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Abstract There is a large demand for distributed engines

that efficiently process large-scale graph data, such as

social graph and web graph. The distributed graph engines

execute analysis process after partitioning input graph data

and assign them to distributed computers, so the quality of

graph partitioning largely affects the communication cost

and load balance among computers during the analysis

process. We propose an effective graph partitioning tech-

nique that achieves low communication cost and good load

balance among computers at the same time. We first gen-

erate more clusters than the number of computers by

extending the modularity-based clustering, and then merge

those clusters into balanced-size clusters until the number

of clusters becomes the number of computers by using

techniques designed for graph packing problem. We

implemented our technique on top of distributed graph

engine, PowerGraph, and made intensive experiments. The

results show that our partitioning technique reduces the

communication cost so it improves the response time of

graph analysis patterns. In particular, PageRank computa-

tion is 3.2 times faster at most than HDRF, the state-of-the

art of streaming-based partitioning approach.

Keywords Graph partitioning � Graph mining � Distributed
processing

1 Introduction

Large-scale graph data such as social graphs and web

graphs have emerged in various domains. As an example of

social graph, the number of daily active users in Facebook

reached 1.13 billion on average for June 2016 an increase

of 17% year-over-year reported in the Facebook reports

second quarter 2016 results:1 vertexes and edges represent

users and their relationships, respectively.

To analyze such large-scale graph data efficiently, dis-

tributed graph engines have been developed and they are

widely used in graph analysis field. Some examples are

Pregel [1], GraphLab [2], PowerGraph [3], and

GraphX [4]. Distributed graph engines commonly (1)

partition input graph data into sub-graphs, (2) assign each

sub-graph to each computer, and (3) make graph analysis

over the distributed graph. Each computer iteratively ana-

lyzes the assigned sub-graph by updating the parameters

assigned to the vertexes/edges. Notice that the sub-graph

assignment to computers largely affects the communication

cost and load balance during graph analysis. The commu-

tation cost increases to the number of cross-partition ver-

texes/edges, because communication between different

computers is required when parameters are updated by

referring to adjacent vertexes/edges in remote computers.

The computation cost of each computer depends on the

number of vertexes/edges assigned to the computer [5], so

load imbalance occurs among computers when the number

of assigned vertexes/edges imbalances.
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Our goal is to design a graph partitioning technique that

achieves low communication cost and good load balance

among computers. The state-of-the art of graph partitioning

techniques is Oblivious [3] and HDRF [6] that are actually

implemented in PowerGraph. These techniques generate

balanced-size clusters while attempting to reduce com-

munication overhead. However, the communication over-

head tends to be high and this degrades the performance, in

particular, the number of commuters is large. In contrast,

there are other graph clustering techniques [7–9] that are

designed to reduce the number of cross-cluster edges. They

are expected to reduce the communication overhead;

however, the size of the obtained clusters is imbalanced as

reported in [8] so we cannot directly apply these tech-

niques to our goal just as they are.

We propose an effective graph partitioning technique

that achieves low communication cost and good load bal-

ance among computers at the same time. So as to obtain

balanced-size clusters, we first generate much more bal-

anced-size clusters than the number of computers by

extending the modularity-based clustering, and then merge

those clusters into balanced-size clusters by employing the

techniques designed for the packing problem [10]. Finally,

we convert edge-cut graph into vertex-cut graph, because

the modularity clustering is edge-cut-based clustering and

most of the recent distributed graph engines are based on

vertex-cut graph. We implemented our technique on top of

PowerGraph and made evaluations. The results show that

our partitioning technique reduces the communication cost

so it improves the response time of graph analysis patterns.

In particular, it improves the response time of PageRank

computation 3.2 times faster at most than HDRF. In

addition, we also evaluated how the major graph metrics

(the replication factor and load balance factor) correlate

with the physical performance measures, the response time,

the amount of data transfer between computers, and the

imbalance runtime ratio among computers.

The remainder of this paper is organized as follows.

Section 2 describes the background of this work. Section 3

describes the detailed design of our technique. Section 4

reports the results of experiments. Section 5 addresses

related work, and Sect. 6 concludes this paper.

2 Prelimilary

2.1 Replication Factor and Load Balance Factor

Recent distributed graph processing frameworks (e.g.,

GraphLab [2] and PowerGraph [3]) have employed vertex-

cut method [2, 6] for the graph partitioning since it pro-

vides better performance in terms of load balancing among

distributed computers. Vertex-cut method is a graph

partitioning technique for distributed graph processing; it

divides a graph into multiple partitions by replicating

cross-cluster vertexes, and it assigns each partition to each

computer in the distributed computation environment. In

order to qualify the effectiveness of graph partitioning, it is

natural choice to use two major metrics called replication

factor [2] and load balance factor [3].

Replication factor [2] is a metric that evaluates com-

munication cost among distributed computers. Replication

factor quantifies how many vertexes are replicated over

computers compared with the the number of vertexes of the

original input graph. The vertex-cut method takes a strat-

egy to replicate cross-cluster vertex and assign the replicas

to the computers the adjacent edges of the vertex belong to.

In order to keep the consistency of analysis results among

distributed computers, we need to communicate and

exchange the analysis results among the computers in

which the replicated vertexes are located. Thus, we can

mitigate the communication cost by keeping the replication

factor small. By following the literature [2], we formally

define the replication factor RF as follows:

RF ¼ 1

jV j
X

v2V
jRðvÞj; ð1Þ

where V are a set of vertexes, and R(v) is a set of vertexes

replicated from vertex v.

Load balance factor is another metric of distributed

graph processing that evaluates skewness of loads among

distributed computers. Distributed graph processing

frameworks using vertex-cut method employ the following

equation for evaluating load balance factor:

max
m2M

jEðmÞj\k
jEj
jMj ; ð2Þ

where E and M are a set of edges and a set of computers,

respectively; E(m) is a number of edges that are assigned to

computer m. k is a user-specified parameter that determines

the acceptable skewness; user needs to set a value for k that
satisfies k 2 R and k� 1. That is, Eq. (2) indicates that

how large size is acceptable for E(m) compared with the

expected number of edges for each computer (i.e.,
jEj
jMj).

From Eq. (2), we can conduct the following equation:

k ¼ jMj
jEj max

m2M
jEðmÞj: ð3Þ

In this paper, we call Eq. (3) as load balance factor. We

employ Eq. (3) for evaluating the load balance efficiency

of graph partitioning results.2

2 A partitioning result is well balanced when k is small.
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2.2 Modularity

Our proposed method merges partition pairs for increasing

a graph partitioning measure, namely modularity [7], so as

to reduce the total number of cross-partition edges. In this

section, we formally introduce modularity.

Modularity, proposed by Girvan and Newman [7], is

widely used to evaluate the quality of graph partitions from

global perspective. Modularity is a quality metric of graph

partitioning based on null model; it measures the difference

of the graph structure from the corresponding random

graph. Intuitively, graph clustering is to find groups of

vertexes that have a lot of inner-group edges and few outer-

group edges; optimal partitions are achieved when the

modularity is maximized. The modularity Q is formally

defined as follows:

Q ¼
X

i2C

jEiij
2jEj �

P
j2C jEijj
2jEj

� �2
( )

; ð4Þ

where C and |E| are a set of partitions and the total number

of edges included in graph G, respectively, and Eij is a

number of edges between partition i and j.

For finding good partitions, traditional modularity-based

algorithms [9, 11, 12] greedily select and merge partition

pairs so as to maximize the increase in modularity. How-

ever, Eq. (4) is inefficient to evaluate the modularity

increase made by merging partition pairs since Eq. (4)

needs to compute the complete modularity score for all

merging partitions. Instead of computing complete modu-

larity score, existing algorithms (i.e., CNM [11] and Lou-

vain method [12]) conducted an equation of the modularity

gain MQij for efficiently evaluating the modularity

increase after merging two partitions i and j as follows:

MQij ¼ 2
jEijj
2jEj �

P
k2C jEikj
2jEj

� � P
k2C jEjkj
2jEj

� �� �
; ð5Þ

where MQij indicates the modularity gain after merging

partition i and j. As we described above, the modularity-

based algorithms find a set of partitions that with high

modularity Q by iteratively selecting and merging partition

pairs that maximize Eq. (5).

In our proposed method, we modify Eq. (5) for finding

balanced-size partitions for efficient distributed graph pro-

cessing; we introduce a new term for balancing the parti-

tioning size [8] intoEq. (5).Wepresent its details inSect. 3.1.

3 Balanced-Size Clustering Technique

Our goal is to design a graph partitioning technique that

achieves low communication cost and good load balance

among computers at the same time. We propose an

effective graph partitioning technique that achieves low

replication factor and good load balance factor. Our tech-

nique consists of three phases, balanced-size modularity

clustering phase, cluster merge phase, and graph conver-

sion phase as follows.

Balanced-size

modularity clustering

phase

We first employ a modified

modularity proposed by Wakita

and Tsurumi [8] that achieves

good modularity and mitigates

the imbalance of cluster size.

Cluster merge phase Since modularity clustering

generates large number of

clusters in general, we need to

have additional phase to merge

clusters more. Moreover, even if

we employ the modified

modularity that mitigates

imbalanced size of clusters, we

still have the imbalance of

cluster size. So, we generate

much more clusters than the

number of computers in the 1st

phase, and then merge those

clusters into balanced-size

clusters until the number of

clusters becomes the number of

computers by employing

techniques designed for graph

packing problem.

Graph conversion

phase

Finally, we convert edge-cut

graph into vertex-cut graph,

because the modularity

clustering is edge-cut-based

clustering and most of the recent

distributed graph engines are

based on the vertex-cut graph.

3.1 Balanced-Size Modularity Clustering Phase

The goal of this balanced-size modularity clustering phase is

to produce fine-grained and well-balanced clusters. In this

phase, we iteratively merge cluster pair into clusters so as to

increase modularity score while keeping the size of clusters

balanced. As we described in Sect. 1, modularity-based

clustering algorithms, e.g., CNM [11], generally tend to pro-

duce imbalanced sizes of clusters. For mitigating the imbal-

anced cluster size, we first employ amodifiedmodularity gain

MQ0, proposed byWakita and Tsurumi [8], which introduces

a heuristic into Eq. (5) for controlling the size of the merged

cluster. The modified modularity gain MQ0
ij between cluster

i and j is defined as follows:
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MQ0
ij ¼ min

jEij
jEjj

;
jEjj
jEij

� �
MQij; ð6Þ

where Ei is a set of edges included in cluster i. As shown in

Eq. (6), we can find clusters that are expected to increase

the modularity score since we have MQij term in the right-

hand side on the equation. In addition, Eq. (6) also eval-

uates min
jEij
jEjj ;

jEjj
jEij

� �
term, which clearly takes large value

when jEij and jEjj are almost same sizes. Hence, the

modified modularity gain MQ0
ij prefers to merge two clus-

ters whose sizes are similar each other. As a result, Eq. (6)

gives large score when two clusters i and j not only contain

similar number of inner edges but also show better mod-

ularity gain.

For finding fine-grained and well-balanced clusters

efficiently, we apply Eq. (6) to the state-of-the-art modu-

larity-based clustering called incremental aggregation

method [9]. The incremental aggregation method is a

modularity-based clustering algorithm that is able to pro-

cess large-scale graphs with more than a few billion edges

within quite short computation time. This is because the

method effectively reduces the number of edges to be

referenced during the modularity gain computation by

incrementally merging cluster pairs. By combining the

method and the modified modularity gain shown in Eq. (6),

this phase finds the fine-grained and well-balanced clusters

efficiently.

In addition, this phase attempts to produce larger

number of clusters than user-specified parameter k. The

reasons are twofold: (1) Although Eq. (6) is effective in

balancing the cluster size, it is not sufficient for the load

balance. For further balancing the size of clusters, we

additionally perform first-fit algorithm [10] in the next

phase, which is an approximation algorithm for the bin

packing problem. (2) If we run modularity-based clus-

tering methods until convergence, they automatically

determine the number of clusters relying on the input

graph topology. In order to control the number of clus-

ters for the distributed machines, this phase needs to run

until (a) we can find no cluster pairs that increase the

modularity score, or (b) the number of clusters produced

in this phase reaches a� k where a 2 R is a user-spec-

ified parameter such that a[ 1.

3.2 Cluster Merge Phase

The idea of producing balanced-size clusters is to

employ the techniques developed for the packing
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problem [10]. That is, given various size of items, we pack

them into fixed number of containers with the same size.

Since we generated more clusters than the number of

computers at the last phase, we pack those clusters into

balanced-size containers by performing first-fit algorithm.

In addition, we choose an adjacent cluster of a given

cluster and pack them into the same container during first-

fit algorithm, so that we can keep the number of cross-

cluster edges small.

The detail is as follows. Given we have many clusters

produced at the balanced-size modularity clustering phase,

we choose k (number of computers) largest clusters as seed

clusters and put them into different containers. Then, we

repeatedly merge the smallest seed cluster with its adjacent

cluster until there is no adjacent cluster to seed clusters.

After that, there may be clusters that are not connected to

any seed clusters, that is, the clusters are isolated from any

seed clusters. We pick up a cluster from the isolated ones,

merge reachable clusters from it, and put the merged

cluster into the container with the smallest number of inner

edges.

The pseudocode of this phase is shown in Algorithm 1.

The symbols and their definitions used in the code are

summarized in Table 1. The input is clusters C, and the

specified number of output clusters is k. Clusters C are

obtained at the balanced-size modularity clustering phase.

First, we choose k clusters that have the largest number of

inner edges from input clusters C. We treat them as seed

clusters and put them into output clusters R (line 1). In the

following procedure, we pick up other clusters from C and

merge them with the seed clusters until no cluster is left in

C. The procedure consists of three steps. In the first step, so

as to balance the size of the seed clusters while keeping the

number of cross-cluster edges small, we choose the

smallest seed cluster, pick up its adjacent cluster in C, and

merge the seed cluster with the adjacent cluster (line 3–17).

We repeat this merge process until there is no adjacent

cluster to the smallest seed clusters left in C. In the second

step, we pick up a cluster in C and merge it with its

adjacent and the smallest seed cluster (line 18–33). We

repeat this merge process until there is no adjacent cluster

to the seed clusters left in C. Now, there may be clusters in

C that are not connected to any seed clusters. In the final

step, we treat the seed clusters in R as containers of the

packing problem. We pick up a cluster in C (line 32–33),

merge it with its reachable clusters in C (line 34–42), and

put it to the smallest seed cluster (container) (line 43–45).

Example 1 Figure 1 depicts an example of the cluster

merge phase, the initial state is on the left, and the final

state is on the right. Each circle represents cluster, and the

number located at the center of the circle shows the number

of inner edges in the cluster. The number assigned to an

edge shows the number of the cross-cluster edges. The

dotted shape represents seed cluster (container). (1) In the

initial state, two largest clusters (cluster 1 and cluster 2) are

chosen as seed clusters. (2) The smallest seed cluster

(cluster 2) and its one of adjacent clusters (cluster 3) are

merged. (3) Still the merged seed cluster (containing

cluster 2 and cluster 3) is the smallest seed cluster [the size

is 35 (20 ? 5 ? 10)], so we continue to merge it with its

adjacent cluster, cluster 5. (4) Now the merged seed cluster

size is 55, the smallest cluster changes to cluster 1. Then,

cluster 1 is merged with its adjacent cluster, cluster 4, and

the size becomes 65. (5) Now, there is no adjacent cluster

to any seed clusters, so we put the isolated cluster, cluster

6, into the smallest seed cluster, cluster 2, as shown in the

final state in Fig. 1.

3.3 Graph Conversion Phase

So far, we have obtained k clusters of edge-cut graph. In

this final phase, we convert edge-cut graph into vertex-cut

graph, since most of the recent distributed graph engines

are based on the vertex-cut graph. This design is based on

the fact that vertex-cut graph is more efficiently balanced

than edge-cut graph [3, 13]. To convert edge-cut graph to

vertex-cut graph, we have to convert cross-cluster edge to

cross-cluster vertex by choosing either two sides of cross-

cluster edge as cross-cluster vertex. Let u is chosen as

cross-cluster vertex and v is not for cross-cluster edge

e(u, v). The cross-cluster edge e(u, v) is assigned to the

cluster to which non-cross-cluster vertex v belong. We

choose cross-cluster vertexes so that the size of the clusters

to be balanced. This procedure is simple but affects largely

the load balance.

4 Experiments

We implemented our proposal, balanced-size clustering

technique, on top of one of the recent distributed graph

processing frameworks, PowerGraph [3]. We made fol-

lowing experiments to validate the effectiveness of our

graph partitioning technique.

Table 1 Definitions of symbols used in Algorithm 1

Symbol Definition

C Input cluster set

k Specified number of output clusters

R Output cluster set

top k clustersðC; kÞ Top-k clusters 2 C

inner edgesðcÞ Inner edges of cluster c

neighbors(c) Adjacent clusters of cluster c

cut edgesðn;mÞ Cut edges between cluster n and m

98 M. Onizuka et al.
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Partitioned graph

quality

We evaluated the effectiveness of

partitioned graph by using the major

metrics, replication factor [Eq. (1)]

and load balance factor [Eq. (2)].

Performance for

graph analysis

We evaluated the runtime, the

amount of data transfer between

computers, and the imbalance

runtime ratio among computers

during graph analysis. In addition,

we also evaluated how the major

graph metrics, the replication factor

and load balance factor, correlate

with the physical performance

measures, the response time, the

amount of data transfer between

computers, and the imbalance

runtime ratio among computers.

Scalability We evaluated the response time of

graph analysis, graph partitioning

time, and the sum of both by

varying the number of computers.

We compared our graph partitioning technique to other

techniques, a random partition, Oblivious [3], and

HDRF [6]. The random partitioning is a naive approach

that randomly assigns vertexes/edges to distributed com-

puters. The Oblivious is a heuristic technique that balances

the size of partitions and reduces the replication factor. The

HDRF is a technique improved from Oblivious and actu-

ally provides better graph partitions than Oblivious does

for various graphs. We used two variations of our graph

partitioning technique in the 1st phase; the original mod-

ularity clustering and the balanced-size modularity clus-

tering. They are denoted as modularity and balanced-size

in figures, respectively. For the parameter setting, we

choose the number of clusters the 1st phase generates

according to the graph size; we set more clusters to gen-

erate as input graph size increases.

4.1 Benchmark

We used real graph data shown in Table 2 and three typical

graph analysis patterns as follows.

1. PageRank [14]: one of the link-based ranking tech-

niques designed for web pages.

2. SSSP (single-source shortest path): computing the

shortest paths to all vertexes from a given vertex.

3. CC (connected component): detecting sub-graphs

(components) connected with edges.

4.2 Setting

The experiments were made on Amazon EC2, r3.2xlarge

Linux instances. Each instance has CPU

Intel(R) Xeon(R) CPU E5-2670 v2, 2.50 GHz (four cores)

with 64 GB RAM. The network performance between

instances was 1.03 Gbps. The hard disks delivered

103 MB/s for buffered reads. We used g??4.8.1 with –O3

optimization for PowerGraph and all partitioning tech-

niques. We chose synchronous engine of PowerGraph to

ensure the preciseness of the analysis results.

4.3 Partitioned Graph Quality

We evaluated the effectiveness of partitioned graph by

using the major metrics, replication factor [Eq. (1)] and

load balance factor [Eq. (2)] for the graph data in Table 2.

50 20

10 10

105

5 5 10

10

5

cluster 1
cluster 2

cluster 3

cluster 6cluster 5cluster 4

50 20

10 10

10

5 10

10

5

cluster 1 cluster 2

(a) (b)

Fig. 1 Example in cluster merge phase. The initial state is on the left,

and the final state is on the right. Each circle represents cluster, and

the number located at the center of the circle shows the number of

inner edges in the cluster. The number assigned to an edge shows the

number of the cross-cluster edges. The dotted shape represents seed

cluster (container) a initial state, b final state
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4.3.1 Relationship Between Modularity and Replication

Factor

Our technique is based on modularity clustering so as to

decrease the number of cross-cluster edges. We investi-

gated the relationship between the modularity value3 of the

real graph data and how our technique improves replication

factor for those data compared with random partitioning

and HDRF. In Fig. 2, X-axis shows the modularity value

and Y-axis shows the replication factor ratio of the parti-

tions obtained by our technique to those obtained by ran-

dom partitioning and HDRF. As expected, we observe that

our technique provides better replication factors than other

techniques and that the replication factor is improved more

as the modularity value of the graph increases.

4.3.2 Replication Factor

Figure 3 shows the results of the experiments for replica-

tion factor by varying the number of computers, 8, 16, 32,

48, 64. The figure includes only the three largest graph

data, soc-LiveJournal1, uk-2002, webbase-2001. We omit

others here because they are similar results to the above

three graph data. We set the number of clusters the 1st

phase generates at 4000, 8000, 160,000 for soc-LiveJour-

nal1, uk-2002, webbase-2001, respectively.

We observe that our technique achieves the best among

others and the advantage increases as the number of

computers increases. Only for soc-LiveJournal1, the vari-

ation that uses the original modularity clustering in the 1st

phase performs better than the variation that uses the bal-

anced-size modularity clustering. We guess this is caused

by the fact that the modularity of soc-LiveJournal1 (0.721)

is relatively lower than those (0.986 and 0.976) of uk-2002

and webbase-2001 (see Fig. 2), so the balanced-size

modularity clustering could not improve the replication

factor as the original modularity clustering.

4.3.3 Load Balance Factor

Figure 4 shows the results of the experiments for load

balance factor. We observe that the variation that uses the

original modularity clustering seriously inferior to others.

This is because the primary goal of the Oblivious and

HDRF is to generate balanced-size clusters and decreasing

the replication factor is secondary. We also observe that the

balanced-size modularity clustering effectively mitigates

the load balance factor to the original modularity

clustering.

4.4 Performance for Graph Analysis

We evaluated the runtime time, the amount of data transfer

between computers, and the imbalance runtime ratio

among computers during graph analysis executed on

PowerGraph. We fixed the number of computers at 64.

4.4.1 Runtime

Figure 5 shows the runtime results for analysis patterns.

The runtime results in Y-axis are normalized to random

partitioning result. As we can see in the figure, our tech-

nique performs best among others. In general, our tech-

nique is more effective as the modularity of graph increases

(soc-LiveJournal1 0.721 ! webbase-2001 0.976 ! uk-

2002 0.986), mainly because the amount of data transfer is

reduced more for the graph with larger modularity (we will

see in Fig. 6). Also the response time is not correlated so

much with the imbalance runtime ratio (we will see in

Fig. 7). For the largest modularity case of uk-2002, our

Table 2 Real-world graph data
Dataset Short name |V| |E| Modularity

email-EuAll [15] Eu 265,214 420,045 0.779

web-Stanford [15] St 281,903 2,312,497 0.914

com-DBLP [15] DB 317,080 1,049,866 0.806

web-NotreDame [15] No 325,729 1,497,134 0.931

amazon0505 [15] am 410,236 3,356,824 0.852

web-BerkStan [15] Be 685,230 7,600,595 0.930

web-Google [15] Go 875,713 5,105,039 0.974

soc-Pokec [15] Po 1,632,803 30,622,564 0.633

roadNet-CA [15] CA 1,965,206 2,766,607 0.992

wiki-Talk [15] Ta 2,394,385 5,021,410 0.566

soc-LiveJournal1 [15] Li 4,847,571 68,993,773 0.721

uk-2002 [16] uk 18,520,486 298,113,762 0.986

webbase-2001 [16] ba 118,142,155 1,019,903,190 0.976

3 We set the number of partitions at 64.
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technique is 3.2, 1.2, 2.2 times faster in PageRank, SSSP,

CCC, respectively, than HDRF. For soc-LiveJournal1,

where the modularity is the smallest among others, the

variation that uses the balanced-size modularity clustering

in the 1st phase provides higher performance than the one

that uses the original modularity clustering.

4.4.2 Amount of Data Transfer

Figure 6 shows the average amount of data transfer

between computers for analysis patterns. The results in Y-

axis are normalized to random partitioning result. By

comparing this figure with the replication factor experi-

ments in Fig. 3, the amount of data transfer is highly cor-

related with the replication factor. For the largest

modularity case of uk-2002, our technique most effectively

reduces the amount of data transfer by 94%, 62%, 95% of

HDRF in PageRank, SSSP, CCC, respectively. We guess

the runtime improvement achieved by our technique is

caused by not only the reduction ratio of data transfer but

also its actual amount of data transfer. Our technique

improves the runtime of PageRank most, because both the

reduction rate of data transfer and the actual amount of data

transfer are large. The actual amount of data transfer is

21 GB in PageRank, 0.17 GB in SSSP, 1.5 GB in CC for

the case of uk-2002 in random partitioning.

4.4.3 Imbalance Runtime Ratio

Figure 7 shows the imbalance runtime ratio for analysis

patterns. The runtime indicates CPU time and excludes

network IO wait. The imbalance runtime ratio is defined as
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the ratio of the slowest computer’s runtime to the average

runtime. Again, the results in Y-axis are normalized to

random partitioning result. By comparing this figure with

the load balance factor experiments in Fig. 4, the imbal-

ance runtime ratio is correlated with the load balance

factor. In particular for the case of the variation that uses

the original modularity clustering in the 1st phase for soc-

LiveJournal1. Except that, the results are comparable to all

techniques for all graph data. Notice that, for our technique

that uses the balanced-size modularity clustering in the 1st

phase, even if its load balance factor is inferior to others

(see in Fig. 4), the imbalance runtime is comparable to

others. In addition, the imbalance ratio changes to analysis

patterns. So, we conjecture that there should be other fac-

tors than load balance factor that affect the imbalance

runtime depending on analysis patterns.

4.5 Scalability

We evaluated the response time of graph analysis, graph

partitioning (ingress) time, and the sum of both (total time)

by varying the number of computers. Figure 8 shows

runtime results for the largest graph data, webbase-2001,

and PageRank analysis pattern. The analysis results show

that our technique scales well to the number of computers

and achieves best among others. For the graph ingress time,

random partitioning is fastest because it chooses a com-

puter to assign a new edge randomly. Our technique is

scalable since we extend to use the state-of-the-art modu-

larity-based clustering [9] in the 1st phase and the cost of

the 2nd and 3rd phases does not depend on the number of

computers. Notice that both Oblivious and HDRF are not

scalable. The ingress time of Oblivious and HDRF gets

worse to the number of computers. We investigated the

implementation of Oblivious and HDRF and found that

they made a linear search on the computer list to determine

which computer stores the smallest number of assigned

edges. For the total time, our technique is the best, in

particular, the variation that uses the balanced-size modu-

larity clustering in the 1st phase.

5 Related Work

In the line of the work for efficient distributed graph pro-

cessing, the problem of finding better graph partitions has

been studied in recent decades. A recent survey paper on

vertex-centric frameworks summarizes various types of

graph partitioning techniques [17]. The major approach is

twofold: edge-cut method and vertex-cut method.

Edge-cut method The edge-cut method is a graph par-

titioning approach that divides a graph into sets of sub-

graphs by cutting edges so as to reduce the number of

cross-partition edges. In the distributed graph processing,

the edge-cut method assigns each sub-graph to each com-

puter. METIS, proposed by Karypis and Kumar in

1998 [18], is one of the representative partitioning algo-

rithms that focuses on reducing the number of cross-par-

tition edges via the edge-cut method. The problem of edge-

cut method is that it cannot avoid load imbalance for

typical graphs that follow the power law distribution [19].

We explain the detail more in the vertex-cut method part.

Vertex-cut method The vertex-cut method is another

type of partitioning technique that attempts to reduce the

number of cross-partition vertexes. As we described above,

the edge-cut method splits a graph into sets of sub-graphs

by cutting edges. In contrast, the vertex-cut method divides

a graph by splitting vertexes. Most of the recent distributed

graph engines use vertex-cut methods, because vertex-cut

graph is more efficiently balanced than edge-cut

0

1

2

3

4

5

6

7

8

9

PageRank SSSP CC

Im
ba

la
nc

e 
ra

�o
 o

f r
un

�m
e 

(r
an

do
m

=1
)

Analysis pa�erns

soc-LiveJournal1

random oblivious HDRF

modularity balanced-size

0

0.2

0.4

0.6

0.8

1

1.2

1.4

PageRank SSSP CC

Im
ba

la
nc

e 
ra

�o
 o

f r
un

�m
e 

(r
an

do
m

=1
)

Analysis pa�erns

webbase-2001

random oblivious HDRF

modularity balanced-size

0

0.2

0.4

0.6

0.8

1

1.2

1.4

PageRank SSSP CC

Im
ba

la
nc

e 
ra

�o
 o

f r
un

�m
e 

(r
an

do
m

=1
)

Analysis pa�erns

uk-2002

random oblivious HDRF

modularity balanced-size

Fig. 7 Imbalance runtime ratio for analysis patterns (Y-axis is normalized to random partitioning result)

Graph Partitioning for Distributed Graph Processing 103

123



graph [3, 13]. Typically, graph usually follows the power

law distribution so it tends to include super-vertexes, that

is, the number of their connected edges is tremendously

large. Those super-vertexes affect largely load imbalance,

so the idea of the vertex-cut method is to reduce the load

imbalance by splitting the super-vertexes. In the family of

the vertex-cut methods, Oblivious [2] and HDRF (High-

Degree (are) Replicated First) [6] are the state-of-the-art

algorithms. These algorithms are stream-based algorithms:

Every edge is read from input file, and it is immediately

assigned to a computer; and thus, they are scalable to large-

scale graphs and achieve better load balance performance.

Specifically, Oblivious assigns an incoming edge to a

computer, so that it can reduce the number of cross-ver-

texes spanned among computers. HDRF divides edges into

partitions by splitting high-degree vertexes in order to

reduce the total number of cross-vertexes.

6 Conclusion

We proposed a graph partitioning technique that efficiently

partitions graphs with good quality so that it achieves high

performance for graph analysis by reducing the commu-

nication cost and by keeping good load balance among

computers. We extend modularity-based clustering and

integrate it with the techniques for the graph packing

problem. We implemented our technique on top of dis-

tributed graph engine, PowerGraph, and made intensive

experiments. The results show that our partitioning tech-

nique reduces the communication cost so it improves the

response time of graph analysis patterns. In particular,

PageRank computation is 3.2 times faster at most than

HDRF, the state-of-the art of streaming-based partitioning

approach. In addition, we observed that the replication

factor and load balance factor correlate with the amount of

data transfer and the imbalance runtime ratio, respectively,

and that the response time is correlated with the replication

factor but not with the load balance factor so much.

Possible future work is as follows. (1) There is a trade-

off between the communication cost and load balance

depending on the number of computers. We optimize the

trade-off problem by fixing the number of computers in this

paper, but one future work is to optimize the number of

computers depending on the input graph and analysis pat-

terns. (2) There is a still room improving more on the

replication factor and load imbalance and achieving effi-

cient graph clustering.
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10. Dósa G, Sgall J (2013) First fit bin packing: a tight analysis. In:

Proceeding of STACS

11. Clauset A, Newman MEJ, Moore C (2004) Finding community

structure in very large networks. Phys Rev E 70:066111

12. Blondel VD, Guillaume J, Lambiotte R, Lefebvre E (2008) Fast

unfolding of communities in large networks. J Stat Mech Theory

Exp. doi:10.1088/1742-5468/2008/10/P10008

13. Bourse F, Lelarge M, Vojnovic M (2014) Balanced graph edge

partition. In: Proceeding of KDD

14. Page L, Brin S, Motwani R, Winograd T (1999) The PageRank

citation ranking: bringing order to the web. Technical report

15. Stanford Large Network Dataset Collection (2014) http://snap.

stanford.edu/data/. Accessed 31 Jan 2017

16. Laboratory for Web Algorithmics (2002) http://law.di.unimi.it.

Accessed 31 Jan 2017

17. McCune RR, Weninger T, Madey G (2015) Thinking like a

vertex: a survey of vertex-centric frameworks for large-scale

distributed graph processing. ACM Comput Surv 48(2):25

18. Karypis G, Kumar V (1999) A fast and high quality multilevel

scheme for partitioning irregular graphs. SIAM J Sci Comput

20(1):359–392

19. Faloutsos M, Faloutsos P, Faloutsos C (1999) On power-law

relationships of the internet topology. In: Proceeding of

SIGCOMM

Graph Partitioning for Distributed Graph Processing 105

123

http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://snap.stanford.edu/data/
http://snap.stanford.edu/data/
http://law.di.unimi.it

	Graph Partitioning for Distributed Graph Processing
	Abstract
	Introduction
	Prelimilary
	Replication Factor and Load Balance Factor
	Modularity

	Balanced-Size Clustering Technique
	Balanced-Size Modularity Clustering Phase
	Cluster Merge Phase
	Graph Conversion Phase

	Experiments
	Benchmark
	Setting
	Partitioned Graph Quality
	Relationship Between Modularity and Replication Factor
	Replication Factor
	Load Balance Factor

	Performance for Graph Analysis
	Runtime
	Amount of Data Transfer
	Imbalance Runtime Ratio

	Scalability

	Related Work
	Conclusion
	Open Access
	References




