
1

Parallel local search for the time-constrained
traveling salesman problem

G.A.P. Kinder vater
Erasmus University, Rotterdam

J.K. Lenstra
Eindhoven University of Technology

Centre for Mathematics and Computer Science (CWI), Amsterdam

M.W.P. Savelsbergh
Eindhoven University of Technology

Georgia Institute of Technology, Atlanta

In the time-constrained TSP, each city has to be visited within a given time interval. Such ‘time windows’ often
occur in practice. When practical vehicle routing problems are solved in an interactive setting, one needs
algor ithms for the time-constrained TSP that combine a low running time with a high solution quality. Local
search seems a natural approach. It is not obvious, how ever, how local search for the TSP has to be imple-
mented so as to handle time windows efficiently. This is particular ly tr ue when parallel computer architectures
are available. We consider these questions.

Note: This paper will appear in ‘Twenty-five years of operations research in the Netherlands: papers dedi-
cated to Gijs de Leve’, edited by Jan Karel Lenstra, Henk Tijms and Ton Volgenant (CWI Tract 70, Centre for
Mathematics and Computer Science, Amsterdam, 1990).

1. Introduction
On May 2, 1969, Professor Gijs de Leve showed his newly-appointed assistant around in the Mathematical Cen-
tre, then located in an old school building. ‘Here is our library,’ he said. ‘And this is how you do research. You
just pick up a journal, and - well, there isn’t any Markov programming here, but this may interest you.’ The jour-
nal was a recent issue ofOperations Research, and the paper was Bellmore and Nemhauser’s survey ofthe trav-
eling salesman problem [Bellmore & Nemhauser, 1968].

This was neither the first nor the last time that De Leve put someone on the track of the traveling salesman. As
a result, the TSP has always occupied a central position in the research in combinatorial optimization at the Uni-
versity of Amsterdam and at the Mathematical Centre. This has led to a long list of publications, which probably
starts with the survey by Tijdeman [1968]. It includes De Leve’s own elegant improvement of the assignment
bound [Jonker, De Lev e, Van der Velde & Volgenant, 1980] as well as the impressive computational work of
Jonker [1986] and Volgenant [1987]. The latest additions focus on the availability of new computer architec-
tures for interactive and parallel computing and their consequences for the TSP.

In this contribution, we review some of this recent work. We giv e a nontechnical summary in Section 2. Sec-
tions 3-7 provide more detail; most of this material is adapted from Martin Savelsbergh’s dissertation on inter-
active vehicle routing [Savelsbergh, 1988] and Gerard Kindervater’s dissertation on parallel combinatorial
computing [Kindervater, 1989].

Repor t EUR-CS-89-07
Erasmus University, Depar tment of Computer Science
P.O. Box 1738, 3000 DR Rotterdam, The Netherlands

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/19184629?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Nontechnical summary

2.1. Theory versus practice
The theory of operations research is concerned with the investigation of a broad class of mathematical models
that are somehow inspired by practical decision situations, and with the design and analysis of algorithms for
their solution. The practice of operations research is an even broader and considerably less scientific occupa-
tion. A huge and ever growing pile of literature is devoted to the tension between theory and practice and to the
inadequacy of the mathematical models and methods in giving real-world solutions to real-world problems.

For the benefit of the reader, we summarize this literature in one paragraph. The first observation is that deci-
sion problems tend to be bothsoftandhard. At the practical side, the decision situation is usually ill-defined and
the quality of a decision, as expressed by notions like feasibility and optimality, is an imprecise concept. Feasi-
bility requirements may be loose rather than strict, and tradeoffs between optimality criteria are often not
explicitly known but carried implicitly in the value judgement of the decision maker. At the mathematical side,
any reasonable abstraction of the decision situation is likely to be computationally intractable in a well-defined
sense. The second observation is that no solution can be better than the model to which it provides an answer.
While the construction of models that are both realistic and tractable is a delicate affair, the implementation of
solution procedures and their results in practice is far more difficult. For applications of operations research, the
modeling stage is a minor obstacle in comparison to the implementation stage.

One way out of these complications, which has been much advocated, is to create a so-calledgapbetween
theory and practice and to try to fill it up with the literature on operations research. Another approach, which
yields more mutual benefits, goes under the name ofman-machine interaction. The idea is that man and
machine each have their given and complementary capabilities. Human problem solving is empirical by nature,
based on generalization, insight, and experience. Automated problem solving is normative and proceeds by the
efficient application of general rules in specific situations. Aninteractive planning systemcombines the
strengths of both approaches. Roughly speaking, the planner is in charge of the global problem aspects and
takes care of all kinds of ad hoc constraints, and the computer performs the routine work, such as the manipula-
tion and representation of data and the solution of detailed subproblems. (The reader should note the contrast
with artificial intelligence, which is concerned with the automation of tasks that are better done by human
beings.) We refer to Anthonisse, Lenstra & Savelsbergh [1989] for a further elaboration on the functional and
technical characteristics of these types of systems.

2.2. Local search
The emergence of interactive planning systems has reinforced the need for algorithms that can handle problems
of a realistic size and give solutions of a reasonable quality in a reasonable amount of time. One often employs
some form of local search of the solution space. Although theoretical results on the performance of local search
algorithms are scarce and mostly negative, it is generally acknowledged that their empirical behavior is excel-
lent. In addition to beingeffectiveandefficient, local search is alsorobustandeasy to program. That is, a local
search method for a certain model is usually readily adapted to handle minor variations of the model, and devel-
oping a computer code requires much less effort than in the case of highly structured optimization algorithms or
tailored approximation techniques.

Local search owes this flexibility and simplicity to the fact that it proceeds on the basis of relatively little
information about the problem under consideration. One only has to specify aninitial feasible solutionand fast
subroutines that, given a feasible solution, compute itscost(i.e., the value of the objective function) and its
neighborhood(i.e., a set of feasible solutions that are in some sense close to it). Given a starting solution, its
neighborhood is searched for a solution of lower cost. If such a solution exists, it becomes the new starting point
and the search continues. Otherwise, a local optimum relative to the neighborhood definition has been found.

This heuristic solution approach enjoys an increasing popularity. Many variants have recently been proposed,
such as simulated annealing, tabu search, neural nets, and genetic algorithms. It is not our purpose to discuss
this class of so-calledhomeopathic algorithms[Van Hee, 1989]. Rather, we will consider a plain and simple
local search method for the TSP and examine its implementation when time constraints are added to the model.

2 G.A.P. Kinder vater, J.K. Lenstra, M.W.P. Savelsbergh

2.3. Local search for the TSP
Like so many other approaches in combinatorial optimization, local search was first seriously investigated in the
context of the TSP. Lin [1965] calls a traveling salesman tourk-optimalwhen it cannot be improved by replac-
ing j of its edges byj other edges, for anyj ≤ k. It is not known whether, for any fixed value ofk ≥ 2, ak-
optimal tour can begeneratedin polynomial time. However, it is trivial to observe that thek-optimality of a
given tour throughn cities can beverifiedin O(nk) time: there are (n

k) ways to deletek edges; for each of these,
there is a constant number of candidate improvements (where the constant depends onk); and each of these can-
didates can be evaluated in constant time. For example, ifk = 2, two edges are replaced by two other edges, and
only four cost coefficients have to be checked in order to compute the length of the new tour.

Now suppose that each city has its own time window during which it must be visited, and again consider the
casek = 2. If two edges are replaced by two other edges, then a certain segment of the tour will be traversed in
the opposite direction. In addition to the test for improvement, there is now also a test for feasibility with respect
to the time windows. This takes time proportional to the length of the reversed segment. In general, a straight-
forward implementation of the algorithm requires linear rather than constant time for evaluating a singlek-
exchange and therebyΘ(nk+1) time for verifying thek-optimality of a tour. We will present a way to avoid this
additional factor ofn and to verifyk-optimality for the time-constrained TSP inO(nk) time.

2.4. Serial and parallel computing
So far, we hav e implicitly assumed that our algorithms were to be executed on a traditional computer, which
performs at most one computation at a time. An algorithm for a given problem islikable if the number of com-
putations involved is bounded by a polynomial function of the problem size, and the algorithm ismore likableif
the degree of the polynomial is lower. Thus, we do not know if there is a likable algorithm for generating ak-
optimal tour. Howev er, such an algorithm does exist for verifyingk-optimality of a given tour, and we like our
O(nk) approach better that the obviousO(nk+1) implementation.

Now suppose that we have a computer that can perform a number of operations in parallel. Such a computer
has a greater processing power than a serial one. This is especially important in the context of man-machine
interaction, where the user expects fast answers in real time.

More specifically, assume that we have an unbounded number of processors that operate in parallel and com-
municate with each other in constant time. Consider, as an example, the simple problem of finding the maxi-
mum ofn numbersa1, a2, . . . ,an. At the first stage, one processor takes the maximum ofa1 anda2, another pro-
cessor takes the maximum ofa3 anda4, and so on. At the second stage, aboutn/2 numbers are left, and again
pairwise maxima are taken. So it continues. After log n stages, we have the overall maximum. (All logarithms
in this paper are to the base 2.) It follows that the problem is solvable in logarithmic time on a linear number of
processors and that, in order to achieve this, each processor needs to know only a small fraction of the entire
problem instance. Indeed, if a problem of sizen is solved in logn time, no single processor is able to read all of
the problem data. It appears that, when we can compute in parallel, we can find algorithms that aremore than
likable.

2.5. Parallel local search for the TSP
We hav e explained that the maximum ofn numbers can be found byn/2 processors in logn time. Similarly, the
k-optimality of a tour throughn cities can be verified byO(nk) processors inO(log n) time: each processor eval-
uates a singlek-exchange in constant time, and the best of these is selected in logarithmic time. In both cases, it
is not hard to reduce the number of processors involved by a factor of logn. Hence, for the TSP,O(nk/ log n)
processors do in timeO(log n) what a single processor can do in timeO(nk). We thus achieve aperfect speedup.

When time constraints are added, complications occur. Evaluating a singlek-exchange seems to be a serial
process, but it is not too hard to design a parallel implementation that requires logarithmic time and a linear
number of processors. This leads to an algorithm for verifyingk-optimality in O(log n) time using
O(nk+1/ log n) processors. Further improvements are possible, and we can save a factor ofn in the number of
processors, again achieving a perfect speedup.

Parallel local search for the time-constrained TSP 3

2.6. Yet another summary
Section 3 gives a brief and informal introduction into the relevant concepts of complexity theory. Sections 4 and
5 discuss serial and parallel local search for the unconstrained TSP, respectively; this material is relatively
straightforward. Section 6 presents our implementation of serial local search for the time-constrained TSP, and
Section 7 deals with the parallel case.

3. Serialism, parallelism, and complexity
Complexity theory deals with the classification of problems based on therunning timeand thework space
required by algorithms for their solution. When considering parallel algorithms, we also have to take thenum-
ber of processorsinto account. Complexity theory concentrates ondecisionproblems (i.e., problems that pro-
duce a ‘yes’ or ‘no’ answer), but this is not a severe restriction, since most other problems can be reformulated
in terms of a limited series of decision problems. An optimization problem, for example, can be solved by pos-
ing questions about the existence of a feasible solution with at most or at least a given value.

In this section, we discuss some aspects of complexity theory that are of importance to combinatorial opti-
mization. We do not intend to go into much detail, and refer to Garey & Johnson [1979] and Cook [1981] for
more complete expositions.

Sequential computers are reasonably represented by models of computation such as the Turing machine and
the random access machine (RAM). Given these models, we can define several complexity classes. The classP
contains the problems that are solvable inpolynomial time, i.e., the running time is bounded by a polynomial in
the problem size. The problems inP are often calledwell solvedor easy. PSPACEcontains the problems that are
solvable inpolynomial space, i.e., in work space that is bounded by a polynomial in the problem size. A very
well studied class included inPSPACEis NP, the class of problems for which a feasible solution can be recog-
nized as such in polynomial time. It is obvious thatP ⊆ NP⊆ PSPACE, and it is conjectured that both these inclu-
sions are proper.

Another class contained inPSPACE, which has not attracted much attention in the context of serial computa-
tions, isPOLYLOGSPACE. It consists of the problems that are solvable inpolylog space, i.e., in work space that is
polynomially bounded in the logarithm of the problem size. Many problems inP belong toPOLYLOGSPACE, but it
is generally believed thatP /⊆ POLYLOGSPACE. We do know, howev er, thatPOLYLOGSPACE≠ PSPACE.

The classesPSPACEand NP have theircompletemembers. ThePSPACE-complete problems are generaliza-
tions of all other problems inPSPACEin terms of transformations that require polynomial time. More precisely: a
problem isPSPACE-complete under polynomial-time transformationsif it belongs toPSPACE and if any other
problem inPSPACEis reducible to it by a transformation that requires polynomial time. It follows that, if any
PSPACE-complete problem can be shown to belong toP, thenPSPACE= P. Since this equality is not believed to
be true, a polynomial-time algorithm for aPSPACE-complete problem is very unlikely to exist. For the classNP
and its complete members, the same properties hold.

P also has its complete problems. TheP-complete problems generalize all other problems inP in terms of
transformations that require logarithmic work space. Formally: a problem islog space complete for Por, better,
P-complete under log-space transformations, if it belongs toP and if any other problem inP is reducible to it
by a transformation using logarithmic work space. If anyP-complete problem would belong toPOLYLOGSPACE,
thenP ⊆ POLYLOGSPACE. As this inclusion is believed to be false, an algorithm for aP-complete problem that
uses only polylogarithmic work space cannot be expected to exist.

Serial and parallel computations are related by a hypothesis known as theparallel computation thesis[Chan-
dra, Kozen & Stockmeyer, 1981; Goldschlager, 1982]:time bounded parallel machines are polynomially
related to space bounded sequential machines. That is, for any functionT of the problem sizen, the class of
problems solvable by a machine with unbounded parallelism intime T(n)O(1) (i.e., polynomial inT(n)) is equal
to the class of problems solvable by a sequential machine inspace T(n)O(1). This thesis is atheoremfor many
‘reasonable’ parallel machine models and ‘well-behaved’ time bounds; see Van Emde Boas [1985] for a survey.

A frequently used model of parallel computation is the parallel random access machine, or PRAM. The
PRAM is a machine with an unbounded number of processors and a shared memory. The processors perform
their operations in a synchronized fashion. Simultaneous reads from the same memory location are allowed, but
simultaneous writes into the same memory location are prohibited. The computation starts with one processor

4 G.A.P. Kinder vater, J.K. Lenstra, M.W.P. Savelsbergh

activated; at any step, an active processor can do a standard operation or activate another processor; and the
computation stops when the initial processor halts.

Current technology prohibits the realization of a shared memory and, hence, of a machine with PRAM-like
properties. However, the PRAM model is of theoretical interest. It helps us in investigating the intrinsic paral-
lelism in problems and algorithms. For example, Fortune & Wyllie [1978] showed that the class of problems
solvable inT(n)O(1) time by a PRAM is equal to the class of problems solvable inT(n)O(1) work space by a Tur-
ing machine, ifT(n) ≥ log n.

As a consequence, the class of problems solvable by a PRAM in polynomial time is equal toPSPACE. Since
the PRAM is able to solve the apparently difficult problems inPSPACE(such as thePSPACE-complete andNP-
complete ones) in polynomial time, it is obviously an extremely powerful model. The theorem by Fortune &
Wyllie also implies that the problems inPOLYLOGSPACEare exactly the ones solvable by a PRAM inpolylog par-
allel time, i.e., in time that is polynomially bounded in the logarithm of the problem size. This leads to a distinc-
tion within the classP.

The problems inP belonging toPOLYLOGSPACEare solvable in polylog parallel time. They can be considered to
be among theeasiestproblems inP, in the sense that the influence of problem size on solution time has been
limited to a minimum. (It should be noted here that a further reduction to sublogarithmic solution time is gener-
ally impossible. One reason for this is that a PRAM needsO(log n) time to activaten processors. A similar rea-
son is that in any realistic model of parallelism a constant upper bound on the maximum number of connections
of any processor to other processors leads to a logarithmic lower bound on the communication time between
processors. That is, a fixed degree implies at least a logarithmic diameter of the processor network.)

On the other hand, theP-complete problems are unlikely to admit solution in polylog parallel time. If any
such problem would be solvable in polylog parallel time, it would belong toPOLYLOGSPACE, and it would follow
thatP ⊆ POLYLOGSPACE. Hence, their solution in polylog parallel time is not expected. Any solution method for
thesehardestproblems inP is likely to require superlogarithmic time and is therefore, loosely speaking, proba-
bly ‘inherently sequential’ in nature. This does not imply, of course, that parallelism cannot yield substantial
speedups.

We can, therefore, distinguish withinP between the ‘very easy’ problems, which are solvable in polylog par-
allel time, and the ‘not so easy’ ones, for which such a speedup due to parallelism is unlikely.

The picture of the PRAM model as sketched above is inneed of some qualification. The model is theoreti-
cally very useful, but its unbounded parallelism is hardly realistic. The reader will have no difficulty in verifying
that a PRAM is able to activate a superpolynomial number of processors in subpolynomial time. If a polynomial
time bound is considered reasonable, then certainly a polynomial bound on the number of processors should be
imposed. It is a trivial observation, however, that the class of problems solvable if both bounds are respected is
simply equal toP. Within this more reasonable model,NP-complete andPSPACE-complete problems remain as
hard as they were without parallelism.

Discussions along these lines have led to the consideration ofsimultaneous resource boundsand to the defini-
tion of new complexity classes. For example,Nick (Pippenger)’s Class NCcontains all problems solvable in
polylog parallel time on a polynomial number of processors, andSteve(Cook)’s Class SCcontains all problems
solvable in polynomial sequential time and polylog space. Some sort of extended parallel computation thesis
might suggest thatNC = SC. This is a major unresolved issue in complexity theory, and outside the scope of this
paper. We refer to Johnson [1983] for further details and more references.

4. Local search for the TSP
In the traveling salesman problem, one is given a complete undirected graphG with vertex set{1, . . . ,n} and a
travel timedij for each edge{i , j} , and one wishes to find a Hamiltonian cycle (i.e., a cycle passing through each
vertex exactly once) of minimum total duration. We assume that the travel times satisfy the triangle inequality,
i.e., dij + d jk ≥ dik for each triple (i , j , k). The TSP is a well-knownNP-hard problem, for which many opti-
mization and approximation algorithms have been proposed; cf. Lawler, Lenstra, Rinnooy Kan & Shmoys
[1985].

We consider the following local search algorithm for the TSP. Construct an initial Hamiltonian cycle by tak-
ing an arbitrary permutation of the vertices or by applying a specific heuristic method such as thenearest

Parallel local search for the time-constrained TSP 5

neighborrule or thedouble minimum spanning treealgorithm. Then try to improve the tour by replacing a set of
k of its edges by another set ofk edges, and iterate until no further improvement is possible. Such replacements
are calledk-exchanges, and a tour that cannot be improved by ak-exchange is said to bek-optimal. We will con-
sider the casek = 2 in detail. Fork > 2, the analysis is conceptually similar but technically more involved.

1
n + 1

i i + 1

jj + 1

1
n + 1

i i + 1

jj + 1

Figure 1. A 2-exchange.

For notational convenience, we consider the tour (1, 2, . . . ,n, n + 1), where the origin 1 and the destination
n + 1 denote the same vertex. A 2-exchange replaces two edges{i , i + 1} and{ j , j + 1} of the tour by two other
edges{i , j} and{i + 1, j + 1}, thereby reversing the path fromi + 1 to j ; see Figure 1. It is an open question if
there exists a polynomial-time algorithm that obtains a 2-optimal tour by a sequence of 2-exchanges [Johnson,
Papadimitriou & Yannakakis, 1988]. We therefore restrict ourselves to deciding whether a given tour is 2-opti-
mal.

Because the travel times between the vertices do not depend on the direction, a 2-exchange results in a local
improvement if and only if

dij + di+1, j+1 < di ,i+1 + d j , j+1.

Testing a single 2-exchange for improvement involves only a constant amount of information and hence
requires constant time. It follows that verifying 2-optimality takesO(n2) time. No algorithm that proceeds by
enumerating all possible improvements can run faster, as there are (n

2) 2-exchanges.

5. Parallel local search for the TSP
Before discussing the verification of 2-optimality on the PRAM model, we will first consider an elementary
problem and describe a basic technique in parallel computing for its solution.

The problem is to find thepartial sumsof a given sequence ofn numbers. For the sake of simplicity, let
n = 2m and suppose that then numbers are given byan, an+1, . . . ,a2n−1. We wish to find the partial sums
an + . . . + an+ j for j = 0, . . . ,n − 1. The following procedure is due to Dekel & Sahni [1983]:

for l ← m − 1 downto 0 do
par [2l ≤ j ≤ 2l+1 − 1] aj ← a2 j + a2 j+1;

b1 ← a1;
for l ← 1 to m do

par [2l ≤ j ≤ 2l+1 − 1] bj ← if j oddthen b(j−1)/2 elsebj/2 − aj+1.

Here, a statement of the form ‘par [α ≤ j ≤ ω] sj ’ denotes that the statementssj are executed in parallel for all
values ofj in the indicated range.

The computation is illustrated in Figure 2. In the first phase, represented by solid arrows, the sum of theaj ’s
is calculated. Note that thea-value corresponding to a non-leaf node is set equal to the sum of alla-values corre-
sponding to the leaves descending from that node. In the second phase, represented by dotted arrows, each par-
ent node sends ab-value (starting withb1 = a1) to its children: the right child receives the same value, the left
one receives that value minus thea-value of the right child. Theb-value of a certain node is therefore equal to
the sum of alla-values of the nodes of the same generation, except those with a higher index. This implies, in

6 G.A.P. Kinder vater, J.K. Lenstra, M.W.P. Savelsbergh

a8

2

b8

2

a9

4

b9

6

a10

3

b10

9

a11

6

b11

15

a12

1

b12

16

a13

8

b13

24

a14

5

b14

29

a15

7

b15

36

a4

6

b4

6

a5

9

b5

15

a6

9

b6

24

a7

12

b7

36

a2

15

b2

15

a3

21

b3

36

a1

36

b1

36

.....................................

...............

....

......

......

......

......

......

......

......

......

.........

.........

.........

.........

.................

.................

l = 3

l = 2

l = 1

l = 0

Figure 2. Partial sums: an instance withn = 8.

particular, that at the end we havebn+ j = an + . . . + an+ j for j = 0, . . . ,n − 1.
The algorithm requiresO(log n) time and n processors. This can be improved toO(log n) time and

O(n/ log n) processors by a simple device. First, the set ofn numbers is partitioned inton/ log n groups of size
log n each, andn/ log n processors determine the sum of each group in the traditional serial way in logn time.
After this aggregation process, the above algorithm computes the partial sums over the groups; this requires
O(n/ log n) processors andO(log n) time. Finally, a disaggregation process is applied with the same processor
and time requirements.

In the form given above, the algorithm does not work for operations such as maximization. The partial sums
algorithm uses subtraction, which has no equivalent in the case of maximization. We therefore present a version
of the partial sums algorithm which is not quite so elegant as the original one, but which has the desired property
since it makes use of addition only. It also runs inO(log n) time usingO(n/ log n) processors:

for l ← m − 1 downto 0 do
par [2l ≤ j ≤ 2l+1 − 1] aj ← a2 j + a2 j+1;

for l ← 0 to m do
par [2l ≤ j ≤ 2l+1 − 1]

bj ← if j = 2l then aj else if j oddthen b(j−1)/2 elseb(j−2)/2 + aj .

We now return to the verification of 2-optimality. The following procedure decides whether or not the tour
(1, 2, . . . ,n, n + 1) is 2-optimal:

par [1 ≤ i < j ≤ n] δ ij ← dij + di+1, j+1 − di ,i+1 − d j , j+1;
δmin ← min{δ ij |1 ≤ i < j ≤ n};
if δmin ≥ 0
then (1, 2, . . . ,n, n + 1) is a 2-optimal tour
else let i * and j * be such thatδ i* j* = δmin,

(1, . . . ,i*, j*, j * −1, . . . ,i * +1, j * +1, . . . ,n + 1) is a shorter tour.

By adapting the first phase of the partial sums algorithm such that it computes the minimum of a set of numbers
and also delivers an index for which the minimum is attained, the above procedure can be implemented to
requireO(log n) time andO(n2/ log n) processors. The total computational effort isO(log n ⋅ n2/ log n) = O(n2),
as it is in the serial case. This is called afull processor utilizationor aperfect speedup.

Parallel local search for the time-constrained TSP 7

Although the serial and parallel implementations seem similar, there is a basic distinction. When the tour
under consideration is not 2-optimal, the serial algorithm will detect this after a number of steps that is some-
where in between 1 and (n

2). In the parallel algorithm, confirmation and negation of 2-optimality always take the
same amount of time.

6. Local search for the time-constrained TSP
In the TSP with time windows, each vertexi has a time window on the departure time, denoted by [si , ti]. The
time window is opened at timesi and closed at timeti . If the salesman arrives ati beforesi , he has to wait; if he
arrives afterti , he is late and his tour is infeasible.

Due to the presence of time windows, there are feasible and infeasible tours, and this complexifies the prob-
lem. To start with, the problem of determining the existence of a feasible tour isNP-complete in the strong
sense. This follows from the observation that the unconstrained TSP has a tour of duration no more thanB if and
only if there is a feasible tour for the constrained TSP in which each vertex has a time window [0,B].

Secondly, when applying local search, we have to test all candidate improvements for feasibility. Ak-
exchange influences the arrival times at all vertices visited after the first change in the tour. This may lead to
changes in the departure times and even to infeasibility. In a straightforward implementation, we needO(n)
time to handle a singlek-exchange, which results in a time complexity ofO(nk+1) for the verification ofk-
optimality. We will show how to reduce this time bound by an ordern, thereby obtaining the same time com-
plexity as in the unconstrained case.

The basic idea is the use of a specificsearch strategyin combination with a set ofglobal variablessuch that
testing the feasibility of a single exchange and maintaining the set of global variables require no more than con-
stant time. We consider the casek = 2 in detail.

As before, we consider the tour (1, 2, . . . ,n, n + 1). We assume that this tour is feasible. A 2-exchange
involves the replacement of the edges{i , i + 1} and { j , j + 1} by the edges{i , j} and {i + 1, j + 1}. Such an
exchange is both feasible and profitable if and only if the following three conditions are satisfied:

(1) the reversed path (j , . . . ,i + 1) is feasible, i.e., the new departure time at vertexk is not larger thantk, for
k = i + 1, . . . ,j ;

(2) the new departure time at vertexj + 1 is smaller than it was before the exchange;
(3) a part of the gain at vertexj + 1 can be carried through to the destination, i.e., the original departure time

at vertexk is strictly larger thansk, for k = j + 1, . . . ,n.
Condition (3) needs further consideration. If it is violated, the exchange will not affect the duration of the

tour. Howev er, it will reduce the duration of the path from 1 tok − 1, for the smallestk for which violation
occurs. In the sequel, we will drop condition (3), for two reasons. First, introducing some slack may be benefi-
cial for the rest of the procedure, even though the slack cannot be carried through to the end of the tour. In addi-
tion, taking condition (3) into account would make the presentation needlessly complicated.

We propose asearch strategythat examines the 2-exchanges in lexicographic order. We choosei successively
equal to 1, 2, . . . ,n − 2; this will be referred to as the outer loop. For a fixed value ofi , we choosej successively
equal toi + 2, i + 3, . . . ,n; this will be called the inner loop. In the inner loop, the previously reversed path
(j − 1, . . . ,i + 1) is repeatedly expanded with the edge{ j , j − 1}; cf. Figure 3.

Figure 3. The search strategy for 2-exchanges.

In the following, we assume thati is fixed and consider the inner loop. The departure time at vertexk in the
tour (1, 2, . . . ,n, n + 1) will be denoted byDk, for k = 1, . . . ,n + 1. The waiting and departure times at vertexk

8 G.A.P. Kinder vater, J.K. Lenstra, M.W.P. Savelsbergh

after reversal of the path (i + 1, . . . ,j) will be denoted byW j
k andD j

k, respectively, fork > i .
We define threeglobal variables, which will be maintained throughout the inner loop. We suppose that the

reversed path (j − 1, . . . ,i + 1) has been considered. First,T is equal to the total travel time along this path:

T = Σ j−2
k=i+1 dk,k+1.

Secondly,W is equal to the total waiting time along the path after departing from vertexj − 1:

W = Σ j−2
k=i+1 W j−1

k .

Thirdly, S is equal to the maximum forward shift in time of the departure time at vertexj − 1 that would cause
no time window violation along the path:

S= mini+1≤k≤ j−1 {t k − (D j−1
j−1 + Σ j−2

l=k dl ,l+1)}.

Expanding the reversed path (j − 1, . . . ,i + 1) with the edge{ j , j − 1} may change the arrival time at vertex
j − 1 and thereby all departure times along the path (j − 1, . . . ,i + 1). We define alocal variable∆ to denote the
difference between the new arrival time and the old departure time at vertexj − 1:

∆ = D j
j + d j , j−1 − D j−1

j−1.

∆ can be computed in constant time, usingD j
j = max{s j , Di + dij } andD j−1

j−1 = max{s j−1, Di + di , j−1}.
In order to prove that we can verify 2-optimality of the tour (1, 2, . . . ,n, n + 1) in O(n2) time, we have to

establish two facts: it is possible to update the values of the global variables in constant time, and the new values
allow us to handle a single 2-exchange in constant time.

As to updating the global variables, we note that the definition of∆ covers two cases. In the case that∆ < 0,
the triangle inequality implies that the old arrival atj − 1 cannot have been later than the new arrival. It follows
that the old arrival and departure times did not coincide, so that the old departure occurred at the opening of the
time window. But then we have that−∆ = W j

j−1, the new waiting time atj − 1. In the case that∆ ≥ 0, we obvi-
ously have∆ = D j

j−1 − D j−1
j−1, the forward shift of the departure time atj − 1. We conclude that the new values of

the global variables are obtained by

T ← T + d j−1, j ,

W ← max{W − ∆, 0},

S← min {t j − D j
j , S− ∆}.

These updates require constant time.
As to handling a single 2-exchange, the conditions (1), requiring feasibility, and (2), stipulating profitability

at vertexj + 1, can be written as

(1) D j
k ≤ tk for k = i + 1, . . . ,j ,

(2) D j
j+1 < D j+1.

The inequalities (1) are obviously equivalent toS ≥ 0; see Savelsbergh [1988] for a formal proof. For inequality
(2), we observe that the new departure time atj + 1 satisfies

D j
j+1 = max{s j+1, D j

j + T + W + di+1, j+1}.

We conclude that conditions (1) and (2) can be tested in constant time.

7. Parallel local search for the time-constrained TSP
We will now present a parallel algorithm for verifying 2-optimality of a time-constrained TSP tour. It requires
O(log n) time andO(n2/ log n) processors, and thereby has the same resource requirements as in the uncon-
strained case.

Again, we consider the tour (1, 2, . . . ,n, n + 1), which is assumed to be feasible. We start by computing all
partial path lengths along the tour. This enables us to construct the tours that can be obtained by a 2-exchange.

Parallel local search for the time-constrained TSP 9

Our algorithm has five phases.
(1) We first compute all partial sumsTij of travel times along the tour:

par [1 ≤ i ≤ j ≤ n + 1] Tij ← Σ j−1
k=i dk,k+1.

By application of the partial sums algorithm from Section 5, this phase requiresO(log n) time andO(n2/ log n)
processors.

(2) We now inv estigate the effect of the time windows on the paths along the tour. For each pair of vertices
{i , j} with i < j , we defineEij as the earliest possible departure time at vertexj when traveling along the tour
from i to j , andEji as the earliest possible departure time at vertexi when traveling fromj to i in the reverse
direction along the tour. Note thatE1,n+1 is the arrival time at vertex 1. Further, letLij denote the latest possible
departure time at vertexi such that the path fromi to j remains feasible, and letL ji denote the latest possible
departure time at vertexj such that the path fromj to i remains feasible. We then have:

par [1 ≤ i ≤ j ≤ n + 1] Eij ← maxi≤k≤ j (sk + Tkj);
par [1 ≤ i ≤ j ≤ n + 1] Eji ← maxi≤k≤ j (sk + Tik);
par [1 ≤ i ≤ j ≤ n + 1] Lij ← mini≤k≤ j (if Eik ≤ tk then tk − Tik else−∞);
par [1 ≤ i ≤ j ≤ n + 1] L ji ← mini≤k≤ j (if Ejk ≤ tk then tk − Tkj else−∞).

Using the partial sums algorithm from Section 5 with addition replaced by maximization or minimization, we
have the same time and processor requirements as in phase (1).

(3) Given the earliest and latest possible departure times relative to paths along the tour, we compute the earli-
est departure timeDij (k) at any vertexk and the earliest arrival timeAij at the origin after the replacement of the
edges{i , i + 1} and{ j , j + 1} by the edges{i , j} and{i + 1, j + 1}:

par [1 ≤ i < j ≤ n] Dij (j) ← max{E1i + dij , sj };
par [1 ≤ i < j ≤ n] Dij (i + 1) ← max{Dij (j) + Ti+1, j , Ej ,i+1};
par [1 ≤ i < j ≤ n] Dij (j + 1) ← max{Dij (i + 1) + di+1, j+1, sj+1};
par [1 ≤ i < j ≤ n] Aij ← max{Dij (j + 1) + Tj+1,n+1, Ej+1,n+1}.

For this phase we needO(1) time andO(n2) processors, orO(log n) time andO(n2/ log n) processors.
(4) We then test for the feasibility of the tours obtained by 2-exchanges, using boolean variablesFij :

par [1 ≤ i < j ≤ n] Fij ← (Dij (j) ≤ L j ,i+1) & (Dij (j + 1) ≤ L j+1,n+1).

The first condition tests for feasibility at the verticesi + 1, . . . ,j and the second one at the vertices
j + 1, . . . ,n + 1. As in the previous phase, we needO(1) time andO(n2) processors, orO(log n) time and
O(n2/ log n) processors.

(5) Finally, we decide whether or not the given tour is 2-optimal in the same way as in the case without time
windows:

Amin ← min{Aij |Fij , 1 ≤ i < j ≤ n};
if E1,n+1 ≤ Amin

then (1, 2, . . . ,n, n + 1) is a 2-optimal tour
else let i * and j * be such thatFi* j* & Ai* j* = Amin,

(1, . . . ,i*, j*, j * −1, . . . ,i * +1, j * +1, . . . ,n + 1) is a better feasible tour.

For this last phase, the same time and processor bounds as before suffice. So, we end up with an algorithm that
runs inO(log n) time usingO(n2/ log n) processors, which is the same as in the case without time windows.

For each fixedk > 2, we can derive a logarithmic-time algorithm along similar lines. One has to take into
account that, givenk edges, severalk-exchanges are possible. Further, the influence of ak-exchange on a tour is
more complex. However, it is not hard to see that the running time remainsO(log n) usingO(nk/ log n) proces-
sors, which is optimal with respect to the numberΘ(nk) of k-exchanges.

10 G.A.P. Kinder vater, J.K. Lenstra, M.W.P. Savelsbergh

References
J.M. Anthonisse, J.K. Lenstra, M.W.P. Sav elsbergh (1989). Behind the screen: DSS from an OR point of view.

Decision Support Syst. 4, 413-419.
M. Bellmore, G.L. Nemhauser (1968). The traveling salesman problem: a survey.Oper. Res. 16, 538-558.
A.K. Chandra, D.C. Kozen, L.J. Stockmeyer (1981). Alternation.J. Assoc. Comput. Mach. 28, 114-133.
S.A. Cook (1981). Tow ards a complexity theory of synchronous parallel computation.Enseign. Math. (2) 27,

99-124.
E. Dekel, S. Sahni (1983). Binary trees and parallel scheduling algorithms.IEEE Trans. Comput. C-32,

307-315.
S. Fortune, J. Wyllie (1978). Parallelism in random access machines.Proc. 10th Annual ACM Symp. Theory of

Computing, 114-118.
M.R. Garey, D.S. Johnson (1979).Computers and Intractability: a Guide to the Theory of NP-Completeness,

Freeman, San Francisco.
L.M. Goldschlager (1982). A universal connection pattern for parallel computers.J. Assoc. Comput. Mach. 29,

1073-1086.
D.S. Johnson (1983). The NP-completeness column: an ongoing guide; seventh edition.J. Algorithms 4,

189-203.
D.S. Johnson, C.H. Papadimitriou, M. Yannakakis (1988). How easy is local search?J. Comput. Syst. Sci. 37,

79-100.
R. Jonker (1986).Tr aveling Salesman and Assignment Algorithms: Design and Implementation, Ph.D. thesis,

University of Amsterdam.
R. Jonker, G. de Lev e, J.A. van der Velde, A. Volgenant (1980). Rounding [Bounding] symmetric traveling

salesman problems with an asymmetric assignment problem.Oper. Res. 28, 623-627.
G.A.P. Kindervater (1989).Exercises in Parallel Combinatorial Computing, Ph.D. thesis, Centre for Mathemat-

ics and Computer Science, Amsterdam.
E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys (eds.) (1985).The Traveling Salesman Problem:

a Guided Tour of Combinatorial Optimization, Wiley, Chichester.
S. Lin (1965). Computer solutions of the traveling salesman problem.Bell System Tech. J. 44, 2245-2269.
M.W.P. Sav elsbergh (1988).Computer Aided Routing, Ph.D. thesis, Centre for Mathematics and Computer Sci-

ence, Amsterdam.
R. Tijdeman (1968).Het Handelsreizigersprobleem, een Literatuuronderzoek, Report S385, Mathematical

Centre, Amsterdam.
P. van Emde Boas (1985). The second machine class: models of parallelism. J. van Leeuwen, J.K. Lenstra

(eds.).Parallel Computers and Computations, CWI Syllabus 9, Centre for Mathematics and Computer Sci-
ence, Amsterdam, 133-161.

K.M. van Hee (1989). Private communication.
A. Volgenant (1987).Contributions to the Solution of the Traveling Salesman Problem and Related Problems,

Ph.D. thesis, University of Amsterdam.

Parallel local search for the time-constrained TSP 11

