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Abstract

We consider a production line that is dedicated to a single prod-

uct. Produced lots may be non-defective, reworkable defective, or non-

reworkable defective. The production line switches between production

and rework. After producing a �xed number (N) of lots, all reworkable

defective lots are reworked. Reworkable defectives are perishable, i.e.,

worsen while held in stock. We assume that the rework time and the

rework cost increase linear with the time that a lot is held in stock.

Therefore, N should not be too large. On the other hand, N should

not be too small either, since there are set-up times and costs associ-

ated with switching between production and rework. For a given N ,

we derive an explicit expression for the average pro�t (sales revenue

minus costs). Using that expression, the optimal value for N can be

determined numerically.
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1 Introduction

In many production processes, defectives occur. Sometimes, part of these de-

fectives can be reworked. Depending on the quality, reworked products can

then be sold at either the same price as `immediate non-defective products' or

at a lower price. If input materials are expensive, or if rework times are much

smaller than the initial production times, rework can be economically attrac-

tive. But there are other motives for rework, which have become increasingly

important in recent years. New legislation and disposal bans force some pro-

ducers to rework (part of) their defectives. Moreover, many companies want

to have an environmentally friendly image, because the image of a company

in
uences its sales.

There is quite a lot of literature on the logistic planning and control of pro-

duction processes with rework. For a recent overview see Flapper and Jensen

[5]. No attention has been paid, however, to situations where reworkable de-

fective products are perishable.

We speak of perishability if products that are held in stock worsen or can

be ruined or destroyed. Perishability is also known as deterioration. Excellent

overviews of perishability are given in Nahmias [8] and Raafat [9]. More recent

publications that also provide a short literature overview are Bose, Goswami,

and Chaudhuri [2] and Chiu [3]. But none of the studies on perishability

considers rework.

Industries where perishable reworkable defective products are quite com-

mon, include the food and the pharmaceutical industry. See e.g. Flapper et

al. [4]. In this paper, we will study a speci�c situation with perishable re-

workable defective products. We consider a production line that is dedicated

to a single product. This product is produced in lots of a predetermined size,

possibly one. Produced lots may be non-defective, reworkable defective, or

non-reworkable defective. The production line switches between production

and rework. After producing a �xed number (N) of lots, all reworkable defec-

tive lots are reworked.

A detailed description of this production line will be given in the next sec-

tion. A key assumption is that the rework time and cost increase linear with

the time that a lot is held in stock. So, reworkable lots gradually worsen while

held in stock. The exact relation between the time that a reworkable defective

lot awaits rework and the rework time/cost may di�er from this in practice.

But assuming linear relations might lead to reasonable approximations. More-

over, the explicit expression for the average pro�t, that we will derive, can be

used to gain valuable insights. In cases where products worsen as a result of
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physical depletion, like the evaporation of volatile liquids such as gasoline and

alcohol, linear relations might be almost exact.

2 Situation description

We consider a production line that is dedicated to a single product. Produced

lots are non-defective (probability qn), reworkable defective (probability qr),

or non-reworkable non-defective (probability 1� qn � qr). Rework is done on

this same production line ('in-line rework`).

The production time is TP per lot. The switching time from production to

rework is TPR. The switching time from rework to production is TRP . These

are all �xed. The rework time for a lot increases linear with the length of the

period during which it is held in stock and awaits rework. More exact, if that

length is x, then the rework time is T0 + T1x.

The objective is to minimize the average pro�t, i.e., the expected pro�t

per time unit. There is a sales revenue pn for each immediately non-defective

lot, and a sales revenue pr for each reworked lot. The cost for producing a lot,

including the purchase cost for input materials, is cp. The cost for reworking a

lot is c0+c1x, where x is the length of the period during which the lot is held in

stock. The cost for disposing of a non-reworkable defective lot is cd. The cost

rate for holding reworkable defective lots in stock is h per lot per time unit,

which includes an out-of-pocket cost component and a capital/opportunity

cost component. Finally, the summed costs for switching from production to

rework and for switching back to production are cs.

The overall optimal production/rework strategy is expected to be very com-

plex. That strategy probably bases its switching (from production to rework)

decisions on the exact times at which reworkable batches are produced. This

optimal strategy will be diÆcult, if not impossible, to determine. Moreover, it

is not very practical. We therefore restrict our attention to a more practical

class of strategies. These switch to rework after producing a �xed number

(N) of lots and then rework all reworkable defective lots. Of course, if none

of the produced lots in a batch is reworkable defective, the next production

batch starts immediately. This class of strategies has also been considered for

non-deteriorating production defectives by e.g. Lee [6], Liu and Yang [7], Tay

and Ballou [10], and Zargar [11].

The Last Come First Served (LCFS) rule is applied for determining the

order in which reworkable defective lots are reworked. Using an adjacent pair-

wise interchange method, as described by Baker [1], it can easily be shown that
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the LCFS rule leads to the rework order that minimizes the total rework time

and the total rework cost (if, as we assume, the rework time and cost increase

linear with the time that a defective lot awaits rework). Hence, the LCFS rule

maximizes the average pro�t.

The production line is illustrated in Figure 1 for N = 5, TP = 1, TPR = 1,

TRP = 1, T0 = 0:5, and T1 = 0:1.

Figure 1

For the �rst production batch in that �gure, lots 5 and 1 turn out to be

reworkable defective. Hence, the production line switches to rework. First lot

1 is reworked and then lot 5. When the rework on lot 5 is completed, the

production line again switches, and the second production batch starts. Since

none of the lots turn out to be reworkable defective, the production line then

directly continuous with the third production batch. Out of that batch, lots

5, 3, and 2 turn out to be reworkable defective. Hence the production line

switches again and reworks them in reverse order.

3 Calculation of the average pro�t

We start by stating and proving two useful lemmas. These focus on an arbi-

trary production cycle, which is de�ned at the period between the moments at

which two successive production batches (of N lots) start. The production lots

of that cycle are numbered backwards as N;N�1; : : : ; 1. By Sn is denoted the

length of the period that begins when the production of lot n, n = 1; 2; : : : ; N ,

is started and ends when the work (production and possibly rework) on lots

1; 2; : : : ; n is completed. By Hn is denoted the length of the period during

which lot n, n = 1; 2; : : : ; N , is held in the stock of reworkable products. See

Figure 2.

Figure 2
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Lemma 1 For all n = 1; 2; : : : ; N it holds that

E[Sn] =
n�1X
j=0

h
�j
�
� + 
Æn�1�j

�i
;

where � = 1 + qrT1, � = TP + qrT0, 
 = qrTPR(1 + T1), and Æ = 1� qr.

Proof. We will prove this lemma by induction on n. For n = 1 we get

E[S1] = �0
�
� + 
Æ0

�

= � + 


= TP + qr (T0 + TPR(1 + T1)) ;

which is clearly correct.

Now assume that the lemma holds for all n = 1; 2; : : : ; l (1 � l � N � 1). We

will complete the proof by showing that the lemma then holds for n = l + 1

also. It is easy to see that

Sl+1 =

8>>>>>>>>>>><
>>>>>>>>>>>:

TP + Sl if lot l + 1 is not reworked

TP + Sl + T0 + T1Sl if lot l + 1 is reworked

and at least one of the lots

1; : : : ; l is reworked

TP + Sl + T0 + T1(Sl + TPR) + TPR if lot l + 1 is reworked

and none of the lots

1; : : : ; l is reworked

:

(1)

Let Sl denote the set of all possible outcomes of Sl, and let s�
l
2 Sl be that

outcome for which none of the lots 1; : : : ; l is reworked. Let Rl+1 be a stochastic

variable that is 1 if lot l+1 is reworked and 0 otherwise. Let Pr(:) denote the

probability that an event occurs. Using (1) we get

E [Sl+1] =
X
sl2Sl

[Pr(Rl+1 = 0; Sl = sl)(TP + sl)]

+
X

sl2Slns
�

l

[Pr(Rl+1 = 1; Sl = sl)(TP + sl + T0 + T1sl)]

+
X
sl=s

�

l

[Pr(Rl+1 = 1; Sl = sl)(TP + sl + T0 + T1(sl + TPR) + TPR)] :
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Since Rl+1 and Sl are independent, and since Pr(Rl+1 = 0) = 1 � qr and

Pr(Rl+1 = 1) = qr, this can be rewritten as

E [Sl+1] =
X
sl2Sl

[(1� qr) Pr(Sl = sl)(TP + sl)]

+
X

sl2Slns
�

l

[qr Pr(Sl = sl)(TP + sl + T0 + T1sl)]

+
X
sl=s

�

l

[qr Pr(Sl = sl)(TP + sl + T0 + T1(sl + TPR) + TPR)]

=
X
sl2Sl

[Pr(Sl = sl)((TP + sl) + qr(T0 + T1sl))]

+
X
sl=s

�

l

[Pr(Sl = sl)qr(T1TPR + TPR)]

= TP + qrT0 + (1 + qrT1)E[Sl] + qrTPR(1 + T1)(1� qr)
l

= � + �E[sl] + 
Æl:

Since we assumed that the lemma holds for n = l, we get

E [Sl+1] = � + 
Æl + �
l�1X
j=0

h
�j

�
� + 
Æl�1�j

�i

= � + 
Æl +
lX

j=1

h
�j
�
� + 
Æ(l+1)�1�j

�i

=
lX

j=0

h
�j

�
� + 
Æ(l+1)�1�j

�i
:

So the lemma holds for n = l + 1, which completes the proof. 2

Lemma 2 For all n = 1; 2; : : : ; N it holds that

E[Hn] = qr

0
@
n�2X
j=0

h
�j
�
� + 
Æn�2�j

�i
+ TPRÆ

n�1

1
A ;

where � = 1 + qrT1, � = TP + qrT0, 
 = qrTPR(1 + T1), and Æ = 1 � qr. An

empty summation (for n = 1) is set to zero.

Proof. Since H1 = 0 if lot 1 is not reworked and H1 = TPR otherwise, we

have E[H1] = qrTPR. So, the lemma is correct for n = 1. What remains is to
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prove that it is correct for n = 2; 3; : : : ; N also. It is easy to see that for all

those values of n, it holds that

Hn =

8>>>>>>>>>>><
>>>>>>>>>>>:

0 if lot n is not reworked

Sn�1 if lot n is reworked

and at least one of the lots

1; : : : ; n� 1 is reworked

Sn�1 + TPR if lot n is reworked

and none of the lots

1; : : : ; n� 1 is reworked

:

Using a similar independence argument as was used in the proof of Lemma 1,

it then follows that

E[Hn] = qr
�
E[Sn�1] + TPR(1� qr)

n�1
�
:

Combining this with Lemma 1 completes the proof. 2

Using Lemmas 1 and 2, it is easy to �nd an expression for the average pro�t.

This expression is given in the theorem below.

Theorem 1 The average pro�t, if production takes place in batches of N lots

and if reworkable defective lots are reworked in a LCFS order, is

�� cs(1� ÆN)� (h+ c1)
P

N

n=1

h
qr
�P

n�2
j=0 [�

j (� + 
Æn�2�j)] + TPRÆ
n�1
�i

P
N�1
j=0 [�j (� + 
ÆN�1�j)] + TRP (1� ÆN)

;

where � = 1 + qrT1, � = TP + qrT0, 
 = qrTPR(1 + T1), Æ = 1� qr,

and � = qnNpn + qrNpr �Ncp � qrNc0 � (1� qn � qr)Ncd.

An empty summation (for n = 1) is set to zero.

Proof. The production/rework process is a renewal process, that is renewed

at the beginning of each cycle. The average length of a cycle is E[SN ]+TRP (1�

(1� qr)
N). The average pro�t in a cycle is qnNpn + qrNpr � Ncp � qrNc0 �

(1� qn � qr)Ncd � cs(1� (1� qr)
N)� (h+ c1)

P
N

n=1E[Hn]. Applying Lemma

1, Lemma 2, and the renewal-reward theorem completes the proof. 2

Using the above theorem, the optimal value of N can be determined numeri-

cally. We end by illustrating this for the following example: qn = 0:7, qr = 0:3,

pn = 1, pr = 1, TP = 1, TPR = 10, TRP = 10, T0 = 0:2, T1 = 0:02, cp = 0:6,

c0 = 0:1, c1 = 0:003, cd = 0:1, cs = 0:1, and h = 0:001. Figure 3 shows
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the average pro�ts for N = 1; 2; : : : ; 130. These have been calculated using

`Mathcad 7 Professional'. The average pro�t curve seems to be concave in N ,

as for all the examples that we considered. The optimal batch size is N = 49

lots, and the associated average pro�t is 0.188.

Figure 3
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Figure 1: Graphical illustration of the production line forN = 5 (produced lots

in a batch are numbered backwards from 5 to 1), TP = 1, TPR = 1, TRP = 1,

T0 = 0:5, and T1 = 0:1.
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Figure 2: Graphical illustration of the de�nition of a cycle, and of the de�ni-

tions of Sn and Hn in a cycle.

10



0

0.05

0.1

0.15

0.2

10 20 30 40 50 60 70 80 90 100 110 120 130

N

average pro�t

b
b
b
b
b
b
b
b
b
b
bb
bb
bb
bb
bb
bbb

bbb
bbbb

bbbbbbb
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

Figure 3: Average pro�t for N = 1; 2; : : : ; 130 if qn = 0:7, qr = 0:3, pn = 1,

pr = 1, TP = 1, TPR = 10, TRP = 10, T0 = 0:2, T1 = 0:02, cp = 0:6, c0 = 0:1,

c1 = 0:003, cd = 0:1, cs = 0:1, and h = 0:001.
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