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1 Introduction

We consider one of the basic results of functional analysis, the classical the-

orem of Hahn{Banach. This theorem gives the existence of a continuous

linear functional on a given normed vectorspace extending a given continu-

ous linear functional on a subspace with the same norm. In this paper we

generalize this existence theorem to a result on the structure of the set of

all these extensions. We establish a bijection between this set and the set

of nonzero vectors in the conjugate of an explicit convex cone. Moreover we

generalize the theorem of Hahn{Banach simultaneously in another direction.

Instead of extending linear continuous functionals on normed vectorspaces

we extend elements of conjugates of convex cones. These convex cones are

allowed to lie in arbitrary vectorspaces; the only assumption which we have
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to make about these convex cones is that they possess a relatively internal

point. Furthermore we solve some technical problems which arise because

we do not restrict to pointed solid convex cones.

As an illustration of the new structural insight, let us look at the usual

proof of the theorem of Hahn{Banach. We recall that it proceeds by repeated

extension of a given functional to bigger and bigger linear subspaces, by way

of jumps of codimension one. The main point of the proof is to show that

this process of extension never gets stuck. Then it follows from Zorn's lemma

that there exists an appropriate extension of the given functional to the whole

space. Our structural result allows to consider arbitrary jumps; not only of

dimension one. Moreover it gives a precise description of the freedom one

has in each jump. For a one dimensional jump, the determination of this

freedom amounts to the computation of the conjugate of a convex cone in

the two{dimensional plane.

2 Standard results and de�nitions

Let V be a vectorspace (we consider only real vectorspaces). For a linear

subspace W of V the quotientspace V=W can be characterized as follows:

there is a pair (V=W; �) consisting of a vector space V=W and a surjective

linear mapping � from V to V=W with kernel W . The codimension of W in

V , denoted by cod VW , is de�ned to be the dimension of the quotient space

V=W .

The dual vector space V 0 is the vector space consisting of all linear func-

tionals on V . Taking duals preserves exactness. Explicitly, for each linear

subspace W of a vector space V one can view (V=W )0 as a linear subspace

of V 0 and the quotient space is isomorphic to W 0; to be more precise, the

ination map inf from (V=W )0 to V 0 is injective, the restriction map res

from V 0 to W 0 is surjective and the image of inf equals the kernel of res.

Moreover the natural map i from V to its biconjugate V 00 = (V 0)0 given by

i(v)(') = '(v) 8 v 2 V 8' 2 V 0 is injective.

Let V be a vector space and let S be an arbitrary subset of V . The linear

span of S, denoted by span S, is the smallest linear subspace of V containing

S. An element s of S is a relatively internal point of S if

8d 2 span (S) 9" > 0 8� 2 (0; "] : s0 + �d 2 S:

The set of all relatively internal points of S is denoted by rint S. If S is
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moreover a convex set, then an element s 2 S belongs to rint S if and only

if 8d 2 span S 9" > 0 : s+ "d 2 S.

The {algebraic{ closure S of S is de�ned to be the set consisting of all

vectors v 2 V such that

9t 2 S8� 2 (0; 1) �v + (1� �)s 2 S:

The set S is called {algebraically{ closed if S = S. We observe that S is

closed for each set S.

Let V be a vector space. A nonempty subset C of V is called a convex cone

in V if it is closed under addition and under multiplication with nonnegative

scalars. The convex cone C is called pointed if it does not contain any line

through 0. One calls C solid if span C = V

Let V be a vector space and let C be a convex cone in V . The conjugate

cone or dual cone (C; V )0, corresponding to this cone C, is the convex cone

in the dual vector space V 0 which consists of all functionals ' : V ! R
satisfying '(c) � 0 8c 2 C.

Now we recall the result that each convex cone is the sum of a pointed

convex cone and a linear subspace. We also show how this decomposition

carries over to the conjugate cone.

Lemma 2.1. Let V be a vector space and C a convex cone in V . Then the

following statements hold true.

(i) There are linear subspaces W1; W2; W3 of V and there exists a solid,

pointed convex cone D in W2 such that V = W1 �W2 �W3 and C =

W1 + D. Here W1 (resp. W1 � W2) is uniquely determined as the

maximal (resp. minimal) linear subspace of V which is contained in C

(resp. which contains C).

(ii) (C; V ) equals (C; V ).

(iii) Assume C = C and let W1; W2; W3 and D be as in (i). Then V 0 =

W 0

1�W
0

2�W
0

3 and (C; V )0 =W 0

3+(D;W2)
0
; moreover the convex cone

(D;W2)
0
is pointed.

This result suggests that for the analysis of the conjugate cone it is useful

to view the set of its nonzero elements (C; V )0 n f0g as the union of two

disjoint subsets: its singular part S(C; V de�ned by

S(C; V ) := f' 2 V 0 n f0g j '(0) = 0 8c 2 Cg
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and its regular part R(C; V ) de�ned by

R(C; V := (C; V )0 n S(C; V ) [ f0g:

The connection between these de�nition and the lemma above is as follows:

S(C; V ) [ f0g is the maximal linear subspace of V 0 which is contained in

(C; V )0.

The conjugate cone and its regular and singular elements allow the fol-

lowing geometrical interpretation. The rays of the conjugate cone (C; V )

correspond bijectively to the linear subspaces in V of codimension 1 with

C on one of its two sides together with a choice of side which contains C:

for each ' 2 (C; V )nf0g we associate to the ray R+' the linear subspace

fv 2 V j'(v) = 0g and its side fv 2 V j'(v) � 0g. For each ' 2 (C; V )nf0g

one has ' 2 S(C;C) precisely if C � ker'. If rint C 6= ? one has

' 2 R(C; V ) precisely if ker' \ rint C = ?.
Now we are going to recall the well-known classi�cation of closed convex

cones in a two-dimensional vector space. Moreover we recall the explicit

description of their conjugates. It is convenient to do this for the complex

plane C viewed as a two-dimensional vector space. We de�ne for �1; �2 2 R
with 0 � �2 � �1 � � the convex cone C�1;�2 in C by C�1;�2 = frei�jr 2 R+

and �1 � � � �2g.

We identify the dual vector space (C )0 with C by letting T 2 (C )0 and
W 2 C correspond if and only if T (z) = Re(wz) 8w 2 W . Here � denotes

complex conjugate and Re denotes 'real part'.

Lemma 2.2. i Each closed convex cone C in C with C 6= span C is of the

form C�1;�2 for suitable �1; �2 2 R with 0 � �2 � �1 � �.

ii Let �1; �2 2 R with 0 � �2 � �1 � �, then the conjugate cone (C�1;�2 ; C )
0

equals C�2�
1

2
�;�1+

1

2
�

Furthermore we record the following easy fact.

Lemma 2.3. Let V be a vector space and C a convex cone in V with rint C 6=

?. Then C + rint C � C.
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3 The main result

Let V be a vectorspace and C a convex cone in V which has a relatively

internal point, rint C 6= �. We will analyze the structure of the conjugate

cone (C; V )0 in a number of steps, leading up to the main theorem (3.9). To

begin with, it is useful to view the set of nonzero elements in the dual cone,

(C; V )0nf0g, as the union of its singular part S(C; V ) and its regular part

R(C; V ). The structure of S(C; V ) is clari�ed by the following observation.

Lemma 3.1. The vectorspace S(C; V )[f0g is naturally isomorphic to (V=span C)0,

the dual of the quotient space V=span C. In particular, S(C; V ) 6= ? if and

only if span C 6= V .

Proof. It is seen from the de�nition that S(C; V ) [ f0g equals the kernel

of the restriction map from V 0 to (span C)0 (see section 2). This kernel is

isomorphic to (V=span C)0 (see section 2). This dual space is nonzero if and

only if span C 6= V (see section 2). 2

Lemma 3.2. Let a linear subspace U of V be given with U * span C and

U \ rint C 6= ?. Then the following statements hold.

(i) U \ span C = span (U \ C).

(ii) S(C \ U; U) 6= ?.

(iii) Each ' 2 S(C \ U; U) can be extended to an element  2 S(C; V ).

(iv) For each ' 2 S(C \ U; U) there is a natural bijection between the set

of elements in S(C; V ) which extend ' and the set (V=U)0nf0g.

Proof. (i) We will check the inclusion � ; the inclusion � is obvious.

Choose c0 2 U \ rint C. Then for each v 2 U \ span C there ex-

ists " > 0 with c0 + "v 2 U \ C; therefore v = "�1((c0 + "v)� c0) lies

in span (U \ C), as desired.

(ii) We have span (U \ C) 6= U by statement (i) and our assumption

U * span C. Therefore, by Lemma (3.1), we get

S(C \ U; U) 6= ?:
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(iii) By (i) the canonical mapping from U=span (U \ C) to V=span C is

injective.

Therefore the restriction map from (V=span C)0 to (U=span (U\C))0 is

surjective. Hence, by Lemma (3.1), the restriction map from S(C; V )[

f0g to S(C \U; U)[ f0g is surjective. Thus each ' 2 S(C \U; U) can

be extended to an element  2 S(C; V ).

(iv) By Lemma (3.1) it suÆces to prove that the kernel of the restric-

tion map from (V=span C)0 to (U=span (C \ U))0 is isomorphic to

(V=U)0. This follows from the injectivity of the canonical mapping

from U(span (U \ C) to V=span C (see section 2).

2

Now we turn to the regular part R(C; V ).

Lemma 3.3. Assume C 6= span C and dim V = 2. Then R(C; V ) 6= ?.

Proof. The statement of this lemma is a consequence of Lemma 2.2. 2

Lemma 3.4. Let ' 2 (C; V )0 be given. Then ' 2 R(C; V ) if and only if

there exists c0 2 rint C with '(c0) > 0. Moreover if ' 2 R(C; V ) then

'(c) > 0 for all c 2 rint C.

Proof. Both statements of this lemma are a consequence of the following

observation: the existence of an element d0 2 rint C with '(d0) = 0 implies

that ' 2 S(C; V ). 2

Lemma 3.5. C + rint C � rint C.

Proof. Immediate from the de�nitions. 2

Let a linear subspace U of V with U \ rint C 6= ? be given. Choose once

and for all c0 2 U \ rint C. Let moreover an element ' 2 R(C \ U; U) be

given. Our next aim is to give a description of all extensions of ' to elements

of R(C; V ). Let H denote the kernel of ' and j the natural map from V to

the quotientspace V=H. Furthermore we introduce the following notations.

Rn(C; V ) = f 2 R(C; V ) j  (c0) = '(c0)g

Rn(C \ U; U) = f 2 R(C \ U; U) j  (c0) = '(c0)g
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Rn

�
j(C); j(V )

�
= f 2 R

�
j(C); j(V )

�
j  

�
j(c0)

�
= '(c0)g

(the 'n' in the notation refers to normalisation).

Finally let res denote the restriction map from Rn(C; V ) to Rn(C \U; U)

and inf the ination map from Rn(j(C); j(V )) to Rn(C; V ), given by com-

position with j; this ination map is injective, clearly. Now we are ready to

give the promised description of the set of all extensions of ' to elements of

R(C; V ).

The following lemma will play a key role.

Lemma 3.6. Let  2 Rn(C; V ) be given. Then res  = ' if and only if

 =inf � for some � 2 Rn(j(C); j(V )).

Proof. Assume that  =inf � for some � 2 Rn(j(C); j(V )). We have to

prove that res  = '. As U = H � Rc0 ('direct sum') it suÆces to verify

that res  and ' are equal in H and on c0. Well, res  jH= � Æ  jH by

the de�nitions and this is equal to 0 as H = Ker j; moreover ' jH= 0 as

H = Ker '. Furthermore res  (c0) = �(j(c0)) and this equals '(c0) by the

de�nition of Rn(j(C); j(V )), to which � Æ j belongs. This �nishes the proof

that res  = '.

Now assume conversely that res  = '. We have to prove that  = inf �

for some � 2 Rn(j(C); j(V )).

As  jH= ' jH= 0, using H = Ker ', we conclude that  factorizes over

j, using that H = Ker j and that j is surjective, say  = �Æj for some linear

functional � on j(V ). Now we are going to verify that � 2 (j(C); j(V ))0.

We have �(j(C)) =  (C), which is contained in [0;1) as  2 (C; V )0

(using  2 R(C; V )). Therefore � 2 (j(C); j(V ))0. It remains to verify that

� 2 Rn(j(C); j(V )). We have �(j(c0)) =  (c0) and this equals '(c0) by the

de�nition of Rn(C; V ), to which  belongs. Therefore � 2 Rn(j(C); j(V )).

2

Warning. Lemma (3.6) gives no information about the existence of elements

 2 R(C; V ) extending a given element ' 2 R(C \ U; U). It does give a

bijection between the set of these elements  and the set Rn(j(C); j(V )).

However we do not yet know at this point that Rn(j(C); j(V )) is always

nonempty. The next lemma is a �rst step towards proving this.

Lemma 3.7. j(C) 6= span j(C)
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Proof. We have (rint C) \ H = ?: this follows from lemma (3.4) as H =

Ker ' and ' 2 R(C; V ). Combining this with lemma (3.5) gives (C+rint C)\

H = ?. This can be formulated in terms of the natural map j from V to

V=H as follows j(C)\ j(�rint C) = ?. Combining this with the assumption

rint C 6= ? and the observation j(�rint C) � span j(C) we arrive at the

following conclusion:

j(C) 6= span j(C):

2

Lemma 3.8. Let W be a vectorspace and let D a convex cone in W with

rint D 6= ?. Then there exist regular elements, R(D;W ) 6= ?, if and only if

D 6= span D.

Proof. If D = span D, then R(D;W ) = ?, by the de�nitions. Now assume

D 6= span D. Consider the collection of pairs (U; ') consisting of a linear

subspace U of W with U \ rint D 6= ? and an element ' 2 R(D\U; U). We

de�ne a partial ordering on this collection in the following way: (U1; '1) �

(U2; '2) if and only if U1 � U2 and moreover '2 extends '1. By Zorn's lemma,

this collection has a maximal element, say (U; '). It remains to prove that U

equals the whole space W . Let us argue by contradiction. Assume U 6= W .

Choose a linear subspace T of W with U � T and dim(T=U) = 1. Now

we apply lemma (3.6) with V = T; C = D \ T; U = U . It follows

that there is a bijection between the set of extensions of ' to an element

of R(D \ T; T ) and the set R(j(D \ T ); j(T )) where j is the canonical

mapping from T to the quotient space T=Ker '. By lemma (3.7) we have

j(D \ T ) 6= span j(D \ T ). Therefore, as dim j(T ) = 2, we conclude by

Lemma (3.2) that R(j(D \ T ); j(T )) 6= ?. This �nishes the proof that '

can be extended to an element of R(D \ T; T ). However this contradicts the

maximality of '. 2

Now we collect everything we have proved about the dual cone (C; V )0, its

singular part S(C; V ) and its regular part R(C; V ); moreover we include

some additional statements, all of which follow immediately from the lemmas

above.

Theorem 3.9 (Structural theorem of Hahn{Banach). Let V be a vec-

torspace and C a convex cone in V with rint C 6= ?.
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(i) The conjugate cone (C; V )0 has non{zero elements , (C; V )0 6= 0, if and

only if C 6= V .

(ii) The conjugate cone (C; V )0 has singular elements, S(C; V ) 6= ?, if and
only if span C 6= V .

(iii) The conjugate cone (C; V )0 has regular elements, R(C; V ) 6= ?, if and
only if C 6= span C.

(iv) The vectorspace S(C; V )[ f0g is naturally isomorphic to (V=span C)0,

the dual of the quotientspace V=span C.

Let moreover U be a linear subspace of V with U \ rint C 6= ?.

(v) R(C \ U; U) 6= ?; moreover S(C \ U; U) 6= ? if U * span C.

Let furthermore an element ' 2 (C \ U; U)0 be given.

(vi) There exists an extension of ' to an element  2 (C; V )0. Moreover if

' is singular (resp. regular), then each such extension  is also singular

(resp. regular).

(vii) Assume U * span C. If ' is singular, ' 2 S(C \ U; U), then there is

a natural bijection from the set of  2 S(C; V ) extending ' to the set

(V=U)0nf0g.

(viii) Choose c0 2 U \ rint C. If ' is regular, ' 2 R(C \U; U), then there is

a natural bijection from the set of  2 R(C; V ) extending ', to the set

Rn(j(C); j(V )). Here we let  2 R(C; V ) with  jU= ' correspond to

� 2 Rn(j(C); j(V )) if and only if  = � Æ j.

Remark 3.10. Statement (viii) of the theorem above is especially notewor-

thy. It establishes a bijection between the inverse image of ' 2 R(C \ U; U)

under the restriction map from R(C; V ) to R(C \ U; U) and the subset of

R((C +Ker ')=Ker '; V=Ker ') consisting of all elements which take value

'(c0) on the element c0 +Ker '.
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