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Abstract

One of the stylized facts in �nancial and international economics is that of increasing

predictability of variables such as exchange rates and stock returns at longer horizons.

This fact is based upon applications of long horizon regressions, from which the typi-

cal �ndings are that the point estimates of the regression parameter, the associated

t-statistic, and the regressionR2 all tend to increase as the horizon increases. Such long

horizon regression analyses implicitly assume the existence of cointegration between

the variables involved. In this paper, we investigate the consequences of dropping

this assumption. In particular, we look upon the long horizon regression as a condi-

tional error-correction model and interpret the test for long horizon predictability as

a single equation test for cointegration. We derive the asymptotic distributions of the

estimator of the regression parameter and its t-statistic for arbitrary horizons, under

the null hypothesis of no cointegration. It is shown that these distributions provide

an alternative explanation for at least part of the typical �ndings. Furthermore, the

distributions are used to derive a Phillips-Perron type correction to the ordinary least-

squares t-statistic in order to endow it with a stable size for given, arbitrary, horizon.

A local asymptotic power analysis reveals that the power of long horizon regression

tests does not increase with the horizon. Exchange rate data are used to demonstrate

the empirical relevance of our theoretical results.
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1 Introduction

One of the stylized facts in �nancial and international economics is that variables, such

as exchange rates and stock prices, which are not predictable at short horizons of up to a

year, say, contain a signi�cant predictable component at longer horizons. The statistical

evidence upon which this claim is built is obtained from long horizon regressions, relating

the change in the economic variable of interest k periods ahead to its current deviation

from an equilibrium or fundamental value, which usually is provided by economic theory1.

The typical �ndings from applying such regressions are that the point estimates of the

regression parameter, the associated t-statistic to test its signi�cance, and the regression

R2 all increase (in absolute value) as the horizon k increases. Long horizon regressions

have been used to analyse the term structure of interest rates (Fama and Bliss, 1987,

Fama, 1990, Campbell and Shiller, 1991), stock returns and dividend yields (Campbell

and Shiller, 1988, Fama and French, 1988), nominal exchange rates and fundamentals

(Mark, 1995, Chinn and Meese, 1995), and real exchange rates (Mark and Choi, 1997),

among others.

Economic explanations for the apparent long-horizon predictability tend to be taken

from the literature on the micro-structure of �nancial markets (Cutler et al., 1990, De Long

et al., 1990). The change in an economic variable is thought to be largely determined by

fads in investors' behaviour in the short run, while in the long run economic fundamentals

play a more important role. For example, Mark (1995, p.215) suggests that \while short

horizon changes tend to be dominated by noise, the noise is apparently averaged out over

time, thus revealing systematic exchange-rate movements that are determined by economic

fundamentals", see also Fama and French (1988) and Poterba and Summers (1988) for

similar arguments. Frequently, this line of reasoning is reversed to argue that the power

of tests of predictability increases as the horizon increases.

Attempts to explain the apparent success of the long horizon regression methodology

with statistical arguments have centered on the small sample bias in both the regression

coe�cient and its standard error, which are caused by endogeneity of the regressor and

1The term `long horizon regressions' has also been used to characterize regressions in which the change in
one economic variable k periods ahead is related to (the change in) another, predetermined, macroeconomic
variable (see Mishkin, 1990a,b, and Boudoukh and Richardson, 1993, among others). The statistical
intricacies of such regressions are analysed in Richardson and Stock (1989), Boudoukh and Richardson
(1994), and Campbell et al. (1997, Sec. 7.2).
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the use of overlapping observations. If these are not properly accounted for, long horizon

regressions are biased towards �nding predictability at longer horizons, see Hodrick (1992),

Nelson and Kim (1993), Goetzmann and Jorion (1993), Bollerslev and Hodrick (1995), and

Kilian (1997), among others.

Most of this discussion around long horizon regressions has implicitly assumed the

existence of a long-run relationship between the variable of interest and its fundamental.

Put di�erently, since the variables involved usually are (assumed to be) nonstationary, it

is assumed that they are cointegrated. If this is indeed the case, the test for long-horizon

predictability is in fact a test for weak exogeneity of the economic variable. The relevant

asymptotic distribution then simply is Gaussian, and the observed systematic deviations

in the empirical results from long horizon regressions have to be caused by small sample

e�ects.

In many applications the existence of cointegration is in fact a heroic assumption to

make. Many papers start with a cointegration analysis of the variables involved, and in

many cases no or very little evidence in favor of cointegration is found. If cointegration

does not hold, the test for long horizon predictability itself becomes a test for cointegration

between the economic variable and its fundamental. The relevant asymptotic distribution

then no longer is Gaussian, but rather a mixture of a Gaussian and a Dickey-Fuller distri-

bution, cf. Kremers et al. (1992) and Zivot (1996).

In the present paper we aim to investigate whether this alternative asymptotic dis-

tribution theory can help explain the empirical results from long horizon regressions. In

particular, we derive the asymptotic distributions of the slope parameter and the corres-

ponding t-statistic for general horizon k under the absence of cointegration. After applying

a Phillips-Perron type correction, the asymptotic distribution of the test for horizon equal

to one period turns out to be equal to Hansen's (1995) covariate augmented Dickey-Fuller

distribution. Furthermore, the distribution of the regression coe�cient is `blown up' pro-

portionally to the horizon k. The distribution for the naive least-squares based t-statistic is

rescaled with
p
k, while the distribution of the t-statistic which correctly accounts for the

presence of serial correlation is invariant across horizons. However, a Monte Carlo study

shows that in small samples the latter t-statistic with a Phillips-Perron type correction

appears to su�er from substantial size distortions.

In addition, we analyse the asymptotic power of long horizon regression tests against
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local alternatives and demonstrate that, for a given local alternative, local power is inde-

pendent of the horizon. Thus, from an asymptotic point of view there is no reason for

using long horizon regression tests.

The remainder of this paper is organised as follows. We start in Section 2 with an em-

pirical illustration to introduce the concept of long horizon regressions and to demonstrate

the characteristic �ndings of such regressions. In Section 3 the asymptotic distributions

of the statistics under the null hypothesis of no cointegration are derived. In Section 4 we

analyse the power of long horizon regression tests against local, near-cointegrated, alter-

natives. In Section 5, the empirical illustration is revisited and re-analyzed in the light of

the theoretical �ndings. Finally, Section 6 concludes. Proofs of the Theorems are gathered

in the Appendix.

2 Empirical illustration: exchange rates and economic fun-

damentals

Long horizon regressions relate the change in an economic variable yt k periods ahead to

its current deviation from a presumed equilibrium value xt, i.e.,

�kyt+k = �k(yt � xt) + et+k;k; t = 1; 2; : : : ; T � k; (1)

where �kyt+k � yt+k�yt for all k > 0 and T is the sample size. The properties of the error

term et+k;k will be discussed at length in Section 3. The predictability of yt at horizon k

is assessed by testing the null hypothesis H0 : �k = 0 against the alternative H1 : �k < 0.

When long horizon regressions of the form (1) are applied to economic data, the outcome

invariably appears to be that the estimated regression coe�cient �̂k, the t-statistic t(�̂k),

and the regression R2, denoted as R2
k, all increase in absolute value as the horizon k

increases. This usually is taken as evidence that xt helps predicting long-run movements

in yt better than short-run changes. In this section we illustrate these typical �ndings by

means of an example involving the relationship between changes in the nominal exchange

rate and an economic fundamental, cf. Mark (1995) and Chinn and Meese (1995).

The basic monetary exchange rate model with 
exible prices2 assumes that purchasing

power parity and uncovered interest rate parity hold, and that log money demand is

2See Frenkel (1976), Mussa (1976), and Bilson (1978).
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static and depends linearly on real income and the nominal interest rate. Using rational

expectations the model implies that for two identical countries the log exchange rate st,

expressed as the number of units of the domestic currency per unit of foreign currency, is

determined as

st =
1

1 + !

1X
i=0

�
!

1 + !

�i
Et(ft+i); (2)

where the economic fundamental ft is given by

ft = (mt �m�
t )� �(yt � y�t ); (3)

where mt denotes the log of the domestic money stock and yt the log of domestic real

income. An asterisk indicates a foreign variable. The parameters ! and � denote the com-

mon semi-interest elasticity and common income elasticity of money demand, respectively.

Subtracting ft from both sides of (2) yields, after some rearrangements,

st � ft =
1X
i=1

�
!

1 + !

�i
Et(�ft+i): (4)

Under the assumption that ft is stationary in �rst di�erences, it is seen from (2) that st is

nonstationary, and from (4) it follows that st�ft is stationary. Hence, the log exchange rate

and the fundamental are cointegrated with cointegrating vector equal to (1;�1). Thus,

the exchange rate might be expected to react to deviations from its fundamental value,

according to an error-correction mechanism

�st+1 = �(st � ft) + et+1: (5)

If (5) is estimated using post-Bretton Woods data, the hypothesis that � = 0 typically can

not be rejected, see Meese (1990) and Frankel and Rose (1995) and the references cited

therein. This is usually interpreted as evidence for the fact that in the short run, changes

in the exchange rate are determined by factors other than the economic fundamentals in

ft. However, at the same time it is believed that the exchange rate can not wander around

inde�nitely. In the long run, it should ultimately revert to its equilibrium value. Hence,

the change in the exchange rate measured over longer horizons should be, at least partly,

predictable from its current deviation from equilibrium. This is the basic motivation given

by Mark (1995) and Chinn and Meese (1995) for considering long horizon regressions for

exchange rate data, i.e., (1) with yt = st and xt = ft.
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We replicate the analysis of Mark (1995)3 on an extended sample period. Quarterly

observations covering 1973Q1-1997Q3 on nominal money supply M1, real gross domestic

product [GDP] and end-of-period exchange rates vis-�a-vis the US dollar for Germany,

Canada, Japan and Switzerland are obtained from the OECD Main Economic Indicators.

The real GDP data are seasonally adjusted, while the money supply data is not. We

apply the same procedure as Mark (1995) to eliminate the seasonality in money supply

by substituting all observations with the average money supply during the current and

previous three quarters. The e�ective sample size then is equal to 94 observations4. To

construct the fundamental ft as given in (3), we follow Mark (1995) and set � = 1. A

constant �k is included in the regression (1) as well.

Table 1 reports some key results from estimating the long horizon regression (1) for

k = 1, 4, 8, 12, and 16, i.e., for horizons varying between one quarter and four years.

Several di�erent t-statistics for testing the signi�cance of �k are reported. Under the null

hypothesis, the errors et;k in the regression for k > 1 are autocorrelated by construction,

which causes the usual least squares estimate of the residual variance to be biased down-

wards. This in turn in
ates the t-statistic associated with �k, denoted as tLS(�̂k). To

account for this serial correlation, we estimate the residual variance5 by making use of a

nonparametric estimator, popularized by Newey and West (1987), i.e.,

�̂2et;k =
1

T

TX
t=k

e2t;k + 2
lX

j=1

w(j; l)
1

T

TX
t=k+j

et;ket�j;k; (6)

where w(j; l) is a kernel function which assigns weights to the covariances, and l is the

truncation lag. Here we use the Bartlett kernel6, i.e., w(j; l) = 1� j=(l + 1). The rule-of-

thumb of Andrews (1991) is the most popular method for choosing the truncation lag l,

while l equal to some large �xed value or l = k � 1 are also used. Here we report results

3Chinn and Meese (1995) consider alternative exchange rate models, which entail incorporating ad-
ditional terms in the fundamental ft, such as nominal interest rates, the in
ation rate, and real trade
balances. Results obtained from these models are comparable to those presented here.

4For Switzerland, the GDP series is available only up to 1996Q2. Hence, for this country the e�ective
sample consists of 89 observations.

5Notice that we deviate from standard practice here, which is to estimate the entire covariance matrix
of (�k; �k) by means of a serial correlation robust estimator. Since we interpret the test of long-horizon
predictability as a test for cointegration, the regressor st � ft is nonstationary under the null hypothesis,
which invalidates the use of such estimators.

6Uniform weights for the covariances, (i.e. w(j; l) = 1 for all j = 1; : : : ; l in (6)), cf. Hansen and Hodrick
(1980), are also commonly applied, see Fama and French (1988), among others. To save space, we do
not report results involving this estimator here, as they are very similar to the ones obtained with the
Newey-West estimator. These results are available upon request.
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for l = 20 and l set according to Andrews' rule, cf. Mark (1995).

- insert Table 1 about here -

From Table 1 it is seen that for all currencies �̂k, the least-squares based t-statistic

tLS(�̂k), the Newey-West based t statistics tA(�̂k) and t20(�̂k), and the regression R2 all

increase in absolute value as the horizon k increases. Although the increase is not as

convincing as in Mark (1995)7, we might still be tempted to conclude that \the improved

�t as k increases suggests that the noise that dominates quarter-to-quarter changes in st

averages out over long horizons"(Mark, 1995, p.210). In Section 5 we discuss whether this

conclusion is valid or not by assessing the signi�cance of the various t-statistics. In the

next two sections, we �rst turn our attention to the asymptotic distributions of �̂k and

t(�̂k) under the null hypothesis of no cointegration and under local alternatives. These

two sections can be skipped by readers who are not interested in the technical details. A

brief summary of the main results is given at the beginning of Section 5.

3 Asymptotic distributions in long horizon regressions

If long horizon regressions are applied under the (implicit) assumption of cointegration,

the test for predictability is in fact a test for weak exogeneity of the economic variable. The

relevant asymptotic distribution in that case is Gaussian. If the fundamental is weakly

exogenous however, the test for predictability becomes a test for cointegration, which

changes the relevant asymptotic distribution theory. The aim of this section is twofold.

First, we explore whether this alternative asymptotic distribution theory can provide an

alternative explanation for the observed increase in the absolute values of the �̂k's and their

t-statistics with k. In particular, we derive the asymptotic distributions of these statistics

under the null of no cointegration and inspect the dependence of these distributions on

the horizon k. Second, we assess whether these asymptotic distributions provide a reliable

base for inference in small samples. Towards this end, we conduct a limited Monte Carlo

study.

7The sample period considered by Mark (1995) runs to 1991Q4. The di�erence in the results appears to
be caused mainly by a decline in the US money supply since 1994, which is not matched by an appropriate
change in other variables entering the fundamental or in the exchange rates.
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This section is divided into two parts. In the �rst subsection we focus on the long

horizon regression with horizon equal to one, i.e., a basic error-correction model. In the

second subsection we generalize the results on the asymptotic distributions to arbitrary

horizons, which allows us to examine the relationship between the statistics for di�erent

horizons.

3.1 Short horizon regression

Taking the horizon k in (1) equal to one results in the single equation conditional error-

correction model [CECM]

�yt+1 = �(yt � xt) + et+1; (7)

where the subscripts 1 on � and et have been omitted to economize on notation. See

Boswijk (1992) for a thorough introduction to CECMs. It will prove useful later on to

rewrite the CECM (7) as

�zt+1 = �zt + vt+1; (8)

where zt � yt � xt and vt = et ��xt, cf. Zivot (1996).

The test of predictability of yt is expressed as H0 : � = 0 versus H1 : � < 0. It

follows that, if xt is assumed to be weakly exogenous, this is in fact a test for cointegration

between xt and yt with a pre-speci�ed cointegrating vector equal to (1,-1). Kremers et al.

(1992) suggest to use the t-statistic t(�̂) to test for cointegration in (7), see also Boswijk

(1994) for an extensive discussion on testing for cointegration in CECMs. The asymptotic

distribution Kremers et al. (1992) derive depends on a nuisance parameter which can take

on any positive value and, therefore, is of little value in practice. Zivot (1996) provides

an alternative representation of the asymptotic distribution by exploiting the link between

testing for cointegration in (7) with the covariate augmented Dickey-Fuller [CADF] test for

a unit root developed by Hansen (1995). In this way, the asymptotic distribution, which

is a mixture of a Dickey-Fuller unit root distribution and a standard normal distribution,

depends on a nuisance parameter which takes on values in the unit interval and can be

estimated consistently.

Hansen (1995) and Zivot (1996) allow an arbitrary number of lagged values of both

�yt and �xt to enter (7), which justi�es their assumption that et is neither autocorrelated

nor correlated with �xt. However, as the short run dynamics are not modelled explicitly
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in the long horizon regression (1), we are forced to assume that these are captured by the

error terms et and vt. Hence our analysis is based on the approach by Phillips and Perron

(1988) by imposing only certain mixing conditions on (�xt; et). In particular, we invoke

the following assumptions, cf. Hansen (1995) and Herrndorf (1984).

Assumption 1: For some p > r > 2,

1. (�xt; et) is covariance stationary and strong mixing with mixing coe�cients �m,

which satisfy
P

1
m=1 �

1=r�1=p
m <1;

2. suptE(j�xtjp + jetjp) <1.

These assumptions have become conventional in the time series literature (see Phillips,

1987). They appear to be suitable for �nancial data (exchange rates, interest rates, stock

returns) as they allow for a fair amount of heterogeneity and impose only mild restrictions

on moments and temporal dependence.

De�ne the long run covariance matrix as


 = lim
T!1

1

T

TX
t=1

1X
l=�1

E

 
vt
et

!
(vt�l et�l) =

 
!2v !ve
!ve !2e

!
; (9)

which can be decomposed as 
 = �+ �+ �0, where

� = lim
T!1

1

T

TX
t=1

E

 
vt
et

!
(vt et) =

 
�2v �ve
�ve �2e

!
; (10)

� = lim
T!1

1

T

TX
t=2

t�1X
l=1

E

 
vt�l
et�l

!
(vt et): (11)

In addition de�ne the long-run correlations

�2 = !2ve=!
2
e!

2
v ; (12)

R2 = !2e=!
2
v : (13)

Hence, �2 is the squared long-run correlation between et and vt, while R
2 indicates the

proportion of the long-run variance of vt explained by et. Note that, if yt and xt are

uncorrelated random walks, �2 is equal to R2.

It follows from the above that

1p
T

brT cX
t=1

 
vt
et

!
)
 

!vWv(r)

!e(�Wv(r) +
p
1� �2We�v(r))

!
; (14)
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where Wv(r) and We�v(r) are two independent Wiener processes, b�c denotes integer part,

and) denotes weak convergence. Throughout the rest of the paper, we frequently use the

shorthand notation
R
1

0
W 2

v to denote the integral with respect to Lebesque measure, i.e.,R
1

0
Wv(r)

2dr. The next theorem discusses the asymptotic behaviour of the least squares

estimator of � in (7) and the least-squares based and Newey-West type t-statistics for

testing the null hypothesis H0 : � = 0.

Theorem 1 (Asymptotic behaviour of �̂ and t(�̂)) Under the null hypothesis � = 0

and assuming that xt is weakly exogenous,

T (�̂ � �) ) R

 
�

R
1

0
WvdWvR
1

0
W 2

v

+
q
1� �2

R
1

0
WvdWe�vR
1

0
W 2

v

!
+

1

!2v

�veR
1

0
W 2

v

; (15)

tLS(�̂) ) !e

�e

 
�

R
1

0
WvdWv

(
R
1

0
W 2

v )
1=2

+
q
1� �2N (0; 1)

!
+

1

!v�e

�ve

(
R
1

0
W 2

v )
1=2

; (16)

tNW (�̂) ) �

R
1

0
WvdWv

(
R
1

0
W 2

v )
1=2

+
q
1� �2N (0; 1) +

1

!v!e

�ve

(
R
1

0
W 2

v )
1=2

; (17)

where �ve is the upper right element of �.

The asymptotic distribution for the t-statistics is a linear combination of the stan-

dard normal and the Dickey-Fuller unit root distribution. The relative importance of

these depends on the value of �: if � = 1, the distribution collapses to the Dickey-Fuller

distribution, while the distribution approaches the standard normal as � tends to zero.

These distributions di�er from Hansen's (1995) CADF distribution only with respect to

the last term and a scaling factor !e=�e in the case of the least-squares based t-statistic.

The formulae closely resemble the formulae by Phillips and Perron (1988) for the case

of univariate unit root tests. All covariance matrices de�ned above can be consistently

estimated by Newey-West type estimators of the type given in (6), which also allows to

obtain a consistent estimate of the nuisance parameter �. Hence, it is possible to apply a

correction to the conventional t-statistic along the same lines as Phillips and Perron (1988)

in order to be able to use the critical values of Hansen. This is shown in Corollary 1.

Corollary 1 (Asymptotic behaviour modi�ed t(�̂))

�̂e

!̂e
tLS(�̂)�

�̂ve

!̂e(T�2
PT�1

t=1 (yt � xt)2)1=2
) �

R
1

0
WvdWv

(
R
1

0
W 2

v )
1=2

+
q
1� �2N (0; 1);

tNW (�̂)� �̂ve

!̂e(T�2
PT�1

t=1 (yt � xt)2)1=2
) �

R
1

0
WvdWv

(
R
1

0
W 2

v )
1=2

+
q
1� �2N (0; 1):

9



Finally it should be remarked that deterministic terms, like a constant � in the CECM

can be incorporated in the same fashion as in Hansen (1995) and Zivot (1996).

3.2 Broadening the Horizons

Under the null hypothesis � = 0, the long horizon regression (1) can be rewritten as

�kzt+k = �kzt + vt+k + : : :+ vt+1; (18)

where, as before, zt � yt� xt and vt = et ��xt. This result is used to proof the following

theorem, which gives the asymptotic distributions for the long horizon regression statistics

for general horizon k under the null hypothesis of no cointegration.

Theorem 2 (Asymptotic behaviour of �̂k and t(�̂k)) Under the null hypothesis � =

0, and assuming that xt is weakly exogenous,

T (�̂k � �k) ) kR

 
�

R
1

0
WvdWvR
1

0
W 2

v

+
q
1� �2

R
1

0
WvdWe�vR
1

0
W 2

v

!
+

k
1

!2v

 
�veR
1

0
W 2

v

� �ve;k�1R
1

0
W 2

v

!
; (19)

tLS(�̂k) ) k!eq
k�2e + 2

Pk�1
j=1 �ee;j

 
�

R
1

0
WvdWv

(
R
1

0
W 2

v )
1=2

+
q
1� �2N (0; 1)

!
+

kq
k�2e + 2

Pk�1
j=1 �ee;j

1

!v

 
�ve

(
R
1

0
W 2

v )
1=2

� �ve;k�1

(
R
1

0
W 2

v )
1=2

!
; (20)

tNW (�̂k) )
 
�

R
1

0
WvdWv

(
R
1

0
W 2

v )
1=2

+
q
1� �2N (0; 1)

!
+

1

!v!e

 
�ve

(
R
1

0
W 2

v )
1=2

� �ve;k�1

(
R
1

0
W 2

v )
1=2

!
; (21)

where

�ve;k�1 = lim
T!1

T�1

TX
t=k+1

k�1X
i=1

Evt�iet; (22)

�ee;k�1 = lim
T!1

T�1

TX
t=k+1

k�1X
i=1

Eet�iet: (23)

Corollary 2 If et is not autocorrelated then

tLS(�̂k))
p
k

 
�

R
1

0
WvdWv

(
R
1

0
W 2

v )
1=2

+
p
1� �2N (0; 1)

!
+
p
k

1

!v!e

 
�ve

(
R
1

0
W 2

v )
1=2
� �ve;k�1

(
R
1

0
W 2

v )
1=2

!
:
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From (19) it is seen that the asymptotic distribution of the regression coe�cient �̂k is k

times the distribution of �̂1, apart from the last correction term. Similarly, the distribution

of the least squares based t-statistic depends on the horizon k. Corollary 2 demonstrates

that if et is uncorrelated, the scaling factor is
p
k. Notice that these asymptotic distri-

butions explain the increase in the absolute value of estimates of �k and tLS(�̂k) with k.

Given that the Dickey-Fuller distribution is skewed to the right, it is not surprising to

�nd a negative estimate for �1 and t(�̂1) on average. The dependence of the asymptotic

distributions of �̂k and tLS(�̂k) on k ensure that these statistics become more negative

as the horizon increases. The asymptotic results presented here corroborate simulation

evidence presented in Berkowitz and Giorgianni (1997) showing that even if cointegration

does not hold the means of �̂k and tLS(�̂k) become more negative as k increases.

If Newey-West type covariance matrix estimators are used, the asymptotic distribution

of the t-statistic still depends on k through the last correlation term in (21). The e�ect

of this correction term is much smaller however than the scaling factors involved in the

distributions for the parameter estimate and the least-squared based t-statistic. In the case

of uncorrelated errors, this correction term disappears and the asymptotic distribution of

the t-statistic is independent of k. Hence, for Newey-West based t-statistics the asymptotic

distributions can not clearly explain the typical �ndings. The Monte Carlo results in

Berkowitz and Giorgianni (1997) however suggest that the small-sample distributions of

these statistics does shift to the left as k increases.

Corollary 3 shows how to modify tLS(�̂k) and tNW (�̂k) as k increases. Due to these

modi�cations, it is possible to use Hansen's asymptotic CADF distribution, as tabulated

in his Table 1, for arbitrary k.

Corollary 3 (Asymptotic behaviour of modi�ed t(�̂k))q
k�̂2e + 2

Pk�1
j=1 �̂ee;j

k!̂e
tLS(�̂k)� �̂ve � �̂ve;k�1

!̂e(T�2
PT�k

t=1 (yt � xt)2)1=2
) �

R
1

0

WvdWv

(
R
1

0
W 2

v )
1=2

+
p
1� �2N (0; 1);

tNW (�̂k)� �̂ve � �̂ve;k�1

!̂e(T�2
PT�k

t=1 (yt � xt)2)1=2
) �

R
1

0

WvdWv

(
R
1

0

W 2

v )
1=2

+
p
1� �2N (0; 1):

In order to examine the relationship between the di�erent R2's of the long horizon

regression, we return to equation (1). For arbitrary k and �xed T it follows that

R2
k = 1�

PT�k
t=1 (êt+k;k)

2PT�k
t=1 (êt+k;k)

2 + �̂2k
PT�k

t=1 (yt � xt)2
: (24)
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Under the null hypothesis of no cointegration, R2
k converges to zero for all horizons. How-

ever, if k increases, R2
k tends to go to zero more slowly, which can be seen from

R2
k ) 1�

k�2e + 2
Pk�1

j=1 �ee;j

k�2e + 2
Pk�1

j=1 �ee;j + (k=T )T 2�̂2
R
1

0
W 2

v

: (25)

We perform a limited Monte Carlo experiments to investigate whether the asymptotic

distributions derived above are suited for inference in small samples. We generate yt and

xt as two possibly correlated random walks, �yt = et and �xt = ut, where the innovations

of the random walks are generated according to 
et
ut

!
=

 
�11 0
0 �22

! 
et�1
ut�1

!
+

 
"t
�t

!
(26)

 
"t
�t

!
� N

  
0
0

!
;

 
1 �"�
�"� 1

!!
(27)

We consider six di�erent data generating processes, with di�erent degrees of serial correla-

tion in and cross-correlation between et and ut, by varying �11, �22 and �"�. A description

of the various parameterizations can be found in Table 2. For each parameterization we

generate 5000 arti�cial samples of 200 observations. Necessary starting values are set equal

to zero. Each replication discards the �rst 100 observations to eliminate start-up e�ects;

the results are based on the remaining 100 observations. We use Hansen's approach to

calculate the nuisance parameter � for the various parameterizations, i.e., for each pa-

rameterization we generate ten samples of 5000 observations and use these to obtain an

estimate of �. The averages of these estimates are given in Table 2 as well.

- insert Table 2 about here -

Rejection frequencies for the modi�ed long horizon regression tests at nominal signi�-

cance levels of 1%, 5%, and 10% are reported in Table 3. Some important conclusions can

be drawn from this table. First, the empirical size of all the tests varies within consider-

able bounds for k = 1, cf. Hansen (1995). On the basis of this result, no clear-cut choice

between the three t-statistics considered can be made. Second, as the horizon k increases,

the size of the modi�ed Newey-West type estimators tends to increase. Therefore, these

t-statistics become increasingly unreliable as k increases. In contrast, the size of the least-

squares based t-statistic is fairly stable across di�erent horizons. One possible explanation

for this phenomenon is that the Newey-West type estimators have great di�culty matching

12



the k2 factor of the long-run variances as k increases; typically they tend to underestimate

the long-run variance. The expression for the modi�ed least-squares based t-statistic given

in Corollary 2 contains several explicit references to the value of the horizon k, which ap-

parently enables this statistic to cope more succesfully with the increase in the long-run

variance.

- insert Table 3 about here -

From this limited Monte Carlo study we draw the conclusion that the modi�ed least-

squares based t-statistic can be used for inference on �̂k for arbitrary k. In Section 5

we will use this statistic to reconsider the evidence of long horizon predictability of the

nominal exchange rate given in Section 2.

4 Local Asymptotic Power of Long Horizon Regression Tests

As noted in the introduction, one of the main reasons to use long horizon regression tests

is the belief that the power of the t-statistic tests is increasing in k. However, only few

papers exist that investigate this question, either theoretically or in an empirical setup.

Using Monte Carlo experiments, Kilian (1997) concludes that, under the null hypothesis of

cointegration, no power gains are to be expected. In this section we will investigate whether

this is true in case of local alternatives, under the null hypothesis of no cointegration. Our

results thus are complementary to those of Kilian.

We consider the asymptotic power of the long horizon regression tests against local

alternatives of the form:

Ha : � = �c=T; (28)

where c is a positive constant and T is the sample size. The null hypothesis � = 0 holds

locally if c > 0 and T !1.

We use local-to-unity (in our case, local-to-zero) asymptotics to derive asymptotic

power functions, cf. Phillips (1987), among others. This theory employs di�usion repre-

sentations of continuous time stochastic processes. In particular, the Ornstein-Uhlenbeck

process is used, which is de�ned as the solution W c(r) to the following stochastic di�er-

ential equation:

dW c(r) = cW c(r)dr + dW (r); (29)
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where W (r) is a Wiener process.

Theorem 3 compares the asymptotic local power of the long horizon regression tests

for di�erent values of the horizon. In order to be able to get a fair comparison for di�erent

values of the horizon8, we use the \inherent link" (Berkowitz and Giorgianni (1997, p.16)

between �k and � under the alternative hypothesis of near-cointegration

�k = 1� (1� �)k: (30)

If we substitute the local alternative for � into this relation, we arrive at

�k = 1� (1� �)k = 1� (1 + c=T )k

= 1�
kX

i=0

 
k

i

!
(c=T )i = �kc=T +O(T�2): (31)

Therefore the local alternative for a general horizon k is

Hak : �k = �kc=T: (32)

Theorem 3 (Local asymptotic power of modi�ed t-statistics) The local asymptotic

power of the modi�ed tLS(�̂k) and the modi�ed tNW (�̂k) is independent of the value of the

horizon k.

This theoretical result is in line with the empirical observations of Kilian (1997). In

his empirical examples he is unable to reject the hypothesis that the power of the long

horizon regression tests is independent of the value of the horizon.

5 Exchange rates and economic fundamentals revisited

The example given in Section 2 on the relation between nominal exchange rates and an

economic fundamental derived from the monetary model clearly demonstrates the typical

�ndings from long horizon regression tests. Table 1 shows that for all currencies �̂k, the

least-squares t-statistic tLS(�̂k), the Newey-West based t-statistics tA(�̂k) and t20(�̂k), and

the regression R2 all increase in absolute value as the horizon k increase, suggesting that

long-run changes in exchange rates contain a signi�cant predictable component.

8Berkowitz and Giorgianni (1997, footnote 3) note that \a proper power comparison requires that the
alternative is kept �xed".
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In Section 3.1 it was shown that the asymptotic distribution for the t-statistic in the

`short-horizon' regression, i.e., (1) with k = 1, is a linear combination of the standard

normal and the Dickey-Fuller distribution. In particular, after applying a Phillips-Perron

type correction, the asymptotic distribution turns out to be equal to Hansen's (1995) co-

variate augmented Dickey-Fuller distribution. Furthermore, as the horizon k increases, the

distribution of the regression coe�cient is `blown up' proportionally to k. The distribu-

tion for the naive least-squares based t-statistic is rescaled with
p
k, while the distribution

of the Newey-West based t-statistic, which correctly accounts for the presence of serial

correlation, is invariant across horizons. The regression R2 tends to zero for all horizons.

However, the rate of convergence becomes slower as k increases, which explains the fact

that in �nite samples it is found that R2
k increases with k as well.

The results of the Monte Carlo study at the end of Section 3.2 show that in small

samples inference based on Newey-West type estimators proves unreliable, as they su�er

from severe size distortions, cf. Newey and West (1994). However, a modi�ed least-squares

based t-statistic turns out to have a stable size over the range of horizons considered. Here

we use these modi�ed t-statistics in order to investigate the signi�cance of the empirical

results presented in Section 2.

- insert Table 4 about here -

The various modi�ed t-statistics are shown in Table 4. Comparing the tLS(�̂k) statis-

tics with the critical values in Table 1 in Hansen (1995), it appears that there is not

much evidence for long horizon predictability of any of the currencies considered. For the

Deutsche mark and the Japanese yen, none of the t-statistics is signi�cant even at the

10% signi�cance level. For the Canadian dollar, only �̂k or k = 1 is signi�cant at the

5% level. Only for the Swiss franc there appears to be some weak evidence for long-run

predictability: whereas the t-statistics at short-horizons are not or only marginally signi-

�cant, the t-statistic at the four year horizon is signi�cant at the 1% level. These results

mimic the results by Berkowitz and Giorgianni (1997) who, using critical values derived by

simulations, also �nd some weak evidence for long-run predictability for the Swiss franc.
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6 Summary and conclusions

In applications of long horizon regressions it is typically found that the point estimates

of the regression parameter, the associated t-statistic to test its signi�cance, and the re-

gression R2 all tend to increase in absolute value as the horizon increases. In this paper

we have explored the in
uence of the assumption concerning the cointegration properties

of the variables involved on the conclusions which are to be drawn from these outcomes.

In practice, cointegration is often implicitly assumed to hold. Under this assumption,

the t-statistic is asymptotically Gaussian distributed at all horizons. Consequently, the

increasing signi�cance of the regression parameter at longer horizons is interpreted as ev-

idence for long horizon predictability. On the other hand, looking upon the long horizon

regression as a conditional error-correction model and interpreting the test for long hori-

zon predictability as a single equation test for cointegration, rather than as a test for

weak exogeneity, changes the relevant asymptotic distribution theory from the conven-

tional Gaussian to mixtures of Gaussian and Dickey-Fuller type distributions. We have

derived the asymptotic distribution of the estimator of the regression parameter and its

t-statistic for arbitrary horizons, under the null hypothesis of no cointegration. The de-

pendence of these distributions on the horizon k demonstrates that these distributions

provide an alternative explanation for a least part of the typical �ndings of long horizon

regressions. If cointegration does not hold, the observed increases are not surprising at all,

but rather are predicted by the asymptotic distribution theory. Hence, the question raised

in the title should be answered a�rmatively. Subsequently, knowing its dependence on

the horizon k, it proved possible to apply a Phillips-Perron type correction to the ordinary

least-squares t-statistic in order to endow it with a stable size for given, arbitrary, horizon.

For Newey-West type estimators, this does not appear possible.

The results from the empirical example concerning nominal exchange rates and a fun-

damental value derived from the monetary model are in line with the typical results in the

literature. The standard statistics suggest that the nominal exchange rate vis-�a-vis the US

dollar of the Deutsche mark, the Japanese yen, the Canadian dollar, and the Swiss franc

are all predictable over long horizons. In contrast, using the modi�ed t-statistics reveals

that there is hardly any evidence of long horizon predictability of nominal exchange rates.
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Appendix: Mathematical proofs

In the proofs, we make use of various standard results on partial sum processes, which are
summarized in Lemma 1.

Lemma 1 Let zt be generated according to (7) and assume that (28) holds. Then

1. T�1=2zbTrc ) !vW
c
v (r);

2. T�2
PT

t=k+1 z
2
t�k ) !2v

R
1

0
(W c

v )
2; 8 k > 0;,

3. T�1
PT

t=k+1 zt�k(et + : : :+ et�k+1)) k(!v!e(�
R
1

0
W c

v (r)dWv(r)+p
1� �2

R
1

0
W c

v (r)dWe�v(r)) + �ve)� k�ve;k�1; 8 k > 0:

Proof:

Parts 1 and 2 are standard results, see, for example, Hansen (1992, 1995) for proofs. The
proof of part 3, which resembles Lemma 1(e) in Phillips (1986), is given below.

We �rst invoke Theorem 3.49 of White (1984), saying that a measurable function of a
�nite string of a mixing variable that obeys a certain summability restriction (in our case
Assumption 1) is also mixing (with di�erent mixing coe�cients) and its mixing coe�cients
obey the same summability restriction. Second, note that as (vt; et)

0 is uniformly square
integrable, a �nite sum of (vt; et)

0 will also be uniformly square integrable. Taken together,
these two assertions imply that (the multivariate generalisation of) Herrndorf's Corollary
1 will also apply to the �nite sums considered above. This means that partial sums of
these �nite sums will converge to Wiener processes. Having established the existence of
the limit distribution, we rewrite the expression for general k in terms of the limit for
k = 1. Observe that T�1

PT
t=k+1 zt�k(et + : : : + et�k+1) =

Pk�1
j=0 T

�1
PT

t=k+1 zt�ket�j . It
then follows that

k�1X
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TX
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zt�ket�j =
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where the last line follows by the strong law of large numbers of McLeish (White (1984,
Theorem 3.47)).

2

Proof of Theorem 1:

Using the results of Hansen (1992,1995), it is easy to show that

T (�̂ � �) =
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:
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The fact that �xt drops out can be easily seen from the following stylized example. Sup-
pose y = x�+z+u, then �̂ = (x0x)�1x0(y�z) = (x0x)�1x0(x�+z+u�z) = �+(x0x)�1u.

The limiting distribution of the least-squares based t-statistic can be derived as follows
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If a Newey-West type estimator is employed it follows that
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2

Proof of Theorem 2:
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where the second line follows from Lemma 1.
Under the null hypothesis � = 0, the least squares estimator T�1

P
(êt+k + : : : êt�1)

2

of the residual variance converges in probability to k�2e + 2
Pk�1

j=1 �ee;j, because
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where the last line follows from the strong law of large numbers of McLeish. Therefore,
for the least-squares based t-statistic it follows that
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Under the null hypothesis � = 0, the Newey-West estimator of the long-run variance of
the error-terms et+k;k = et+k + : : :+ et+1 converges in probability of k2!2e . Therefore
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Proof of Theorem 3:

Under the local alternative � = �c=T we can exploit the autoregressive structure of the
zt process

zt = (1� �)kzt�k +
k�1X
j=0

(1� �)j(et�j ��xt�j):

Therefore

zt � zt�k = ((1 � �)k � 1)zt�k +
k�1X
j=0

(1� �)j(et�j ��xt�j):

Using the tools of Phillips (1987) and Hansen (1992,1995), it is straightforward to show
that under (32):
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where the second line follows from applying Newton's binomium to (1 � �)j and using
� = �c=T . The asymptotic distributions of the least-squares based and Newey-West type
covariance matrix estimators are independent of the local alternative, cf. Phillips (1988).
Thus, q

k�2e + 2
Pk�1

j=1 �ee;j

k!e
tLS(�̂k)�

�̂ve � �̂ve;k�1

!̂e(T�2
PT�k

t=1 (yt � xt)2)1=2
)

c

!e!v(
R
1

0
(W c

v )
2))1=2

+ �

R
1

0
WvdWv

(
R
1

0
W 2

v )
1=2

+
q
1� �2N (0; 1);

tNW (�̂k) +
�̂ve � �̂ve;k�1

!̂e(T�2
PT�k

t=1 (yt � xt)2)1=2
)

c

!e!v(
R
1

0
(W c

v )
2))1=2

+ �

R
1

0
WvdWv

(
R
1

0
W 2

v )
1=2

+
q
1� �2N (0; 1):

We conclude that the power is independent of k.
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Table 1: Long horizon regression estimates for nominal
exchange rates1

k �̂k tLS(�̂k) t20(�̂k) tA(�̂k) R2
k

Canadian dollar
1 �0:019 �1:499 �1:434 �1:499 0:033
4 �0:097 �3:696 �1:884 �1:742 0:139
8 �0:204 �5:095 �2:128 �2:299 0:237
12 �0:324 �6:522 �2:415 �2:835 0:344
16 �0:434 �7:400 �2:631 �3:182 0:414

Deutsche mark
1 �0:044 �1:863 �1:778 �1:786 0:045
4 �0:165 �3:324 �1:764 �1:706 0:117
8 �0:354 �4:655 �1:993 �2:056 0:207
12 �0:570 �6:367 �2:312 �2:350 0:334
16 �0:773 �8:335 �2:720 �2:624 0:471

Japanese yen
1 �0:044 �1:740 �1:805 �1:628 0:041
4 �0:194 �3:478 �2:049 �1:860 0:126
8 �0:399 �4:963 �2:312 �2:355 0:228
12 �0:577 �5:953 �2:396 �2:401 0:305
16 �0:709 �6:798 �2:434 �2:369 0:374

Swiss franc
1 �0:080 �2:329 �2:566 �2:255 0:067
4 �0:292 �4:470 �2:750 �2:434 0:196
8 �0:574 �6:715 �3:575 �3:575 0:360
12 �0:829 �9:697 �5:150 �5:039 0:549
16 �1:052 �15:640 �8:593 �8:274 0:768

1The table presents least squares estimates of the long hori-
zon regression �kst+k = �k(st � ft) + et+k;k, where st is the log
nominal exchange rate (US dollars per unit of foreign currency)
and ft = (mt �m�

t ) � �(yt � y�t ). The data are quarterly, cover-
ing 1973Q1-1997Q3 for the Canadian dollar, Deutsche mark and
Japanese yen and 1973Q1-1996Q2 for the Swiss franc (which ren-
der e�ective sample sizes of 94 and 89 observations for k = 1,
respectively). The t-statistic tLS(�̂k) is computed using the least
squares estimator of the residual variance. The t-statistics t20(�̂k)
and tA(�̂k) are computed using the Newey-West estimator of the
residual variance given in (6) with truncation lag l = 20 and l set
according to the rule of Andrews (1991), respectively.
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Table 2: Simulation design1

design �11 �22 �"� �

1 0.0 0.0 0.0 0.71
2 0.0 0.5 0.0 0.48
3 0.5 0.0 0.0 0.89
4 0.0 0.0 0.5 0.33
5 0.5 0.5 0.0 0.71
6 0.5 0.5 0.5 0.36

1The table presents the design of the
various data generating processes used
to investigate the size of the modi�ed
t-statistics introduced in Corollary 3 in
small samples. The precise meaning of
the parameters �11, �22, �"� is given in
(26)-(27), while � is de�ned in (12).
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Table 3: Rejection frequencies of modi�ed t-statistics1

tLS(�̂k) t20(�̂k) tA(�̂k)
design k 1% 5% 10% 1% 5% 10% 1% 5% 10%

1 1 3 7 11 5 10 14 1 5 8
4 1 3 6 7 13 18 5 11 15
8 1 5 8 10 17 23 10 17 22
12 2 6 9 14 22 27 15 23 28
16 3 7 10 18 26 32 20 28 34

2 1 5 10 14 4 9 13 1 3 7
4 1 4 7 6 12 17 4 9 13
8 2 5 8 8 15 19 8 14 19
12 2 5 9 11 18 23 12 19 24
16 2 6 9 14 21 26 16 23 28

3 1 0 1 1 1 3 5 0 1 2
4 0 0 1 5 9 13 5 10 13
8 0 1 2 10 17 22 15 22 29
12 0 1 3 15 24 30 24 34 40
16 1 2 3 22 31 37 33 42 48

4 1 1 4 6 4 8 13 1 3 6
4 1 3 6 5 10 15 3 8 12
8 1 3 7 7 13 18 6 12 17
12 1 4 7 9 16 20 9 16 20
16 1 4 7 11 18 22 12 18 23

5 1 1 3 4 2 4 6 1 2 3
4 0 1 2 5 10 14 5 10 14
8 0 1 2 10 16 20 13 21 26
12 1 2 3 14 21 25 21 29 35
16 1 2 3 18 25 30 27 36 41

6 1 2 4 6 3 6 8 1 3 6
4 0 1 3 5 9 12 5 9 12
8 0 1 2 8 12 16 10 16 20
12 0 1 3 10 15 19 15 22 26
16 0 1 3 12 18 22 18 25 30

1The table presents rejection frequencies of the modi�ed t-statistics to test the
null hypothesis H0 : �k = 0 in (7), as discussed in Corollary 3. The series (yt; xt)
are generated as possbily correlated random walks, with the innovations generated
according to (26)-(27). The speci�c values for the parameters �11, �22 and �"� in the
di�erent designs are given in Table 2. The table is based on 5000 replications for sample
size T = 100. The t-statistic tLS(�̂k) is computed using the least squares estimator
of the residual variance. The t-statistics t20(�̂k) and tA(�̂k) are computed using the
Newey-West estimator of the residual variance given in (6), with the truncation lag
l = 20 and l set according to the rule of Andrews (1991), respectively.
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Table 4: Modi�ed long horizon t-
statistics for nominal exchange rates1

k tLS(�̂k) t20(�̂k) tA(�̂k)

Canadian dollar
1 �2:967 �1:505 �1:679
4 �1:664 �1:656 �1:744
8 �1:599 �1:892 �2:247
12 �1:682 �2:294 �2:796
16 �1:662 �2:570 �3:144

Deutsche mark
1 �1:809 �1:879 �1:885
4 �1:392 �1:807 �1:703
8 �1:470 �1:922 �2:053
12 �1:677 �2:250 �2:346
16 �1:921 �2:686 �2:626

Japanese yen
1 �1:648 �1:599 �1:648
4 �1:290 �1:792 �1:857
8 �1:465 �2:145 �2:352
12 �1:491 �2:182 �2:399
16 �1:500 �2:371 �2:367

Swiss franc
1 �2:696 �2:779 �2:337
4 �2:038 �2:863 �2:430
8 �2:248 �3:481 �3:568
12 �2:688 �5:069 �5:030
16 �3:782 �8:528 �8:258

1The table presents results on tests for
long horizon predictability using the mod-
i�ed t-statistics, applying the formulae in
Corollary 3. The t-statistic tLS(�̂k) is com-
puted using the least squares estimator of
the residual variance. The t-statistics t20(�̂k)
and tA(�̂k) are computed using the Newey-
West estimator of the residual variance given
in (6), with the truncation lag l = 20 and l

set according to the rule of Andrews (1991),
respectively. The appropriate asymptotic
critical values, based on Table 1 in Hansen
(1995), are (1%, 5%, 10%): Deutsche mark, -
3.41, -2.82, -2.53 (�̂ = 0:95), Canadian dollar,
-3.28, -2.70, -2.39 (�̂ = 0:68), Japanese yen
and Swiss franc, -3.39, -2.81, -2.50 (�̂ = 0:90).
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