructed. That way, GIMME is
capable of correcting a wrong choice subsequently, until a
best admissible (i.a. topologically connected) path in the
target map has been found.

For example, let us consider two parallel roads with a
short average distance to each other, existing in both the
source and in the target map. Let us assume that there is
a significant offset between the two maps, and that one
of the parallel roads needs to be matched. Because of the
offset, the source road might on average be farther away
from the homologous road than from the “wrong” second
road, i.e. the one that is running parallel to it in close vicin-
ity. Consequently, a road network matcher just matching

Fig. 13 Matching a route
consisting of 25 road segments
in Potsdam, Germany (driving
direction from south to north,
starting in “Brandenburger
Vorstadt”, passing “Neues
Palais” in the west, proceeding
further to the north via
“Festungsweg”, and ending in
“Maulbeerallee”)

TeleAtlas:

@ Springer

edge-by-edge might make many wrong decisions here. In
particular, the static mapping of an RNM-based approach
stores only one matching candidate per edge, and con-
sequently the approach is not capable of correcting such
incorrect choices later. In contrast, GIMME stores every
reasonable candidate edge and is therefore able to discard
wrong decisions later. Provided that the wrong road devi-
ates from the correct one at some point of the course,
GIMME will detect it, discard the wrong decisions and
finally construct the route from only the correct matches.

Notice that the error detection rate of GIMME did not
increase with the number of segments per route. This
means that, at least for the considered pair of maps, there
is no increase in the error detection rate due to multiple
unmatchable edges. Consequently, no such increase would
be observed for the RNM-based approach either, and there-
fore the respective error detection rates for RNMpgo in
Table 4 are all estimated as 81.0%. GIMME showed a lower
detection rate of 69.0%. Nonetheless it is noteworthy that
also DSO’s error detection rate is significantly lower than
it’s success rate like it was the case for both GIMME and
OpenLR (see Section 4.2.1).

NAVTEQ:

Eur. Transp. Res. Rev. (2017) 9: 38

Page 27 of 30 38

Fig. 14 Matching a
bidirectional stretch of road on
B273 (heading towards
“Berliner Ring” in the northeast
outskirts of Potsdam, Germany)
with a physical barrier between
the separated carriageways; left:
representation with dual
carriageways in the TeleAtlas
map, right: representation as a
bidirectional single carriageway
in the NAVTEQ map

In practice, a good success rate is much more important
than a good error detection rate, since the matching errors
cause much more problems than the unmatched objects.
This holds for both considered application domains, i.e. for
RNM as well as for dynamic location referencing (DLR).
For RNM, this holds because, “[...] the unmatched objects
can be very easily marked as doubtful, whereas the process
to detect the errors is time consuming and labour inten-
sive, because erroneous matches need to be analysed one
by one” [44]. For DLR, unmatched location references can
easily be suppressed or replaced at the application level,
e.g. a traffic-monitoring application can always drop an
unmatched reference to a congested stretch of road, or per-
haps replace it by a less accurate, more general textual

Fig. 15 Matching a short
stretch of road consisting of
only one edge in “Max-Wundel-
Strafle”, Potsdam, Germany;
left: source edge, right:
candidate edge, trimmed by
positive and negative offsets

TeleAtlas:

TeleAtlas:

NAVTEQ:

S\

warning. On the contrary, actually delivering a piece of
wrong information about a jam (because of an unnoticed
matching error) can irritate the users.

To summarise: For the limited scope of the experi-
ments described in [44] and in Section 4.2.1, the RNM-
based approach with DSO ("RNMpsop”) can be compared
to GIMME in qualitative terms as follows: GIMME is
expected to have a higher success rate than RNMpgo. For all
considered algorithms (RNMpso, GIMME, and OpenLR),
the error detection rate is significantly lower than the suc-
cess rate. The error detection rate of GIMME is expected to
be lower than that of RNMpgo. It is of note that the suc-
cess rate is the more important measure for both application
domains, i.e. for both RNM and DLR.

NAVTEQ:

GFE

@ Springer

38 Page 28 of 30

Eur. Transp. Res. Rev. (2017) 9: 38

Fig. 16 A section of the two
maps of Potsdam, Germany
(around “Galliner Damm” /
“Golmer Damm”), where it is
difficult to decide for a human
expert whether the found match
should be considered as correct
or not

TeleAtlas:

4.2.5 Example matches

This section gives depicted examples for successful matches
of circular and linear routes as resulting from GIMME, and
also discusses a situation where GIMME fails to find the
correct match, and how to remedy it.

Figure 12 shows a circular route of 3,133 meters
length around “Stern-Center”, Potsdam, Germany, passing
“Nuthestraie”, “Sternstrale”, “Konrad-Wolf-Allee”, and
“Zum Kirchsteigfeld” (left: source route in the TeleAtlas
map, right: matched route in the NAVTEQ map). The route
segments are coloured in purple, the segments within the
area surrounded by the closed line location are coloured in
blue, and the outer segments adjacent to the route segments
are coloured in red. The blue dot depicts the origin or start
of the circular route, and the driving direction is clockwise.

Figure 13 shows a route consisting of 25 road segments
in Potsdam, Germany, with a length of 1,936 meters. The
driving direction is from south to north, starting in “Bran-
denburger Vorstadt” (again marked by a blue dot), passing
“Neues Palais” in the West, proceeding further to the north
via “Festungsweg”, and ending in “Maulbeerallee”).

Figure 14 depicts an example demonstrating that
GIMME is capable of dealing with the situation that roads
with a physical barrier between two separated carriage-
ways might be represented as a bidirectional road with a
single carriageway in one map, and as a road with dual
carriageways in another: A bidirectional stretch of road on
B273 (heading towards “Berliner Ring” in the northeast
outskirts of Potsdam, Germany) is represented with dual
carriageways in the TeleAtlas map, and as a bidirectional
single carriageway in the NAVTEQ map. GIMME finds
the correct match since GM accounts for such differences
in representation by tolerating the resulting larger angu-
lar differences between homologous roads ([26], see also
Section 3.3).

Figure 15 depicts a situation where GIMME fails to
match a short stretch of road in “Max-Wundel-Strale”, Pots-
dam, Germany, consisting of only one edge in the TeleAtlas

@ Springer

NAVTEQ:

map with a length of 81 meters. The GM algorithm finds a
candidate edge of 82 meters length, and calculates a positive
as well as a negative offset by projecting the source edge
onto the candidate edge (depicted to the right of Fig. 15;
the blue dot again marks the origin of the short stretch, i.e.
the driving direction is from north to south; the light blue
dot marks the position of the positive offset, and the red
dot marks the position of the negative offset). Due to a sig-
nificant angular difference between source and candidate
edge, both offsets have relatively large absolute values (pos-
itive offset: 6 m, negative offset: 12 m). Thus, the remaining
trimmed candidate route has a length of only 64 meters.
Since the source route is very short, this is already below the
percentage threshold for an admissible length of a candidate
route which is 0.8 - 81 = 64.8 meters (see the definition of
an admissible candidate route in Section 3.1).

Consequently, GIMME does not find a match in this case
though the found candidate edge is obviously homologous
to the source edge. This could be remedied by an increase
of the respective threshold, but another possible remedy is
to add an optional “snap mode” to GIMME. This mode
is enabled at the application level (i.e., by an application
making use of GIMME), and it is assumed that the appli-
cation always passes source routes starting and ending at a
graph node of degree greater than 2 (that is, starting at an
intersection rather than somewhere between two intersec-
tions). Candidate routes are then either trimmed or expanded
by “snapping” start and end position of the route to the
nearest graph node of degree greater than 2 in the target
map. The rationale is that intersections are usually promi-
nent enough to occur in both maps. Therefore, the snapping
strategy should identify the correct start and end position
of the candidate route in most cases. It goes without saying
that GIMME with “snap mode” succeeds to find the correct
match in the described example.

It is of note that the experiments reported in Section 4.2
have been conducted without applying the outlined “snap
mode”, and that situations similar to the described one did
not occur frequently.

Eur. Transp. Res. Rev. (2017) 9: 38

Page 29 of 30 38

Finally, Fig. 16 shows a section of the two maps of Pots-
dam, Germany, where it is difficult to decide for a human
expert whether the found match should be considered as cor-
rect or not. Due to the large map differences, it is impossible
to place a match in the NAVTEQ map in such a way that all
topological relations to the surrounding map elements have
exact correspondences in the TeleAtlas map. Consequently,
an expert has essentially the choice to accept no matches
at all, or to accept every match, or to define criteria for the
“best of a bad bunch”.

For the experiments conducted in Section 4.2.4, cases
like that had been excluded and replaced by new randomly
generated instances until no problematic locations were
contained in the sample anymore.

5 Conclusion

A new approach to match linear or circular routes between
two dissimilar maps has been presented. It is highly accu-
rate and map-independent, but access to both involved maps
is required. This requirement is met whenever an omni-
scient matching centre with access to both the source and
the target map can be used. If location references need
to be transmitted from a sender to a receiver, the algo-
rithm computes the matches at the receiving side, using both
maps. In such a setting, the approach can also be combined
with a bandwidth-efficient dynamic location referencing
method like e.g. OpenLR to obtain a compact format before
the descriptive data is transmitted. Notice that in this case
run time will increase due to the overhead of calling the
additional bandwidth-efficient method for every location.

The new approach exploits the fact that information from
both maps is available. It achieves high accuracy by com-
paring geometrical route descriptions derived from both
maps. It advances on the path of previous methods in the
area of road network matching and map conflation like
e.g. Geometry Matching and Buffer Growing. In an exper-
imental evaluation, the new approach has been compared
to TomTom’s OpenLR, and the results clearly demonstrate
the increased accuracy of the resulting matches: it is cur-
rently capable of mapping closed line locations (i.e. circular
routes) from a TeleAtlas map to a NAVTEQ map on-the-
fly with a success rate of 97.5% (OpenLR: only 82.5%),
and also capable of mapping short line locations (i.e. linear
routes) on-the-fly between the same maps, with a success
rate of 99.7% (OpenLR: 91.9%).

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

References

1. Besl PJ, McKay ND (1992) A method for registration of 3-
D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239-
256

2. Bofinger JM (2001) Analyse und Implementierung eines Ver-
fahrens zur Referenzierung geographischer Objekte. http://www.
ifp.uni-stuttgart.de/lehre/diplomarbeiten/Bofinger/Diplomarbeit.
Online; Diplomarbeit, German

3. Comtet L (1974) Advanced Combinatorics, chap. 1, p. 75. Reidel,
Dordrecht. Problem 9

4. mobile.info Consortium (2007) mobile.info Final Project Report.
http://www.mobile-info.org/prom/mobileinfo.nsf/DocID/D6D289BDF
68 A0584C125739B00547F9E/$file/Mobile_Info_Schlussbericht.pdf.
[Online; accessed 26-November-2014]

5. Creative Commons (CC). creative commons Attribution-
NoDerivs 3.0 Unported. http://creativecommons.org/licenses/
by-nd/3.0/legalcode. Online; accessed 26-November-2014

6. Demir C (2002) A new location referencing method for unique
reconstruction of an object on a second map (ROSA). In: Pro-
ceedings World Congress on Intelligent Transport Systems 2002.
Chicago, Illinois, USA

7. Dorenbeck C (2000) Method for generating a location reference
instance within a digital map. http://www.google.com/patents/
EP1020832A1?cl=en. EP Patent App. EP19,980,107,675

8. Duckeck R, Hendriks T, Heifling M, Otto HU, Pfeiffer HW,
Wevers K (2003) Specification of the AGORA location referenc-
ing method Version 1.0. Information Society Technologies (IST),
AGORA Project

9. Duckeck R et al (1997) Rules for defining and referencing
an Intersection Location (ILOC); Detailed Location Referencing
(DLR) for ITS based on ILOCs. ERTICO Committee on Location
Referencing, Report, Version 1.0

10. EasyWay Consortium. DATEX II website. http://www.datex2.eu
(2009-2014). [Online; accessed 26-November-2014]

11. EasyWay Consortium (2014) OpenLR extension 1.5 for DATEX
II. http://www.datex2.eu/content/openlr-extension-15-0. [Online;
accessed 26-November-2014]

12. Free Software Foundation Europe. Open Standards. http:/
fsfe.org/activities/os/os.en.html. Online; accessed 26-November-
2014

13. Goodrich M, Tamassia R (2002) Algorithm design: Foundations,
Analysis, and Internet Examples. Wiley, New York

14. Gupta P, Agarwal V, Varshney M (2012) Design and analysis of
algorithms. PHI learning

15. Hahlweg C et al (2000) GOODLANE - An approach to loca-
tion referencing for telematic applications. In: Proceedings World
Congress on Intelligent Transport Systems 2000. Torino, Italy

16. Hendriks A (2002) A method and system for referencing
locations in transport telematics. http://www.google.com/patents/
EP1225552A1cl=en. EP Patent App. EP20,010,101,123

17. Hendriks T, Wevers K (2004) AGORA-C location referencing -
Specification, applicability and testing results. In: Proceedings
World Congress on Intelligent Transport Systems. Nagoya, Japan

18. Hiestermann V (2008) Map-independent location matching certi-
fied by the AGORA-c standard. Transportation Res Part C: Emerg
Technol 16:307-319

19. Hummelsheim K et al (2003) Location referencing change request
for ISO. AGORA Project Consortium, Deliverable 6.4, Version 1.0

20. International Organization for Standardization (ISO). https://
www.iso.org/obp/ui/#iso:std:iso:ts:21219:-2:ed-1:v1:en. Online;
accessed 26-November-2014

21. International Organization for Standardization (ISO) ISO 17572-
3 Intelligent Transport System (ITS) Location Referencing

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.ifp.uni-stuttgart.de/lehre/diplomarbeiten/Bofinger/Diplomarbeit
http://www.ifp.uni-stuttgart.de/lehre/diplomarbeiten/Bofinger/Diplomarbeit
http://www.mobile-info.org/prom/mobileinfo.nsf/DocID/D6D289BDF68A0584C125739B00547F9E/$file/Mobile_Info_Schlussbericht.pdf
http://www.mobile-info.org/prom/mobileinfo.nsf/DocID/D6D289BDF68A0584C125739B00547F9E/$file/Mobile_Info_Schlussbericht.pdf
http://creativecommons.org/licenses/by-nd/3.0/legalcode
http://creativecommons.org/licenses/by-nd/3.0/legalcode
http://www.google.com/patents/EP1020832A1?cl=en
http://www.google.com/patents/EP1020832A1?cl=en
http://www.datex2.eu
http://www.datex2.eu/content/openlr-extension-15-0
http://fsfe.org/activities/os/os.en.html
http://fsfe.org/activities/os/os.en.html
http://www.google.com/patents/EP1225552A1?cl=en
http://www.google.com/patents/EP1225552A1?cl=en
https://www.iso.org/obp/ui/#iso:std:iso:ts:21219:-2:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:ts:21219:-2:ed-1:v1:en

38

Page 30 of 30

Eur. Transp. Res. Rev. (2017) 9: 38

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

for Geographic Database Part 3: Dynamic Location Refer-
ences. http://www.iso.org/iso/home/store/catalogue_tc/catalogue_
detail.htm?csnumber=45962. Online; accessed 26-November-2014
International Organization for Standardization (ISO). ISO stan-
dards catalogue. http://www.iso.org/iso/iso_catalogue/catalogue_
tc/catalogue_detail.htm?csnumber=37500. Online; accessed 26-
November-2014

Mustiere S, Devogele T (2008) Matching networks with different
levels of detail. Geolnformatica 12(4):435-453

Pandazis JC (1999) Extensive Validation of IDENTtification Con-
cepts in Europe. EVIDENCE Consortium, Final Report v2.3.3
ROSATTE consortium. ROSATTE website. http://tn-its.eu/
rosatte-project. Online; accessed 26-November-2014

Sdmann R (2014) Bestimmung einer Bewertungsmetrik zum
Vergleich digitaler StraBennetze fiir Verkehrsflusssimulation und
Routing von Einsatzkréften. Master’s thesis, Institut fiir Bauin-
formatik Leibniz Universitdit Hannover in cooperation with
Deutsches Zentrum fiir Luft- und Raumfahrt e.V. (DLR), Han-
nover, Germany

Schneebauer C, Wartenberg M (2007) On-The-Fly Location ref-
erencing — methods for establishing traffic information services.
IEEE Aerosp Electron Syst Mag 22(2):14-21

Svensk P, Wikstrom L (2012) ROSATTE — TRIONA Geo-
referencing Methods. http:/tn-its.eu/docs/emaps/eMaPS-D2.
42-Triona-Georeferencing-methods-v12-130321.pdf. Online;
accessed 26-November-2014

TomTom International B.V. http://openlr.org/data/docs/OpenLR-
Introduction.pdf. Slides 42—43; Online; accessed 26-November-2014
TomTom International B.V. OpenLR™Users. http://www.openlr.
org/users.html. [Online; accessed 26-November-2014]

TomTom International B.V. OpenLR™website. http://www.
openlr.org (2009-2014). [Online; accessed 26-November-2014]
(2012) TomTom International B.V., German Aerospace Center
(DLR): OpenLR™ White Paper Version 1.5. http://openlr.org/
data/docs/OpenLR-Whitepaper_v1.5.pdf. [Online; accessed 26-
November-2014]

Transport Protocol Experts Group: TPEG specifications Part 6:
Location Referencing for Applications

@ Springer

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

Transport Protocol Experts Group (2012) Intelligent Transport
Systems (ITS) Traffic and Travel Information (TTI) via Trans-
port Protocol Experts Group, Generation 2 (TPEG2) - Part 22:
OpenLR location reference (TPEG2-OLR_1.0/002) http://www.
tisa.org/tisa-products/tisa-documents/

(2011) Traveller Information Service Association (TISA): TISA
website. http://www.tisa.org/. [Online; accessed 26-November-
2014]

T’Siobbel S, Landwehr M, Mahiou R et al (2011) ROSATTE
— Deliverable D4.1: Description of applicable and viable
data integration methods. http://tn-its.eu/docs/rosatte/ROSATTE-
D41-Data-integration-methods-v13-final.pdf. Online; accessed 26
November 2014

Via Licensing Corp. (2012) AGORA-C patent submission. http://
www.vialicensing.com/licensing/agorac-patentcall.aspx. Online;
accessed 26-November-2014

Volz S (2006) An iterative approach for matching multiple repre-
sentations of street data. In: Hampe M, Sester M, Harrie L (eds)
ISPRS Vol. XXXVI., ISPRS workshop - multiple representation
and interoperability of spatial data. Hannover, Germany

Walter V (1997) Zuordnung von raumbezogenen Daten - am
Beispiel der Datenmodelle ATKIS und GDEF. Ph.D. thesis,
Deutsche geoditische Kommission (DGK) Reihe C, Nummer 480
Walter V, Fritsch D (1999) Matching spatial data sets: a statistical
approach. Int J Geogr Inf Sci 13(5):445-473

Wartenberg M (2006) Algorithms for Location Referencing.
Jahresbericht der Deutschen Mathematiker-Vereinigung (DMV)
01/2006

Wevers K, Hendriks T (2005) AGORA-C On-the-Fly Location
Referencing

Wevers K, Hendriks T (2006) AGORA-C Map-Based location
referencing. J Transp Res Board 1972(1):115-122

Zhang M (2009) Methods and Implementations of Road-Network
Matching. Ph.D. thesis, Leibniz Universitit Hannover, Hannover,
Germany

Zhang M, Meng L (2007) An iterative road-matching approach
for the integration of postal data. Comput Environ Urban Syst
31(5):598-616

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=45962
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=37500
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=37500
http://tn-its.eu/rosatte-project
http://tn-its.eu/rosatte-project
http://tn-its.eu/docs/emaps/eMaPS-D2.42-Triona-Georeferencing-methods-v12-130321.pdf
http://tn-its.eu/docs/emaps/eMaPS-D2.42-Triona-Georeferencing-methods-v12-130321.pdf
http://openlr.org/data/docs/OpenLR-Introduction.pdf
http://openlr.org/data/docs/OpenLR-Introduction.pdf
http://www.openlr.org/users.html
http://www.openlr.org/users.html
http://www.openlr.org
http://www.openlr.org
http://openlr.org/data/docs/OpenLR-Whitepaper_v1.5.pdf
http://openlr.org/data/docs/OpenLR-Whitepaper_v1.5.pdf
http://www.tisa.org/tisa-products/tisa-documents/
http://www.tisa.org/tisa-products/tisa-documents/
http://www.tisa.org/
http://tn-its.eu/docs/rosatte/ROSATTE-D41-Data-integration-methods-v13-final.pdf
http://tn-its.eu/docs/rosatte/ROSATTE-D41-Data-integration-methods-v13-final.pdf
http://www.vialicensing.com/licensing/agorac-patentcall.aspx
http://www.vialicensing.com/licensing/agorac-patentcall.aspx

	An approach to geometry-based dynamic location referencing
	Abstract
	Introduction
	Related work and background
	Types and use cases of locations
	Dynamic location referencing
	Road network matching
	Iterative closest point
	Buffer growing
	Delimited-stroke-oriented approach
	Geometry matching*-.5pt

	Geometry InterMapMatching Extension (GIMME)
	Algorithm
	Further remarks
	Dissimilarity threshold
	A real-world worked example
	Combining GIMME with a bandwidth-efficient method

	Evaluation
	Evaluation measures
	Experimental results
	Quantitative comparison of GIMME and OpenLR with respect to evaluation measures
	Run time measurements
	Amortised average run time
	Qualitative comparison of GIMME and the RNM-based approach
	Example matches

	Conclusion
	Open Access
	References

