
 1

 
 

Energy decomposition analysis: the generalized Fisher index revisited 
 

Paul de Boer 
 

Econometric Institute Report EI 2008-12 
 

Abstract 
 
 It is generally believed that index decomposition analysis (IDA) and input-output 
structural decomposition analysis (SDA) (Rose and Casler, 1996; Dietzenbacher and 
Los, 1998) are different approaches in energy studies; see for instance Ang, Liu and 
Chung (2004). In this paper it is shown that the generalized Fisher approach, introduced 
in IDA by Ang, c.s. (2004) for the decomposition of an aggregate change in a variable in 

4or  3,2r =  factors is equivalent to SDA. They base their formulae on the very 
complicated generic formula that Shapley (1953) derived for his value of n-person 
games, and mention that Siegel (1945) gave their formulae using a different route. In this 
paper tables are given from which the formulae of the generalized Fisher approach can 
easily be derived for the cases of 4or  3,2r =  factors. It is shown that these tables can 
easily be extended to cover the cases of 5r = and 6r =  factors.  
 
Keywords: Index decomposition analysis; Input-output structural decomposition analysis; 
Generalized Fisher index; Energy intensity. 
 
1. Introduction 
 
 It is generally believed that index decomposition analysis (IDA) and input-output 
structural decomposition analysis (SDA) (Rose and Casler, 1996; Dietzenbacher and 
Los, 1998) are different approaches in energy studies; see for instance Ang, Liu and 
Chung (2004). In the framework of a multiplicative decomposition1 they proposed to use 
a generalized Fisher index approach which is ideal (i.e. it satisfies factor reversal) and 
change-in-sign robust (i.e. it can handle variables that in one period are negative and in 
the other positive). 
 They base their formulae for the decomposition of an aggregate change in a variable in 

3r = or 4r =  factors on the very complicated generic formula that Shapley (1953) 
derived for his value of n-person games, and mention that Siegel (1945) gave their 
formulae using a different route. As a matter of fact, Siegel and Shapley used the very 
same reasoning, but arrived at two different generic formulae, yielding the same results.  
The only difference is that Siegel dealt with a multiplicative decomposition and Shapley 
with an additive decomposition.  
 In this paper it is shown that the generalized Fisher approach, introduced in IDA by Ang, 
c.s. (2004) is equivalent to SDA. We give tables from which the formulae of the 
generalized Fisher approach can easily be derived. The formulae for the cases of 

4 and 3,2r = have already been given in Siegel (1945) and in Ang, c.s.(2004). The 
formulae for the cases 5r =  and 6r = can easily be derived from the pertinent tables 
given in this paper.  
 The organization of this paper is as follows: in section 2 we apply the reasoning of SDA 
to the well-known decomposition of a change in value into changes in price and quantity. 
It is easily shown that the SDA approach is equivalent to the use of the Fisher indices for 
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two factors in IDA. The formula is summarized in the form of a table which will be 
generalized to a higher number of factors. In section 3 we use the example of Chung 
and Rhee (2001) of the decomposition of energy-related 2CO  emissions for seven 
intermediate demand sectors in the Korean economy in order to deal with the case of 
three factors. Again, it is shown that the generalized Fisher approach is equivalent to 
SDA and that commonly used methods of SDA yield empirical results that are very close 
to each other. A summarizing table is presented, as well. Section 4 is devoted to the 
treatment of the four-factor case by Ang,c.s. (2004) in the framework of the very same 
example. The difference between their approach and ours is that they did not realize that 
the decomposition, reading in four factors, can be reduced to a decomposition reading in 
three factors. Again, we show that SDA and the generalized Fisher approach yield the 
very same formulae and provide the summarizing table. In section 5 summarizing tables 
are given from which the formulae for the cases of five and six factors can easily be 
derived. It is straightforward to derive tables for values of r higher than six. Section 6, 
finally, contains some remarks about the reasoning of Siegel (1945) and Shapley (1953).  
 Last, but not least, in order to give proper credit to the contributions of Siegel and 
Shapley, it is proposed to replace the name of “generalized Fisher” by “Siegel-Shapley 
decomposition”. 
 
2. SDA and IDA: the case of two factors (price and quantity) 
 
2.1. The Fisher index 
 
 Let )1(pi  and )0(pi denote the prices of commodity i (= 1,…,n) in comparison and base 
period, and let )1(qi  and )0(qi be the corresponding quantities. Then, the ratio of total 
expenditure in comparison and in base period is defined as: 
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  In the terminology of SDA we have to decompose (1) into its factors “price” and 
“quantity”. One possible solution, the so-called first polar decomposition, is: 
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 In IDA (omitting the commonly used factor 100) the price term is the named the price 
index of Paasche and the quantity term the quantity index of Laspeyres, so that: 
 

LP QP]0,1[DV ×=                                                                                                            (3) 
 
 It is easily seen that if we reverse base and comparison period (0 to 1 and 1 to 0) that  
for the first polar decomposition (2) generally 1]1,0[DV]0,1[DV ≠× holds true. In the 
terminology of index number theory, the first polar decomposition does not meet the 
requirement of time reversal:  
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1]1,0[DV]0,1[DV =×          

                                                                                                      
 However, this is not the only possibility. By reversing the time periods in the weights (0 
to 1, and 1 to 0) we obtain the second polar decomposition: 
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 In IDA the price term is the named the price index of Laspeyres and the quantity term 
the quantity index of Paasche so that: 
 

PL QP]0,1[DV ×=                                                                                                            (5) 
 
 The second polar decomposition does not meet the requirement of time reversal, either. 
The solution that is commonly adopted in SDA is to take the geometric mean of the two 
polar decompositions (2) and (4) which meets the requirement of time reversal. In terms 
of IDA we take the geometric mean of (3) and (5), which can be written as: 
 

( ) ( ) 2/1PL2/1LP QQPP]0,1[DV ××=                                                                                     (6) 
 
 The first term is the definition of the Fisher price index ( FP ) and the second one the 
Fisher quantity index (Fisher, 1922). Consequently, the geometric mean of the two 
polar decompositions yields: 
 

FF QP]0,1[DV ×=                                                                                                             (7) 
 
  It is easily shown that if in the formula of the Fisher price index, the factors (p to q and q 
to p) are reversed that the Fisher quantity index is obtained. Indices that exhibit this 
property of factor reversal are called “ideal”. 
 
2.2. Summary 
 
 In view of the generalization to more than 2 factors, the following summary is given. 
In case of 2r =  factors, there are == !2!r 2 permutations, which are called the 
elementary decompositions, i.c. the polar ones: (2) and (4). Consider the first factor: 
“price”. In (2) the quantity term in numerator and denominator is the one in the 
comparison period {1}; the number of duplicates is 1 (which means that in case of 2r =  
“permutation” and “combination” are synonyms), whereas the exponents in the 
geometric average (6) are equal to .2/1  In (4) the quantity term in numerator and 
denominator is the one in the base period {0}; the number of duplicates is 1 again, 
whereas the exponent in the geometric average is also equal to .2/1 This can be 
summarized as follows: 
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Table 1. Case of two factors 

 
 
 
 
 

 
 If we look at the second factor, “quantity”, we observe that the combinations are either 
{1} or {0} again, that the number of duplicates is 1, as well, whereas the exponents are 
also equal to .2/1  Consequently, the table applies to both (=all) factors. 
 
3. SDA and IDA: the case of three factors (Chung and Rhee) 
 
3.1. SDA 
 
 Chung and Rhee (2001) made a decomposition of the sources of carbon dioxide 
emissions for 7n =  Korean industries. They gently supplied the data, so that other 
researchers can profitably make use of their example. The emissions of 2CO from the 
intermediate demand sectors, pC , are estimated using the input-output relation:  
 

DuyfC '
p =                                                                                                                  

 
where:  
 
f  : vector with typical element if , the amount of 2CO emitted per unit of production in  
      industry i;  
D : Leontief inverse matrix with typical element ijd ; 

u :  vector with typical element ju , the share of industry j in final demand, and 
y :  gross domestic product (GDP). 
 
 The task is to apply a multiplicative decomposition of the change in the emissions from 
the intermediate demand sectors, pC , into the changes in emission coefficients , 

)0(f/)1(f ii , in production technology , )0(d/)1(d ijij , in the structure of the final demand, 

)0(u/)1(u jj , and in the size of the economy, )0(y/)1(y , i.e.:  
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 In (8) we have already separated the contribution of the size of the economy, ( y ), from 
the remaining 3r =  factors, viz. emission coefficients ( if ), production technology ( ijd ) 

and structure of the final demand ( ju ). 

Number 
of ones 

Combinations Number of
duplicates 

Exponent

1 {1} 1 ½ 
0 {0} 1 ½ 
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 There are 3! = 6 permutations (= elementary decompositions) of the second term in (8) 
which are given in Table 2. 
 
Table 2. Elementary decompositions of the Chung-Lee example  
e 
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 Decompositions 1 and 6 are called the polar decompositions; see for instance   
Dietzenbacher and Los (1998). In practice, quite often researchers use the geometric 
average of these two polar decompositions as “generalization” of the Fisher index (7) to 
three (or more) factors. But De Haan (2001) has argued that this is but one mirror pair 
(changing zeros into ones and ones into zeros). In this case there are two other mirror 
pairs, viz. 2 and 4, and 3 and 5. Each of them constitutes another “generalization” of the 
Fisher index. These two mirror pairs satisfy time reversal, as well. Dietzenbacher and 
Los (1998), finally, propose to use the average of all elementary decompositions, which 
also constitutes a generalization of the Fisher index. In De Boer (2007) it is argued that 
the geometric average of all elementary decompositions is to be preferred to each one of 
the mirror pairs, because it does not only satisfy time reversal, but also factor reversal, 
i.e. it is, like the Fisher index in case of two factors, ideal . 
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 The results for the six elementary decompositions, the geometric average of the mirror 
pairs and of the six elementary decompositions are given in Table 3. 
 
Table 3. Numerical results of the decompositions of the Chung-Rhee example (the 
change in the size of the economy is equal to 2.107494 in all decompositions) 
 
Decomposition 

2CO  per unit 
( eDF ) 

Leontief inverse 
( eDD ) 

Industry share 
( eDU ) 

Elementary: 1e  0.751053 0.966940 1.027354 

Elementary: 2e  0.751053 0.964832 1.029580 

Elementary: 3e  0.757830 0.958292 1.027353 

Elementary: 4e  0.754164 0.958292 1.032348 

Elementary: 5e  0.747087 0.964832 1.035064 

Elementary: 6e  0.754164 0.955778 1.035064 

Polar:  
( 1e  and 6e ) 

0.752607 0.961343 1.031202 

Mirror pair 1: 
 ( 2e  and 4e ) 

0.752607 0.961556 1.030972 

Mirror pair 2: 
( 3e  and 5e ) 

0.752439 0.961556 1.031202 

Generalized 
Fisher 

0.752551 0.961485 1.031125 

 
 From an empirical point of view the results of the geometric average of the polar 
decompositions, the geometric average of the other mirror pairs 1 and 2, and the 
geometric average of all elementary decompositions (named “generalized Fisher”, see 
below) are extremely close to each other. 
 
3.2. IDA 
 
 Consider the second column of Table 2 in which the elementary decompositions of the 
factor f (amount of 2CO emitted per unit of production in the industries) are given. We 
note that the terms 1 and 2 are equal to each other, as well as the terms 4 and 6. 
 Collecting the duplicates and omitting the double sum for reasons of conciseness, we 
can write the geometric average of the six elementary decompositions, 

1xD , as: 
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where we replaced if  by 1x , ijd by 2x , and ju by 3x .  
 
 Expression (9) is the generalization of Gini (1937) of the Fisher index to three factors. 
Siegel (1945) has generalized the Fisher index to an arbitrary number of factors r. His 
formula, however, is hardly readable. He supplies the results for the special cases of 
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2r =  (Fisher), 3r = (Gini) and 4r = . The latter will be presented in the next section. 
Expression (9) is also equivalent to the formula (7) given in the article by Ang, Liu and 
Chung (2004) who make use of the very complicated formula of the n-factor Shapley 
value (Shapley,1953). Ang c.s give the name of “generalized Fisher” to this 
decomposition. 
 
3.3. Summary 
 
 In (9) we first have a term, where the weight is given by the combination {1,1}, which 
occurs two times in Table 3, and where the exponent is equal to 1/3; in the middle we 
have two terms with the combinations {1,0} and {0,1} as weights, and with exponent 1/6, 
whereas the final term has weight {0,0}, it occurs two times in Table 3 and the exponent 
is 1/3 again. This is summarized in the following table. 
 
Table 4. Summary for the case of three factors 
Number 
of ones 

Combinations Number of
Duplicates

Exponent

2 {1,1}  2 1/3 
1 {1,0} {0,1} 1 1/6 
0 {0,0}  2 1/3 

 
 As before this table is valid for each all factors. 
 
4. The case of four factors (Ang, Liu and Chung)  
 
 Ang, Liu and Chung (2004) have used the same example as the one we used in section 
3. The difference between their approach and ours is that they did not realize that when 
taking the ratio of 

pCD in equation (8) the scalar )0(y/)1(y  is independent from the 
indices and, consequently, could be factorized out, reducing the decomposition reading 
in four factors to a decomposition reading in three factors. If one uses 4r =  factors, then 
we have 24!4 =  permutations (elementary decompositions) that are given in Table 5 
below. For ease of exposition, we have replaced the name of the factors by 1x  
through 4x . 
 Consider the first term of decomposition 1. Mathematically, it reads: 

∑
∑

)1(x)1(x)1(x)0(x
)1(x)1(x)1(x)1(x

4321

4321 . But the first term of the decompositions 2,3,4,5 and 6 is exactly 

the same, so that this expression occurs six times. 
 Consider the first term of decomposition 10. Like the first term of the decompositions 12, 

16, 18, 22 and 24 it reads:
∑
∑

)0(x)0(x)0(x)0(x
)0(x)0(x)0(x)1(x

4321

4321 . This expression occurs six times, 

as well. 

 Next, consider the first term of decomposition 7: 
∑
∑

)1(x)1(x)0(x)0(x
)1(x)1(x)0(x)1(x

4321

4321 , which equals 

the first term of the decomposition 8; this expression occurs twice. 
 The first terms of the decompositions 17 and 23 are equal to each; the same applies to 
the first terms of decompositions 11 and 21; 9 and 15; 19 and 20; 13 and 14. 
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Table 5. Elementary decompositions* in case n=4 
#  )x(d 1  2x  3x  4x  ×  1x  )x(d 2  3x 4x × 1x 2x )x(d 3  4x  ×  1x  2x 3x )x(d 4  

 1  1 1 1  0  1 1  0 0  1  0 0 0  
 2  1 1 1  0  1 1  0 0  0  0 0 1  
 3  1 1 1  0  0 1  0 1  1  0 0 0  
 4  1 1 1  0  0 0  0 1  1  0 1 0  
 5  1 1 1  0  1 0  0 0  0  0 1 1  
 6  1 1 1  0  0 0  0 1  0  0 1 1  
 7  0 1 1  1  1 1  0 0  1  0 0 0  
 8  0 1 1  1  1 1  0 0  0  0 0 1  
 9  0 0 1  1  1 1  1 0  1  0 0 0  
10  0 0 0  1  1 1  1 0  1  1 0 0  
11  0 1 0  1  1 1  0 0  0  1 0 1  
12  0 0 0  1  1 1  1 0  0  1 0 1  
13  1 0 1  0  0 1  1 1  1  0 0 0  
14  1 0 1  0  0 0  1 1  1  0 1 0  
15  0 0 1  1  0 1  1 1  1  0 0 0  
16  0 0 0  1  0 1  1 1  1  1 0 0  
17  1 0 0  0  0 0  1 1  1  1 1 0  
18  0 0 0  1  0 0  1 1  1  1 1 0  
19  1 1 0  0  1 0  0 0  0  1 1 1  
20  1 1 0  0  0 0  0 1  0  1 1 1  
21  0 1 0  1  1 0  0 0  0  1 1 1  
22  0 0 0  1  1 0  1 0  0  1 1 1  
23  1 0 0  0  0 0  1 1  0  1 1 1  
24  0 0 0  1  0 0  1 1  0  1 1 1  
* )0(x/)1(x)x(d iii = ; defining )0(x)1(x)x(d iii −=  and replacing “ × ” by “ + ” we have the 24 elementary 
decompositions for the additive case. 
 
 If we take the geometric mean of all 24 elementary decompositions and we collect the 
duplicates, we find: 
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 This expression is given in Siegel (1945) for the case 4r = . It is equivalent to the 
formula that Ang, Liu and Chung (2004, p. 763) derived from the very complicated 
formula for the Shapley value in case 4r = . This formula can be summarized as follows: 
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Table 6. Summary for the case of four factors 
 

Number 
of ones 

Combinations Number of
duplicates 

Exponent

3 {1,1,1}   6 ¼ 
2 {1,1,0} {1,0,1} {0,1,1} 2 1/12 
1 {0,0,1} {0,1,0} {1,0,0} 2 1/12 
0 {0,0,0}   6 ¼ 

 
Again, this table applies to all factors. 
 
5. Results of Siegel (1945) for the case of five and six factors 
 
 As said before, Siegel (1945) gave, without proof, a complicated and rather inaccessible 
formula for generating the combinations and their exponents. He only supplied the 
results for the cases  3,2r = and 4 . In the previous sections we gave these results, as 
well as a summary in the form of a table. It can be shown that it follows from Siegel’s 
formula that for the cases 5r = and 6r =  these summary tables read: 
 
Table 7. Summary for the case of five factors 

Number 
of ones 

Combinations Number of
Duplicates

Exponent 

4 {1,1,1,1}    24 1/5 
3 {1,1,1,0} {1,1,0,1} {1,0,1,1} {0,1,1,1} 6 1/20 
2 {1,1,0,0} {1,0,1,0} {0,1,1,0}  4 1/30 
 {0,0,1,1} {0,1,0,1} {1,0,0,1}  4 1/30 

1 {0,0,0,1} {0,0,1,0} {0,1,0,0} {1,0,0,0} 6 1/20 
0 {0,0,0,0}    24 1/5 

 
and: 
 
Table 8. Summary for the case of six factors 
Number of ones Combinations Number of 

duplicates 
Exponent 

5 {1,1,1,1,1}     120 1/6 
4 {1,1,1,1,0} {1,1,1,0,1} {1,1,0,1,1} {1,0,1,1,1} {0,1,1,1,1} 24 1/30 
3 {1,1,1,0,0} {1,1,0,1,0} {1,0,1,1,0} {0,1,1,1,0}  12 1/60 
 {1,1,0,0,1} {1,0,1,0,1} {0,1,1,0,1}   12 1/60 
 {1,0,0,1,1} {0,1,0,1,1}    12 1/60 
 {0,0,1,1,1}     12 1/60 

2 {0,0,0,1,1} {0,0,1,0,1} {0,1,0,0,1} {1,0,0,0,1}  12 1/60 
 {0,0,1,1,0} {0,1,0,1,0} {1,0,0,1,0}   12 1/60 
 {0,1,1,0,0} {1,0,1,0,0}    12 1/60 
 {1,1,0,0,0}     12 1/60 

1 {0,0,0,0,1} {0,0,0,1,0} {0,0,1,0,0} {0,1,0,0,0} {1,0,0,0,0} 24 1/30 
0 {0,0,0,0,0}     120 1/6 

 
 It can be verified from the tables 1, 4, 6, 7 and 8 that Siegel has reduced the 
computational burden of calculating !r  permutations (and taking their unweighted 
geometric average) to calculating 1r2 −  combinations (and taking their weighted 
geometric average). The weights (exponents) are given in our tables 1, 4, 6, 7, and 8. In 
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case 6r =  (Table 8), for example, the number of decompositions to be calculated is 
reduced from 720 to 32. How to use these tables? As example we take the combination 
{1,0,0,0,1} ,boldfaced in Table 8, and use it for the contribution of factor 3x ; i.e. 

).(x/)(x 01 33  In the geometric average it reads:  
 

601

654321

654321

100001
100101

/

)(x)(x)(x)(x)(x)(x
)(x)(x)(x)(x)(x)(x

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∑
∑  

 
 With the aid of these tables the computer program to calculate the generalized Fisher 
index, although tedious, is easily implemented. 
 
6. Concluding remarks 
 
  For the case of a multiplicative decomposition Siegel (1945)2 reduced, by collecting 
duplicates, the calculation of !r  permutations to the calculation of 1r2 −  combinations. 
Then, he proposed to calculate the weighted geometric average of the combinations, the 
number of duplicates being the exponent, which is equivalent to the calculation of the 
(unweighted) geometric average of all permutations, of course. Independently from 
Siegel, Shapley (1953) followed the same route for the additive decomposition: he 
reduced permutations to combinations and proposed to take the weighted arithmetic 
average, the number of duplicates being the divisor of each combination in the arithmetic 
average, see Albrecht et al. (2003)3. 
 Last, but not least, in order to give credit to both Siegel’s and Shapley’s contributions we 
propose to use “Siegel-Shapley decomposition” rather than “generalized Fisher index” 
(Ang, c.s, 2004), Shapley-Sun (Ang, c.s, 2004), refined Laspeyres index (Albrecht, c.s., 
2002) or “input-output structural decomposition analysis” (Ang, c.s, 2004). 
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1 For the additive decomposition, the use of the formula of Shapley has been proposed by 
Albrecht et al. (2002). Ang et al. (2003) have shown that it is equivalent to the method proposed 
by Sun (1998). 
2 I quote Siegel : “ … the problem considered here is the development of a general formula … 
satisfying the relationship nnnn V...C.B.A =   where the n factors on the left are the appropriate 

indexes of the )n,...,1i,...(c,b,a iii = ,respectively, for the time period 1t with respect to the base 

period 0t , and ∑∑= ...cba/...cbaV 000111n  is the unique index of the ...cbav iiii = “ (page 
520) and “The principle underlying the construction of our general formula is essentially simple.  
…. In fact, there are n! possible sets of aggregative indexes (including duplicates of individual 
measures) satisfying the relationship '

n
'
n

'
n

'
n V...C.B.A = . Now, these raw aggregative indexes do 

not meet the time-reversal and factor-reversal tests …. These two defects are easily overcome, 
however, if we take the geometric mean of the n! possible equations of the type 

'
n

'
n

'
n

'
n V...C.B.A =  and define nA  as the geometric mean over all the '

nA , including duplications, 

nB  as the geometric mean over all the '
nB , including duplications, etc; …. Each has 1n2 − distinct 

aggregative components…” (page 521). 
3 I quote Albrecht et al. (2003), page 731: “Indeed, the decomposition problem has formal 
similarities with a classical problem in cooperative game theory. Shapley (1953) was the first to 
give a formula for the real power of any given voter in a coalition voting game with transferable 
utility. This is commonly referred to as the Shapley value” …. “The Shapley decomposition 
iterates the cumulative approach for every possible order (permutation) of variables. With n 
variables, we need to make n! calculations, with each calculation based on another order for 
including new variables. The Shapley value implies that taking the average of the n! estimated 
contributions of each factor, yields the true contribution for each variable.”    


