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Abstract

We describe the properties of (t;m; s)-nets and Halton draws. Four
types of (t;m; s)-nets, two types of Halton draws, and independent draws are
compared in an application of maximum simulated likelihood estimation of a
mixed logit model. All of the quasi-random procedures are found to perform
far better than independent draws. The best performance is attained by one
of the (t;m; s)-nets. The properties of the nets imply that two of them should
outperform the other two, and our results con�rm this expectation. The two
more-accurate nets perform better than both types of Halton draws, while
the two less-accurate nets perform worse than the Halton draws.
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1 Introduction

A choice probability is the expectation of a statistic over a density: P =R
g(")f(")d", where f is the density of random factors " and g is a calcula-

ble function. This expectation is simulated by evaluating g at R values
of " and averaging the results. If each evaluation point is drawn inde-
pendently from f , then the simulated probability is unbiased and consis-
tent for the true probability, with variance inversely proportional to R. In
maximum simulated likelihood (MSL) estimation, the simulation induces
both bias and variance, with the bias arising from the log transformation
of the simulated probability. If R rises faster than the square root of the
number of observations, then the e¤ects of simulation disappear asymptoti-
cally, and MSL is equivalent to maximum likelihood with exact probabilities
(McFadden, 1989; Lee, 1995). However, for �xed R, simulation bias and
variance are necessarily present.

Instead of taking independent draws, simulation can potentially be im-
proved by selecting evaluation points more systematically. �Quasi-random�
draws are designed to provide better coverage than independent draws over
the density for which the integral is de�ned. This improved coverage usu-
ally translates into smaller expected approximation error. In the context of
MSL, where bias arises along with variance, quasi-random draws have the
potential to reduce the root-mean-squared-error (RMSE) of the estimates
against those that would be obtained with the infeasible exact probabilities.

Halton draws have been examined by Bhat (2001; forthcoming) and
Train (2000; forthcoming) in the context of MSL on discrete choice models
and have been found to provide far more accuracy than a comparable num-
ber of independent draws. Halton draws are designed, as described below,
to provide good coverage in one dimension. When they are used for multi-
dimensional integration, they provide good coverage over each individual
dimension. However, they are not designed to provide good coverage over
the multi-dimensional space. For example, in two dimensions, Halton draws
are designed to be evenly spaced in the x-dimension and evenly spaced in
the y-dimension; however, their spacing in the x-y plane is not an aspect of
their design.

(t;m; s)-nets are designed to provide good coverage in the multidimen-
sional space as well as along each individual dimension. Sándor and András
(2001) examined these kinds of draws in the calculation of probit probabil-
ities and found them to perform well relative to Halton and independent
draws. They did not, however, examine their use in estimation of model
parameters.. The purpose of the current paper is to examine (t;m; s)-nets
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relative to Halton and independent draws in MSL estimation. We conduct
a Monte Carlo experiment using data on consumers�choice of vehicle within
a mixed logit speci�cation. We compare the RMSE of the estimated para-
meters for the three kinds of (t;m; s)-nets, two kinds of Halton draws, and
independent draws. We �nd, in summary, that well-designed (t;m; s)-nets
perform better than Halton draws, and that both types of draws perform
far better than independent draws. The (t;m; s)-net that performs the best
is the only net that is also an orthogonal array-based Latin hypercube: its
structure arises from the numerical tradition on arrays and Latin hypercubes
as well as that of (t;m; s)-nets. These terms are de�ned in the sections be-
low, followed by the experimental results.

2 Halton draws

We �rst de�ne a Halton sequence in one dimension and then show how a
sequence in multiple dimensions is created. We then describe procedures for
introducing randomness, since Halton sequences are deterministic.

2.1 One dimension

A Halton sequence is de�ned in terms of a base. The sequence in base 10 is
most easily explained; sequences in other bases are created the same as in
base 10 except with conversion to and from the new base as initial and �nal
steps.

A Halton sequence in base 10 is created in two simple steps:

1. List the integers: 0, 1, 2, 3, 4, 5, 6, 7, 9 , 10, 11, 12 ,13, ...

2. From each integer, create a decimal number by reversing the digits in
the integer and putting them after a decimal point. That is, 1 becomes
.1, 12 becomes .21, 256 becomes .652. The sequence is now: 0, .1, .2,
.3,. .4, .5, .6, .7, .8, .9, .01, .11, .21, .31, ...

Note that the sequence cycles through the unit interval every ten ele-
ments. That is, the sequence consists of successive subsequences of length
10 with the elements in each subsequence rising in value and the �rst element
of a subsequence being lower than the last element of the immediately pre-
vious subsequence. Note also that successive elements in each subsequence
are spaced the same distance apart (1/10 apart to be precise).
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A Halton sequence in any other base is created by converting to this base
before step 2 and converting back to base 10 after step 2. The steps for a
Halton sequence in base 2 are:

1. List the integers (in base 10): 0, 1, 2, 3, 4, 5, 6, 7, 9 , 10, 11, 12 ,13, ...

2. Convert these integers to base 2. The base-2 integers are: 0, 1, 10, 11,
100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, ...

3. From each base-2 integer, create a base-2 decimal number by reversing
the digits in the integer and putting them after the decimal point. The
sequence becomes: 0, .1, .01, .11, .001, .101, .011, .111, .0001, .1001,
.0101, .1101, .0011, .1011, ...

4. Convert these base-2 decimal numbers back to base 10: 0, 1/2, 1/4,
3/4, 1/8, 5/8, 3/8, 7/8, 1/16, 9/16, 5/16, 13/16, 3/16, 11/16, ... In
general, this conversion is calculated as

Pm
k=1 dk=b

k where dk is the
k-th digit after the decimal and b is the base.

The sequence cycles every b elements and each element in the cycle is
1=b units apart.

2.2 Multiple dimensions

The Halton sequence just described provides points on the unit line. Halton
sequences are created in multiple dimensions by using a di¤erent base for
each dimension. For example, a Halton sequence in two dimensions can be
created from the Halton sequences in bases 10 and 2. The sequence is: (0,0),
(.1,.5), (.2,.25), (.3,.75),...

The �rst dimension cycles every 10 elements and the second dimension
cycles every 2 elements. Since 10 is a multiple of 2, the cycles overlap and
every pair that rises in the second dimension also rises in the �rst dimen-
sion. As a result, the elements are correlated over the two dimensions. To
prevent the overlapping of cycles, Halton sequences in multiple dimensions
are usually based on prime numbers only, such that none is a multiple of
another. For our application, a sequence in �ve dimensions was created from
the Halton sequences for bases 2, 3, 5, 7 and 11.

Even with prime numbers, Halton sequences can evidence correlation
over dimensions. For example, a Halton sequence in nine dimensions that
uses the primes 17 and 19 (which are the eighth and ninth primes) contains
correlation in these dimensions because the cycles are so close as to largely
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overlap over long segments of the sequence. More importantly, there is no
reason to expect that multiple Halton sequences, each of which provides good
coverage in one dimension, will, when combined as a sequence of vectors,
provide good coverage in multiple dimensions. In contrast, (t;m; s)-nets are
created explicitly from concepts regarding coverage in multiple dimensions.

2.3 Randomization

Randomness can be introduced to a Halton sequence in several ways. Wang
and Hickernell (2000) suggest a random start procedure. Draw an integer
randomly between 0 and some large K and label the draw N0. For a Halton
sequence of length L, create a sequence starting at 0 of length N0 + L and
discard the �rstN0 elements. Or, stated di¤erently, create a Halton sequence
starting at integer N0 in step 1 above.

In estimation, a set of evaluation points is used for each observation
within the sample. Halton sequences with random starting points can be
constructed in two ways for estimation. A �short�sequence can be created
for each observation by randomly choosing a starting integer separately for
each observation. With this method, which we label HS, each observation
has its own randomized Halton sequence. Alternatively, one long sequence
for the entire sample can be created from a randomly chosen starting point.
With N observations and R evaluation points for each observations, a se-
quence of length N � R is created from a randomly chosen starting point.
Each subsequence of length R is assigned to each observation. We label
this procedure HL. The potential advantage of HL arises because Halton
sequences are created such that each subsequent point �lls in an area that
had not been covered by previous points. With one long sequence, the evalu-
ation points for each observation can be self-correcting over observations, as
discussed by Train (2000, 2001). The disadvantage of HL is that it contains
less randomness than HS.

Tu¢ n (1996) proposes an alternative randomization procedure for Hal-
ton sequences, which is discussed and utilized by Bhat (forthcoming). The
Halton sequence is shifted by adding a draw from a standard uniform dis-
tribution to each element of the sequence. For any element c of the original
sequence in one dimension, the new element is k = c + � if c + � < 1 and
k = c + � � 1 if c + � � 1, where � is a draw from a standard uniform.
Each element is shifted up by �, and if this shifting pushes the element to
the end of the unit line (i.e., to 1), then the shifting �wraps around�back
to the beginning of the line (i.e., to 0) and continues. For Halton sequences
in multiple dimensions, a separate draw is used for each dimension.
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In estimation on a sample of observations, Tu¢ n�s procedure can be ap-
plied to a sequence for the entire sample (analogous to HL for a random start-
ing point.) However, if one sequence is created and then randomly shifted
separately for each observation (analogous to HS), the relations among the
points in each dimension remain the same for all observations. For this
reason, we use the random start procedure in our application.

A randomized Halton sequence is a set of draws from the uniform distrib-
ution. To obtain draws from density f with cumulative distribution F , each
element c is transformed as F�1(c). This inverse-cumulative transformation
assumes independence over dimensions; this independence can always be
assured by placing the covariance terms within g rather than f .

3 (t;m; s)-nets in base b

The de�ning terms of a (t;m; s)-net in base b are most readily understood in
the context of an example. In our application, there are �ve dimensions of
integration, and we are using 64 evaluation points for each observation. The
term s is the dimension of the space, which in our case is 5. The term m
relates to the number of points that are contained in the net. In our case, we
have 64 points, which is 26. The term m is this 6: m is the power to which
the base is raised to obtain the length of the sequence. Stated equivalently,
a (t;m; s)-net in base b has length bm. There is a reason for de�ning the net
in terms of m instead of simply the length of the sequence. A (t;m; s)-net
can only be constructed for lengths that are some power of the net�s base.
A (t;m; s)-net in base 2 can only have length 2, 4, 8, 16, 32, 64, 128, etc.;
it cannot have a length of, say, 100. In this regard, (t;m; s)-nets are less
�exible than Halton sequences, since a Halton sequence can have any length.
A net of length 64 can be created in base 4 as well as base 2, with m = 3
such that 43 = 64. In our application, we will utilize nets of the form (t; 6; 5)
in base 2 and (t; 3; 5) in base 4. We defer the explanation of t until later.

In one dimension, (t;m; s)-nets are created the same as Halton sequences
but with an extra step. Recall that in step 3, the sequence is expressed in
decimals; for example, in base 2, the decimal sequence is 0, .1, .01, .11, .001,
.101, .011, .111, .0001, .1001, .0101, .1101, .0011, .1011, .... For a (t;m; s)-
net, each element of this sequence of decimals is transformed in a particular
way. Consider the fourth element, .110. Let c be the vector comprised of
the digits of this decimal. That is, c = h1; 1; 0i. A new vector, k is created
by the transformation k = Mc where M is a �generating matrix�and the
matrix multiplication is performed modulo 2 (so that k has elements that
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take 0 or 1). For example, suppose the transformation matrix is

M =

0@ 1 1 1
0 1 1
0 0 1

1A
Then the digits of the fourth element of the sequence are transformed to
become

k =

0@ 1 1 1
0 1 1
0 0 1

1A0@ 1
1
0

1A =

0@ 0
1
0

1A
where the top element uses the fact that 1+1 modulo 2 is 0 (since 2 divided
by 2 has no remainder.) The fourth element is changed from .110 to .010.

Nets in multiple dimensions are created by using the same base for all
dimensions but applying a di¤erent generating matrix in each dimension.
In contrast, a Halton sequence uses a di¤erent base in each dimension but
the same generating matrix for all dimensions (namely, the identity matrix,
which doesn�t change the sequence). A Halton sequence is not a (t;m; s)-
net since its dimensions are de�ned in di¤erent bases whereas all dimensions
of a (t;m:s)-net are de�ned in the same base. The desirable properties of
a (t;m; s)-net, discussed below, arise from the construction of appropriate
generating matrices.

The steps for a (t;m; s)-net in base 2 are:

1. List the integers (in base 10): 0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12 ,13, ...

2. Convert these integers to base 2. The base-2 integers are: 0, 1, 10, 11,
100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101,...

3. From each base-2 integer, create a base-2 decimal number by reversing
the digits in the integer and putting them after the decimal point. The
sequence becomes: 0, .1, .01, .11, .001, .101, .011, .111, .0001, .1001,
.0101, .1101, .0011, .1011,...

4. Transform each element of the sequence by k = Mc, using a di¤erent
M for each dimension.

5. Convert these base-2 decimal numbers back to base 10.

For interpretation, consider a (0,2,2)-net in base 2. This net has 22 = 4
elements in 2 dimensions. For this illustration, t is set at 0, which provides
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the best coverage, as we will see. Each dimension is divided into 2 equal seg-
ments (where 2 is the base), creating four squares of size (1/2)x(1/2)=1/4.
This division is shown by the dark lines in Figure 1. Then each of the seg-
ments in each dimension is divided into two equal subsegments, creating four
smaller squares within each of the larger squares, and a total of 16 squares
within the unit square. The goal is to place the 4 points in the unit square
in a way that gives the best coverage. There are 16 small squares and only
4 points to allocate among them. What provides the best coverage? The
points in Figure 1 constitute a (0,2,2)-net, constructed by steps 1-4 above.
Each point is at the lower-left corner of one of the small squares; we explain
later how these points are moved away from the corners. Note that there is
one point in each of the four large squares, and so the four points provide as
good coverage over the two dimensions as possible with four points. Note
also, that in each dimension, there is one point in each of the four subseg-
ments along that dimension. So the points obtain even coverage over each
dimension considered separately.

The coverage properties can be stated more precisely. Each of the four
larger squares has size 1/4 and contains one point. Each tall rectangle, of
height 1 and width 1/4, has size 1/4 and contains one point. And each long
rectangle, of height 1/4 and length 1, has size 1/4 and contains one point.
The situation can be described in a way that facilitates generalization. The
unit square can be partitioned into subspaces (squares or rectangles) in a
variety of ways. Consider any partitioning that satis�es the following con-
ditions: each dimension is segmented into 1, 2 or 4 equal parts (of length 1,
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1/2, or 1/4), with possibly a di¤erent number of segments in each dimen-
sion, but with each subspace created by the segmentation having a size of
1/4. Under any such partitioning, the net contains exactly one point in each
subspace.

We can now de�ne t. A (t;m; s)-net in base b contains exactly bt points in
each s-dimensional subspace if the subspaces are created by segmenting each
dimension into bk segments of 1=bk length for some k = 0; :::;m and have
volume bt�m. Note that there are bm=bt subspaces in any such partitioning,
such that, with bt points in each subspace, the total number of points is
bm. In our (0,2,2)-net in base 2, t = 0, such that exactly 20 = 1 point lies
in each subspace of size 20�2 = 1=4 when the subspaces are created by (i)
segmenting each dimension into two segments of length 1/2, such that each
subspace is a square of size 1/2 by 1/2, or (ii) segmenting the x-dimension
into 4 parts of length 1/4 and the y-dimension into 1 part of length 1, such
that each subspace is a tall rectangle of size 1/4, or (iii) segmenting the
x-dimension into 1 part and the y-dimension into four parts, creating long
rectangles of size 1/4. (Stated alternatively: the product of the number of
segments over dimensions must equal bm�t. With b = 2; t = 0 and m = 2,
the product must be 4. The possibilities are 2*2, 1*4, and 4*1.)

For a given, m; s and b, a lower t provides better coverage, since the
partitioning consists of more subspaces and fewer points in each subspace.
(The placement of points within each subspace is not designed to provide
good coverage within the subspace, and so better coverage of the unit space
is attained with fewer points in more subspaces.) The minimum attainable
value of t depends on the values of m; s and b. For any values of t;m; s
and b, appropriately speci�ed generating matrices assure that the resulting
points have the properties required for a (t;m; s)-net.

In our application, with 64 points in �ve dimensions, a t of 0 is attain-
able for base 4. We therefore create a (0; 3; 5)-net in base 4. This net can
also be characterized as an orthogonal array-based Latin hypercube (Tang
(1993)), as explained by Sándor and András (2001).1 We refer to this net
as O. For base 2, the smallest currently available t for our values of s = 5
and m = 6 (to obtain 26 = 64 points) is 2. We construct a (2; 6; 5)-net in
base 2, utilizing generating matrixes from Prisic (forthcoming) based on the
construction by Niederreiter and Xing (1996). We call this X. Finally, we
create a (3; 6; 5)-net in base 2, called N, following Niederreiter�s (1988) older

1Strictly speaking though, the de�nition of an orthogonal array latin hypercube does
not guarantee that each property of a (0,3,5)-net in base 4 is satis�ed because the rectangles
of size 1/4 by 1/16 are not guaranteed to contain exactly one point.
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proposal. We construct the generating matrices based on the algorithm de-
veloped by Bratley et al. (1992). The generating matrices for O, X, and N
are given in the appendix. We expect a performance ordering of O followed
by X followed by N. We also expect the (t;m; s)-nets to perform better than
the Halton draws, since the nets are designed to have good coverage in mul-
tiple dimensions while the multidimensional coverage of Halton sequences
is not designed but rather occurs by happenstance from the combination of
whatever di¤erent bases are being used for the dimensions.

3.1 Randomization

Owen (1995) suggests a procedure for randomizing a (t;m; s; )-net that re-
tains the coverage properties of the net. The randomization consists of, �rst,
randomly re-ordering the numbers in the base, and, second, shifting each el-
ement by a random amount. Consider �rst the re-ordering of numbers. In
base 2, there are two numbers, 0 and 1, and there are two possibilities for
their ordering: either 1 is �larger� than 0, or 0 is �larger� than 1. An
equal probability is given for each possible ordering. An ordering is chosen
randomly and the numbers are changed to re�ect this new ordering. For
example, a draw from a standard uniform is taken. If the draw is below .5,
the �rst ordering is used, and the 1�s and 0�s are left the way they are. If
the draw is above .5, the second ordering is used, and, to re�ect this or-
dering, the 1�s are changed into 0�s and the 0�s into 1�s. This reordering is
performed on each digit of the decimals from step 3, sequentially for each
successive digit such that the reordering of each digit depends on the pre-
vious digits. The reason why this is so will be apparent in the graphical
interpretation below. For example, the �rst eight elements of the sequence
in base 2 from step 3 are: .000, .100, .010, .110, .001, .101, .011, .111. We
take a draw from a uniform to determine the ordering for the �rst digit. If
.632 is drawn, then the 1�s in the �rst digit are changed to zeros and vice
versa. The sequence becomes: .100, .000, .110, .010, .101, .001, .111, .011.
For the second and third digit we apply di¤erent random reorderings if the
previous digits are di¤erent. For reordering the second digit we use two
di¤erent random reorderings depending on whether the �rst digit is 0 or 1.
If the two draws corresponding to 0 and 1 are 0.115 and 0.821, respectively,
and the third digit is not changed, then the sequence becomes: .110, .000,
.100, .010, .111, .001, .101, .011. For reordering the third digit we apply four
di¤erent random reorderings depending on whether the �rst two digits are
00, 01, 10 or 11. For nets in multiple dimensions, the random reordering is
applied to each dimension independently.
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This randomization has a graphical interpretation. In Figure 1, the
�rst dimension is the x-axis. Changing the 1�s to 0�s and vice versa in
the �rst digit is equivalent to interchanging the two tall 1/2x1 rectangles,
which gives Figure 2. Changing the 1�s to 0�s and vice versa in the second
digit is equivalent to interchanging the 1/4x1 rectangles within each of the
1/2x1 rectangles, as shown in Figure 3. Now we can see that using two
di¤erent random reorderings if the �rst digit takes 0 and 1 ensures that the
random interchange of the 1/4x1 rectangles within the �rst 1/2x1 rectangle
is independent of the random interchange of the 1/4x1 rectangles within
the second 1/2x1 rectangle. The same process is then applied to the other
dimension (to the long rectangles).

As stated above, a (t;m; s)-net created through appropriate generating
matrices gives points on the lower-left corners of the subspaces. Random re-
ordering of the numbers does not change this attribute. To move the points
inside their respective subspaces, a draw is taken from a uniform between
0 and 1=bm, where 1=bm is the width of each side of the subspace. In our
application, a draw is taken between 1 and 1/64. This draw is added to
each element of the sequence. A separate draw is taken for each dimension.
These random draws, one for each dimension, move all the points the same
distant and direction into their respective subspaces. Figure 4 shows the
points after random shifting from Figure 3. These draws, which are from a
uniform distribution, are transformed to the density of interest the same as
with Halton sequences.

Owen-randomization could be applied to Halton sequences as shown by
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Wang and Hickernell (2000). The way it is applied is similar to the ran-
domization of (t;m; s)-nets but here the reordering of the di¤erent digits
is independent, that is, it does not depend on the previous digits. How-
ever, the advantage of Owen-randomization is that it preserves the prop-
erties of a (t;m; s)-net. Since Halton sequences are not (t;m; s)-nets and
do not have their desirable properties, the motivation for this form of ran-
domization is missing. Also, Wang and Hickernell (2000) show that, for
�ve dimensions, the random start procedure tends to be more e¢ cient than
Owen-randomization for Halton sequences. It is not obvious how the simpler
randomization methods like the random shift or random start procedures can
be adapted to (t;m; s)-nets. If these procedures are applied directly then
the (t;m; s)-net property of these sequences will not be guaranteed.

4 Application

For our application, we use data described by Train and Hudson (2000) on
customers�choice among alternative fueled vehicles. Each of 538 surveyed
customers was given a card that listed three vehicles along with descriptions
of the vehicles. The customer was asked to state which of the vehicles
he/she would choose to buy. Each vehicle was described in terms of its
price, operating cost, range, performance, and engine type. Three engine
types were included in the experiments: gas internal combustion (ICV),
electric (EV), or gas-electric hybrid (HV). Range was de�ned as the number
of miles that the vehicle could be driven before refueling/recharging. Three
levels of performance were distinguished, each of which was described in
terms of top speed and number of seconds needed to reach 60 miles per
hour. These two performance factors were not varied independently. The
three performance levels were coded as 0,1 and 1.5, since the analysis in
Train (2000) indicates that customers valued the increment from low to
medium performance twice as much as the increment from medium to high.
Operating cost was denoted in dollars per month. A mixed logit model
(Revelt and Train, 1998; Brownstone and Train, 1999) was speci�ed with a
�xed coe¢ cient for price and independent normal coe¢ cients for operating
cost, range, performance, an EV dummy, and an HV dummy.

The model was �rst estimated ten times by MSL with 10,000 indepen-
dent random draws for each observation in each run. The mean of these
estimates are designed the �true�estimates, against which the other meth-
ods of constructing draws are compared. The variance of these estimates
is extremely small such that interpreting the mean as the simulation-free
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Table 1: Mixed Logit Model of Vehicle Choice
Average estimates and standard errors over ten sets of draws.
10,000 independent random draws per observation.
Explanatory variable Estimate Standard error
Price -0.1278 0.0209
Operating cost Mean -0.0689 0.0152

Std dev 0.0580 0.0342
Range Mean 1.0730 0.9472

Std dev 0.1523 10.3274
EV dummy Mean -5.8695 1.8540

Std dev 3.5259 1.4138
HV dummy Mean -0.6757 0.4818

Std dev 2.0843 0.9619
Performance Mean 0.8701 0.2727

Std dev 2.311 0.6713

estimates is warranted. Nevertheless, a more conservative interpretation is
that the comparisons reveal how well each method performs relative to tak-
ing 10,000 independent draws. Table 1 gives the �true�estimates as well as
the mean standard errors. Note that the mean standard errors are not the
variance of the estimates over the ten sets of draws. Rather they are the
average of the ten standard errors obtained in the ten runs. (More precisely,
they are the square root of the average of the squared standard errors.) As
such, they re�ect sampling variance.

The model was estimated ten times with each of the �ve types of ran-
domized sequences described above: HL, HS, N, X, and O. Each of these
runs used 64 draws per observation. We also estimated the model ten times
with 64 independent random draws, which we call R64, and, again with 512
random draws (8 times as many), which we call R512. For each type of
draw, the RMSE was calculated for the ten estimates against the �true�
estimates. The bias (i.e., the di¤erence between the mean estimates and the
�true�) and the standard deviation of the estimates were also calculated.

McFadden (1989) has pointed out that simulation variance is related to
sampling variance. In particular, for the method of simulated moments with
�xed weights and an accept-reject simulator, simulation variance is propor-
tional to sampling variance. A similar relation can be expected to occur
with other simulation-assisted estimators, though not necessarily as direct
proportionality. Intuitively, the reason for the relation between simulation
and sampling variance is clear: Large sampling variance means that the log-
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likelihood function is fairly �at near the maximum; and when the likelihood
function is fairly �at near its maximum, errors induced by simulation can
move the maximum considerably. Conversely, when the likelihood function
is highly peaked at its maximum, which means small sampling variance,
simulation error is unlikely to move the maximum as much.

To re�ect this relation and facilitate comparisons over parameters, RMSE,
bias and standard deviation are expressed as a proportion of the standard
errors from Table 1. The results are given in Table 2-4. For example, Table
2 indicates that method N provides a RMSE for the �rst parameter that is
37.7 percent of its standard error.

The methods are reported in these tables in ascending order of perfor-
mance, based on the average over parameters of the RMSE as a proportion
of standard error (the last row of Table 2). One exception to this ordering is
R512 which is given last since it uses more draws. The relative performance
is similar for each parameter individually as for the average over parameters.

All of the randomized sequences greatly outperform the same number
of independent random draws (R64). This result is consistent with, and
generalizes, the �ndings of Bhat (2001) and Train (2000), who found that
Halton draws greatly outperform independent random draws.

The (t;m; s)-nets have the expected ordering. O performs better than
X, though only moderately so. These two nets have the minimum attain-
able t for their values of m; s and b. For O, t = 0, which means that the net
contains only one point in each appropriately de�ned subspace. For X, t = 2
which, since its base is 2, means that 4 points are in each subspace. Dom-
inance cannot be established, since the two sequences have di¤erent bases.
However, it seems reasonable to expect that 1 point per subspace would pro-
vide better coverage than 4 points per (di¤erently de�ned) subspace. And
this expectation is borne out by the results, though only slightly.

Both O and X perform better than N. This result is expected, since N has
the samem; s, and b as X but a higher t. As stated above, the N sequence was
an early proposal by Niederreiter which he and others later re�ned, giving
X and O. And as also stated above, O is an orthogonal array-based Latin
hypercube, which is the culmination of an alternative numerical tradition
(namely, the combining of orthogonal arrays with Latin hypercubes.) It is
heartening that the best performer is the outcome of two di¤erent ways of
creating quasi-random draws with good coverage.

Consider now the Halton draws. HS, which contains randomization over
observations, performs slightly better than HL. The preferred (t;m; s)-nets
(that is, X and O) outperform both of the Halton methods. As discussed
above, (t;m; s)-nets are constructed to provide good coverage in multiple
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Table 2: RMSE as share of standard error of estimate
R64 N HS HL X O R512

0.45624 0.37703 0.17848 0.19757 0.19502 0.17944 0.16082
0.43343 0.25428 0.22577 0.17425 0.18536 0.13843 0.13305
0.31277 0.53546 0.60126 0.21181 0.20657 0.20708 0.13333
0.34205 0.18757 0.12352 0.13154 0.07443 0.14126 0.18009
0.08662 0.07738 0.04337 0.04757 0.05956 0.06015 0.06757
0.49436 0.29077 0.19987 0.23985 0.19512 0.15641 0.21433
0.92837 0.52265 0.21659 0.35563 0.28710 0.23988 0.34307
0.33895 0.17561 0.12252 0.19639 0.16860 0.09083 0.10072
0.52460 0.47166 0.32478 0.33307 0.21315 0.18886 0.18733
0.41280 0.26837 0.18218 0.16642 0.18180 0.11368 0.08774
0.65319 0.33003 0.22955 0.18060 0.27523 0.18548 0.10334
Average RMSE as share
0.45303 0.31735 0.22254 0.20315 0.18563 0.15468 0.15558

dimensions, while the multidimensional coverage of Halton sequences is the
unplanned outcome of its combination of bases. This di¤erence in multiple
dimensions is the reason for exploring (t;m; s)-nets, and our results indicate
that the exploration is warranted.

As a �nal note, eight times as many independent draws (R512) are re-
quired to reach the same level of performance as the best quasi-random
method.

5 Conclusion

In this paper we have shown that quasi-random simulation of the mixed logit
model yields more precise estimators than the more traditional independent
random simulation. We have investigated the performance of several quasi-
random samples and found that for our application the so-called (t;m; s)-
nets in base 4 for values t = 0, m = 3 and s = 5 yield the most precise
estimates. Our results suggest that eight times as many independent draws
are required to reach the same level of performance as this net. In other
words, we can save about 87.5% of our computing time when we use this
net instead of independent draws while still reaching the same precision of
the estimates. We have also provided intuitive explanation why these nets
are likely to have a good performance in general. Therefore we recommend
the use of these for other mixed logit simulation problems as well.

In situations other than that in our application we may need to use
(0;m; s)-nets in some other base than 4 and a smaller value of m: It is,
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Table 3: Bias as share of standard error of estimate
R64 N HS HL X O R512

0.40245 0.08611 0.09516 0.08398 0.11111 0.06619 0.09838
0.40069 0.08515 0.18885 0.08208 0.08873 0.05533 0.10278
0.13339 0.12298 0.34857 0.06168 0.08555 0.15657 0.05996
0.26429 0.12579 0.08235 0.09025 0.01824 0.09293 0.13959
0.06463 0.06130 0.03880 0.04009 0.04839 0.04769 0.05483
0.43984 0.12333 0.14954 0.16833 0.05458 0.03259 0.16535
0.60243 0.23262 0.14708 0.27031 0.08168 0.08610 0.26170
0.28903 0.09243 0.09267 0.13084 0.00559 0.03586 0.05302
0.35815 0.18037 0.01456 0.22657 0.04021 0.07968 0.07457
0.32338 0.00661 0.11248 0.08822 0.07197 0.02226 0.05005
0.43730 0.06143 0.08003 0.00167 0.18745 0.02600 0.08526
Average bias as share
0.33778 0.10710 0.12274 0.11309 0.07214 0.06374 0.10414

Table 4: Standard deviation as share of standard error of estimate
R64 N HS HL X O R512

0.22654 0.38692 0.15917 0.18851 0.16894 0.17581 0.13410
0.17420 0.25256 0.13043 0.16202 0.17154 0.13376 0.08905
0.29821 0.54933 0.51642 0.21359 0.19819 0.14286 0.12553
0.22888 0.14667 0.09704 0.10088 0.07606 0.11214 0.11994
0.06078 0.04977 0.02042 0.02699 0.03659 0.03864 0.04164
0.23787 0.27756 0.13978 0.18009 0.19747 0.16126 0.14374
0.74457 0.49335 0.16759 0.24360 0.29013 0.23601 0.23384
0.18663 0.15740 0.08447 0.15438 0.17762 0.08797 0.09026
0.40405 0.45938 0.34200 0.25734 0.22065 0.18049 0.18115
0.27045 0.28280 0.15107 0.14874 0.17598 0.11751 0.07595
0.51145 0.34181 0.22679 0.19036 0.21243 0.19358 0.06155
Average std dev as share
0.30397 0.30887 0.18502 0.16968 0.17506 0.14364 0.11789
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however, important to keep m as large as possible because this ensures a
better performance of the net if t = 0. Here we discuss how we can decide
optimally on the base in which the net is constructed so that m is as large as
possible. This will depend on the dimension of the integral underlying the
choice probabilities and on the number of evaluation points that we intend
to use. We suppose here that in econometric applications the number of
evaluation points does not exceed 500. If the dimension is 5 or lower and
we want to use few evaluation points than we recommend our best sample
O or with slightly more evaluation points (0,3,6)-nets in base 5. If we can
a¤ord even more evaluation points then (0,4,5)-nets in base 4, (0,3,8)-nets
in base 7 and (0,3,9)-nets in base 8 should be used. These latter two nets
are also suited for dimensions up to 8 and 9. If the dimension is between
6 and 10 and we would like to use few evaluation points then we can only
use nets with m = 2. Such nets are the (0,2,8)-nets in base 7, (0,2,9)-nets
in base 8 or the (0,2,10)-nets in base 9. If the dimension is larger than 10
then for having m = 3 we need more evaluation points than 1000. Therefore
only nets with m = 2 can be our target. Such nets are, with increasing
number of evaluation points: (0,2,12)-nets in base 11, (0,2,14)-nets in base
13, (0,2,17)-nets in base 16, (0,2,18)-nets in base 17 and (0,2,20)-nets in
base 19. Dimensions higher than 20 can be dealt with by putting several
randomized versions of a given net next to each other. This method is called
Latin supercube sampling in the literature. Since the nets mentioned above
are in bases that are primes or powers of primes, they can be constructed in
the way described in Appendix A and Appendix B.

Appendix A: Construction of (0;m; s)-nets

Since in our application O, that is, a (0; 3; 5)-net in base 4 performs the best,
here we provide more information on (0;m; s)-nets. More exactly, by means
of the simple example discussed in section 3 we explain why the generating
matrices yield nets and show how the generating matrices are constructed
and can be coded for practical use.

First we present the criteria that the generating matrices should satisfy
in order to yield nets. We consider only the case when t = 0 due to the reason
mentioned above, but we note that the case t > 0 can be understood in a
similar way. We recall from section 3 that a (0;m; s)-net in base b contains
exactly one point in each s-dimensional subspace of volume b�m. A subspace
contains two points if and only if some digits in base b of the coordinates of
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the two points are the same. In order to see this more precisely, we consider
the example of (0,2,2)-nets in base 2 from Figure 1 in section 3. We have
22 = 4 subspaces in each of the three cases (i), (ii), (iii) on page 9. For
each dimension the �rst digit determines whether the point is in the �rst or
second half of the segment [0,1], and the second digit determines whether
the point is in the �rst or second half of the smaller segment of length 1/2.
In case (i) the subspaces are the squares of size 1/2. If two points belong
to the same subspace then the �rst digits of their coordinates have to be
the same. In case (ii) the subspaces are the four rectangles of size 1/4x1.
If two points belong to the same subspace then the �rst two digits of their
x-coordinate have to be the same. By symmetry, for case (iii) we obtain
that if two points belong to the same subspace then the �rst two digits of
their y-coordinate have to be the same. So the generating matrices should
be such that they avoid yielding points that have the same coordinates in
these three cases.

A su¢ cient condition for having this is that the generating matrices,
denoted by

Cx =

�
cx11 cx12
cx21 cx22

�
; Cy =

�
cy11 cy12
cy21 cy22

�
;

satisfy that the matrix formed by the �rst rows, i.e.,�
cx11 cx12
cy11 cy12

�
;

as well as C1 and C2 are nonsingular modulo 2. These criteria correspond to
the cases (i), (ii), (iii), respectively. We recall that the points of the (0,2,2)-
net in base 2 are determined by multiplying C1 and C2 by the reversed digits
of the numbers 0, 1, 2, 3 in base 2. For case (i) we know from the previous
paragraph that we need that no two points of the net have their �rst digit
of their x- and y-coordinate equal. If they did that would imply that for two
numbers of 0, 1, 2, 3 in reversed digital representation (d1; d2) 6= (e1; e2) we
have

cx11d1 + c
x
12d2 = c

x
11e1 + c

x
12e2;

cy11d1 + c
y
12d2 = c

y
11e1 + c

y
12e2;

which implies

cx11 (d1 � e1) + cx12 (d2 � e2) = 0
cy11 (d1 � e1) + c

y
12 (d2 � e2) = 0:
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Hence ���� cx11 cx12
cy11 cy12

���� = 0
and the matrix formed by the �rst rows would be singular. This establishes
the criterion that if the matrix formed by the �rst rows of the generating
matrices is nonsingular then the net property in case (i) is satis�ed. We can
proceed in a similar way to show that the other two criteria, namely that
Cx and Cy are nonsingular imply that the net properties in cases (ii) and
(iii) are satis�ed. We note that the generating matrices that yield the net
from Figure 1 are

Cx =

�
0 1
1 0

�
; Cy =

�
1 1
0 1

�
:

Obviously they satisfy the three criteria discussed above.
Next we present the principles on which the construction of the gener-

ating matrices is based. We follow Niederreiter�s (1988) approach. First we
present the general case of a (0;m; s)-net in base b and then we particu-
larize it to our example. The construction is fairly abstract and is based
on expressing the inverse of polynomials in X as an in�nite sum of powers
of 1=X whose coe¢ cients will eventually be the elements of the generating
matrices (X should not be confused with the sequence X and the coordinate
x). The polynomials considered for di¤erent dimensions have to be di¤er-
ent irreducible polynomials, that is, they cannot be expressed as a product
of two polynomials. This irreducibility property is analogous to the prime
number property, so in this respect the construction of nets is related to that
of Halton sequences. Formally, for each dimension i we choose an irreducible
polynomial pi (X) of degree one and for any j � 1 we write

1

pi (X)
j
= cij1X

�1 + cij2X
�2 + cij3X

�3 + :::; (1)

where the coe¢ cients cijr take values from 0; 1; :::; b�1: Then if the generating
matrix corresponding to dimension i is de�ned as

Ci =

0BBB@
ci11 ci12 � � � ci1m
ci21 ci22 � � � ci2m
...

...
...

cim1 cim2 � � � cimm

1CCCA ;
and s � b; the sequence constructed using these Ci�s is a (0;m; s)-net in base
b. In the next paragraph we show why this is so in the case of our (0,2,2)-net
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example. The highest dimension in which a (0;m; s)-net in base b can be
constructed is b because the number of polynomials of degree one having the
coe¢ cient of X equal to 1 is b (in fact, these are: X; X � 1; :::; X � (b� 1)).
We note that this method works in the case when b is a prime number or a
power of a prime number.

Now we return to our example of (0,2,2)-nets in base 2 and explain for
these why the coe¢ cients de�ned in equation (1) yield nets. For this we
need to show that the three matrices, that is, the matrix formed by the �rst
rows of the generating matrices and the two generating matrices, C1 and
C2, are nonsingular modulo 2. We show this only for the �rst matrix since
for the other two the proof is similar. Suppose by contradiction that this
matrix is singular. Then there are numbers f1 and f2 taking 0 or 1, but not
both equal to 0, such that

cx11f1 + c
y
11f2 = 0;

cx12f1 + c
y
12f2 = 0:

Denote by px (X) and py (X) the polynomials for the x- and y-coordinates,
respectively. Then writing out the equations corresponding to (1) for j = 1
we have

1

px (X)
= cx11X

�1 + cx12X
�2 + cx13X

�3 + :::;

1

py (X)
= cy11X

�1 + cy12X
�2 + cy13X

�3 + ::: :

Then multiply the �rst equation by f1; the second by f2; add them and let

L (X) =
f1

px (X)
+

f2
py (X)

: (2)

Then we obtain

L (X) = (cx11f1 + c
y
11f2)X

�1 + (cx12f1 + c
y
12f2)X

�2 + (cx13f1 + c
y
13f2)X

�3 + :::

= (cx13f1 + c
y
13f2)X

�3 + ::: .

Since px (X) and py (X) are of degree one we draw the conclusion that
the term with the highest degree in the expression L (X) px (X) py (X) is
X�1: On the other hand, from equation (2) we know that the expression
L (X) px (X) py (X) is a polynomial so its lowest degree term is 1 (= X0):
This is only possible if all coe¢ cients of L (X) px (X) py (X) are 0, which
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in fact means that L (X) px (X) py (X) = 0: Hence the fact that px (X) and
py (X) are irreducible polynomials implies that f1 = f2 = 0; a contradiction.
This conclusion and virtually the whole proof applies in the general case of
(0;m; s)-nets in base b but we can directly see in this example why f1 =
f2 = 0 by noting that px (X) = X and py (X) = X � 1: Then

L (X) px (X) py (X) = f1 (X � 1) + f2X
= (f1 + f2)X � f1;

and L (X) px (X) py (X) = 0 means that the coe¢ cients of this polynomial
are equal to 0, i.e., f1 = 0 and (f1 + f2) = 0; which eventually implies
f1 = f2 = 0: This establishes that the matrix formed by the �rst rows of
the generating matrices is nonsingular. So we can safely believe that the
construction method for the generating matrices yields (0;m; s)-nets in base
b:

Appendix B: Generating matrices

This appendix presents, �rst, how the generating matrices for (0;m; s)-nets
in base b can be constructed if b is a prime number or a power of a prime
number, second, as an example, the construction of the generating matrices
for the (0,3,5)-nets in base 4 that yield the sample O as well as some ingre-
dients for the non-prime bases 8, 9, 16, and third, the generating matrices
applied for constructing the other two samples N and X used in the paper.

The formulas of the generating matrices for (0;m; s)-nets in base b are
derived in Niederreiter (1992). If the polynomial corresponding to dimension
i is X � bi; where bi is one of the numbers 0, 1, ... , b� 1; then the elements
of Ci are given by:

cijr = 0 for 1 � r < j;

cijr =

�
r � 1
j � 1

�
br�ji for r � j � 1: (3)

The operations in these formulas should be done in a special way. First, in
the case of b prime they should be done modulo b; that is, the remainder of
the division by b should be computed. If b is not a prime but the power of
a prime then the operations in the above formulas are di¤erent from those
for the prime bases. The reason for this is that in this case some numbers
are not �invertible�modulo b: For example, if b = 4 none of the numbers
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0, 1, 2, 3 multiplied by 2 will give 1 modulo 4, and in this sense 2 is not
�invertible..� Second,

�
r�1
j�1
�
br�ji should be computed as br�ji + ::: + br�ji ,

where the summation is done
�
r�1
j�1
�
times, where

�
n
k

�
= (n�k+1)(n�k+2):::n

1�2�:::�k ,
and by convention

�
n
0

�
= 1 for any nonnegative integer n. For bi = 0 and

r = j the convention 00 = 1 should be used.
We turn now to the second topic of this appendix. The addition and mul-

tiplication operations for base 4 are presented in Table A1. It is straightfor-
ward to code these operations and to compute the elements of the generator
matrix using the formulas (3). The generating matrices used for constructing
O are:

C1 =

0@ 1 0 0
0 1 0
0 0 1

1A ; C2 =
0@ 1 1 1
0 1 0
0 0 1

1A ; C3 =
0@ 1 2 3
0 1 0
0 0 1

1A ; C4 =
0@ 1 3 2
0 1 0
0 0 1

1A :
For illustration we compute the elements of C4: The corresponding poly-
nomial is p4 (X) = X � 3 so b4 = 3: For j = r we have

�
r�1
j�1
�
= 1 and

3r�j = 30 = 1; so the main diagonal elements are equal to 1. For j = 1; r = 2
we have

�
r�1
j�1
�
=
�
1
0

�
= 1 and 3r�j = 3; so c412 = 3. For j = 1; r = 3 we

have
�
r�1
j�1
�
=
�
2
0

�
= 1 and 3r�j = 32 = 3 � 3 = 2 (according to the multi-

plication rule from Table A1), so c413 = 2 = 2. For j = 2; r = 3 we have�
r�1
j�1
�
=
�
2
1

�
= 2 and 3r�j = 3, so c423 = 3+ 3 = 0 (according to the addition

rule from Table A1). The elements below the main diagonal are equal to 0.

Table A1: Summation and multiplication rules for base 4
+ 0 1 2 3 � 0 1 2 3
0 0 1 2 3 0 0 0 0 0
1 1 0 3 2 1 0 1 2 3
2 2 3 0 1 2 0 2 3 1
3 3 2 1 0 3 0 3 1 2

Using these four generating matrices we can construct a (0,3,4)-net in
base 4. However, this is 4-dimensional and we need a 5-dimensional net
for our application. For this we use a property that these nets satisfy.
Denote the points of the net by the 4-dimensional row vectors x0; x1; :::; x63:
Then according to this property, if we add the one-dimensional sequence
0, 1/64, ..., 63/64 to this net then the new sequence (0; x0) ; (1=64; x1) ; :::;
(63=64; x63) will be a (0,3,5)-net in base 4.

We illustrate why this is justi�ed in the case of the (0,2,2)-nets in base 2.
For this suppose that a0; a1; a2; a3 is a (0,2,1)-net in base 2 constructed in the
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way described above. Then it also holds that a0; a1 and a2; a3 are (0,1,1)-
nets in base 2. This latter property is the formal way of saying that the
sequence cycles every 2 elements, as in the case of the Halton sequence. We
show that the points (0; a0) ; (1=4; a1) ; (1=2; a2) ; (3=4; a3) form a (0,2,2)-
net in base 2. For this we need to show that in the cases (i), (ii), (iii)
(page 9) each subspace contains exactly one point of the sequence. In case
(i) take for example the subspace determined by the square [0,1/2]x[1/2,1].
Potentially the �rst two points of the sequence can belong to this. If both
of them or none of them belonged to it then a0; a1 could not be a (0,1,1)-
net in base 2, and thus only one of them belongs to it. The proof for
the other subspaces is similar. In case (ii) take for example the subspace
determined by the rectangle [1/2,3/4]x[0,1]. It is obvious that the only point
that belongs to this is (1=2; a2) : In case (iii) consider the example when the
subspace is determined by the rectangle [0,1]x[0,1/4]. Since a0; a1; a2; a3 is
a (0,2,1)-net in base 2 the interval [0,1/4] contains exactly one of these and
therefore the rectangle will also contain exactly one point. This establishes
the property for (0,2,2)-nets in base 2 and illustrates why it holds in more
general situations.

The addition and multiplication for bases 8, 9, 16 are presented in Tables
A2, A3, A4, respectively. Using them in the same way as the tables for base
4, we can construct generating matrices in those bases. We note that the
operations are commutative, i.e., a+b = b+a and a�b = b�a, so presenting
only the upper triangle of the tables is fully informative.

Table A2: Summation and multiplication rules for base 8
+ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 0 6 4 3 7 2 5
2 0 7 5 4 1 3
3 0 1 6 5 2
4 0 2 7 6
5 0 3 1
6 0 4
7 0

� 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 1 2 3 4 5 6 7
2 3 4 5 6 7 1
3 5 6 7 1 2
4 7 1 2 3
5 2 3 4
6 4 5
7 6

Table A3: Summation and multiplication rules for base 9
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+ 0 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 7 8
1 5 8 4 6 0 3 2 7
2 6 1 5 7 0 4 3
3 7 2 6 8 0 5
4 8 3 7 1 0
5 1 4 8 0
6 2 5 1
7 3 6
8 4
� 0 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0 0
1 1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 1
3 5 6 7 8 1 2
4 7 8 1 2 3
5 1 2 3 4
6 3 4 5
7 5 6
8 7

Table A4.a: Summation rules for base 16
+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 5 9 15 2 11 14 10 3 8 6 13 12 7 4
2 0 6 10 1 3 12 15 11 4 9 7 14 13 8
3 0 7 11 2 4 13 1 12 5 10 8 15 14
4 0 8 12 3 5 14 2 13 6 11 9 1
5 0 9 13 4 6 15 3 14 7 12 10
6 0 10 14 5 7 1 4 15 8 13
7 0 11 15 6 8 2 5 1 9
8 0 12 1 7 9 3 6 2
9 0 13 2 8 10 4 7
10 0 14 3 9 11 5
11 0 15 4 10 12
12 0 1 5 11
13 0 2 6
14 0 3
15 0

Table A4.b: Multiplication rules for base 16
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� 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 3 4 5 6 7 8 9 10 11 12 13 14 15 1
3 5 6 7 8 9 10 11 12 13 14 15 1 2
4 7 8 9 10 11 12 13 14 15 1 2 3
5 9 10 11 12 13 14 15 1 2 3 4
6 11 12 13 14 15 1 2 3 4 5
7 13 14 15 1 2 3 4 5 6
8 15 1 2 3 4 5 6 7
9 2 3 4 5 6 7 8
10 4 5 6 7 8 9
11 6 7 8 9 10
12 8 9 10 11
13 10 11 12
14 12 13
15 14

Finally, we present the generating matrices used for the samples N and
X. For N we used again the procedure of constructing a 4-dimensional net
and adding the sequence 0, 1/64, ..., 63/64 as its �rst dimension to obtain
a 5-dimensional net. This procedure keeps the t parameter low yielding
eventually a (3,6,5)-net in base 2. The four generating matrices are:

C1 =

0BBBBBB@

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1CCCCCCA ; C2 =
0BBBBBB@

1 1 1 1 1 1
0 1 0 1 0 1
0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1

1CCCCCCA ;

C3 =

0BBBBBB@

1 1 0 1 1 0
1 0 1 1 0 1
0 0 1 1 1 1
0 1 1 1 1 0
0 0 0 0 1 1
0 0 0 1 1 1

1CCCCCCA ; C4 =
0BBBBBB@

1 1 1 0 0 1
1 1 0 0 1 0
1 0 0 1 0 1
0 0 0 1 1 1
0 0 1 1 1 0
0 1 1 1 0 1

1CCCCCCA :
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In the case of the X sequence we use �ve generating matrices. These are:

C1 =

0BBBBBB@

1 1 0 1 1 1
0 1 1 0 1 1
1 1 0 0 0 1
0 1 0 1 0 1
1 0 0 0 1 1
0 1 0 0 0 1

1CCCCCCA ; C2 =
0BBBBBB@

0 0 1 0 1 1
1 1 1 0 0 1
1 0 0 0 0 0
1 0 1 0 0 1
0 1 0 1 0 0
0 0 1 0 1 0

1CCCCCCA ;

C3 =

0BBBBBB@

0 1 0 1 1 0
1 0 1 1 0 1
1 0 0 0 1 1
0 0 1 0 1 0
1 1 1 0 0 1
0 0 1 0 1 1

1CCCCCCA ; C4 =
0BBBBBB@

1 0 1 0 0 0
1 1 1 1 0 1
0 0 1 1 0 0
1 0 0 0 0 1
0 0 1 0 1 1
0 0 1 0 0 1

1CCCCCCA ;

C5 =

0BBBBBB@

1 0 0 1 0 1
1 1 0 1 0 0
1 0 1 0 1 0
1 1 1 1 1 0
0 1 0 0 0 0
0 1 0 0 1 0

1CCCCCCA :

C1 =

�
1 0
0 1

�
; C2 =

�
1 1
0 1

�
; C3 =

�
1 2
0 1

�
;

C4 =

�
1 3
0 1

�
; C5 =

�
1 4
0 1

�
:
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