
Denotational Semantics for Unguarded Recursion:
The Demonic Case

A. de Bruin

Faculty of Economics, Erasmus Universiteit

P.O. Box 1738, NL-3000 DR Rotterdam, arie@cs.eur.nl

E.P. de Vink

Department of Mathematics and Computer Science, Vrije Universiteit

De Boelelaan 1081, NL-1081 HV Amsterdam, vink@cs.vu.nl

ABSTRACT We show that the technique to prove equivalence of operational and denotational

cpo based semantics using retractions, as introduced in [BV] for a sequential backtracking

language, can be applied to parallel languages as well. We prove equivalence for a uniform

language in which procedure calls need not be guarded. The unguardedness is taken care of

by giving a semantics in which the nondeterminism is demonic.

Section 1 Introduction

In [BV]a we have introduced a new idea of proving equivalence of an operational semantics, say O,

and a denotational semantics, say D, where both semantics are based on cpo’s. The idea is to intro-

duce less abstract variants Õ and D̃ of the semantical definitions for which the equivalence Õ = D̃ is

easier to establish. The latter proof will be less complicated if Õ and D̃ can be defined in such a way

that for each statement they deliver maximal elements in the cpo of meanings of statements. The

equivalence O = D can then be established by showing that we have both O = ρ(Õ) and D = ρ(D̃) for a

suitable abstraction operator ρ. The idea was tested against an operational and denotational model for

a sequential backtracking language.

In this paper we will apply this technique to a rather simple but parallel language, featuring

atomic actions a, procedure calls x, sequential composition · , nondeterministic choice + and parallel

merge 4 4 . The language is uniform: the meaning of a statement will be a set of streams, where streams

are sequences of atomic actions. (Uniform taken in the sense of [BKMOZ], streams taken in the

sense of [Me].) A subclass of the class of all such sets can be turned into a cpo using the Egli-Milner

ordering (as in [Pl]). Such a powerdomain can be manipulated using techniques as developed in

[MV]. (Strictly speaking, in [MV]a the Smyth ordering of [Sm] is used, however the results

developed there also apply for the Egli-Milner ordering.)

The complicating element in the language however is that we allow for unguarded procedure

calls. This means that it is not guaranteed that in between two successive procedure calls at least one

atomic action is performed, and this can lead to infinite chains of procedure calls which are not visi-

ble in the resulting streams. For instance, let procedure x be defined with body x · a + b. Intuitively

- 2 -

speaking, the meaning of a call of x should be the set { ba n 4 n ≥ 0 } ∪ {⊥}, where the result ⊥

models the internal divergence due to an infinite chain of calls of x.

A proper treatment giving full account to internal divergence in the cpo framework has, to our

knowledge, not been established yet. In this paper we will adopt a standard way out, cf. [BHR],

[Me]a, by modeling demonic nondeterminism: if executing a statement s leads, after a few atomic

actions a 1, ·· ,an , to an infinite chain of procedure calls, then our semantic operators O and D applied

to s deliver a set of streams which contains the corresponding stream a 1 ·· an⊥, but no other streams of

the form a 1 ·· anx ′, even if such streams would correspond to other computations of s. In the example

above this means that the meaning of the call x will be “flattened out” into the singleton set {⊥}.

After introducing a few mathematical tools in section 2, we will devote sections 3 and 4 to a

definition of the operational and the denotational semantics of our language by introducing the

semantical mappings O and D, respectively. Section 5 will then be dedicated to the equivalence proof

of O and D. This proof will proceed along the lines sketched in the beginning of this introduction. In

order to appreciate the proof it is first of all relevant to observe that, if we would allow only guarded

procedure calls in our language, this proof would not be very complicated. For in that case one can

prove that both semantic operators assign to each statement a meaning that is a maximal element in

the powerdomain based on the Egli-Milner ordering described above. Equivalence can then, for

instance, be proved using a characterization of O as the unique fixed point of a higher order transfor-

mation. Cf. [KR] for this approach in a metrical setting.

However to deal with the present situation first we will introduce in section 5 the variants Õ and

D̃ of O and D, which differ from the latter semantics only in the fact that for each execution of a pro-

cedure call a “silent step” τ is recorded in the resulting stream. These new semantical models would

deliver as the meaning of the procedure x, discussed above, the maximal set { τnba n 4 n≥0 } ∪ { τω }.

One could say that the effect of these new semantical operators is that, in an artificial way, all pro-

cedure calls have been made guarded. (An idea also present in [BBKM].) The equivalence of Õ and D̃

will then be established by the standard metrical technique but now in the setting of cpo’s.

The next step to take is to define an abstraction operator ρ for which the equalities O = ρ(Õ) and

D = ρ(D̃) should hold. This abstraction operator will be derived from an abstraction operator with the

same name, which operates on streams by removing all τ’s. For instance we would have that

ρ(ττbaa) = baa, and that ρ(τω) = ⊥. The set Aτ
st of all streams built up from atomic actions and τ’s is

a cpo. This also holds for the set Ast of the streams containing only atomic actions. These two cpo’s

are related through the operator ρ. This operator can be extended to the powerdomains built upon Aτ
st

and Ast. In [BV]a we have developed a little theory on such pairs of cpo’s related through an abstrac-

tion operator like ρ. This theory will be used to derive the result that the operators O and D, defined

on the abstract versions of the cpo’s, can be viewed as the abstractions of the operators Õ and D̃

defined on their less abstract counterparts. More specifically, we can extend the abstraction operator

ρ to functions on the cpo’s occurring in this paper, and prove the desired result O = ρ(Õ) and D =

ρ(D̃). This will complete the equivalence proof O = D.

Although this result is interesting in its own right, it can also serve as a preparatory step towards

establishing a semantics of parallelism with unguarded procedure calls, that is more intuitive than the

demonic version presented in this paper, i.e., that captures the full meaning of unguarded calls instead

- 3 -

of the subset provided by the demonic semantical operators where denotationally the presence of

divergence, i.e. ⊥, makes other outcomes invisible. The problem is that it is not clear how to define a

cpo consisting of meanings of such programs, e.g., the set { ba n 4 n≥0 } ∪ {⊥}, discussed earlier. On

the other hand, it seems possible to extend the theory from [BV]a such that only the less abstract

domains should be cpo’s. For the abstract versions of the domains, for instance in our case the power-

domain based on Ast , we do not need the full structure of a cpo, an ordering that need not even be

anti-symmetric seems to be sufficient. We are investigating whether this observation can be made to

work.

Acknowledgements. The results in this paper have been presented in a meeting of the CWI

working group on the semantics of concurrency, leading to a fruitful discussion. It is a pleasure to

thank the members of this group. Moreover, as always, we are indebted to M279 for her hospitality.

Section 2 Mathematical Preliminaries

In this section we present the mathematical prerequisites for the construction and equivalence of the

semantical definitions in this paper. To start with we introduce an Egli-Milner powerdomain of

streams similar to the one that was introduced in [MV]a with respect to the Smyth ordering.

(2.1) DEFINITION

(i) Let A be an alphabet. Distinguish ⊥ ∉A. The set of streams A
st over A is given by

A
st = A∗ ∪ A∗ ·⊥ ∪ Aω . For x ∈Ast and n ∈ IN we define x [n] ∈Ast as follows: x [0] = ⊥,

⊥[n +1] = ⊥, ε[n +1] = ε and (ax ′)[n +1] = a(x ′[n]). We stipulate x [∞] = x. The stream order-

ing ≤st on Ast is defined as follows: x ≤st y ⇔ ∃α ∈ IN∞ : x = y[α], with IN∞ = IN ∪ {∞}.

(ii) Let X ⊆ A
st . X is flat ⇔ ∀x, x ′ ∈ X: ¬ (x <st x ′). X[n] = { x[n] 4 x ∈ X }. X is closed ⇔

∀x ∈Ast: (∀n ∈ IN: x[n] ∈ X[n]) ⇒ x ∈ X. X is bounded ⇔ ∀n ∈ IN: X[n] is finite. X is com-

pact ⇔ X is flat, closed and bounded.

(iii) Let P∗(Ast) denote the collection of all compact and non-empty subsets of Ast. The Egli-Milner

ordering ≤EM on P
∗(Ast) is defined by X ≤EM Y ⇔ ∀x ∈ X∃y ∈ Y: x ≤st y & ∀y ∈ Y∃x ∈ X:

x ≤st y.

Streams are finite or infinite sequences of (abstract) actions, possibly ending in a distinguished

marker ⊥ indicating that this stream is not completed (yet). In order to obtain a suitable powerdomain

we have to impose a restriction on the sets of streams we allow in the domain P∗(Ast). Flatness is

needed for the anti-symmetry of the Egli-Milner ordering; closedness and boundedness are needed to

support the lifting lemma below. Non-emptiness is just for convenience, for the bottom element {⊥}

does not compare immediately to ∅.

For a stream set X we use min(X) to denote its subset of minimal elements. For a mapping f :

(Ast)k → P
∗(Ast) we use f[·] to denote the induced mapping on (P(Ast))k , thus f[X

→
] = ∪ { f(x→) 4

x→ ∈ X
→

} (using an obvious vector notation).

The main virtue of using compact stream sets is the availability of a lifting lemma. In

- 4 -

combination with an extension lemma this provides a convenient tool for the definition of continuous

operators. See [Vi2] for some applications of this technique.

(2.2) THEOREM

(i) (Ast , ≤st) and (P∗(Ast), ≤EM) are cpo’s.

(ii) (Extension Lemma) Put Af = A∗ ∪ A∗ · ⊥. Let D be an cpo. Suppose f : (Af)k → D is mono-

tonic. Then f
3

: (Ast)k → D defined by f
3
(x→) = lubi f(x→[i]) is well-defined and continuous. f

3
is

called the extension of f.

(iii) (Lifting Lemma) If f : (Ast)k → P
∗(Bst) is continuous and F : (P∗(Ast))k → P

∗(Bst) is given by

F(X
→

) = min(f[X
→

]) then F is well-defined and continuous. F is called the lifted version of f.

PROOF Adaptation to the Egli-Milner framework of the proofs in [MV]a. 5

The equivalence proof in section 5 intuitively makes a distinction between abstract and concrete

cpo’s. This intuition is captured by the notion of retraction as was introduced in [BV]a and repeated

here. The associated notion of a canonical mapping is presented here as well, together with a lemma

related to lifting (as introduced above). We conclude this section with a useful lemma relating the

least fixed point of a mapping to the least fixed point of its retract.

(2.3) DEFINITION

(i) Let D, D̃ be cpo’s. D is called a retract of D̃ if there exist two continuous mappings i : D → D̃,

j : D̃ → D such that j ° i = idD. Notation: D ≤i, j D̃.

(ii) Suppose D ≤i, j D̃, E ≤k, l Ẽ. A mapping φ̃ : D̃ → Ẽ is called canonical if there exists φ : D → E

such that l ° φ̃ = φ ° j. The function space D̃ ∼> Ẽ of canonical mappings from D̃ to Ẽ is given

by D̃ ∼> Ẽ = { φ̃ : D̃ → Ẽ 4 φ̃ canonical }.

Note that if φ̃ is canonical, there exist a unique φ satisfying l ° φ̃ = φ ° j. This φ is called the

retract of φ̃ (with respect to D ≤i, j D̃ and E ≤k, l Ẽ).

If D is a retract of D̃, say D ≤i, j D̃, then we have an equivalence relation ∼D on D̃ (induced by

j) defined by d ∼D d ′ ⇔ j(d) = j(d ′). For φ̃ : D̃ → Ẽ we can reformulate canonicity in terms of the

equivalence relations ∼D and ∼E : φ̃ : D̃ → Ẽ is canonical iff the induced mapping on equivalence

classes φ̃ : D̃ / ∼D → Ẽ / ∼E is well defined. Therefore it suffices to check that equivalent arguments

map onto equivalent images for a function to be canonical.

Suppose D ≤i, j D̃ and E ≤k, l Ẽ. The function space D → E then, will be a retract of the func-

tion space D̃ ∼> Ẽ. For, if we define I = λφ . k ° φ ° j and J = λφ̃ . l ° φ̃ ° i then we have

(D → E) ≤I, J (D̃ ∼> Ẽ). Note that J(φ̃) is the retract of φ̃. Analogously, if V is a set of values and

D ≤i, j D̃ then V → D ≤I, J V → D̃ where I = λφ . i ° φ and J = λφ̃ . j ° φ̃.

Next we check that the powerdomain construction P
∗(·) respects, so to speak, the retraction

ordering. If Ast ≤i, j Ã
st

then the induced pair of functions I, J shows that the domain P∗(Ast) is a

retract of P∗(Ã
st

).

- 5 -

(2.4) LEMMA Assume Ast ≤i, j Ã
st

. Let I and J be the lifted versions of λx.{ i(x) } and λx̃.{ j(x̃) },

respectively. Then it holds that P∗(Ast) ≤I, J P
∗(Ã

st
).

PROOF Let X ∈P∗(Ast). We have to show that J(I(X)) = X. Now J (I(X)) = min(j[min(i[X])]) (by

definition) = min(j[i[X]]) (by monotonicity of j) = min(X) (since j ° i = idAst) = X (since X is flat).

5

The next lemma gives a sufficient condition for two lifted mappings being related canonically,

thus combining our two notions of lifting and retraction.

(2.5) LEMMA Assume A
st ≤i, j Ã

st
. Suppose f: (Ast)k → P

∗(Ast) is monotonic and f̃:

(Ã
st

)k → P
∗(Ã

st
) is such that J ° f̃ = f ° j. Let F : (P∗(Ast))k → P

∗(Ast), F̃ : (P∗(Ã
st

))k → P
∗(Ã

st
)

be the lifted versions of f and f̃, respectively. Then it holds that F̃ is canonical with retract F.

PROOF We have to show that J ° F̃ = F ° J. Pick X̃ ∈ (P∗(Ã
st

))k . Then

J (F̃(X̃)

= min(j[min(f̃[X̃])]) (by definition of J and F̃)

= min(j[f̃[X̃]]) (by monotonicity of j[·])

= min(f[j[X̃]]) (by the assumption)

= min(f[min(j[X̃])]) (by monotonicity of f)

= F(J(X̃)) (by definition of F and J). 5

Next we state a theorem taken from [BV]a that we will use to relate concrete and abstract fixed

points in the equivalence proof of the operational and denotational models below. It is similar to the

Fixed Point Transformation Lemma of [BMZ], [Me]a.

(2.6) THEOREM Suppose D ≤i, j D̃. Let Φ̃ : D̃ → D̃ be continuous and canonical with retract Φ. Then

Φ : D → D is continuous with µΦ = j(µΦ̃). 5

The domains on which we base the semantical definition in the remaining sections are built up

from the stream domains Ast and Aτ
st (where Aτ = Aτ ∪ {τ} for some special symbol τ; see definition

3.2 below). The inclusion mapping ι and the mapping ρ: Aτ
st → A

st to be given in a minute show that

the domain Ast is a retract of Aτ
st . Intuitively, the map ρ is a τ-remover, replacing finitely many juxta-

posed τ’s by ε but infinitely many by ⊥.

(2.7) DEFINITION Let ι: Ast → Aτ
st be the inclusion mapping. Define ρ: Aτ

st → A
st as the unique con-

tinuous mapping such that

ρ(⊥) = ⊥, ρ(ε) = ε, ρ(ax) = aρ(x) and ρ(τx) = ρ(x).

Let Ι and Ρ denote the lifted versions of λx.{ x } and λx.{ ρ(x) } on P∗(Ast) and P
∗(Aτ

st), respec-

tively.

- 6 -

We leave it to the reader to check that Ast is indeed a retract of Aτ
st . (This can be established

straightforwardly using stream induction.)

(2.8) LEMMA Ast ≤ι, ρ Aτ
st and P∗(Ast) ≤Ι, Ρ P

∗(Aτ
st). 5

In the sequel we will suppress ι (and Ι) but use ρ also for mappings on powerdomains, products

and function spaces induced by ρ on Aτ
st, as we expect no confusion to arise.

Section 3 The Language and Its Operational Semantics

In this section we introduce the simple programming language Prog for which we shall illustrate our

method of designing equivalent operational and denotational semantics. We provide a Plotkin style

(parametrized) transition system (cf. [HP]) that represents the computation steps of an abstract

machine running the language. From this we extract the operational model for Prog.

(3.1) DEFINITION Fix a set A and a set X, the elements of which are called actions and procedure vari-

ables, respectively. A is ranged over by a, X is ranged over by x. The class of statements Stat, with

typical element s, is given by

s ::= a 4 x 4 s 1 ·s 2 4 s 1+s 2 4 s 1 4 4 s 2.

The class of declarations Decl, ranged over by d, has elements of the format x 1 ⇐ s 1 : ·· : xn ⇐ sn

where n ∈ IN, xi ∈X all distinct and si ∈ Stat, (i ∈ {1, .. , n}). The class of programs Prog consists of

pairs d | s, where d ∈ Decl and s ∈ Stat.

A statement is either an action a in A, a procedure call x in X, a sequential composition s 1 ·s 2, a

nondeterministic choice s 1+s 2 or a concurrent execution s 1 4 4 s 2.

Our main interest here is in the programming concepts embodied by the syntactical operators

and by recursion. Therefore, the programming language Prog under consideration is kept uniform or

schematic, since the elementary actions are left unspecified. (See [BKMOZ]a for a discussion on

uniform vs. non-uniform semantics.)

Let d = x 1 ⇐ s 1 : ·· : xn ⇐ sn be a declaration in Decl. Define d(x) = si if x = xi for some

i ∈ {1, .. , n}, and d(x) = x otherwise. Note that by this convention a procedure variable is always

declared, since by default it has itself as its body.

We will base the operational semantics of a program d | s on a labeled transition system indexed

by d to be given in a moment. First we need an auxiliary definition.

(3.2) DEFINITION Distinguish Ε ∉ Stat. Ε is called the empty statement. Define the class of general-

ized statements StatΕ , with typical element s
3
, by StatΕ = Stat ∪ {Ε}. Distinguish moreover τ ∉A. τ is

called the silent step. The class of generalized actions Aτ, ranged over by α, is given by

Aτ = A ∪ {τ}.

- 7 -

The empty statement Ε is associated with successful termination, (cf. [Ap]). It will be con-

venient below to allow the expressions s
3

·s
3

′, s
3

+s
3

′ and s
3
4 4 s
3

′ for arbitrary s
3
, s
3

′ ∈ StatΕ . Therefore we

stipulate s
3

∗ Ε = Ε ∗ s
3

= s
3

for s
3

∈ StatΕ , ∗ ∈ { · , + , 4 4 }.

The silent step τ - which plays a predominant role in algebraic approaches to the semantics of

concurrency as, e.g., [Mi], [BK] - will be used in definition 3.3 below to indicate body replacement.

Thus we can model procedure calls quite naturally using an axiom instead of a rule. (Similar to

[BMOZ] for the µ-construct.) In the operational semantics O we abstract from this τ’s, but we will

again take them into account with respect to a modified operational model Õ in section 5.

(3.3) DEFINITION A declaration d ∈ Decl induces a labeled transition system d which is the smallest

subset of StatΕ × Aτ × StatΕ such that (using an obvious infix notation) it holds that

a →d
a Ε (Action)

x →d
τ s where s = d(x) (Proc)

s ·s ′ →d
α s
3

·s ′

s →d
α s
3

333333333333 (Seq)

s+s ′ →d
α s
3

s ′+s →d
α s
3

s →d
α s
3

333333333333333333333 (Choice)

s 4 4 s ′ →d
α s
3
4 4 s ′ s ′ 4 4 s →d

α s ′ 4 4 s
3

s →d
α s
3

3333333333333333333333333333 (Par)

The axiom (Action) states that an action a ∈A can always terminate successfully after perform-

ing a. If a procedure call x is about to be executed, a silent step τ is signaled and the computation

continues with the body s of x, which is looked up in the declaration. The three rules (Seq), (Choice)

and (Par) can be used to unravel composite statements. Alternative and parallel compositions can

perform the same actions (in Aτ) as their constituting components do. For a sequential composition

s ·s ′, however, this depends on the actions of its first component, for intuitively the execution of s ′ is

started after the execution of s has finished.

(3.4) DEFINITION Define the operational semantics O: Prog → P(Ast) as follows: x ∈O(d | s) iff either

of the two following cases holds:

(1) ∃n, ∃ s
3

0, ·· , s
3

n , ∃α1, ·· , αn : s
3

0 = s, s
3

i −1 →d
αi s
3

i for ∀i ∈ {1, .. , n}, s
3

n = Ε & x = ρ(α1 ·· αn);

(2) ∃ s
3

0, s
3

1, ··· , ∃α1, α2, ··· : s
3

0 = s, s
3

i −1 →d
αi s
3

i for ∀i ∈ {1, 2 , ...} & x = ρ(α1α2 ···).

For a program d | s the operational semantics collects all the strings of labels of (i) terminating

and (ii) infinite d-computations starting from s. The τ’s in definition 3.3. are needed to treat infinite

behavior. However, note that by application of the τ-remover ρ we abstract from steps due to pro-

cedure calls. Internal divergence as, e.g., for the program x ⇐x | x is represented by ⊥, since ρ(τω)

- 8 -

equals ⊥. (In the equivalence proof to be presented in the sequel however we will leave τω as it

stands, thus making internal divergence observable.)

EXAMPLE Let d denote the declaration x ⇐ x · a + b. Then the operational semantics of d | x

does not only contain ba ∗ but also ⊥, since there exists a computation which generates solely τ-labels

by always choosing the left alternative. So O(d | x) = {⊥} ∪ ba ∗ .

Section 4 The Denotational Semantics for Prog

In this section we present a denotational semantics for the language under consideration. It will

assign to each program a denotation, i.e. an object representing its meaning, in a suitably chosen

mathematical domain, and moreover the semantics will be compositional or homomorphic: the mean-

ings of a composite construct depends only upon the meaning of its constituting components.

Programs will be given meaning in the domain P∗(Ast). So compact stream sets serve as deno-

tations. In order to deal with procedure calls we introduce the notion of an environment. Environ-

ments are used to store and retrieve the meaning of procedure variables, i.e., they are mappings from

X to P∗(Ast). For a program d | s, the statement s will be evaluated with respect to an environment

depending on the declaration d. So defining the denotational semantics amounts to specifying the

evaluation of a statement and the environment corresponding to a given declaration.

The compositionality requirement for the evaluation of statements will be met by designing for

each syntactical operator, viz. · , + and 4 4 , a semantical one, also written as · , + and 4 4 , respec-

tively. We will have D(d | s 1 ∗ s 2) = D(d | s 1) ∗ D(d | s 2) for each ∗ ∈ { · , + , 4 4 }. Using the defini-

tion of the statement evaluator S we derive for each declaration an environment transformation. We

will take the least fixed point, say ηd , of this transformation, for the environment associated with the

declaration. For this to work, i.e., for ηd to exist, we need that this transformation is continuous.

Since the transformation of an environment η is in essence body replacement - a procedure variable

will be mapped on the denotation of its body with respect to η - we will have to assure continuity of

the semantical operators · , + and 4 4 . In its turn this will be guaranteed by the extension and lifting

lemma, presented in section 2, that we will use in the construction of these operators.

(4.1) DEFINITION Define · on P∗(Ast) as the extended and lifted version of · : Af × Af → P
∗(Ast)

given by

ε · y = {y}, ⊥ · y = {⊥} and αx · y = α(x · y).

Define + on P∗(Ast) as the extended and lifted version of + : Af × Af → P
∗(Ast) given by

x + y = min{ x , y }.

Let 4 4 , 434 : A f × Af → P
∗(Ast) be given by

x 4 4 y = x 434 y + y 434 x,

ε 434 y = {y}, ⊥ 434 y = {⊥} and αx 434 y = α(x 4 4 y).

Define 4 4 on P∗(Ast) as the extended and lifted version of 4 4 on Af .

Having now available semantical interpretations for our syntactical operators we can proceed

- 9 -

with the definition of the denotational semantics for Prog. It follows the same general scheme as in,

e.g., [BM], [Vi1].

(4.2) DEFINITION Define the collection of environments Env, with typical element η, by Env =

X → P
∗(Ast). Define the statement evaluator S: Stat → Env → P

∗(Ast) by

S(a)(η) = {a},

S(x)(η) = η(x),

S(s 1 ∗ s 2)(η) = S(s 1)(η) ∗ S(s 2)(η) for ∗ ∈ { · , + , 4 4 }.

Let for d ∈ Decl the environment transformation Ηd : Env → Env be given by

Ηd(η)(x) = S(s)(η)

where s = d(x). The denotational semantics D: Prog → P
∗(Ast) is defined by

D(d | s) = S(s)(ηd)

where ηd is the least fixed point of Ηd .

We leave it to the reader to check the well-definedness of the semantical mapping D. (Consult,

e.g., [Ba].) In the next section we will relate this denotational definition with the operational model of

the previous one.

EXAMPLE Consider again the program d | x where d = x ⇐ x · a + b. Let η0 = λx.{⊥} be the

least environment in Env. Then we have Ηd(η0)(x) = S(x · a + b)(η0) = {⊥} · {a} + {b} = {⊥} + {b}

= {⊥}. Therefore iteration of Ηd gives a least fixed point ηd with ηd(x) = {⊥}. Thus D(d | x) = {⊥}.

So the other outcomes, ba ∗ as present in the operational meaning of d | x have vanished.

Section 5 Equivalence of O and D

In this section we will compare the two models O and D using our little theory of retracts. We will

introduce less abstract semantical definitions Õd and D̃d (for d ∈ Decl) in which the silent τ-steps can

be observed. We relate the abstract and concrete models for the operational and denotational case.

The picture is then completed by establishing Õd=D̃d in a [KR]a-style, using a higher-order transfor-

mation with a unique fixed point.

We start with defining a τ-version of the operational semantics and relate it to the original one.

(5.1) DEFINITION Let d ∈ Decl. Define the semantical mapping Õd : StatΕ → P
∗(Aτ

st) by Õd(s
3

) =

min{ x ∈Aτ
st 4 ∃n, ∃ s

3
0, .. ,s

3
n, ∃α1, .. ,αn : s

3
0 = s

3
, s
3

i −1 →d
αi s
3

i, s
3

n = Ε, x = α1 ·· αn or ∃ s
3

0,s
3

1, ...

∃α1,α2, ... : s
3

0 = s
3
, s
3

i −1 →d
αi s
3

i , x = α1α2 ··· }.

Õd is well-defined; the closedness of Õd(s) for s ∈ StatΕ follows by König’s lemma. The

abstraction ρ has disappeared when compared to definition 3.4. Note the application of the min-

operator in the above definition. Because of this (and of the implicit min in the lifted ρ on stream

- 10 -

sets) we do not have ρ(Õd(s)) = O(d | s) since the operational definition O does not necessarily

deliver flat sets.

(5.2) LEMMA For d ∈ Decl and s ∈ Stat it holds that ρ(Õd(s)) = min(O(d | s)).

PROOF Let d | s ∈ Prog. From the definitions of O and Õd we see

ρ(Õd(s))

= min(ρ[Õd(s)]) (by definition of ρ on P∗(Aτ
st))

= min(ρ[min{ x 4 s = s
3

0 →d
α1 ·· →d

αn s
3

n = Ε, x = α1 ·· αn or s = s
3

0 →d
α1 s 1 →d

α2 ··· ,

x = α1α2 ··· }]) (by definition of Õd)

= min(ρ[{ x 4 s = s
3

0 →d
α1 ·· →d

αn s
3

n = Ε, x = α1 ·· αn or s = s
3

0 →d
α1 s 1 →d

α2 ··· ,

x = α1α2 ··· }]) (by monotonicity of ρ)

= min { x 4 s = s
3

0 →d
α1 ·· →d

αn s
3

n = Ε, x = ρ(α1 ·· αn) or s = s
3

0 →d
α1 s 1 →d

α2 ··· ,

x = ρ(α1α2 ···) } (by definition of ρ[·])

= min(O(d | s)). 5

We continue with the construction of a concrete counterpart of D. For this we first extend the

semantical operators to the domain P∗(Aτ
st).

(5.3) DEFINITION Define ·̃ on P∗(Aτ
st) as the extended and lifted version of ·̃ : Aτ

f × Aτ
f → P

∗(Aτ
st)

given by

ε ·̃ y = {y}, ⊥ ·̃ y = {⊥} and αx ·̃ y = α(x ·̃ y).

Define +̃ on P∗(Aτ
st) as the extended and lifted version of +̃ : Aτ

f × Aτ
f → P

∗(Aτ
st) given by

x +̃ y = min{ x , y }.

Let 4 4̃ , 434̃ : Aτ
f × Aτ

f → P
∗(Aτ

st) be given by

x 4 4̃ y = x 434̃ y + y 434̃ x

ε 434̃ y = {y}, ⊥ 434̃ y = {⊥}, αx 434̃ y = α(x 4 4̃ y).

Define 4 4̃ on P∗(Aτ
st) as the extended and lifted version of 4 4̃ on Aτ

f .

In order to relate D(d | s) and D̃d(s), to be defined in a minute, we need an auxiliary result stat-

ing the distributivity of ρ over the operators. The proof of this result makes use of the structure of Aτ
st

where each element x can be obtained as the least upper bound of the chain of its finite approxima-

tions x[n].

(5.4) LEMMA For ∗ ∈ { · , + , 4 4 } it holds that Ρ ° ∗̃ = ∗ ° Ρ on P∗(Aτ
st).

PROOF By lemma 2.5 it suffices to show Ρ ° ∗̃ = ∗ ° ρ. We only treat the case where ∗ equals ·

using stream induction:

Let x̃, ỹ ∈Aτ
f . Suppose ρ(x̃) = x, ρ(ỹ) = y. Then we derive

(i) Ρ(ε ·̃ ỹ) = Ρ({ỹ}) = {y} = ε · y = ρ(ε) · ρ(ỹ);

- 11 -

(ii) Ρ(⊥ ·̃ ỹ) = Ρ({⊥}) = {⊥} = ⊥ · y = ρ(⊥) · ρ(ỹ);

(iii) Ρ(ax̃ ·̃ ỹ) = Ρ(a(x̃ ·̃ ỹ)) = aΡ(x̃ ·̃ ỹ) = a(ρ(x̃) · ρ(ỹ)) = aρ(x̃) · ρ(ỹ) = ρ(ax̃) · ρ(ỹ);

(iv) Ρ(τx̃ ·̃ ỹ) = Ρ(τ(x̃ ·̃ ỹ)) = Ρ(x̃ ·̃ ỹ) = ρ(x̃) · ρ(ỹ) = ρ(x̃) · ρ(ỹ) = ρ(τx̃) · ρ(ỹ) using properties of pre-

fixing.

By a continuity argument we arrive at Ρ(x̃ ·̃ ỹ) = ρ(x̃) · ρ(ỹ) for arbitrary x̃, ỹ ∈Aτ
st , since

Ρ(x̃ ·̃ ỹ)

= Ρ((lubn x̃[n]) ·̃ (lubn ỹ[n]))

= lubn Ρ(x̃[n] ·̃ ỹ[n]) by continuity of Ρ and ·̃

= lubn ρ(x̃[n]) · ρ(ỹ[n]) by finiteness of x̃[n], ỹ[n] for n ∈ IN

= ρ(lubn x̃[n]) · ρ(lubn ỹ[n]) by continuity of ρ and ·

= ρ(x̃) · ρ(ỹ). 5

Next we mimic the denotational mapping D. Note the occurrence of τ in the definition of the

transformation Η̃d. This idea of guarding procedure calls with a dummy step can also be observed in

the semantics of [BBKM]a.

(5.5) DEFINITION Define the collection Enṽ, with typical element η̃, by Enṽ = X → P
∗(Aτ

st). Define

the mapping S̃: StatΕ → Enṽ → P
∗(Aτ

st) by

S̃(Ε)(η̃) = {ε},

S̃(a)(η̃) = {a},

S̃(x)(η̃) = η̃(x),

S̃(s 1 ∗ s 2)(η̃) = S̃(s 1)(η̃) ∗̃ S̃(s 2)(η̃) for ∗ ∈ { · , + , 4 4 }.

Let for d ∈ Decl the transformation Η̃d: Enṽ → Enṽ be given by

Η̃d(η̃)(x) = τ · S̃(s)(η̃)

where s = d(x). For d ∈ Decl the semantical mapping D̃d: StatΕ → P
∗(Aτ

st) is defined by

D̃d(s
3

) = S̃(s
3

)(η̃d)

where η̃d is the least fixed point of Η̃d .

Well-definedness of D̃d is straightforward to check (as for D) and left to the reader. We exploit

the Fixed Point Transformation Lemma 2.6 when relating ηd with η̃d which is crucial to comparing D

with its concrete version D̃.

(5.6) LEMMA

(i) For s ∈ Stat it holds that ρ ° S̃(s) = S(s) ° ρ with ρ: P∗(Aτ
st) → P

∗(Ast) and ρ: Enṽ → Env,

respectively.

(ii) For d ∈ Decl it holds that Η̃d is canonical with retract Ηd and ρ(η̃d) = ηd .

- 12 -

(iii) For d ∈ Decl and s ∈ Stat it holds that ρ(D̃d(s)) = D(d | s).

PROOF

(i) By structural induction on s using lemma 5.4.

(ii) Directly from Ηd ° ρ = ρ ° Η̃d (where ρ = λη̃.λx.ρ(η̃(x))) and the Fixed Point Transformation

Lemma.

(iii) Immediate consequence of (i) and (ii). 5

The last step to take is proving the equivalence of Õd and D̃d . For this we follow the approach

as proposed in [KR]a and [BM]a in the setting of complete metric spaces. First we introduce the

higher-order transformation Φ̃d of which both Õ and D̃ will be fixed points.

(5.7) DEFINITION Let d ∈ Decl. Define the higher-order transformation Φ̃d : (StatΕ → P
∗(Aτ

st)) →
(StatΕ → P

∗(Aτ
st)) by

Φ̃d(M)(Ε) = {ε},

Φ̃d(M)(s) = min(∪ { α · M(s
3

) 4 s →d
α s
3

})

for meanings M ∈ StatΕ → P
∗(Aτ

st).

By its continuity Φ̃d has a least fixed point, say φ̃d. The pivotal property of Φ̃d however is that

it has exactly one fixed point. This can be checked as follows: Since we are using the Egli-Milner

ordering it suffices to show that for all s
3

∈ StatΕ the image φ̃d(s
3

) has only maximal elements. For, if

this is the case, φ̃d itself is maximal in StatΕ → P
∗(Aτ

st) and thus is the unique fixed point of Φ̃d .

(5.8) LEMMA For d ∈ Decl the transformation Φ̃d has a unique fixed point.

PROOF Let φ̃d be the least fixed point of Φ̃d . It suffices to show ∀s
3

∈ StatΕ : φ̃d(s
3

) ⊆ A
∗ ∪ Aω . Sup-

pose this is not the case. Let n ∈ IN be minimal such that there exist s ∈ StatΕ and α1 ·· αn⊥ ∈ φ̃d(s).

Note that s ≠ Ε and n>0. By the fixed point property of φ̃d we have α1 ·· αn⊥ ∈ Φ̃d(φ̃d)(s) =

min{ α · φ̃d(s
3

) 4 s →d
α s
3

}. Thus for some s
3

∈ StatΕ we have α2 ·· αn⊥ ∈ φ̃d(s
3

) contradicting the

minimality of n. Conclusion ∀s
3

∈ StatΕ : φ̃d(s
3
) is maximal in P∗(Aτ

st). 5

It remains to show that both Õd and D̃d are fixed points of Φ̃d , since by the previous lemma the

result Õd = D̃d then follows immediately.

(5.9) THEOREM For d ∈ Decl it holds that Õd = D̃d.

PROOF We check (i) Φ̃d(Õd) = Õd and (ii) Φ̃d(D̃d) = D̃d .

(i) Clearly Φ̃d(Õd)(Ε) = Õd(Ε). Let s ∈ Stat. Then Φ̃d(Õd)(s) = min(∪ { α · Õd(s
3

) 4 s →d
α s
3

}) =

Õd(s) since s ∈ Stat always admits a →d-step.

(ii) By structural induction on s we check Φ̃d(D̃d) = D̃d . We only consider the cases x and s 1 4 4 s 2.

Suppose d(x) = s. Then we have

- 13 -

Φ̃d(D̃d)(x)

= min(∪ { α · D̃d(s
3

) 4 x →d
α s
3

}) (by definition of Φ̃d)

= τ · D̃d(s) (since x →d
α s
3

⇔ α = τ & s
3

= s)

= τ · S̃(s)(η̃d) (by definition of D̃d)

= Η̃d(η̃d)(x) (since d(x) = s)

= η̃d(x) (since η̃d is the least fixed point of Η̃d)

= S̃(x)(η̃d) (by definition of S̃)

= D̃d(x).

We have that

Φ̃d(D̃d)(s 1 4 4 s 2)

= min(∪ { α · D̃d(s
3

) 4 s 1 4 4 s 2 →d
α s
3

}) (by definition of Φ̃d)

= min(∪ { α · D̃(s
3

1 4 4 s 2) 4 s 1 →d
α s
3

1 } ∪ ∪ { α · D̃(s 1 4 4 s
3

2) 4 s 2 →d
α s
3

2 })

(by inspection of the transition system)

= min(∪ { α · D̃(s
3

1 4 4 s 2) 4 s 1 →d
α s
3

1 }) +̃ min(∪ { α · D̃(s 1 4 4 s
3

2) 4 s 2 →d
α s
3

2 })

(by definition of +̃ and monotonicity of ∪)

= min(∪ { α · (D̃d(s
3

1) 4 4̃ D̃d(s 2)) 4 s 1 →d
α s
3

1 }) +̃ min(∪ { α · (D̃d(s 1) 4 4̃ D̃d(s
3

2)) 4
s 2 →d

α s
3

2 }) (compositionality of D̃d)

= (min(∪ { α · D̃d(s
3

1) 4 s 1 →d
α s
3

1 }) 434̃ D̃d(s 2)) +̃ (min(∪ { α · D̃d(s
3

2) 4
s 2 →d

α s
3

2 }) 434̃ D̃d(s 1)) (property of 434̃)
= Φ̃d(D̃d)(s 1) 434̃ D̃d(s 2) +̃ Φ̃d(D̃d)(s 2) 434̃ D̃d(s 1) (by definition of Φ̃d)

= D̃d(s 1) 434̃ D̃d(s 2) +̃ D̃d(s 2) 434̃ D̃d(s 1) (by the induction hypothesis)

= D̃d(s 1) 4 4̃ D̃d(s 2) (by definition of 4 4̃)

= D̃d(s 1 4 4 s 2) (by definition of D̃d). 5

Taking all together, viz. lemma 5.2, lemma 5.6 and theorem 5.9, we have shown

min(O(d | s)) = D(d | s).

References

[BV] A. de Bruin and E.P. de Vink, ‘‘Retractions in Comparing Prolog Semantics,’’ pp. 71-90

in Proc. Computing Science in the Netherlands, Part 1, P.M.G. Apers, D. Bosman & J.

van Leeuwen (eds.), Utrecht (1989).

[BKMOZ] J.W. de Bakker, J.N. Kok, J.-J.Ch. Meyer, E.-R. Olderog, and J.I. Zucker, ‘‘Contrasting

Themes in the Semantics of Imperative Concurrency,’’ pp. 51-121 in Current Trends in

Concurrency: Overviews and Tutorials, J.W. de Bakker, W.P de Roever & G. Rozenberg

(eds.), LNCS 224, Springer (1986).

[Me] J.-J.Ch. Meyer, Programming Calculi Based on Fixed Point Transformations: Semantics

and Applications, Dissertation, Vrije Universiteit, Amsterdam (1985).

[Pl] G.D. Plotkin, ‘‘A Powerdomain Construction,’’ SIAM Journal of Computing 5, pp. 452-

- 14 -

487 (1976).

[MV] J.-J.Ch. Meyer and E.P. de Vink, ‘‘Applications of Compactness in the Smyth Power-

domain of Streams,’’ Theoretical Computer Science 57, pp. 251-282 (1988).

[Sm] M.B. Smyth, ‘‘Powerdomains,’’ Journal of Computer System Sciences 16, pp. 23-26

(1978).

[BHR] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe, ‘‘A Theory of Communicating Sequential

Processes,’’ Journal of the ACM 31, pp. 560-599 (1984).

[KR] J.N. Kok and J.J.M.M. Rutten, ‘‘Contractions in Comparing Concurrency Semantics,’’

pp. 317-332 in Proc. ICALP’88, T. Lepistö & A. Salomaa (eds.), LNCS 317, Springer

(1988).

[BBKM] J.W. de Bakker, J.A. Bergstra, J.W. Klop, and J.-J.Ch. Meyer, ‘‘Linear Time and Branch-

ing Time Semantics for Recursion with Merge,’’ Theoretical Computer Science 34,

pp. 135-156 (1984).

[Vi2] E.P. de Vink, Designing Stream Based Semantics for Uniform Concurrency and Logic

Programming, Dissertation, Vrije Universiteit, Amsterdam (1990).

[BMZ] J.W. de Bakker, J.-J.Ch Meyer, and J.I Zucker, ‘‘On Infinite Computations in Denota-

tional Semantics,’’ Theoretical Computer Science 26, pp. 53-82 (1983).

[HP] M. Hennessy and G.D. Plotkin, ‘‘Full Abstraction for a Simple Parallel Programming

Language,’’ pp. 108-120 in Proc. 8th MFCS, J. Bečvař (ed.), LNCS 74, Springer (1979).

[Ap] K.R. Apt, ‘‘Recursive Assertions and Parallel Programs,’’ Acta Informatica 15, pp. 219-

232 (1983).

[Mi] R. Milner, A Calculus of Communicating Systems, LNCS 92, Springer (1980).

[BK] J.A. Bergstra and J.W. Klop, ‘‘Algebra of Communicating Processes,’’ pp. 89-138 in

Proc. CWI Symposium on Mathematics and Computer Science, J.W. de Bakker, M.

Hazewinkel & J.K. Lenstra (eds.), CWI Monograph I (1986).

[BMOZ] J.W. de Bakker, J.-J.Ch. Meyer, E.-R. Olderog, and J.I. Zucker, ‘‘Transition Systems,

Metric Spaces and Ready Sets in the Semantics of Uniform Concurrency,’’ Journal of

Computer and System Sciences, pp. 158-224 (1988).

[BM] J.W. de Bakker and J.-J.Ch. Meyer, ‘‘Metric Semantics for Concurrency,’’ BIT 28,

pp. 504-529 (1988).

[Vi1] E.P. de Vink, ‘‘Comparative Semantics for Prolog with Cut,’’ Science of Computer Pro-

gramming 13, pp. 237-264 (1989/90).

[Ba] J.W. de Bakker, Mathematical Theory of Program Correctness, Prentice Hall Interna-

tional, London (1980).

- 15 -

