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Large mass expansion of quasi-normal modes in AdS5
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Abstract

We calculate analytically the asymptotic form of quasi-normal frequencies for massive scalar

perturbations of large black holes in AdS5. We solve the wave equation, which reduces to a Heun

equation, perturbatively and calculate the wave function as an expansion in 1/m, where m is the

mass of the mode. The zeroth-order results agree with expressions derived by numerical analysis.

We also calculate the first-order corrections to frequencies explicitly and show that they are of

order 1/m.
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Quasi-normal modes of black holes in asymptotically AdS space-times have received a lot of

attention recently [1–17] and should shed some light on the AdS/CFT correspondence. They are

derived as complex eigenvalues corresponding to a wave equation which is solved subject to the

conditions that the flux be ingoing at the horizon and the wave-function vanish at the boundary

of AdS space. The wave equation reduces to a Hypergeometric equation in three dimensions

(AdS3) and can therefore be solved exactly [7, 13]. In higher dimensions, an analytic solution is

not readily available, as the wave equation develops unphysical singularities. It has been possible

to obtain numerical values for quasi-normal frequencies [2, 18–20].

More recently, we proposed an analytic method of calculating massless quasi-normal modes of

large AdS black holes. We applied the method to the calculation of low-lying frequencies [21] as

well as in the asymptotic regime [22] in AdS5. The method was based on a perturbative expansion

of the wave equation, which reduced to the Heun equation [23], in the dimensionless parameter

ω/TH , where ω is the frequency of the mode and TH is the (high) Hawking temperature of the

black hole. This is a non-trivial expansion, for the dependence of the wave-function on ω/TH

changes as one moves from the asymptotic boundary of AdS space to the horizon of the black

hole. We showed that our results were in agreement with numerical results [2, 18].

Here we extend the discussion of [21, 22] to the case of massive scalar modes. The quasi-

normal frequencies determine the poles of the retarded correlation functions of dual operators in

finite-temperature N = 4 SU(N) SYM theory in the large-N , large ’t Hooft coupling limit [24].

They have also been recently studied in [25] where they were shown to arise in complexified

geodesics. We shall derive a systematic analytic expansion of the frequencies in powers of 1/m,

where m is the mass of the mode. Numerical results indicate [24] that in the limit of large mass,

ωn

TH

∼ 2π(±1− i)(n + h+ − 3
2
) , n = 1, 2, . . . (1)

where h± = 1 ±
√
1 +m2R2. Our results confirm analytically the above asymptotic result of

numerical analysis. Our method is an extension of the discussion in [22] where the numerical

result (1) was confirmed analytically in the massless case (m = 0). We also calculate the first-

order correction and show that it is of order 1/h+. A similar procedure was followed in [21].

The metric of a five-dimensional AdS black hole may be written as

ds2 = −f(r) dt2 +
dr2

f(r)
+ r2dΩ2

3 , f(r) =
r2

R2
+ 1− ω4M

r2
(2)
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where R is the AdS radius and M is the mass of the black hole. For a large black hole, the metric

simplifies to

ds2 = −f̂(r) dt2 +
dr2

f̂(r)
+ r2ds2(E3) , f̂(r) =

r2

R2
− ω4M

r2
(3)

The Hawking temperature is

TH =
rh
πR2

(4)

where rh is the radius of the horizon,

rh = R

[

ω4M

R2

]1/4

(5)

The wave equation for a massive scalar of mass m is

1

r3
∂r(r

5 h(r) ∂rΦ)−
R4

r2 h(r)
∂2
tΦ− R2

r2
~∇2Φ = m2Φ , h(r) = 1− r4h

r4
(6)

We are interested in solving this equation for a wave which is ingoing at the horizon and vanishes

at infinity. These boundary conditions yield a discrete set of complex frequencies (quasi-normal

modes). The solution may be written as

Φ = ei(ωt−~p·~x)Ψ(r) (7)

Upon changing the coordinate r to y,

y =
r2

r2h
(8)

the wave equation becomes

(

y(y2 − 1)Ψ′
)′
+

(

ω̂2

4

y2

y2 − 1
− p̂2

4
− m̂2y

)

Ψ = 0 (9)

where we have introduced the dimensionless variables

ω̂ =
ωR2

rh
=

ω

πTH
, p̂ =

|~p|R
rh

=
|~p|

πRTH
, m̂ = mR (10)

Two independent solutions are obtained by examining the behavior near the horizon (y → 1),

Ψ± ∼ (y − 1)±iω̂/4 (11)

where Ψ+ is outgoing and Ψ− is ingoing. We ought to choose Ψ− for quasi-normal modes.
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A different set of linearly independent solutions is obtained by studying the behavior at large

r (y → ∞). We obtain

Ψ ∼ y−h± , h± = 1±
√
1 + m̂2 (12)

For quasi-normal modes, we are interested in the solution which vanishes at the boundary, hence

it behaves as Ψ ∼ y−h+ as y → ∞. Combining this with the requirement that Ψ = Ψ− (eq. (11))

leads to a discrete spectrum of quasi-normal frequencies.

By considering the other (unphysical) singularity at y = −1, we obtain yet another set of

linearly independent wave-functions behaving as

Ψ ∼ (y + 1)±ω̂/4 (13)

near y = −1. There is no restriction on the behavior of the wave-function at this singularity.

Nevertheless, as we shall see, it will be advantageous to isolate the behavior near y = −1.

Isolating the behavior at the two singularities y = ±1, we shall write the wave-function as

Ψ(y) = (y − 1)−iω̂/4(y + 1)−ω̂/4F (y) (14)

The selection of the exponent at the y = −1 singularity is arbitrary and not guided by a physical

principle. We shall show that it leads to a convenient perturbative calculation of half of the

modes. Selecting the other exponent, +ω̂/4, similarly yields the other set of modes without

additional computational difficulties. The latter have the same imaginary part as the former,

but opposite real parts, as will become evident.

It is easily deduced from eqs. (9) and (14) that the function F (y) satisfies the Heun equation

y(y2 − 1)F ′′ +

{(

3− 1 + i

2
ω̂

)

y2 +
1− i

2
ω̂y − 1

}

F ′

+

{

ω̂

2

(

iω̂

4
− 1− i

)

y − m̂2y + (1− i)
ω̂

4
− p̂2

4

}

F = 0 (15)

We wish to solve this equation in a region in the complex y-plane containing |y| ≥ 1, which

includes the physical regime r > rh. For large ω̂, the constant terms in the respective Polynomial

coefficients of F ′ and F in (15) are small compared with the other terms, so they may be dropped.

Eq. (15) may then be approximated by the Hypergeometric equation

(y2 − 1)F ′′ +

{(

3− 1 + i

2
ω̂

)

y +
1− i

2
ω̂

}

F ′ +

{

ω̂

2

(

iω̂

4
− 1− i

)

− m̂2

}

F = 0 (16)
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in the asymptotic limit of large frequencies ω̂. Two linearly independent solutions of (16) are

F1 = F (a+, a−; c;−x) , F2 = x1−cF (1 + a+ − c, 1 + a− − c; 2− c;−x) (17)

where

a± = h± − 1+i
4

ω̂ , c = 3
2
− i

2
ω̂ , x =

y − 1

2
(18)

The solution of (16) which is regular at the horizon (x = 0) is the Hypergeometric function F1

(eq. (17)). Matching the scaling behavior (12) at the boundary of AdS5, we obtain a different

set of linearly independent solutions of (16),

K± = (x+ 1)−a±F (a±, c− a∓; a± − a∓ + 1; 1/(x+ 1)) (19)

We have K± ∼ x−a± as x → ∞, and correspondingly, Ψ ∼ x−h± (from eq. (14) using (18)).

Therefore, our choice is K+, since it leads to Ψ → 0 as x → ∞. It is a linear combination of F1

and F2 (eq. (17)). We easily obtain from standard Hypergeometric identities,

K+ = A0F1 + B0F2 (20)

where

A0 =
Γ(1− c)Γ(1− a− + a+)

Γ(1− a−)Γ(1− c+ a+)
, B0 =

Γ(c− 1)Γ(1 + a+ − a−)

Γ(a+)Γ(c− a−)
(21)

For the correct behavior at the horizon, we demand

B0 = 0 (22)

which leads to two different conditions,

c− a− = −n + 1 , n = 1, 2, . . . (23)

or

a+ = −n + 1 , n = 1, 2, . . . (24)

We obtain a set of quasi-normal frequencies by solving (23),

ω̂n = −2(1 + i)(n+ h+ − 3
2
) , n = 1, 2, . . . (25)
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Another set is obtained from (24),

ω̂n = 2(1− i)(n + h+ − 1) , n = 1, 2, . . . (26)

To leading order, the two sets of modes have the same imaginary parts but opposite real parts

(ω̂n ∼ 2(±1 − i)(n + h+)). This is in agreement with numerical results [18] (see eq. (1)). To

go beyond the zeroth-order approximation, it is computationally advantageous to work with the

first set of modes (25), which is a consequence of (23). The other set of modes, with positive real

part, can be obtained without additional effort by choosing the exponent +ω̂/4 at the unphysical

singularity (y = −1), instead (eq. (14)).

The above approximation K+ (eq. (19)) to the exact wave-function satisfying the Heun equa-

tion (16) may be used as the basis for a systematic calculation of corrections to the asymptotic

form (25) of quasi-normal frequencies. To this end, let us write the Heun equation (16) as

(H0 +H1)F = 0 (27)

where

H0 = (1− y2)
d2

dy2
+

{

i− 1

2
ω̂ −

(

3− i+ 1

2
ω̂

)

y

}

d

dy
− ω̂

2

(

iω̂

4
− 1− i

)

− m̂2 (28)

and

H1 =
1

y

(

d

dy
+ (i− 1)

ω̂

4
+

p̂2

4

)

(29)

The zeroth-order equation,

H0F0 = 0 (30)

is the approximation we discussed above: the Hypergeometric eq. (16) whose solution is

F0 = K+ (31)

(eq. (19)). By treating H1 as a perturbation, we may expand the wave-function,

F = F0 + F1 + . . . (32)

and solve eq. (27) perturbatively. Corrections to the quasi-normal frequencies (25) may then be

obtained once an explicit expression for the correction to F0 has been calculated.
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We shall restrict attention to the vanishing momentum case, p̂ = 0. Extension to the more

general case is straightforward. We have

F1(x) = K−(x)

∫ ∞

x

K+H1F0

W −K+(x)

∫ ∞

x

K−H1F0

W (33)

where K± are the two linearly independent solutions (19) of eq. (30) and W is their Wronskian,

W = (a+ − a−)x
−c(x+ 1)c−a+−a−−1 (34)

To study the behavior near the horizon (x → 0), we may first analytically continue the parameters

so that the integrals in (33) remain finite as x → 0. Alternatively, we may introduce a cutoff ξ

and notice that the part which is cut,

δF1(x) = K−(x)

∫ ξ

x

K+H1F0

W −K+(x)

∫ ξ

x

K−H1F0

W (35)

remains finite as x → 0. This is most easily seen by replacing the set of solutions K± with F1

and F2 (eq. (17)). Therefore, the analytic continuation of the parameters does not affect the

singularity at the horizon. Writing

F1(x) ∼ A1 + B1x
1−c (x → 0) (36)

we therefore deduce

B1 = β−

∫ ∞

0

K+H1F0

W − β+

∫ ∞

0

K−H1F0

W (37)

where

β± =
Γ(c− 1)Γ(1 + a± − a∓)

Γ(a±)Γ(c− a∓)
(38)

On account of (23), we have β+ = 0, therefore,

B1 = β−

∫ ∞

0

K+H1F0

W (39)

Hence to first order, the quasi-normal frequencies are obtained as solutions of

B0 + B1 = 0 (40)

where B0 is given by (21).
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Let us first solve the n = 1 case in order to calculate the first-order correction to ω̂1. In this

case a− = c (eq. (23)), and so

K+ = F0 = (x+ 1)−a+ (41)

Also, β− = a−−a+
a−−1

, and

H1F0 =
−a+(x+ 1)−1 + a+ − a− − 1

2(2x+ 1)
F0 (42)

It follows that

B1 =
1

a− − 1

∫ ∞

0

dxxa−(x+ 1)1−a+
−a+(x+ 1)−1 + a+ − a− − 1

2(2x+ 1)
(43)

Using
∫ ∞

0

dx
xλ(1 + x)−ν

2x+ 1
= B(1 + λ, ν − λ)F (1, 1 + λ; 1 + ν;−1) (44)

we deduce

B1 =
Γ(a− − 1)Γ(1 + a+ − a−)a−

2Γ(a+)(a+ − a−)
{F (1, 1 + a−; 1 + a+;−1)− F (1, 1 + a−; a+;−1)}

= B(a− − 1, 1 + a+ − a−)
a2−

2(a+ − a−)a+(1 + a+)
F (2, a− + 1; a+ + 2;−1)

= B(a− − 1, 1 + a+ − a−)

{

i

4h+

+ . . .

}

(45)

where we used a± = (i± 1)h+ + . . . and expanded

F (1, α; β; z) =

(

1− α

β
z

)−1

+

(

1

α
− 1

β

)

α2z2

β2

(

1− α

β
z

)−3

+ . . . (46)

for large α and β.

Setting

c− a− = ǫ (47)

we obtain from eq. (21)

B0 = ǫB(a− − 1, 1 + a+ − a−) + . . . (48)

Therefore, demanding B0 + B1 = 0 (eq. (40)), we obtain the first-order correction

ǫ = − i

4h+
(49)
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and the corresponding frequency

ω̂1 = −2(1 + i)

(

h+ − 1
2
+

i

4h+

)

(50)

Next, we discuss the case n = 2. We have

K+ = F0(x) = (x+ 1)−a+

{

1− a+
a+ − a− + 1

(x+ 1)−1

}

(51)

Working as before, we deduce

B1 =
1

2(a− − 1)(a− − 2)

∫ ∞

0

dx xa−−1(x+ 1)2−a+(2x+ 1)−1
3

∑

k=0

γk(x+ 1)−k (52)

where

γ0 = (a+ − a− + 3)(a+ − a− + 1) , γ1 = −a+(3(a+ − a− + 1) + 4) (53)

γ2 =
a+((3a+ + 1)(a+ − a− + 1) + 2a+)

a+ − a− + 1
, γ3 = − a2+(a+ + 1)

a+ − a− + 1
(54)

After integrating, we obtain

B1 =
1

2(a− − 1)(a− − 2)

3
∑

k=0

γkB(a−, a+ − a− + k − 1)F (1, a−; a+ + k − 1;−1) (55)

This is to be compared with B0 (eq. (21)). Setting

c− a− = −1 + ǫ (56)

we have

B0 = −Γ(a− − 2)Γ(1 + a+ − a−)

Γ(a+)
ǫ+ . . . (57)

We may write

B1 =
Γ(a− − 2)Γ(1 + a+ − a−)

2Γ(a+)

3
∑

k=0

γ′
k F (1, a−; a+ + k − 1;−1) (58)

where

γ′
k = γk

Γ(a+)

Γ(a+ + k − 1)

Γ(a+ − a− + k − 1)

Γ(a+ − a− + 1)
(59)

Explicitly,

γ′
0 = (a+ − 1)

(

1 +
5

a+ − a−
+

8

(a+ − a−)(a+ − a− − 1)

)

, γ′
1 = −a+

(

3 +
7

a+ − a−

)

(60)
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γ′
2 = 3a+ + 1 +

2a+
a+ − a− + 1

, γ′
3 = −a+ (61)

Notice that all coefficients are o(h+), whereas we expect to finally get an expression which is

o(1/h+). This means that terms have to conspire so that both o(h+) and o(1) contributions

cancel. In comparison, recall that in the n = 1 case, only o(1) terms appeared and they were

seen to cancel.

Let us expand the coefficients to the desired order,

γ′
0 = a+ +

4a+ + a−
a+ − a−

+
3a+ + 5a−
(a+ − a−)2

+ . . . , γ′
1 = −3a+ − 7a+

a+ − a−
(62)

γ′
2 = 3a+ +

3a+ − a−
a+ − a−

− 2a+
(a+ − a−)2

+ . . . , γ′
3 = −a+ (63)

We may also use (46) to expand the Hypergeometric functions (higher-order terms are not needed,

because
∑

γ′
k = o(1/h+)). We obtain

F (1, a−; a+ + k − 1;−1) =
a+

a+ + a−
+

a−(ka+ + (k − 2)a−)

(a+ + a−)3
+ . . . (64)

It is now a straightforward exercise to show that all terms o(h+) and o(1) cancel and we finally

obtain

B1 =
Γ(a− − 2)Γ(1 + a+ − a−)

2Γ(a+)

{

a3+ + 5a2+a− + 4a+a
2
− + 2a3−

(a2+ − a2−)
2

+ . . .

}

=
Γ(a− − 2)Γ(1 + a+ − a−)

2Γ(a+)

{

12i− 1

16h+
+ . . .

}

(65)

Using eqs. (40), (57) and (65), eq. (56) reads

c− a− = −1 +
12i− 1

32h+

(66)

The corresponding frequency is

ω̂2 = −2(1 + i)

{

h+ + 1
2
+

12i− 1

32h+
+ . . .

}

(67)

For a general n (eq. (23)), K+ = F0 contains a Polynomial of order n − 1 in (x + 1)−1 (the

Hypergeometric function in eq. (19)). Thus, the complexity of the calculation increases with

increasing n. One obtains coefficients which are of order hn−1
+ . Even though they can be seen to

cancel order-by-order, leaving an expression of order 1/h+ after the dust settles, yielding

ω̂n = −2(1 + i)(n + h+ − 3
2
) + o(1/h+) , n = 1, 2, . . . (68)
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the calculation of the integral (39) is uninspiring. We calculated the coefficient of 1/h+ in (68)

explicitly in the cases n = 1 (eq. (50)) and n = 2 (eq. (67)). It would be desirable to have an

expression for the first-order correction (39) which is manifestly of order 1/h+.

It would also be interesting to extend the above results to more general black holes in AdSd and

compare with existing numerical results (see, e.g., [17]). The number of (unphysical) singularities

increases if d 6= 3, 5, so the analysis is expected to be more complicated.
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