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1 Introduction

This paper develops a novel estimator of the daily quadratic covariation between

asset returns, based on high-frequency intraday price ranges. This so-called realized

co-range estimator combines two recent ideas that have revived the use of high-

low ranges for estimating the volatility and covariance of asset returns. First, it

employs the realized range, independently introduced by Martens and Van Dijk

(2007) and Christensen and Podolskij (2007), to estimate daily volatility by means

of the sum of squared intraday price ranges. Second, it adopts the suggestion of

Brandt and Diebold (2006) to use range-based volatility estimates of a portfolio and

the individual assets to estimate their covariance.

The increasing availability of high-frequency asset price data has led to a rapidly

expanding literature on the use of intraday prices to measure, model and forecast

daily volatility, see Andersen et al. (2006) and McAleer and Medeiros (in press) for

recent reviews. Based on the theoretical results of Barndorff-Nielsen and Shephard

(2002) and Andersen et al. (2001, 2003), in the absence of microstructure noise the

sum of squared intraday returns, called realized variance, is an unbiased and highly

efficient estimator of the daily quadratic variation. The benefits of high-frequency

data continue to hold in a multivariate context as intraday returns provide more

accurate estimates of the daily covariance between asset returns. Barndorff-Nielsen

and Shephard (2004) show that the realized covariance, that is, the sum of cross-

products of intraday returns, converges in probability to the quadratic covariation.

The economic value of using realized covariances in a volatility timing strategy has

been explored by Fleming et al. (2003) and De Pooter et al. (in press), who find that

a risk-averse investor is willing to pay between 50 and 200 basis points per annum

to switch from covariance measurement based on daily data to intraday data.

Intraday price ranges have only recently been considered for the purpose of esti-

mating daily volatility. This might appear surprising, given that it has been known

since Parkinson (1980) that the high-low range is considerably more efficient as an

estimator of volatility than the squared return, with a variance that is five times

smaller. Martens and Van Dijk (2007) and Christensen and Podolskij (2007) ex-

ploit this result for developing an estimator of daily volatility based on intraday

ranges, which is more efficient than the realized variance by the same 5:1 ratio. One
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possible reason for ignoring the range in the context of high-frequency data is that

the extension to the multivariate case, that is, to estimate the covariation between

asset returns, was an unresolved challenge until the recent proposal by Brandt and

Diebold (2006). This exploits the fact that, under no-arbitrage conditions, the co-

variance between two assets can be expressed in terms of their individual variances

and the variance of a portfolio of the two assets. The range-based covariance esti-

mator is then obtained by using daily price ranges to estimate these variances. The

main contribution of this paper is to combine these two ideas to provide an intraday

range-based covariance estimator. In particular, we employ the realized range of

Martens and Van Dijk (2007) and Christensen and Podolskij (2007) for estimating

the daily volatilities that enter the co-range estimator of Brandt and Diebold (2006),

which results in the novel realized co-range estimator. Given the relative efficiency

of the realized range estimator, we expect the realized co-range also to be more

efficient than the realized covariance.

Market microstructure effects pose a serious challenge to the use of high-frequency

data. In the univariate case, the most important effect is due to bid-ask bounce,

which renders the standard realized variance estimator biased and inconsistent. This

has led to several proposals for bias-corrected realized volatility estimators on the

one hand, and for determining the optimal sampling frequency for the standard re-

alized variance estimator on the other hand.1 As discussed in Martens and Van

Dijk (2007) and Christensen and Podolskij (2007), the realized range estimator in

addition suffers from infrequent trading. This causes a downward bias as the ob-

served minimum and maximum price over- and underestimate the true minimum

and maximum, respectively. In the multivariate case, the greatest concern for real-

ized covariance estimators is the presence of non-synchronous trading. As a result of

assets trading at different times, estimates of their covariance will be biased towards

zero. This so-called Epps (1979) effect becomes worse with increasing sampling fre-

quency. The impact of microstructure noise on the realized covariance estimator has

recently received a considerable amount of attention. For recent contributions we

1The choice of sampling frequency reflects the trade-off between accuracy, which is theoretically
optimized using the highest possible frequency, and microstructure noise, which calls for lowering
the data frequency. See Oomen (2005), Zhang et al. (2005), Aı̈t-Sahalia et al. (2005), Bandi and
Russell (in press, 2006), Hansen and Lunde (2006) and Awartani et al. (2007) among others, for
recent discussions.
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refer to Bandi and Russell (in press), Sheppard (2005), Hayashi and Yoshida (2005),

Bandi et al. (in press), Griffin and Oomen (2006), Zhang (2006) and Voev and Lunde

(2007).

In this paper we propose the use of an additive bias-correction for the realized

co-range, where we add the average difference between the covariance estimates

based on daily ranges and on intraday ranges over the previous Q trading days to

the standard realized co-range estimate. The main advantage of this additive bias-

correction is that it deals with the “net” bias that arises due to different possible

microstructure effects. This contrasts to other bias-corrections that have been put

forward in the context of range-based volatility estimators, which correct only for a

single source of bias such as infrequent trading, see Rogers and Satchell (1991) and

Christensen and Podolskij (2007) for examples.

We assess the performance of the realized co-range estimator by means of ex-

tensive simulation experiments and an empirical application. In the simulations

we start from an idealized continuous-time setting without microstructure noise,

where we find that the realized co-range outperforms the returns-based realized co-

variance estimator, as expected. In more realistic settings that incorporate bid-ask

bounce, infrequent trading and non-synchronous trading, we find that the impact

of the different microstructure effects is reduced successfully by using the additive

bias-correction. The bias-corrected realized co-range is more efficient than the cor-

rected realized covariance estimator for plausible levels of noise, as is the case for

the uncorrected daily co-range compared to the daily covariance estimator.

In the empirical application we focus on the economic value of high-frequency

intraday ranges for estimating covariances. We adopt the framework developed by

Fleming et al. (2003) and use the realized co-range in a dynamic volatility tim-

ing strategy for constructing mean-variance efficient portfolios consisting of futures

on stocks, bonds and gold. Sampling at the popular 5-minute frequency, we find

that the bias-corrected realized co-range and realized covariance estimators provide

similar results in terms of portfolio return and risk, before transaction costs. At

first sight, this indicates that both estimators render similar (co)variance dynamics.

Closer inspection reveals that the correlation estimates obtained from the realized

co-range are less ‘noisy’ than those resulting from the realized covariance. In the

volatility timing strategy this causes less variation in the realized co-range portfolio
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weights, which implies lower turnover and, hence, lower transaction costs. Tak-

ing transaction costs into account, we find that a mean-variance investor would be

willing to pay 60 basis points per annum to switch from the realized covariance to

the realized co-range when the decay parameter of the used exponential weighting

scheme is estimated using a maximum-likelihood procedure. A sensitivity analysis of

the decay parameter, which determines how much weight is put on recent estimates

for predicting covariances, illustrates that the realized co-range outperforms the re-

alized covariance also in terms of risk-return characteristics and therefore Sharpe

ratios when more weight is put on the most recent estimate.

The remainder of this paper is organized as follows. In Section 2 we discuss the

realized (co-)variance and realized (co-)range estimators. In Section 3 we use Monte

Carlo simulations to analyze the properties of the realized co-range and realized

covariance estimators in the presence of noise. In Section 4 we consider the empirical

application to volatility timing strategies. We conclude in Section 5.

2 Volatility and covariation estimators

The traditional way to estimate daily volatility ex post is by means of the daily

squared return. Although this estimator is unbiased, it also is very noisy and has a

high variance. In order to improve accuracy, high-frequency intra-day returns may

be used. Dividing day t into M non-overlapping intervals of length ∆ = 1/M , the

realized variance estimator is given by

RV ∆
t ≡

M∑
m=1

(log Pt,m − log Pt,m−1)
2 (1)

where Pt,m is the last observed transaction price during the m-th interval on day

t. In the absence of noise and under weak regularity conditions for the stochastic

log-price process, the realized variance is an unbiased and consistent estimator of the

daily integrated variance, see Barndorff-Nielsen and Shephard (2002) and Andersen

et al. (2003), among others.

Further efficiency gains can be achieved by exploiting the superior properties of

the range as a volatility proxy compared to squared returns. In particular, Martens

and Van Dijk (2007) and Christensen and Podolskij (2007) define the realized range
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as the sum of intraday price ranges, that is,

RR∆
t =

M∑
m=1

1

4 log 2
(log Ht,m − log Lt,m)2, (2)

where the high price Ht,m and the low price Lt,m are defined as the maximum and

minimum, respectively, of all transaction prices observed during the m-th interval on

day t. Assuming that the asset price Pt follows a geometric Brownian motion with

constant instantaneous variance σ2, the variance of the realized range estimator

is equal to 0.407σ4∆2, compared to 2σ4∆2 for the realized variance. Hence, the

variance of the realized range is approximately five times smaller than the variance

of the realized variance estimator. Christensen and Podolskij (2007) show that the

realized range remains consistent and relatively efficient in case volatility is time-

varying, requiring only mild assumptions on the stochastic volatility process σt.

2.1 Realized covariance and realized co-range

The intraday return-based realized variance in (1) provides an efficient estimator for

the variances of individual asset returns. Similarly, the realized covariance between

assets i and j can be obtained by summing cross-products of intraday returns,

RV COV ∆
t =

M∑
m=1

rt,i,mrt,j,m (3)

where rt,i,m is the continuously compounded return on asset i during the m-th in-

terval on day t. Barndorff-Nielsen and Shephard (2004) study the properties of the

realized covariance, showing that it is consistent for the daily integrated covariation

under mild regularity conditions.

Brandt and Diebold (2006) introduce a simple but effective way to estimate the

covariance by combining range-based estimates of the variances of two individual

assets and of a portfolio composed of these assets. Consider a portfolio of assets i

and j with weights λi and λj = 1− λi, with asset returns denoted as ri and rj. The

variance of the portfolio return rp ≡ λiri + λjrj is given by

Var[rp] = λ2
i Var[ri] + λ2

jVar[rj] + 2λiλjCov[ri, rj],

such that, after rearranging

Cov[ri, rj] =
1

2λiλj

(
Var[rp] − λ2

i Var[ri] − λ2
jVar[rj]

)
. (4)
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The daily co-range estimator of Brandt and Diebold (2006) is obtained by using the

daily high-low range of the corresponding prices of the portfolio and the individual

assets as estimators of three variances on the right-hand side of (4). Brandt and

Diebold (2006) find that, in the absence of noise, the efficiency of the daily co-range

is between that of the realized covariance in (3) computed using 3-hour and 6-hour

intraday returns. Furthermore, the daily co-range turns out to be robust to the

effects of microstructure noise such as bid-ask bounce and asynchronous trading,

which severely affect the realized covariance.

We combine the idea of using intraday ranges for estimating daily volatilities,

with the idea of estimating the daily covariance from estimates of the volatilities

of the individual assets and of the portfolio. Specifically, using the realized range

defined in (2) for estimating the three variances on the right-hand side of (4), we

obtain the realized co-range estimator

RRCOV ∆
t =

1

2λiλj

(
RR∆

p,t − λ2
i RR∆

i,t − λ2
jRR∆

j,t

)
, (5)

where RRp,t is the realized range of the portfolio, and RRi,t and RRj,t are the realized

ranges of the individual assets. Each realized range is estimated using (2).2 It is

important to note that the high (low) price of asset i in a given intraday interval

will probably be obtained at a different point in time than the high (low) price of

asset j. The high-low range of the portfolio then is not the same as the weighted

sum of the individual ranges. Therefore, it is necessary to construct a portfolio price

path at the highest possible sampling frequency and estimate the realized range of

the portfolio, RRp,t, using (2).

2.2 Bias-correction

As discussed in the introduction, market microstructure effects hamper the use of

high-frequency data for estimating daily variances and covariances. First, both the

2Note that (4) can also be used to estimate the daily covariance with realized variances, by
using RV as defined in (1) to estimate the variances on the right-hand side. In the absence of
noise, this yields exactly the realized covariance as given in (3), as

1
2λiλj

(
M∑

m=1

(λiri,m + λjrj,m)2 − λ2
i

M∑
m=1

r2
i,m − λ2

j

M∑
m=1

r2
j,m) =

M∑
m=1

ri,mrj,m.
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realized variance in (1) and the realized range in (2) suffer from an upward bias

due to the presence of bid-ask bounce. For example, when trading is continuous,

the observed high price in a given interval is an ask and the observed low price is a

bid with probability close to 1. The realized range therefore overestimates the true

daily variance by an amount equal to the spread s times the number of intraday

intervals M . Second, while infrequent trading does not affect the realized variance,

it leads to a downward bias in the realized range. When the continuous underlying

price process is only observed at discrete points in time, the observed high price

during a given intraday interval underestimates the true maximum. Similarly, the

observed low price overestimates the true minimum. Corrections for the infrequent

trading bias in range-based volatility estimators have been proposed by Rogers and

Satchell (1991) and Christensen and Podolskij (2007). Martens and Van Dijk (2007)

suggest to deal with the “net” bias due to the combined effects of bid-ask bounce and

infrequent trading on the realized range by applying a multiplicative bias-correction,

see also Fleming et al. (2003). Specifically, the scaled realized range is defined by(∑Q
q=1 RRt−q∑Q
q=1 RR∆

t−q

)
RR∆

t , (6)

where RRt ≡ RR1
t is the daily range. Hence, the multiplicative correction factor is

the ratio of the average daily range estimator and the average of the realized range

over the past Q days.

Although Martens and Van Dijk (2007) demonstrate that the multiplicative cor-

rection in (6) is quite effective in removing the bias in the realized range, here we

consider an alternative, additive correction. This is motivated by observing that the

presence of market microstructure effects is often represented by assuming that the

observed log price pit is equal to the efficient log price p∗it plus an additive noise term

εit:

pit = p∗it + εit, (7)

where εit is assumed to have zero mean and variance σ2
ε . In this set-up, the realized

variance based on observed returns converges to the true integrated variance plus a

bias term determined by the covariance between p∗it and εit (which often is assumed

to be zero, but see the discussion in Hansen and Lunde (2006)) and the noise variance

σ2
ε . This suggests that we may use an additive bias-correction, and define a scaled
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realized variance estimator as

RV ∆
S,t = RV ∆

t +
1

Q

(
Q∑

q=1

RVt−q −
Q∑

q=1

RV ∆
t−q

)
, (8)

where RVt ≡ RV 1
t is the daily squared return. As discussed in Christensen et al. (in

press), deriving consistent estimators of the integrated variance based on intraday

high-low ranges is difficult, if not impossible in the presence of general microstructure

noise as in (7). For that reason, we adopt a pragmatic approach and consider a

realized range estimator with an additive bias-correction of the form (8), that is,

RR∆
S,t = RR∆

t +
1

Q

(
Q∑

q=1

RRt−q −
Q∑

q=1

RR∆
t−q

)
. (9)

For covariance estimators based on intraday data, the most important microstruc-

ture effect is the occurrence of non-synchronous trading. Using returns or ranges over

fixed intraday intervals results in covariance estimates that are biased towards zero.

This so-called Epps (1979) effect becomes worse with increasing sampling frequency,

and in the limit the standard realized covariance and realized co-range estimators

converge to zero. Most of the recent proposals for alternative high-frequency covari-

ance estimators are in fact attempts to fix the downward bias due to non-synchronous

trading, see Hayashi and Yoshida (2005), Griffin and Oomen (2006), Zhang (2006),

and Voev and Lunde (2007), among others. Here we limit ourselves to implementing

the additive bias-correction discussed above for the realized co-range and realized

covariance as well.

3 Monte Carlo simulation

In this section we investigate the performance of the realized co-range estimator

in a controlled environment by means of Monte Carlo simulations. Throughout

we compare the realized co-range estimator with the realized covariance estimator.

Of particular interest are the effects of different microstructure frictions on the two

estimators and the usefulness of the additive bias-correction described in the previous

section.
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Simulation design

We simulate prices for two correlated assets for 24-hour days, assuming that trading

takes place around the clock. For each day t, the initial prices for both assets are

set equal to 1, and subsequent log prices for asset i = 1, 2 are simulated using

log P ∗
i,t+k/K = log P ∗

i,t+(k−1)/K + εi,t+k/K , i = 1, 2, k = 1, 2, . . . , K, (10)

where K is the number of prices per day. We simulate 100 prices per second,

such that K = 8, 640, 000, where price observations are equidistant and occur syn-

chronously for the two assets. The shocks εi,t+k/K are serially uncorrelated and

normally distributed with mean zero and variance σ2
i /(D ·K), where D is the num-

ber of trading days in a year, which we set equal to 250. The annualized standard

deviations σi of the log price processes are set equal to 0.20 and 0.40 (20% and 40%)

for assets 1 and 2, respectively. The shocks ε1,t+k/K and ε2,t+k/K are contemporane-

ously correlated with correlation coefficient ρ, which we set equal to 0.50, resulting in

a covariance between the asset returns of 0.04. We simulate prices for 5000 trading

days in all experiments reported below.

We consider four different cases. Initially we aim to approximate the ideal

situation with continuous trading and no market frictions and assume that all

K = 8, 640, 000 prices on a given day are observed. Second, we consider the ef-

fect of infrequent and non-synchronous trading. Infrequent trading is implemented

by imposing that, given the price path obtained from (10), the probability to ac-

tually observe the price P ∗
i,t+k/K is equal to pobs = 1/(100τ). Put differently, the

price of each asset is observed on average only every τ seconds. Price observations

for the two assets occur independently, such that in addition we observe prices non-

synchronously. Third, we consider the effects of bid-ask bounce. For this purpose we

assume that transactions take place either at the ask price or at the bid price, which

are equal to the true price plus and minus half the spread, respectively. Hence, the

actually observed price Pi,t+k/K is equal to P ∗
i,t+k/K +s/2 (ask) or P ∗

i,t+k/K−s/2 (bid),

where s is the bid-ask spread and P ∗
i,t+k/K is the true price obtained from (10). We

assume that bid and ask prices occur equally likely and that the occurrence of bid

and ask prices is independent across assets. In the fourth and final case, we consider

the joint effects of infrequent and non-synchronous trading and bid-ask bounce by

combining the specifications for these frictions as given above.
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Computational details

We assess the potential merits of using intraday ranges for measuring (daily) co-

movement by computing both the realized co-range and the realized covariance. To

do so we divide the trading day into ∆-minute intervals, which is referred to as the

∆-minute frequency below. For example when ∆ = 5 we divide the 24-hour day into

288 five-minute intervals. For the realized covariance at this sampling frequency the

cross-products of five-minute returns are summed to obtain the realized covariance

at that frequency, as in (3). The realized co-range is computed using (5) as follows.

For the two assets the high and low prices are computed per five-minute interval and

the resulting five-minute squared ranges are summed to obtain the realized ranges

for the day, as in (2). To obtain the realized range of a portfolio consisting of the

two assets, we first compute the intraday prices of an equally-weighted portfolio

setting λi = 0.5, i = 1, 2, and assuming continuous rebalancing throughout the

day.3 Note that in the case of synchronous price observations for the two assets

we can compute exact portfolio prices at each instant. In case of non-synchronous

trading the portfolio price is updated each time a new price for one of the two assets

occurs, combining this with the most recently observed (hence stale) price for the

other asset. Second, the portfolio prices are used to compute the corresponding

realized range in the usual way. This is then combined with the realized ranges

for the two individual assets using (5) to compute the realized co-range. We also

consider the bias-corrected versions of the realized covariance and the realized co-

range, computed according to (8) and (9), respectively.4 In the experiments with

non-trading and bid-ask bounce, the characteristics of these microstructure frictions

are identical for all trading days, such that in principle we could use a large number

of trading days Q to compute the additive adjustment factor to fully explore the

merits of the bias-adjustment procedure. In practice, however, the characteristics

of microstructure noise are likely to change over time and a smaller value of Q

3We perform a sensitivity analysis on the portfolio weights by experimenting with λ1 =
0.1, 0.3, 0.5, 0.7, 0.9. We find that the choice of portfolio weights has only minor influence on
the efficiency (RMSE) of the co-range estimator. Detailed simulation results are available upon
request.

4We also considered an alternative bias-correction for the realized co-range, by computing it ac-
cording to (5) but using the scaled realized ranges as defined in (9). This “indirect” bias-correction
results in qualitatively and quantitatively similar results (which are available upon request) as the
“direct” bias-correction reported in this section.
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seems more appropriate. We therefore set Q = 66 throughout the simulations. The

sensitivity of the results with respect to the value of Q is discussed in more detail

below. For each selected frequency we compute the mean and Root Mean Squared

Error (RMSE) for the various estimators of the assets’ covariation, taken over 5000

simulated trading days.

Case I: Continuous trading and no bid-ask bounce

Results for the case of continuous trading and no bid-ask bounce are presented in

Table 1.

- insert Table 1 about here -

As expected, in this case the RMSE of the realized co-range is always substan-

tially lower than that of the realized covariance at the same frequency. In fact, for

all but the very highest sampling frequencies the ratio of the RMSEs is close to
√

5, which is the ratio of the standard deviations of the daily squared returns and

daily ranges. Hence, the same efficiency factor seems to apply to the intraday range-

and return-based measures of covariation examined here. The slight loss in relative

efficiency of the realized co-range at the highest sampling frequencies is due to the

downward bias it experiences when the underlying price ranges are computed over

very short intervals, as shown in the second column of Table 1. This is inherent to

the nature of the high-low range: In case the price path is not observed continuously

(in this case we observe ‘only’ 6000 prices per minute) the observed minimum and

maximum over- and underestimate the true high and low prices, respectively, such

that the observed range underestimates the true range. We investigate the effects of

infrequent trading in more detail below.

In the last row of this table, labeled ∆ = 1440 minutes, the realized co-range

actually is the daily co-range suggested by Brandt and Diebold (2006), while the

realized covariance equals the cross-product of daily returns. The RMSE of the daily

co-range is substantially lower at 4.044, compared to 8.830 for the cross-product of

daily returns. Similar to the findings of Brandt and Diebold (2006), and Martens

and Van Dijk (2007), the realized covariance requires the 4- to 6-hour (240 to 360

minutes) frequency to achieve an RMSE that is comparable to the daily co-range.
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Case II: Infrequent and non-synchronous trading, no bid-ask bounce

Table 2 shows the results when infrequent trading occurs, such that the price is

observed on average only every τ = 12 seconds.5

- insert Table 2 about here -

The results for the realized co-range in Table 2 (column 1) show that the RMSE

first decreases when increasing the sampling frequency up to 20 minutes. Then it

increases again for higher frequencies because the larger bias due to non-trading

(and hence underestimating the range for each intraday interval) then outweighs the

reduction in the standard deviation of the estimates. The realized covariance esti-

mator is not affected by infrequent trading6 but does suffer from non-synchronous

trading in terms of a downward bias. As a result, at the 15-minute frequency the

realized co-range still is a more accurate measure of co-movement than the corre-

sponding realized covariance, but at higher frequencies the realized covariance has a

lower RMSE than the realized co-range. Of course the exact frequency at which one

estimator improves over the other will depend on the trading intensity. For example,

when transaction prices are observed once per second on average every second the

realized co-range improves over the realized covariance up to the five-minute fre-

quency. The results for RRCOV ∆
S,t in Table 2 demonstrate that bias-correcting the

realized co-range eliminates the bias to a large extent but not completely, which is

due to the fact that the daily co-range also is somewhat biased downward due to the

infrequent and non-synchronous trading. The bias-adjustment reduces the RMSE of

the realized co-range considerably, such that RRCOV ∆
S,t is more accurate than the

realized covariance for all sampling frequencies except 2-5 minutes.

Case III: Continuous trading and bid-ask bounce

Next, we consider the effects of bid-ask bounce. As in Brandt and Diebold (2006),

we set the spread s equal to 0.0005 (or 0.05% of the starting price of 1).7

5Results for other trading frequencies are summarized at the end of this section, with details
being available upon request.

6This becomes evident from unreported results from simulations with infrequent but simulta-
neous trading for the two assets. Detailed results are available upon request.

7Results for other magnitudes of the bid-ask spread are summarized at the end of this section,
with details being available upon request.
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- insert Table 3 about here -

The results in Table 3 illustrate that, as expected, the realized co-range suffers

from a pronounced upward bias, which gets worse as the sampling frequency in-

creases. The bias in the realized co-range is caused by the fact that with continuous

price observations the observed range for the individual assets will overestimate the

true ranges by a quantity close to the spread, as the maximum price will be an ask

and the minimum price will be a bid with probability close to 1. For the equally-

weighted portfolio, the true range is overestimated by the bid-ask spread as well

when trading is continuous. Hence, the net effect on the realized co-range in (5) is

an upward bias. The realized covariance is not affected by bid-ask spread, which

also is conform expectations. In this particular parameter configuration the realized

co-range outperforms the realized covariance up to the 45-minute frequency. For

higher sampling frequencies the RMSE of the realized covariance is smaller. Bias-

correcting the realized co-range works remarkably well, in the sense that the bias is

removed completely and the RMSE values are almost brought back to the original

level observed for RRCOV ∆
S,t in the ideal case without bid-ask bounce shown in Table

1. For sampling frequencies of 10 minutes or lower, the RMSE of the bias-corrected

realized co-range is smaller than the RMSE of the realized covariance.

Case IV: Infrequent and non-synchronous trading and bid-ask bounce

In reality, bid-ask bounce, infrequent trading and non-synchronous trading of course

are jointly present. We examine this situation by combining the previous specifica-

tions for these frictions. Results for this experiment are shown in Table 4.

- insert Table 4 about here -

The realized co-range still suffers from an upward bias, but it is of a considerably

smaller magnitude than in the case of bid-ask bounce only due to the off-setting

negative bias induced by infrequent and non-synchronous trading. As a result, the

realized co-range now has a lower RMSE than the realized covariance at all sampling

frequencies. The overall minimum RMSE for the realized co-range is obtained at

the 2-minute sampling frequency and equals 0.205. For the realized covariance the

optimal frequency is the 3-minute frequency for which the RMSE is 0.551. Note that

in this particular setting, where the different biases affecting the realized co-range
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approximately cancel out, bias-adjustment is not attractive. Although the mean

of RRCOV ∆
S,t is closer to the true covariance of 4, the variance increases consid-

erable due to the bias-adjustment such that the RMSE increases compared to the

‘raw’ realized co-range RRCOV ∆
t . Finally, in Tables and 2 and 4, we also observe

that bias-correcting the realized covariance is never worthwhile, as apparently the

reduction in bias does not outweigh the increase in variance, such that the RMSE

of RV COV ∆
S,t is always substantially higher than the RMSE of the ‘raw’ realized

covariance RV COV ∆
t .

Sensitivity analysis: Trading frequency, spread size, bias correction

Whether or not the realized co-range improves upon the realized covariance, and

whether or not bias-adjustment is appropriate of course depends on the (relative)

magnitudes of the market microstructure frictions. For that reason, Table 5 provides

an overview of the different covariance estimators for different trading frequencies

τ , ranging from 2 to 60 seconds, and different bid-ask spreads s, ranging from 0 to

0.00075. For each combination of τ and s, the table shows the optimal sampling

frequency for the four covariance estimators, along with the corresponding RMSE

and mean. The covariance estimator that achieves the lowest RMSE for a given

combination of τ and s is shown in italics. The patterns that can be observed in this

table are as expected. First, in the absence of bid-ask bounce (first column, s = 0),

the realized covariance estimator performs best when prices are observed relatively

frequently, up to once per 15 seconds on average. This is due to the downward bias

which only affects the realized co-range. However, when trading is less frequent, the

adjusted realized co-range achieves the lowest RMSE.

- insert Table 5 about here -

Second, in the presence of bid-ask bounce, the unadjusted realized co-range per-

forms best for those combinations of τ and s for which the downward bias due to

infrequent trading and the upward bias due to bid-ask bounce approximately cancel.

This is the case for s equal to 0.00025 and τ equal to 3 to 6 seconds, for s equal to

0.0005 and τ equal to 10 to 20 seconds, and for s equal to 0.00075 and τ equal to 20

to 40 seconds. Hence the higher the spread (upward bias) the less frequent trading

should be (downward bias) to have the two biases offset each other. Note that in
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financial markets there is indeed a strong negative relationship between spread and

trading frequency: The less an asset trades, the higher the spread. Hence one would

expect that these simulated cases will arise in actual data, and this will favor the

realized co-range.

Third, when trading occurs relatively frequently, such that the upward bias dom-

inates, the realized covariance is preferred. On the other hand, when trading occurs

relatively infrequently, such that the downward bias dominates, the adjusted real-

ized co-range renders the lowest RMSE values. Note that for the largest spread

considered here, s = 0.00075, the adjusted realized co-range in fact also outperforms

the realized covariance for ‘frequent’ trading at once per 10-15 seconds. Unreported

results for even higher values of s (0.001) show that in that case, the bias-corrected

realized co-range dominates for all trading frequencies.

Fourth, Table 5 shows that for the bias-corrected realized covariance and realized

co-range, apart from a few exceptions, the highest possible sampling frequency leads

to the lowest RMSE. This is not surprising given that sampling more frequently leads

to a lower standard deviation of the covariance estimators, which in the absence of

bias also implies a lower RMSE. For the unadjusted realized covariance, we observe

that less frequent trading always leads to less frequent sampling to achieve the lowest

possible RMSE. For the realized co-range this only holds in the absence of bid-ask

bounce. When bid-ask bounce does occur next to infrequent and non-synchronous

trading, it sometimes pays off to sample ‘too frequently’, such that the positive and

negative biases approximately cancel.

Finally, as noted in the previous section, the number of trading days Q used to

compute the correction factor for RRCOV ∆
S,t is a crucial choice to be made. If the

trading intensity and the spread are constant over time, Q may be set large in order

to gain accuracy. On the other hand, when the magnitude of these microstructure

frictions varies over time, only the recent price history should be used and Q should

be set fairly small. Figure 1 shows the RMSE of the bias-corrected realized co-range

for the experiment with infrequent trading as a function of Q, with the rightmost

point of each line showing the RMSE for Q = 5000 as given in Table 4. The RMSE

monotonically declines as q increases, but the largest gains occur up to Q = 100,

beyond which the RMSE more or less stabilizes. Hence, our choice of Q = 66 does

not seem unreasonable. Also note that the reduction in RMSE due to increasing Q
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is largest for higher sampling frequencies.

- insert Figure 1 about here -

Concluding, the simulation experiments quite convincingly demonstrate the po-

tential of the realized co-range as a measure of daily co-movement among assets.

In case of continuous trading and no market frictions it always improves upon the

realized covariance when using the same sampling frequency. In reality trading is

non-continuous and non-synchronous and observed prices are bid and ask prices.

Although the realized co-range suffers from biases due to each of these market fric-

tions, in realistic settings the downward bias due to infrequent and non-synchronous

trading may approximately cancel against the upward bias due to bid-ask bounce.

Hence even in the presence of market microstructure effects, the realized co-range

is likely to outperform the realized covariance, which only is affected negatively by

non-synchronous trading. In addition, bias-correcting the realized co-range with the

recent historical average (relative) level of the daily co-range is an effective procedure

to restore the efficiency of the realized co-range in case the different biases do not

offset each other.

4 Empirical application

In this section we study the empirical usefulness of the realized co-range by evaluat-

ing its performance in a dynamic volatility timing strategy, adopting the framework

developed by Fleming et al. (2001, 2003). We consider an investor who uses con-

ditional mean-variance analysis for constructing a portfolio with minimum variance

given a specific target return. The portfolio is dynamic in the sense that optimal

weights are re-computed daily. The investor follows a volatility-timing strategy, as

the portfolio weights are based on a forecast of the conditional covariance matrix

while expected returns are held constant. We assess the merits of using the realized

co-range to construct these forecasts, relative to the realized covariance. We also

include their daily counterparts in the comparison.

4.1 Data

Following Fleming et al. (2003), we consider portfolios consisting of stocks, bonds

and gold. We assume that the investor trades futures contracts to construct her
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portfolio, to avoid short-selling restrictions and to save on transactions costs. We

obtain intraday transactions data for futures contracts on stocks (S&P500, Chicago

Mercantile Exchange, 8:30 am - 15:15 pm), US T-bonds (Chicago Board of Trade,

8:00 am - 14:00 pm) and gold (New York Mercantile Exchange, 7:20 am - 13:30

pm8), for the period from January 3, 1984 to December 31, 2006.9

We exclude all days on which any of the three markets is closed, leaving a total of

5592 days of high-frequency data on which the three contracts traded simultaneously.

Our sample period includes the October 19, 1987 stock market crash and September

11, 2001. The bid-ask spreads on the three futures contracts were much higher in the

days following the October 1987 crash, for this reason we follow Fleming et al. (2003)

by replacing the high-frequency covariance estimators by their daily counterparts for

the period October 19 to 30, 1987. We exclude the days following September 11, 2001

as markets were closed. The very large negative overnight return for the September

11-17 period is excluded as well.

The high-frequency data only covers the part of the day during which futures

markets are open. Fleming et al. (2003) and De Pooter et al. (in press) add the

cross-product of overnight returns to the realized covariance estimate in order to

obtain a measure of the covariation during a complete 24-hour day. Both studies find

that incorporating overnight returns adds information and improves the performance

of the volatility timing strategy. We choose not to include the overnight returns,

however, as adding the same overnight returns to the realized co-range and realized

covariance estimators would diminish the difference between these estimators and,

presumably, any differences in their overall performance. Since both estimators aim

to estimate the integrated covariation they are already expected to behave similarly

to a large extent.

At any given day we use prices of the nearby futures contract in each market

and roll to the second nearby contract for gold and bonds when the nearby contract

enters its final month. For stocks we roll to the second nearby contract at 13:30 pm

on the 11th trading day in the final month. We assume that the investor updates her

portfolio daily at 13:30 pm. For the daily return series that is used to evaluate the

investment strategy, we use the last transaction prices occurring before that time.

8All trading hours are standardized to the EST time zone
9The data is obtained from Tick Data, http://www.tickdata.com/.
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In case a contract is rolled forward on day t+1 we use the price at 13:30 pm on day

t of the ‘new’ contract to compute the daily return for day t + 1.

The intraday time grid spans the period 7:20 am - 13:30 pm, where the 13:30

closing time is motivated by the closing time of the trade in gold futures. We

adopt the popular five-minute frequency for computing the realized (co-)range and

realized (co-)variance. To compute the five-minute returns that are used in the

latter estimator, we use the last transaction prices in each intraday interval. For

the volatility estimates based on the realized variances and realized ranges we use

the complete trading period. For the covariance estimates, we adopt the following

two-step procedure of Fleming et al. (2003). First, we construct volatilities and

covariances for the contemporaneous time span of intraday data, from which we

back out estimates of the correlations among the three assets. Second, we convert

these correlations back into covariances by using the realized variances and realized

ranges for the whole day.

- insert Table 6 about here -

Table 6 displays summary statistics for the annualized daily returns and the

high-frequency volatility and correlation estimates. For all three assets we find that

the mean of the realized range is smaller than the mean of the realized variance,

suggesting that infrequent trading is more important than bid-ask bounce for these

futures contracts, such that the realized range is biased downward. As expected, the

standard deviation of the realized range turns out to be substantially smaller than

that of the realized variance. This carries over to the multivariate case, where the

standard deviation of the realized correlations estimated by means of the co-range

is smaller than the standard deviation of the correlations implied by the realized

covariance . This indicates that the realized co-range is less noisy than the realized

covariance. Graphical support for this result is illustrated in Figure 2. Although

both estimators provide similar correlation patterns, the daily correlations based

on the realized covariance are more volatile and show much more spikes than the

correlations based on the realized co-range.

- insert Figure 2 about here -
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4.2 Volatility timing

The investor uses conditional mean-variance analysis for forming a portfolio with

minimum variance given a specific target return. The portfolio weights wt follow from

solving the standard quadratic programming problem, where the portfolio variance

(σ2
p = w′

tΣtwt) is minimized subject to a target portfolio return (µp = w′
tµ). The

resulting minimum-variance weights are given by

wt =
µpΣ

−1
t µt

µ′
tΣ

−1
t µt

, (11)

where Σt is the conditional covariance matrix for day t and µt is the vector of

conditional expected returns. In general, these unrestricted portfolio weights do not

add up to one. We include a risk-free asset (cash) with weight 1 − w′
tι, where ι is

a vector of ones, which makes the portfolio fully invested. Given that we want to

focus on differences in the investment strategy’s performance through the dynamics

of Σt, we keep the expected returns constant by setting µt = µ, where µ is taken to

be the vector of full-sample mean returns, see line 1 of Table 6. Following Fleming

et al. (2003), we set the annualized target portfolio return µp = 10% and assume a

constant risk-free rate rf = 6%.

Implementing the volatility timing strategy requires an estimate of the con-

ditional covariance matrix Σt in (11). Following Fleming et al. (2003), we use

backward-looking ‘rolling’ estimators using an exponential weighting scheme, mo-

tivated by the work of Foster and Nelson (1996) and Andreou and Ghysels (2002).

The general expression for the rolling daily conditional covariance estimator for day

t is given by

Σ̂t = exp(−α)Σ̂t−1 + α exp(−α)Vt−1, (12)

where α is the decay parameter and Vt−1 is an estimate of the realized covariance

matrix on day t − 1. We expect that the decay parameter decreases with the level

of noise in Vt−1. Our main interest lies in the performance of the volatility tim-

ing strategy when using the realized (co-)range in (2) and (5) to construct Vt−1,

compared to using the realized (co-)variance in (1) and (3). In order to reduce the

effects of microstructure noise, we follow Fleming et al. (2003) and employ the bias-

corrected versions of these estimators, as discussed in Section 2.2. For the additive

bias-correction we set Q = 22, that is, we use a shorter history compared to the sim-

ulations in Section 3. This is motivated by the fact that the rolling estimator in (12)
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‘smooths’ the realized estimators, which also reduces the effects of noise to a certain

extent. To gauge the benefits of using intraday data, we also include estimators of

Vt−1 based on daily (close-to-open) returns and daily (co-)ranges.

The decay parameter α in (12) is estimated by maximizing the log-likelihood

function corresponding with the model

rt = µ + Σ̂
1
2
t zt (13)

where µ is the vector of daily expected returns, Σ̂t is the conditional covariance ma-

trix obtained from (12), and zt ∼ NID(0, I). The likelihood function is maximized

using the complete sample period, as in Fleming et al. (2003), although we use the

first year of our sample as a burn-in period for the (co)variance dynamics.10 The

maximum-likelihood procedure results in a decay parameter of 0.082 for the daily

co-range and 0.0298 for the daily covariance. For the intraday based covariation

estimators we find decay parameters equal to 0.064 and 0.062 for the bias-corrected

realized co-range and realized covariance, respectively. The daily co-range has a

much larger decay parameter than the daily covariance estimator, this suggests that

the co-range is less noisy.

The daily portfolio weights (11) are based on the one day ahead forecast of

the bias-corrected rolling covariance matrix estimator in (12). The daily realized

returns of the portfolio are obtained as w′
trt, where rt is the vector of daily returns.

Below we report the annualized average portfolio returns, volatility and the Sharpe

Ratio (SR). Furthermore we also keep track of the turnover of the portfolio using

TOt = |wt − wt−1|′ι to provide insight into the transaction costs arising from daily

rebalancing the portfolio. In addition, we compute the break-even costs, that is,

the level of transaction costs that would reduce the profitability of the investment

strategy to zero.11

10This burn-in period is excluded from all performance evaluations below.
11Here we deviate from Fleming et al. (2003) who use a quadratic utility function to assess the

economic value of volatility timing using realized covariances compared to daily covariances. The
reason we do not use such utility function is because it is based on the mean and volatility of the
portfolio returns. Tables 7 and 8 illustrate that the mean portfolio return and the volatility of
the portfolio are very similar for the realized covariance and realized co-range. However, the levels
of noise in the correlations implied by the realized covariance and realized co-range are different,
see Figure 4 and Table 6, and for this reason there exists a substantial difference in turnover in
both portfolio weights, see Table 7. Therefore we choose to compare both estimators in terms of
break-even transaction costs.
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4.3 Empirical results

The rolling estimators based on the realized range and realized variance estimators,

as well as their daily counterparts, result in similar volatility dynamics, as visualized

in Figure 3. The main difference appears to be that the range-based estimators in

panels (a) and (c) show higher levels of stock volatility during periods of turmoil

such as October 1987 and the Russia crisis in 1998.

- insert Figure 3 about here -

Larger differences between range-based and return-based rolling estimators are

found in the behavior of the correlations, visualized in Figure 4. Although the general

correlation patterns appear to be similar, the correlations based on the realized

covariance or daily covariance are larger in absolute value and tend to fluctuate

more widely than the range-based correlations. The relative stability of the range-

based correlations may in fact be an advantage. Not only is an investor likely to be

reluctant to base her investment decisions on very volatile correlation estimators, a

more stable correlation estimate will also result in less day-to-day fluctuations in the

portfolio weights, and hence lower transaction costs.

- insert Figure 4 about here -

The results in Table 7 illustrate that over the whole sample (1985-2006) the

performance of the volatility timing strategy based on the bias-corrected rolling

realized co-range and realized covariance estimators is very close. The realized co-

range earns a slightly higher average return of 9.4% compared to 9.3% for the realized

covariance. As the portfolio volatilities are the same at 7.2% annually, this results

in Sharpe ratios that are almost identical and equal to 1.31 and 1.30, respectively.

- insert Table 7 about here -

Although the strategies based on the realized co-range and realized covariance

result in a similar performance before transaction costs, the dynamics of the un-

derlying portfolios are quite different. The portfolio weights illustrated in Figure

5 demonstrate that the realized co-range yields weights that are much less volatile
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than the realized covariance. The turnover generated by the realized co-range port-

folio is equal to 5.9, substantially smaller than that of the realized covariance at

9.5. This results in break-even transaction cost levels of 159.8 and 98.4 basis points

for the realized co-range and for the realized covariance, respectively. Hence, the

realized co-range outperforms the realized covariance substantially by more than 60

basis points.

- insert Figure 5 about here -

Table 7 illustrates that the main results are similar in smaller samples. The

realized co-range and realized covariance provide similar risk-return characteristics

and therefore identical Sharpe ratios. The turnover in the realized co-range portfolio

weights is substantially smaller than that of the realized covariance in each of the

subsamples. This results in a better performance of the realized co-range in terms

of break-even transaction costs.

Consistent with other high-frequency data studies, Table 7 illustrates that the

use of intraday data leads to better estimates than the use of daily data. This holds

for both return- and range-based estimators. When we compare the performance of

the daily covariance with the realized covariance sampled using 5-minute intervals we

see that more precise (co)variance estimates increase the average return by 20 basis

points from 9.1% to 9.3%. The risk of the portfolio, as measured by the volatility

of the portfolio returns, decreases from 7.4% to 7.2%, which is equal to the risk of

the daily co-range portfolio. The turnover decreases from 10.2 to 9.5, leading to

slightly higher break-even transaction costs, an increase of almost 10 basis points

per annum.

For the co-range the use of intraday data is even more profitable.12 The daily co-

range achieves an average portfolio return of 8.8%, compared to 9.4% for the realized

co-range. The return difference of about 60 basis points comes at the same level of

portfolio risk, such that the Sharpe ratio increases from 1.23 to 1.31 when switching

from the daily co-range to the realized co-range. The most notable difference occurs

in terms of turnover, which is substantially larger for the daily co-range (17.1) than

12This result is corroborated by Table 8 which summarizes the results for equal decay parameters.
The larger profitably is not caused by the fact that the realized co-range has a smaller decay
parameter than the daily co-range, when we fix the decay parameter, then the realized co-range
outperforms the daily co-range.
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for the realized co-range. This leads to larger transaction costs for the daily co-

range, and results in a large difference in break-even transaction costs of more than

100 basis points (51.6 compared to 159.8).

Concluding, the use of the realized co-range in a volatility timing investment

strategy has appealing economic advantages, especially when transaction costs are

taken into account. The more precise covariance estimates that are obtained with

high-frequency intraday ranges result in a more stable portfolio with smaller turnover

and, thus, higher break-even transaction costs.

4.4 Sensitivity analysis for the decay parameter

The empirical results described above are based on decay parameters that maximize

the log-likelihood function of the GARCH-type model in Equation (13). For several

reasons it is interesting to examine the sensitivity of the volatility timing results for

the choice of α.

First, the results of Fleming et al. (2003) and De Pooter et al. (in press) illustrate

that the decay parameters that maximize the statistical fit do not necessarily pro-

vide the best economic performance in a volatility timing strategy. Second, in the

forecasts obtained from Equation (12), the decay rate α determines the weight put

on the ‘backward looking’ rolling estimator, which equals exp (−α), and the weight

put on the innovation term, α exp (−α). When α is small this indicates that the

estimator requires a large amount of ‘smoothing’ because it is noisy, whereas a large

α indicates less smoothing. When we use a small decay parameter for the realized

covariance and realized co-range, they are expected to provide similar results as the

noise is ’smoothed’ out to a large extent.13 The maximum-likelihood estimates for

the decay parameters are relatively small, which implies a large amount of smooth-

ing and therefore small differences in performance. Pinning down α at larger values

for both estimators is a good test case as it allows us to assess the quality of the

innovation term Vt−1 in Equation (12). Doing so we expect to find larger differences

in the average portfolio returns and levels of risk corresponding to the use of the

realized covariance or realized co-range in a volatility timing strategy. Third, we

expect the decay parameter to have an important impact on turnover as a large

13We thank Torben Andersen for providing this insight.
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decay parameter implies a large weight on the most recent innovation and therefore

more turnover in the portfolio weights. Fixing the decay rates enables a more fair

comparison in terms of the break-even transaction costs.

Table 8 summarizes the empirical results for the competing rolling variance-

covariance estimators over the 1985-2006 period using a grid of decay parameters

ranging from 0.01 to 0.175. Before taking into account turnover and transaction

costs the performance of the realized co-range and realized covariance is similar for

small and intermediate decay rates (α = 0.01 to 0.10). For example, using a decay

rate of 0.05 results in identical levels of risk (7.2%) and return (9.4%) and therefore

approximately equal Sharpe ratios (1.302 and 1.308).

However, in the test case for larger decay rates, where more weight is put on the

most recent estimate, the performance of the realized covariance deteriorates while

the performance of the realized co-range remains robust. For example, when we use

a decay rate of 0.15 then the realized co-range achieves a SR equal to 1.29 while

the SR of the realized covariance decreases to 1.15. At the daily sampling frequency

the co-range also seems more robust to the choice of decay parameter than the daily

covariance estimator. Although the performance of the daily co-range worsens for

large decay rates, the decrease in performance is substantially smaller than that of

the daily covariance. Before taking into account turnover and transaction costs, the

daily co-range outperforms the daily covariance for the whole range of decay rates,

and it competes with the realized covariance when using decay rates larger than

or equal to 0.15. The realized co-range outperforms the daily co-range regardless

of the decay rate. The difference is more emphasized for large decay parameters.

The risk-return characteristics of the realized co-range are substantially better as

expressed by the difference in Share ratio which increases with the amount of weight

put on the most recent covariance estimate.

When we compare the turnover generated by the realized covariance and realized

co-range, it turns out that the realized co-range decreases the turnover by 33% for

a decay parameter of 0.01, up to a reduction of 62% for a decay parameter of 0.15.

Using the realized covariance instead of the daily covariance reduces turnover by

about 35% for large decay rates and up to 55% for small and intermediate decay

parameters. A similar comparison of the realized co-range with its daily counterpart

shows a reduction in turnover of about 50% to almost 60%, for small and large decay
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rates, respectively.

From the sensitivity analysis we conclude that the realized co-range is more

robust to the choice of decay parameter than the realized covariance, the daily

covariance and the daily co-range. The smaller turnover and better break-even

transaction costs of the realized co-range do not depend on the decay rate but they

are caused by more precise estimates of the covariance matrix. When pinning down

the decay rate, the realized co-range never has a worse performance than the realized

covariance before measuring turnover and costs. If we do take into account turnover

and compute break-even transaction costs, then the realized co-range outperforms

the realized covariance and the two daily estimators. When the weight on recent

estimates is large, then the realized co-range also achieves a better performance than

the realized covariance in terms of risk and returns and therefore results in higher

Sharpe ratios in the volatility timing strategy.

5 Conclusion

We have extended range-based covariance estimation with a novel high-low range

estimator based on intraday data. The covariance between two assets is backed out

from their individual variances and the variance of a portfolio of the two assets,

where the realized range is used to estimate each of these variances. Due to the

relative efficiency of range-based volatility measures, the realized co-range provides

a considerably more accurate measure of covariation than the realized covariance,

which uses cross-products of intraday returns. The realized co-range continues to

have attractive properties in the presence of market microstructure noise due to bid-

ask bounce, infrequent trading and non-synchronous trading. A key advantage of

the co-range is that the upward bias due to bid-ask bounce and the downward bias

due to infrequent and non-synchronous trading partially offset each other. Although

the realized covariance is also downward biased due to infrequent trading, it is not

biased due to bid-ask bounce. For empirically plausible levels of bid-ask bounce and

non-synchronous trading we indeed find that the realized co-range improves over

the realized covariance. In case the different biases do not offset each other, bias-

correcting the realized co-range with the recent historical average (relative) level of

the daily co-range is an effective procedure to restore the efficiency of the realized
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co-range.

In the empirical study for S&P500, bond and gold futures, we find that in Fleming

et al.’s (2003) volatility timing strategy the realized co-range and realized covariance

provide similar results before taking into account transaction costs. The level of noise

in the correlations implied by the realized co-range is substantially smaller than that

of the realized covariance, leading to smaller variation in the portfolio weights whilst

still providing a similar risk-return profile. After taking into account transaction

costs, the realized co-range outperforms the realized covariance by about 60 basis

points per annum when the decay parameters are estimated by maximum-likelihood.

The reason behind the similar risk-return profile is that for forecasting covariances

both the realized co-range and the realized covariance use small decay parameters

putting a lot of weight on older covariance estimates to smooth noise. If larger decay

parameters are used, putting more emphasis on the covariance estimates of the most

recent day, then the risk-return profile of the co-range becomes superior.

In future research it will be interesting to study the theoretical properties of

the co-range. In addition alternative estimators based on intraday highs and lows

and alternative bias-corrections could be explored, similar to existing studies on the

realized covariance. Finally the empirical analysis could be applied to individual

stocks, exhibiting more noise, and different sampling frequencies could be tested.
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Table 1: Realized co-range and realized covariance with continuous trading and
no market frictions

Frequency RRCOV ∆
t RRCOV ∆

S,t RV COV ∆
t RV COV ∆

S,t

(minutes) Mean RMSE Mean RMSE Mean RMSE Mean RMSE

1 3.928 0.130 3.945 0.505 3.999 0.229 4.000 1.045
2 3.946 0.160 3.944 0.513 3.996 0.322 3.999 1.067
3 3.955 0.190 3.944 0.526 3.990 0.402 4.000 1.112
4 3.961 0.218 3.944 0.539 3.988 0.469 3.999 1.125
5 3.963 0.236 3.945 0.545 3.995 0.513 4.002 1.147

10 3.965 0.335 3.944 0.591 3.963 0.733 3.996 1.259
15 3.957 0.422 3.943 0.647 3.961 0.931 4.000 1.404
20 3.959 0.469 3.943 0.684 3.958 1.008 3.999 1.440
30 3.961 0.595 3.942 0.769 3.968 1.302 4.000 1.645
45 3.953 0.724 3.940 0.868 3.976 1.607 3.995 1.903
60 3.951 0.846 3.937 0.969 3.994 1.850 3.986 2.092
90 3.990 1.064 3.942 1.157 4.033 2.317 4.000 2.498

120 3.956 1.191 3.931 1.273 3.944 2.553 3.985 2.701
180 3.946 1.524 3.940 1.592 3.947 3.268 4.009 3.407
240 3.951 1.757 3.942 1.808 4.040 3.688 4.002 3.781
360 3.945 2.029 3.929 2.065 3.816 4.180 3.977 4.216
720 3.919 2.930 3.941 2.951 3.710 6.085 4.005 6.105

1440 3.928 4.044 3.928 4.044 3.985 8.830 3.985 8.830
Note: The table summarizes the results of a simulation experiment where 5000 days of
8,640,000 (log) prices (100 prices per second) are simulated from a bivariate normal distri-
bution with mean zero, variance 4 and 16 and correlation 0.5, such that the true covariance
is equal to 4. All prices are observed. For each day the realized co-range (RRCOV ∆

t ), the
bias-corrected realized co-range (RRCOV ∆

S,t), the realized covariance (RV COV ∆
t ), and the

bias-corrected realized covariance (RV COV ∆
S,t) are computed for various sampling frequen-

cies shown in column 1. RRCOV ∆
S,t and RV COV ∆

S,t are obtained from (9) and (8) with
Q = 66 (with RR and RV replaced by RRCOV and RV COV ).
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Table 2: Realized co-range and realized covariance with infrequent trading

Frequency RRCOV ∆
t RRCOV ∆

S,t RV COV ∆
t RV COV ∆

S,t

(minutes) Mean RMSE Mean RMSE Mean RMSE Mean RMSE

1 2.017 1.985 3.866 0.547 3.203 0.828 3.979 1.210
2 2.470 1.535 3.866 0.557 3.596 0.521 3.980 1.235
3 2.696 1.314 3.866 0.564 3.731 0.482 3.979 1.254
4 2.836 1.179 3.866 0.572 3.791 0.506 3.979 1.277
5 2.937 1.084 3.866 0.583 3.833 0.550 3.980 1.300

10 3.211 0.849 3.866 0.626 3.914 0.751 3.979 1.399
15 3.339 0.770 3.865 0.667 3.942 0.927 3.979 1.493
20 3.418 0.739 3.866 0.703 3.955 1.045 3.979 1.574
30 3.516 0.748 3.866 0.780 3.961 1.294 3.977 1.743
45 3.592 0.813 3.866 0.877 3.960 1.590 3.978 1.967
60 3.641 0.893 3.864 0.973 3.959 1.818 3.979 2.158
90 3.694 1.043 3.865 1.123 3.936 2.175 3.981 2.469

120 3.737 1.193 3.867 1.270 3.951 2.575 3.983 2.809
180 3.770 1.428 3.866 1.495 3.903 3.089 3.979 3.297
240 3.799 1.651 3.866 1.708 3.951 3.595 3.983 3.768
360 3.795 2.008 3.868 2.044 3.917 4.427 3.986 4.562
720 3.821 2.856 3.863 2.874 3.898 6.163 3.977 6.234

1440 3.862 4.173 3.862 4.173 3.976 9.192 3.976 9.192
Note: The table summarizes the results of a simulation experiment where 5000 days of
8,640,000 (log) prices (100 prices per second) are simulated from a bivariate normal distri-
bution with mean zero, variance 4 and 16 and correlation 0.5, such that the true covariance
is equal to 4. Subsequently, with probability pobs = 1/(100τ) we observe a price and with
probability 1 − pobs we do not, such that the price is observed on average only every τ
seconds. The table reports results for τ = 12. Price observations are drawn independently
for both assets. For each day the realized co-range (RRCOV ∆

t ), the bias-corrected realized
co-range (RRCOV ∆

S,t), the realized covariance (RV COV ∆
t ), and the bias-corrected realized

covariance (RV COV ∆
S,t) are computed for various sampling frequencies shown in column 1.

RRCOV ∆
S,t and RV COV ∆

S,t are obtained from (9) and (8) with Q = 66 (with RR and RV
replaced by RRCOV and RV COV ).
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Table 3: Realized co-range and realized covariance with bid-ask bounce

Frequency RRCOV ∆
t RRCOV ∆

S,t RV COV ∆
t RV COV ∆

S,t

(minutes) Mean RMSE Mean RMSE Mean RMSE Mean RMSE

1 14.615 10.617 4.154 0.576 3.992 0.359 4.017 1.134
2 10.881 6.886 4.153 0.580 3.996 0.428 4.015 1.155
3 9.395 5.402 4.153 0.594 3.986 0.472 4.019 1.179
4 8.556 4.565 4.153 0.610 3.988 0.542 4.013 1.204
5 8.000 4.012 4.153 0.617 3.983 0.583 4.018 1.222

10 6.694 2.725 4.153 0.668 3.955 0.778 4.011 1.326
15 6.141 2.198 4.152 0.730 3.962 0.964 4.019 1.448
20 5.828 1.907 4.152 0.769 3.942 1.037 4.015 1.489
30 5.463 1.611 4.151 0.857 3.967 1.329 4.016 1.679
45 5.165 1.413 4.149 0.953 3.975 1.640 4.008 1.950
60 4.993 1.356 4.145 1.057 4.004 1.858 4.003 2.118
90 4.835 1.419 4.148 1.247 4.033 2.345 4.015 2.542

120 4.687 1.444 4.140 1.359 3.961 2.567 4.004 2.729
180 4.543 1.696 4.154 1.683 3.948 3.294 4.030 3.445
240 4.464 1.900 4.155 1.900 4.056 3.701 4.025 3.805
360 4.369 2.142 4.142 2.153 3.830 4.205 3.999 4.250
720 4.210 3.024 4.150 3.043 3.701 6.122 4.007 6.145

1440 4.135 4.128 4.135 4.128 3.982 8.871 3.982 8.871
Note: The table summarizes the results of a simulation experiment where 5000 days of
8,640,000 (log) prices (100 prices per second) are simulated from a bivariate normal distri-
bution with mean zero, variance 4 and 16 and correlation 0.5, such that the true covariance
is equal to 4. All prices are observed, but are converted to bid and ask prices (with equal
probability) by either subtracting or adding half the spread s = 0.0005 (on a starting price
of 1). The occurrence of bid and ask prices for the two assets is independent. For each
day the realized co-range (RRCOV ∆

t ), the bias-corrected realized co-range (RRCOV ∆
S,t), the

realized covariance (RV COV ∆
t ), and the bias-corrected realized covariance (RV COV ∆

S,t) are
computed for various sampling frequencies shown in column 1. RRCOV ∆

S,t and RV COV ∆
S,t

are obtained from (9) and (8) with Q = 66 (with RR and RV replaced by RRCOV and
RV COV ).
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Table 4: Realized co-range and realized covariance with infrequent trading and
bid-ask bounce

Frequency RRCOV ∆
t RRCOV ∆

S,t RV COV ∆
t RV COV ∆

S,t

(minutes) Mean RMSE Mean RMSE Mean RMSE Mean RMSE

1 3.861 0.210 3.956 0.555 3.213 0.869 3.973 1.237
2 4.082 0.205 3.956 0.565 3.599 0.583 3.973 1.257
3 4.129 0.250 3.956 0.574 3.732 0.551 3.972 1.280
4 4.142 0.278 3.956 0.584 3.793 0.574 3.972 1.301
5 4.143 0.301 3.957 0.596 3.836 0.608 3.973 1.322

10 4.139 0.387 3.956 0.645 3.917 0.794 3.971 1.425
15 4.126 0.460 3.956 0.689 3.944 0.956 3.972 1.512
20 4.114 0.514 3.956 0.727 3.962 1.078 3.971 1.598
30 4.100 0.625 3.956 0.809 3.963 1.312 3.970 1.757
45 4.079 0.752 3.956 0.908 3.955 1.603 3.971 1.978
60 4.069 0.864 3.955 1.007 3.954 1.829 3.971 2.169
90 4.047 1.039 3.956 1.155 3.933 2.188 3.974 2.478

120 4.045 1.209 3.957 1.307 3.952 2.587 3.975 2.822
180 4.024 1.452 3.956 1.532 3.900 3.098 3.972 3.305
240 4.020 1.678 3.956 1.744 3.950 3.601 3.974 3.775
360 3.976 2.040 3.958 2.083 3.917 4.444 3.979 4.578
720 3.949 2.893 3.954 2.913 3.899 6.165 3.969 6.236

1440 3.952 4.208 3.952 4.208 3.968 9.183 3.968 9.183
Note: The table summarizes the results of a simulation experiment where 5000 days of
8,640,000 (log) prices (100 prices per second) are simulated from a bivariate normal distri-
bution with mean zero, variance 4 and 16 and correlation 0.5, such that the true covariance
is equal to 4. Subsequently with probability pobs = 1/(100τ) we observe a price and with
probability 1 − pobs we do not, such that the price is observed on average only every τ
seconds. The table reports results for τ = 12. The observed prices are converted to bid
and ask prices (with equal probability) by either subtracting or adding half the spread
s = 0.0005 (on a starting price of 1). The occurrence of price observations and bid and ask
prices for the two assets is independent. For each day the realized co-range (RRCOV ∆

t ),
the bias-corrected realized co-range (RRCOV ∆

S,t), the realized covariance (RV COV ∆
t ), and

the bias-corrected realized covariance (RV COV ∆
S,t) are computed for various sampling fre-

quencies shown in column 1. RRCOV ∆
S,t and RV COV ∆

S,t are obtained from (9) and (8) with
Q = 66 (with RR and RV replaced by RRCOV and RV COV ).
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Table 5: Realized co-range and realized covariance with infrequent trading and bid-
ask bounce

Trading
frequency s = 0 s = 0.00025 s = 0.0005 s = 0.00075

(seconds) SF Mean RMSE SF Mean RMSE SF Mean RMSE SF Meean RMSE

RRCOV ∆
t

2 10 3.652 0.480 8 4.276 0.420 36 4.753 1.029 72 5.016 1.425
3 12 3.613 0.531 1 4 .133 0 .179 36 4.626 0.934 72 4.916 1.351
4 15 3.600 0.571 2 3 .879 0 .199 36 4.524 0.866 72 4.834 1.291
6 20 3.576 0.629 6 3 .728 0 .379 18 4.524 0.721 72 4.700 1.202

10 20 3.464 0.705 12 3.592 0.549 5 4 .349 0 .440 36 4.730 1.016
12 24 3.458 0.738 15 3.557 0.604 2 4 .082 0 .205 36 4.621 0.937
15 24 3.401 0.779 16 3.472 0.674 4 3 .865 0 .272 24 4.592 0.828
20 30 3.387 0.830 24 3.456 0.743 10 3.720 0.447 1 4 .109 0 .238
30 40 3.358 0.906 32 3.383 0.847 20 3.564 0.643 4 3 .872 0 .292
40 40 3.271 0.965 40 3.345 0.917 24 3.429 0.765 10 3 .686 0 .483
50 48 3.253 1.019 40 3.263 0.975 32 3.387 0.851 15 3.546 0.625
60 48 3.192 1.061 45 3.222 1.026 40 3.355 0.917 20 3.456 0.727

RRCOV ∆
S,t

2 1 3.908 0.542 1 3.961 0.545 1 4.059 0.571 2 4.164 0.630
3 1 3.902 0.542 1 3.948 0.544 1 4.041 0.566 2 4.144 0.623
4 1 3.897 0.543 1 3.938 0.542 1 4.026 0.562 2 4.128 0.617
6 1 3.887 0.544 1 3.921 0.543 1 4.002 0.559 2 4.100 0.607

10 1 3.871 0.546 1 3.899 0.545 1 3.968 0.552 1 4 .059 0 .589
12 1 3.866 0.547 1 3.891 0.547 1 3.956 0.555 1 4 .045 0 .589
15 1 3.857 0.548 1 3.881 0.548 1 3.942 0.553 1 4 .026 0 .582
20 1 3 .843 0 .550 1 3 .864 0 .548 1 3.921 0.549 1 4.001 0.570
30 1 3 .824 0 .556 1 3 .842 0 .551 2 3 .890 0 .558 1 3.960 0.556
40 1 3 .808 0 .559 1 3 .820 0 .555 1 3 .861 0 .550 1 3.923 0.553
50 1 3 .791 0 .563 1 3 .804 0 .557 1 3 .841 0 .550 1 3 .898 0 .550
60 1 3 .776 0 .565 1 3 .787 0 .561 1 3 .821 0 .555 1 3 .874 0 .552

RV COV ∆
t

2 1 3 .866 0 .268 1 3 .867 0 .296 1 3 .868 0 .393 2 3 .942 0 .556
3 1 3 .799 0 .306 1 3.798 0.331 1 3 .798 0 .418 2 3 .903 0 .560
4 1 3 .733 0 .353 1 3.732 0.374 2 3 .866 0 .449 2 3 .869 0 .568
6 2 3 .797 0 .388 2 3.798 0.411 2 3 .798 0 .476 2 3 .798 0 .590

10 3 3 .776 0 .457 3 3 .774 0 .477 3 3.772 0.532 3 0.583 0.626
12 3 3 .731 0 .482 3 3 .732 0 .499 3 3.732 0.551 3 3.733 0.642
15 3 3 .666 0 .521 3 3 .664 0 .536 3 3.663 0.585 4 3.747 0.670
20 4 3.657 0.576 4 3.656 0.589 4 3.657 0.631 4 3.657 0.704
30 6 3.661 0.657 6 3.662 0.666 6 3.663 0.701 6 3.665 0.762
40 6 3.548 0.720 6 3.550 0.728 6 3.553 0.759 6 3.556 0.815
50 8 3.578 0.787 8 3.581 0.796 8 3.585 0.826 8 3.588 0.877
60 8 3.491 0.835 8 3.495 0.843 8 3.499 0.870 8 3.503 0.918

RV COV ∆
S,t

2 1 3.981 1.208 1 3.978 1.212 1 3.976 1.237 1 3.974 1.301
3 1 3.981 1.208 1 3.979 1.212 1 3.978 1.236 1 3.976 1.298
4 1 3.982 1.208 1 3.980 1.212 1 3.979 1.235 1 3.978 1.296
6 1 3.981 1.209 1 3.978 1.213 1 3.976 1.239 1 3.973 1.305

10 1 3.980 1.209 1 3.976 1.210 1 3.972 1.232 1 3.968 1.292
12 1 3.979 1.210 1 3.976 1.212 1 3.973 1.237 2 3.970 1.301
15 1 3.979 1.211 1 3.976 1.216 1 3.974 1.241 1 3.973 1.305
20 1 3.977 1.208 1 3.975 1.213 1 3.973 1.239 1 3.972 1.300
30 1 3.975 1.206 1 3.972 1.211 1 3.969 1.234 1 3.966 1.288
40 1 3.977 1.213 1 3.975 1.218 1 3.974 1.238 1 3.972 1.283
50 1 3.976 1.216 1 3.974 1.221 1 3.973 1.239 1 3.971 1.277
60 1 3.974 1.217 1 3.972 1.222 1 3.970 1.238 1 3.969 1.272

Note: The table provides results for the simulation experiment with infrequent and non-
synchronous trading and bid-ask bounce for different trading frequencies τ , ranging from 2
to 60 seconds, and different bid-ask spreads s, ranging from 0 to 0.00075. See Table 4 for details
of the simulation set-up. For each combination of τ and s, the table shows the optimal sampling
frequency for the four covariance estimators, along with the corresponding RMSE and mean.
The covariance estimator that achieves the lowest RMSE for a given combination of τ and s is
shown in italics.



Table 6: Summary statistics

Stocks Bonds Gold

Mean 0.072 0.044 −0.011
St.Dev. 0.166 0.104 0.150
Skewness −0.720 0.464 −0.229
Kurtosis 17.417 16.290 10.182

Correlations Stocks Bonds Gold
Stocks 1
Bonds 0.101 1
Gold −0.107 −0.070 1

√
RVs

√
RRs

√
RVb

√
RRb

√
RVg

√
RRg

Mean 0.104 0.069 0.078 0.053 0.109 0.072
St.Dev. 0.053 0.032 0.032 0.018 0.055 0.033
Skewness 2.658 2.519 1.912 1.784 2.207 2.059
Kurtosis 16.818 15.161 9.667 9.692 13.059 12.168

RV corrs,b RRcorrs,b RV corrg,s RRcorrg,s RV corrg,b RRcorrg,b

Mean 0.112 0.128 −0.056 0.003 0.006 0.070
St.Dev. 0.388 0.314 0.179 0.128 0.183 0.122
Skewness −0.501 −0.593 −0.445 −0.513 0.136 0.033
Kurtosis 2.229 2.568 3.555 3.878 3.461 3.597

Note: This table summarizes the data statistics of the daily returns, realized volatility and
realized range estimators and the correlations implied by the intraday estimators for the stocks
(s), bond (b), and gold (g) futures.

√
RVx represents the annualized realized volatility sampled

at the 5-minute frequency and
√

RRx is the realized range. The realized correlations implied by
the realized covariance (5 min) are denoted RV corrx,y and RV corrx,y is the correlation implied
by the realized co-range.
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Table 7: Volatility timing strategy

Realized Co-Range (5 min) Realized Covariance (5 min)
Mean St.Dev. SR TO BETC Mean St.Dev. SR TO BETC

1985-2006 0.094 0.072 1.306 5.9 159.8 0.093 0.072 1.291 9.5 98.4

1985 0.000 0.061 -0.007 2.9 -1.4 0.004 0.061 0.058 4.6 7.8
1986-1988 0.110 0.078 1.406 5.5 199.8 0.110 0.079 1.381 9.1 121.0
1989-1991 0.132 0.070 1.879 6.4 207.4 0.130 0.070 1.856 9.6 135.1
1992-1994 0.092 0.053 1.746 5.7 161.4 0.087 0.053 1.642 9.2 94.3
1995-1997 0.161 0.047 3.412 4.5 360.6 0.161 0.047 3.403 7.3 221.4
1998-2000 0.132 0.073 1.822 5.7 233.2 0.130 0.073 1.787 8.8 147.8
2001-2003 0.014 0.085 0.169 5.3 27.1 0.017 0.085 0.203 8.9 19.3
2004-2006 0.038 0.084 0.446 8.3 45.5 0.036 0.084 0.432 13.6 26.8

Daily Co-Range Daily Covariance
Mean St.Dev. SR TO BETC Mean St.Dev. SR TO BETC

1985-2006 0.088 0.072 1.224 17.1 51.6 0.091 0.074 1.234 10.2 89.0

1985 -0.006 0.060 -0.092 8.3 -6.7 -0.001 0.064 -0.020 5.0 -2.6
1986-1988 0.107 0.079 1.362 14.6 73.7 0.123 0.080 1.534 8.8 139.3
1989-1991 0.120 0.069 1.742 17.2 69.5 0.119 0.070 1.695 9.8 121.4
1992-1994 0.087 0.052 1.658 14.6 59.4 0.096 0.054 1.779 9.3 102.6
1995-1997 0.156 0.047 3.300 13.1 118.9 0.153 0.049 3.150 8.0 190.7
1998-2000 0.121 0.073 1.657 15.4 78.9 0.120 0.075 1.598 9.3 128.4
2001-2003 0.021 0.085 0.242 20.6 10.0 0.020 0.086 0.230 11.5 17.2
2004-2006 0.028 0.085 0.333 24.5 11.6 0.026 0.086 0.303 14.7 17.7

Note: This table summarizes the performance statistics of the volatility timing strategy based
on the bias-corrected rolling estimators constructed from 5 minute return data (realized covari-
ance) and 5 minute range data (realized co-range). The decay parameter α is estimated in a
maximum-likelihood procedure. The annualized average daily portfolio return is denoted by
Mean and St.Dev. represents the corresponding annualized volatility of daily portfolio returns.
TO is the annualized average absolute daily change in portfolio weights. BETC represents the
annualized break-even transaction costs (in basis points), which would reduce the profitability
of the investment strategy to zero.
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Table 8: Volatility timing strategy: Sensitivity analysis for decay rate

Realized Co-Range (5 min) Realized Covariance (5 min)
α Mean St.Dev. SR TO BETC Mean St.Dev. SR TO BETC

0.010 0.095 0.074 1.279 1.1 846.0 0.095 0.074 1.286 1.7 567.8
0.025 0.095 0.073 1.304 2.6 369.2 0.095 0.073 1.310 4.0 236.2
0.050 0.094 0.072 1.308 4.8 198.1 0.094 0.072 1.302 7.8 121.3
0.075 0.094 0.072 1.303 6.8 137.4 0.093 0.072 1.284 11.4 81.1
0.100 0.093 0.072 1.297 8.8 105.7 0.091 0.072 1.264 15.1 60.5
0.125 0.093 0.072 1.292 10.8 86.3 0.090 0.072 1.243 18.9 47.7
0.150 0.093 0.072 1.288 12.7 73.2 0.096 0.083 1.153 33.7 28.6
0.175 0.093 0.072 1.285 14.5 63.7 0.086 0.101 0.854 37.4 23.0

Daily Co-Range Daily Covariance
α Mean St.Dev. SR TO BETC Mean St.Dev. SR TO BETC

0.010 0.093 0.074 1.263 2.2 431.5 0.093 0.074 1.257 3.4 273.0
0.025 0.092 0.073 1.271 5.4 172.1 0.091 0.073 1.245 8.5 107.0
0.050 0.090 0.072 1.251 10.6 85.2 0.088 0.074 1.181 17.1 51.2
0.075 0.089 0.072 1.229 15.7 56.4 0.084 0.075 1.120 25.6 32.8
0.100 0.087 0.072 1.211 20.8 42.1 0.081 0.076 1.064 34.2 23.7
0.125 0.086 0.072 1.195 25.7 33.6 0.079 0.077 1.014 42.8 18.4
0.150 0.086 0.072 1.182 30.6 28.0 0.076 0.079 0.969 51.3 14.9
0.175 0.085 0.073 1.170 35.4 24.0 0.074 0.080 0.929 59.8 12.4

Note: This table displays the performance statistics of the sensitivity analysis for decay rates in
the volatility timing strategy based on the bias-corrected rolling estimators constructed from 5
minute return data (realized covariance) and 5 minute range data (realized co-range). α is the
decay parameter. The annualized average daily portfolio return is denoted by Mean and St.Dev.
represents the corresponding annualized volatility of daily portfolio returns. TO is the annualized
average absolute daily change in portfolio weights. BETC represents the annualized break-even
transaction costs (in basis points), which would reduce the profitability of the investment strategy
to zero.
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Figure 1: RMSE of the bias-corrected realized co-range RRCOV ∆
S,t obtained from

(8) as a function of Q, for sampling frequencies as listed in the first column of Table
4. The sampling frequency increases from the top line to the bottom.
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(a) Gold and stocks

(b) Gold and bonds

(c) Stocks and bonds

Figure 2: This figure illustrates plots of the realized correlations between gold and
stocks (a), gold and bonds (b) and stocks and bonds (c). The correlations are
obtained using the 5-minute sampling frequency before bias-corrections and rolling
of the covariance estimators. RVCOV(5) is the realized correlation implied by the
realized covariance and RRCOV(5) is the realized correlation implied by the realized
co-range.
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