
Monotone Decision Trees

Rob Potharst, Jan C. Bioch and Thijs Petter

Department of Computer Science

Erasmus University Rotterdam

P.O. Box 1738, 3000 DR Rotterdam

The Netherlands

fbioch, potharstg@few.eur.nl

Abstract

In many classi�cation problems the domains of the attributes and the classes are

linearly ordered. Often, classi�cation must preserve this ordering: this is called mono-

tone classi�cation. Since the known decision tree methods generate non-monotone

trees, these methods are not suitable for monotone classi�cation problems. In this

report we provide a number of order-preserving tree-generation algorithms for multi-

attribute classi�cation problems with k linearly ordered classes.

1 Introduction

Ordinal classi�cation refers to an important category of real-world problems, in which

the attributes of the objects to be classi�ed and the classes are ordered. For this class

of problems classi�cation rules often need to be order-preserving. In that case we have

a monotone classi�cation problem. In this paper we study the problem of generating

decision-tree-classi�ers for monotone classi�cation problems: the attributes and the set

of classes are linearly ordered. Ordinal classi�cation for multi-attribute decision making

has been studied recently by Ben-David [1, 2, 3] for discrete domains, and by Makino et

al. [5] for the two-class problem with continuous attributes. However, although the tree-

generation method of Ben-David accounts for the ordering of the attributes and of the

classes, order-preserving is not guaranteed. Furthermore, the method of Makino et al. is

restricted to the two-class problem. In this technical report we provide several algorithms

for monotone classi�cation problems with k-classes for discrete and continuous domains.

As an example of a monotone classi�cation problem, suppose a bank wants to base

its loan policy on a number of features of its clients, for instance on income, education

level and criminal record. If a client is granted a loan, it can be one in three classes: low,

intermediate and high. So, together with the loan option, we have four classes. Suppose

further that the bank wants to base its loan policy on a number of credit worthiness

decisions in the past. These past decisions are given in Table 1. A client with features at

least as high as those of another client may expect to get at least as high a loan as the

other client. So, �nding a loan policy compatible with past decisions amounts to solving

a monotone classi�cation problem with the dataset of Table 1.

The organization of this Technical Report is as follows: in Section 2 we introduce

monotone classi�cation problems, develop some theory about those problems and end up

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Erasmus University Digital Repository

https://core.ac.uk/display/19184229?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

client income education crim.record loan

cl1 low low fair no

cl2 low low excellent low

cl3 average intermediate excellent intermediate

cl4 high low excellent intermediate

cl5 high intermediate excellent high

Table 1: The bank loan dataset

to introduce the concept of a monotone decision tree. In sections 3 and 4 we propose

and prove the correctness of di�erent algorithms for the induction of monotone decision

trees. The algorithms of Section 3 use local datasets and give only special decision trees,

so-called minimal and maximal trees. The algorithms of Section 4 use a global dataset,

that is updated during the algorithm. These algorithms produce general solutions to a

monotone classi�cation problem: monotone decision trees that are quite small, compared

to the trees of Section 3. In Section 5 we report the results of some experiments with

arti�cial datasets. Finally, Section 6 concludes this report.

Remark on this July 1997 edition of the report: in this edition the text of several

subsections has not been �lled in yet. These texts will be furnished in a Supplement to

this report, to be published shortly.

2 Monotone Classi�cation

Let X be a partially ordered space, called the input space, with partial ordering <, and let

C be a �nite linearly ordered set of classes, with linear ordering <. A classi�cation rule

or class labeling is a function

� : X ! C

which assigns a class from C to every point in the input space X . A classi�cation problem

is the problem of �nding a class labeling � that satis�es certain side conditions, to be

speci�ed in the problem description. One possible side condition is that the labeling � be

monotone: a monotone classi�cation rule is a function � : X ! C for which

x � y) �(x) � �(y) (1)

for all points x; y 2 X :

As an example, let X1; : : : ;Xn be a set of outcomes of academic and/or psychologi-

cal tests that could be taken from an applicant to an educational institution. Each test

Xi may take values xi in, say, f0; 1; : : : ; 10g = I. So each applicant produces a vec-

tor (x1; x2; : : : ; xn) 2 In = X : These vectors are indeed partially ordered, for instance

the outcome (5; 5; : : : ; 5) is smaller than the outcome (6; 6; : : : ; 6), but (5; 6; 5; 6; : : :) is

incomparable to (6; 5; 6; 5; : : :). The institution uses the test outcomes for its admission

policy: some applicants are admitted to the institution, some are immediately rejected and

�nally some are conditionally admitted. So we have a set of three admissibility classes

C = fr; ca; ag. It obviously makes sense to order these classes as follows: r < ca < a. An

admission policy of the institution can now be seen as a classi�cation rule � that assigns

an admissibility class r; ca or a to every possible vector of test outcomes (x1; : : : ; xn).

If the institution cares for its public relations, it may want an admission policy that is

2

monotone: if one applicant has at least as good grades as another, normally it would be

unwise to put him or her in a lower admissibility class. Thus, monotonicity would be a

fair requirement to be met by a decent admission policy of the institution.

A very common classi�cation problem occurs, when there is a dataset or set of examples

available. The usual side condition to be met in such a situation is that the classi�cation

rule one is looking for should correctly classify all examples in the dataset. With this

situation we will deal in the next subsection.

2.1 Monotone Datasets

A dataset is a �nite collection of examples from the input space, together with a class

labeling of all these examples. Formally, we de�ne a dataset as follows:

De�nition 1 A dataset D is a pair (D;�) where D � X is a �nite subset of the input

space X and � : D ! C is a class labeling of the elements of D. The elements of D will

be called the examples of the dataset.

Note �rst of all that the class labeling � of a dataset D = (D;�) is not a classi�cation

rule: it is only de�ned on D, a subset of X , while a classi�cation rule must be de�ned on

all elements of the input space X . Secondly, we do not allow an example to have two or

more di�erent classes: all elements of the dataset must be consistently labeled.

Given a dataset D = (D;�) we can try to solve the corresponding monotone classi�-

cation problem of �nding a monotone classi�cation rule �̂ : X ! C that extends the class

labeling � of the dataset D to the entire input space X . Thus, �̂(x) = �(x) for all x 2 D.

Obviously, if one wants to �nd a solution for such a monotone classi�cation problem, the

dataset itself has to be monotone:

De�nition 2 A dataset D = (D;�) is called monotone if the implication (1) holds for all

x; y 2 D.

The problem of checking whether a given dataset is monotone will be dealt with in

Section 2.6. As an example of a monotone classi�cation problem, consider the bank loan

problem that was sketched in the Introduction. In order to save space we will often map

the values of the attributes of a dataset to a set of numbers. For instance, Table 1 could

be written as

X1 X2 X3 C

0 0 1 0

0 0 2 1

1 1 2 2

2 0 2 2

2 1 2 3

when we use the mapping low ! 0, average ! 1, high ! 2 for feature X1 = income, etc.

More often, we will write concisely

001 0

002 1

112 2

202 2

212 3

3

for the above dataset, while the �rst data element will be denoted as 001 : 0, etc.

Finally, we will establish some notation to be used throughout this paper:

� The minimal and maximal elements of C will be denoted by cmin and cmax respec-

tively.

� [C] denotes the set of intervals, based on elements of C, thus

[C] = f[c; d] : c; d 2 C; c � dg:

Note that [C] is partially ordered by the following order relation:

[c1; d1] � [c2; d2], c1 � c2 and d1 � d2:

� For all x 2 X , we de�ne the upset generated by x as

"x = fy 2 X : y � xg

and, if D is a subset of X the upset generated by D is de�ned as

"D =
[
x2D

"x:

� Similarly, for x 2 X , we de�ne the downset generated by x as

#x = fy 2 X : y � xg

and the downset generated by a subset D of X is de�ned as

#D =
[
x2D

#x:

Note, that ##D =#D and ""D ="D.

� Finally, an element x 2 X will be called comparable to at least one element of D if

x 2"D [#D:

2.2 Monotone Extensions of Datasets

As noted in Section 2.1 the problem of �nding a solution to a monotone classi�cation

problem amounts to �nding a monotone extension �̂ of the class labeling � of a dataset

D = (D;�). Formally, a function �̂ : X ! C is an extension of � : X ! C, if the restriction

of �̂ to D i.e. �̂jD = �. Or, if �̂(x) = �(x) for all x 2 D. If D = (D;�) is monotone,

we denote the collection of all monotone extensions of � with �(D). Note that �(D) is

partially ordered by the order relation �̂ � �̂0 i� �̂(x) � �̂0(x) for all x 2 X . We will now

de�ne two special elements of this collection.

De�nition 3 If D = (D;�) is a monotone dataset, we de�ne �D
min

: X ! C, and �D
max

:

X ! C, as follows: for all x 2 X

�D
min

(x) =

(
maxf�(y) : y 2 D \ #xg if x 2 "D

cmin otherwise

and

�D
max

(x) =

(
minf�(y) : y 2 D \ "xg if x 2 #D

cmax otherwise.

4

We will now show that the functions �D
min

and �D
max

, as de�ned, are the minimal resp.

maximal elements of �(D).

Lemma 1 If D = (D;�) is a monotone dataset, for the functions �D
min

and �D
max

the

following statements hold:

(i) �D
min

; �D
max

2 �(D)

(ii) �(D) = f�̂ : �D
min

� �̂ � �D
max

and �̂ monotoneg.

Proof: Part (i). For the �rst part of the lemma we need to prove that �D
min

and �D
max

1) are extensions of � and 2) that they are monotone. If x 2 D, then because of the

monotonicity of � for all y 2 D \ #x we have �(y) � �(x) so that �D
min

(x) = �(x). Thus,

�D
min

(and �D
max

in the same way) is an extension of �. To show that �D
min

is monotone, let

x � y. Then, if x 62 "D, we have �D
min

(x) = cmin � �D
min

(y). So, suppose x 2 "D. Then,

since x � y also y 2 "D, and D \ #x � D \ #y. Thus, �D
min

(x) � �D
min

(y). Similarly, we

have �D
max

(x) � �D
max

(y). So �D
min

and �D
max

are both monotone extensions of �.

Part (ii). First we prove the � part. Suppose �̂ 2 �(D). If x 62 "D, then �D
min

(x) =

cmin � �̂(x). If, on the other hand x 2 "D, then for any y 2 D \ #x we have �(y) =

�̂(y) � �̂(x), where the equality stems from the fact that �̂ is an extension of � and the

inequality follows from the monotonicity of �̂. So a maximum over those y must also

be less than or equal to �̂(x). Thus for all x 2 X ; �D
min

(x) � �̂(x). Similarly, we can

show that �D
max

(x) � �̂(x). Finally, we prove the � part of (ii). If �̂ is monotone and

satis�es the given inequalities, then to prove that �̂ 2 �(D) amounts to showing that

�̂ is an extension of �. But if x 2 D then according to the above de�nition we have

�D
min

(x) = �D
max

(x) = �(x). So �(x) � �̂(x) � �(x), or �̂(x) = �(x). So �̂ is an extension

of � and the proof is complete. 2

Remark 2.1 If X is �nite, then �(D) is a �nite distributive lattice with universal bounds

�D
min

and �D
max

.

Theoretically, we now have at least two solutions for a monotone classi�cation problem

with dataset D = (D;�): the minimal and maximal extension of �. These two classi�cation

rules we will call the minimal rule and the maximal rule respectively. In addition we have

for every point x in the input space bounds that any rule �̂ must satisfy:

�D
min

(x) � �̂(x) � �D
max

(x):

Any monotone classi�cation rule that satis�es these bounds will be another solution to

our problem.

We will now move one step ahead and require the representation of our classi�cation

rule to have a speci�c form, viz. the form of a classi�cation tree or decision tree. This line

of thought will be pursued in Section 2.5. First, we will see whether we need all the data

in the dataset. It may be that leaving out certain elements of the dataset actually yields

no change in the problem, since all the information needed is contained in the remaining

data-elements. With this topic we will deal in the next subsection.

5

2.3 Redundancy

It may occur that not all elements of a dataset are needed to solve a monotone classi�cation

problem. In particular this is the case if there are elements in the dataset that, if removed,

do not change the solution set of the problem. Such elements are called redundant. A

formal de�nition runs as follows:

De�nition 4 Let D = (D;�) be a monotone dataset. A data element x 2 D is called

redundant with respect to D if for the dataset D� = (D�; ��) with D� = D n fxg and

�� = �jD� the following equality holds:

�(D�) = �(D):

The following lemma expresses redundancy in less abstract terms. It gives a method

to check whether a given data element is indeed redundant. For this we only need to

calculate the minimal and maximal labeling of the suspected data element, based on the

dataset with the element in question removed.

Lemma 2 Let D = (D;�) be a monotone dataset, let x 2 D be a datapoint in D and let

D� = (D�; ��) with D� = D n fxg and �� = �jD�. Then we have:

x is redundant in D , �D
�

min
(x) = �(x) = �D

�

max
(x): (2)

Proof: First we prove the) implication. If x is redundant in D then by de�nition

�(D�) = �(D), so minf�̂(x) : �̂ 2 �(D�)g = minf�̂(x) : �̂ 2 �(D)g as well. The left side

of this last equality can easily be seen to be equal to �D
�

min
(x), as follows from Lemma 1

applied to D�. The right side of the same equality is equal to �(x), since x 2 D and �(D)

contains only extensions of �. Together, this yields �(x) = �D
�

min
(x). In a similar way, using

the max instead of the min function we can show that �(x) = �D
�

min
(x), thus completing

the proof of the �rst part. To prove the (part, we �rst note that �(D) � �(D�) since

D� is a subset of D; so we only should prove �(D�) � �(D) given the right hand side of

(2). Let �̂ be any monotone extension of D�. To show that �̂ must also be a monotone

extension of D it is enough to show that �̂(x) = �(x). From Lemma 1 it follows that �̂(x)

must be in between �D
�

min
(x) and �D

�

max
(x). So, together with the right hand side of (2) it

follows that �̂(x) = �(x), proving �̂ to be a monotone extension of D. This proves the

lemma. 2

In fact, the right hand side of (2) can only be true in one of the following three

situations:

(i) 9x0; x00 2 D such that x0 � x � x00 and �(x0) = �(x) = �(x00)

(ii) 9x0 2 D such that x � x0 and cmin = �(x) = �(x0)

(iii) 9x0 2 D such that x0 � x and �(x0) = �(x) = cmax.

As an example, consider the following monotone datasets

002 0

101 1

102 1

112 1

021 2

001 0

002 0

112 1

202 2

212 3

001 0

002 1

112 2

202 3

212 3

6

each with 5 examples, three attributes, divided into three or four classes. In the �rst

dataset the element 102 is clearly redundant. This can be seen by noting that 101 < 102

< 112, so if 101 and 112 have class 1, from the monotonicity of any solution it follows that

102 must also have class 1. The remaining datasets form an illustration to situations (ii)

and (iii) respectively.

We conclude this section by noting that it is usually wise to remove all redundant

elements from a dataset before performing any further calculations on it.

2.4 Generating Random Monotone Datasets

Note to the July 1997 edition: the text of this subsection will be published in the Supple-

ment to this Technical report.

2.5 Monotone Decision Trees

Beginning with this section we will leave the very general viewpoint we had so far. From

now on we will make a few assumptions about the concepts we are discussing. In the �rst

place we will assume that our input space X is a coordinate space. Elements of X will

be vectors (x1; : : : ; xn) with coordinates xi which will take their values from a linearly

ordered space Xi. So, formally our �rst assumption is:

Assumption 1 The input space X is of the form

X = X1 �X2 � : : : �Xn

where Xi is a linearly ordered set for i = 1; : : : ; n. Here the order relation � on X is

de�ned as x � y i� xi � yi for all i = 1; : : : ; n.

Of course, this includes the very common situation that our examples are measurements

on n variablesX1; : : : ;Xn, where the individual measurement on variableXi yields a value

xi from an ordered set Xi. So each of the variables may take its values from a di�erent

set, as long as all these coordinate sets are linearly ordered.

Our next assumption will concern the representation of the classi�cation rules to be

considered, viz. tree-like classi�cation rules, also called classi�cation trees or decision

trees. Note, that this is no restriction since decision trees are universal approximators.

A decision tree classi�er is a classi�cation rule that is constructed by splitting the input

space X consecutively in a number of disjoint nonempty subsets, which in turn are splitted

again, etc. Such a process can be pictured in a graph such as the one in Figure 1.

The tree consists of a number of nodes labeled t0 to t4, and a number of leaves labeled

`1 to `7. At each node a subset of X is split into two or more nonempty subsets. For

instance, at node t0, the root of the tree, the input space X is split into three disjoint

subsets T1; T2 and T3; thus, X = T1 [T2 [T3. At node t1, subset T1 is again split into

two disjoint subsets T4 and T5. Subset T2 is not split any further, as is the case with all

subsets in any of the leaves. In this way, the input space X is �nally split up into as many

disjoint nonempty subsets as there are leaves:

X = T2 [T5 [T6 [T7 [T8 [T9 [T10:

7

t0 X

t1 T1

t3 T4

`1 T6

C1

`2 T7

C2

T8

C3

`3

T5

C2

`4

`5 T2

C3

T3 t2

`6 T9

C2

T10

C3

`7

Figure 1: Decision Tree Classi�er: Example

The classi�cation rule arises from this splitting process by assigning a class to each leaf.

In the above tree class C1 is assigned to leaf `1, etc. as can be read from the �gure. Thus

the shown decision tree T de�nes the following classi�cation rule:

�T (x) =

8>>>>>>>>>><
>>>>>>>>>>:

C3 if x 2 T2
C2 if x 2 T5
C1 if x 2 T6
C2 if x 2 T7
C3 if x 2 T8
C2 if x 2 T9
C3 if x 2 T10:

In this way, a decision tree T induces a classi�cation rule �T : X ! C as follows: if x 2 X

belongs to the subset of X associated with leaf `i then we de�ne �T (x) to be the class

assigned to `i. Finally, we remark that all nodes and leaves of a decision tree are associated

with exactly one subset of the input space. In Figure 1 the names of these subsets have

been printed inside the circles and boxes that represent the nodes and the leaves of the

tree. By slight abuse of language we will often denote a node or leaf with its associated

subset. Thus, we will write node T4 when we mean node t3 with associated subset T4.

In this paper we will only consider so-called univariate decision trees: at each split the

decision to which of the disjoint subsets an element belongs, is made using the information

from one variable or coordinate only. Within this class of univariate decision trees, we will

consider two types: binary and n-ary trees. For binary trees, at each node a split is made

using a test of the form

Xi � c

for some c 2 Xi; 1 � i � n. Thus, for a binary tree, in each node the associated set T � X

is split into the two subsets TL = fx 2 T : xi � cg and TR = fx 2 T : xi > cg. An

example of a univariate binary decision tree is the following:

8

X2 � 1:8��
��

X1 � 4:5��
��

X3 � 0:5��
��

T1

C1

�
�� S

SS
T2

C2

�
�� S

SS
T3

C2

�
�
�
�� Q

Q
Q
QQ

X3 � 2:7��
��

T4

C2

�
�� S

SS
T5

C3

Figure 2: Univariate Binary Decision Tree: Example

This tree splits the input space X = R
3 into the �ve regions

T1 = fx 2 R3 : x1 � 4:5; x2 � 1:8; x3 � 0:5g

T2 = fx 2 R3 : x1 � 4:5; x2 � 1:8; x3 > 0:5g

T3 = fx 2 R3 : x1 > 4:5; x2 � 1:8g

T4 = fx 2 R3 : x2 > 1:8; x3 � 2:7g

T5 = fx 2 R3 : x2 > 1:8; x3 > 2:7g

the �rst and the last of which are classi�ed as C1 and C3 respectively, and the remaining

regions as C2.

For n-ary trees, we need an additional assumption on the properties of the input space

X :

Assumption 2 For the input space X = X1 � X2 � : : : � Xn each Xi is a �nite linearly

ordered set, for i = 1; : : : ; n. Without loss of generality we may assume that for 1 � i � n

Xi = f0; 1; : : : ; nig

for some integer ni.

In each node of an n-ary tree, a split is made of the form

Xi = 0;Xi = 1; : : : ;Xi = ni

for some i 2 f1; : : : ; ng. Thus, for an n-ary tree, in each node the associated set T � X

is split into ni + 1 subsets fx 2 T : xi = 0g; fx 2 T : xi = 1g; : : : ; fx 2 T : xi = nig for

some i 2 f1; : : : ; ng. As an example, consider an input space X with three variables, let

n1 = 1; n2 = 3; n3 = 2 so that X1 can have values 0 and 1, X2 can have values 0,1, 2, 3

and X3 can have values 0,1,2. The following n-ary decision tree:

9

X2

T1

C0

0

X3

1

T2

C0

0

T3

C1

1

T4

C2

2

T5

C1

2

X1

3

T6

C1

0

T7

C2

1

Figure 3: Univariate n-ary Decision Tree: Example

splits the input space X = f0; 1g�f0; 1; 2; 3g�f0; 1; 2g into seven regions T1; : : : ; T7. For

instance, region T4 = f(x1; x2; x3) 2 X : x2 = 1; x3 = 2g. Thus, T4 consists of the vectors

(0,1,2) and (1,1,2). A complete layout of the classi�cation rule induced by the above tree

can be seen in the following table:

vector class vector class leaf

000 C0 100 C0

001 C0 101 C0 T1
002 C0 102 C0

010 C0 110 C0 T2

011 C1 111 C1 T3

012 C2 112 C2 T4

020 C1 120 C1

021 C1 121 C1 T5
022 C1 122 C1

030 C1

031 C1 T6
032 C1

130 C2

131 C2 T7
132 C2

We conclude this section with two lemmas which give a characterization of the subsets

associated with the nodes and leaves of a decision tree, for both binary and n-ary decision

trees. In the �rst lemma we use the notation X in the following sense: if Xi is a linearly

ordered set we can always, if needed, add a minimal and a maximal element to get X i.

For instance, if Xi = R, then Xi = R = R [f+1g [f�1g. Next, with X we mean

X = X 1 �X 2 � : : :�X n.

Lemma 3 If X is an input space that satis�es Assumption 1 and T is a univariate binary

decision tree on X , then if T � X is the subset associated with an arbitrary node or leaf

10

of T ,

T = fx 2 X : a < x � bg (3)

for some a; b 2 X with a < b.

Proof: Let mini (and maxi) be the minimal (respectively maximal) element of X for

i = 1; : : : ; n. If T is associated with the root of tree T , then T has the form (3) with

a = (a1; : : : ; an) and b = (b1; : : : ; bn), ai = mini and bi = maxi, for i = 1; : : : ; n: Let us

next assume that T for some node in the tree has form (3). We will then show that when

T is split into TL = fx 2 T : xi � cg and TR = fx 2 T : xi > cg for some i 2 f1; : : : ; ng

and c 2 Xi, also TL and TR have form (3). To prove this we �rst note that c � ai and

c � bi are impossible, since either TL or TR would then be empty. So we may assume

ai < c < bi. Now it is easy to see that TL = fx 2 X : a < x � b0g with b0j = bj for j 6= i

and b0i = c. By the same token TR = fx 2 X : a0 < x � bg with a0j = aj for j 6= i and

a0i = c. Because each subset T associated with a node or leaf arises during the process of

constructing the tree T as a TL or a TR, all must have form (3). 2

Corollary 1 If X is an input space that satis�es both Assumption 1 and Assumption 2,

then any subset T associated with a univariate binary decision tree T on X will satisfy

T = fx 2 X : a � x � bg

for some a; b 2 X , with a � b. As an abbreviation we will use the notation T = [a; b] for

a set of this form.

Lemma 4 If X is an input space that satis�es the Assumptions 1 and 2, and T is a

univariate n-ary decision tree on X , then if T � X is any subset associated with a node

or leaf of T ,

T = f(x1; : : : ; xn) 2 X : xi = ki for all i 2 Ig (4)

for some I � f1; : : : ; ng. Here ki are integers with 0 � ki � ni; i 2 I:

Proof: This follows directly from the way in which a univariate n-ary decision tree is

constructed. 2

For any node, the set I is the set of indices that have been encountered om the path

from the root of the tree to that particular node.

Corollary 2 If X is an input space that satis�es both Assumption 1 and Assumption 2,

then any subset T associated with a univariate n-ary decision tree T on X will also satisfy

the same equation

T = fx 2 X : a � x � bg

for some a; b 2 X , with a � b. In this case, ai = bi for all i 2 I, and ai < bi for i 62 I.

In the next section we show how to check whether a decision tree which we have

constructed for a monotone classi�cation problem, is itself also monotone or not.

2.6 Testing the Monotonicity of a Decision Tree

Note to the July 1997 edition: the text of this subsection will be published in the Supple-

ment to this Technical report.

11

3 Induction of Monotone Decision Trees: Local Algorithms

We shall now show how we can generate from a data set D a decision tree T . This process

is also called inducing a decision tree T from a dataset D. An algorithm for the induction

of a decision tree T from a dataset D contains the following ingredients:

� a splitting rule S: de�nes the way to generate a split in each node,

� a stopping rule H: determines when to stop splitting and form a leaf,

� a labeling rule L: assigns a class label to a leaf when it is decided to create one.

More precisely, a splitting rule is a function S that on the basis of a dataset D splits a

subset T � X into a number of disjoint nonempty subsets of T . Thus,

S(T;D) = (T1; : : : ; Tn)

with all Ti nonempty,
S
Ti = T and Ti \ Tj = ; for i 6= j. In the same vein, a stopping

rule H is a Boolean function that returns true if according to dataset D we must stop

splitting at subset T :

H(T;D) =

(
true if T should not be split any further, according to D,

false otherwise.

In the �rst case the associated node of the tree becomes a leaf. Finally, a labeling rule

determines which class must be associated with subset T , of course again on the basis of

dataset D:

L(T;D) = c

with T � X ; c 2 C: Notice, that all three functions S;H and L depend on the argument

D.

If S;H and L have been speci�ed, then an induction algorithm according to these rules

can be recursively described as in Figure 4.

tree(X ;D0):

split(X ;D0)

split(T;D):

if H(T;D) then

assign class label L(T;D) to leaf T

else

begin

(T1; : : : ; Tn) := S(T;D);

for i := 1 to n do

begin

DTi := update(D; Ti);

split(Ti;DTi)

end

end

Figure 4: Monotone Tree Induction Algorithm: Local variant

12

In this algorithm outline there is one aspect that we have not mentioned yet: the

update rule. In the algorithms we use, we shall allow the dataset to be updated at various

moments during tree generation. During this process of updating we will incorporate in

the dataset knowledge that is needed to guarantee the monotonicity of the resulting tree.

In particular, we will consider two general kinds of update rules. In the �rst place, we

will allow each node that is generated to have its own dataset, that is derived from the

original dataset in a prescribed manner. We will call algorithms that use this technique

algorithms with local datasets or local algorithms. In this case, the update rule will tell

how to transform a dataset belonging to a parent node into the datasets for all the needed

child nodes. The algorithm of Figure 4 is of this type: each child node Ti of parent node

T gets its own dataset DTi derived from the parent dataset D. In general, with these

monotone decision tree algorithms, the union of the datasets of the child nodes will be

larger than the dataset of the parent node. This is a contrast with classical, non-monotone

trees, where the union of the child datasets is generally equal to the parent dataset.

Alternatively, during the whole process of tree generation, we use only one dataset,

the global dataset. However, we will allow this global dataset to be adjusted during tree

generation, to incorporate new information that is needed. Thus, a global algorithm will

include a line such as D :=update(D; T), which will update the global dataset D when a

new node T is formed. The global variant of the tree induction algorithm outline is given

in Figure 5:

tree(X ;D0):

split(X ;D0)

split(T;var D):

D := update(D; T);

if H(T;D) then

assign class label L(T;D) to leaf T

else

begin

(T1; : : : ; Tn) := S(T;D);

for i := 1 to n do split(Ti;D)

end

Figure 5: Monotone Tree Induction Algorithm: Global variant

Note that D must now be passed to the split procedure as a variable parameter, since

D is updated during execution of the procedure.

In this section we will present local algorithms for the induction of binary and n-ary

decision trees. We will start with the n-ary case, since it is surprisingly easier than the

binary case. The algorithms we derive in this section, although they produce guaranteedly

monotone trees, will have the following drawback: they are implementations either of the

minimal or of the maximal classi�cation rule for a given monotone classi�cation problem.

In practice, these trees tend to be much larger than is needed. The global algorithms of

the subsequent section do not su�er this drawback: the monotone trees produced by these

global algorithms tend to be much smaller in size than their local counterparts.

13

3.1 Projection and Interval Datasets

In this subsection we will describe the way in which a dataset can be updated when a split

is made during tree generation. First of all let us motivate the reader why this is not a

trivial problem. It might be thought that to update D = (D;�) when we move from node

T to node Ti � T , we should just include all datapoints that belong to Ti and nothing

more:

Di = (Di; �i) with Di = D \ Ti; �i = �jDi: (5)

Why this is not enough, we will see in the next example. Let dataset D = (D;�) be

001 0

002 1

112 2

202 2

212 3

Suppose, we take the �rst attribute as splitting variable, so that with the naive update

rule (5) we would get the following three datasets D0;D1 and D2:

001 0

002 1
112 2

202 2

212 3

for Ti = f(i; x2; x3) : 0 � x2; x3 � 2g; i = 0; 1; 2. So D1 would contain just one element,

suggesting this single piece of information is su�cient for the classi�cation of all elements

of T1. However, this is clearly not so, for the class of (1; 0; 2) 2 T1 must be at least 1,

since (1; 0; 2) > (0; 0; 2). Thus, to classify the elements of T1 properly we also need the

information contained in data elements that do not belong to T1.

How should we incorporate the information contained in a group of subdatasets into

the subdataset at hand? In the course of this report we will have two answers to this

question. The �rst answer is projection and the other answer is cornering. What we mean

with this last concept, we will explain in Section 4. We will now show how the datapoints

of the outside subsets can be projected on the subset at hand to give an extended updated

dataset Di that will do the needed work properly.

In the above example the projections of the data elements of T0 and T2 onto T1 are

101, 102 and 112. Applying the monotonicity rule 1 to the original dataset D we see that

0 � �̂(101) � 2; 1 � �̂(102) � 2 and 2 � �̂(112) � 2, for any monotone extension �̂ of

�. Thus we see that the updated dataset D1 does not assign a �xed class to each data

element, but an interval of admissible classes:

101 0,2

102 1,2

112 2,2

meaning that the class of data element 101 must be at least 0 and at most 2, etc. It

appears that with these projected datasets we must work with intervals of classes rather

than with single classes assigned to each data element. We will formalize these ideas as

follows.

14

De�nition 5 If D � X is any subset of the input space X , then an interval class labeling

� of D is a function

� : D ! [C]

where [C] is the set of intervals, based on elements of C.

Remark Thus, for x 2 D, �(x) is an interval [�`(x); �r(x)] with �`(x); �r(x) 2 C. Note

that [C] is partially ordered by the order relation

[c; d] � [c0; d0], c � c0 and d � d0:

De�nition 6 An interval dataset D is a pair (D;�) where D is a �nite subset of the input

space X and � : D ! [C] is an interval class labeling of D.

De�nition 7 An interval dataset D = (D;�) is monotone if

x � y) �(x) � �(y)

for all points x; y 2 D.

Remark From this de�nition and the de�nition of the order relation on intervals it follows

that an interval dataset D = (D;�) is monotone i� both �` and �r are monotone functions.

De�nition 8 An extension �̂ of an interval dataset D = (D;�) is a function

�̂ : X ! C

such that for all x 2 D

�`(x) � �̂(x) � �r(x):

As before, �(D) will denote the set of all monotone extensions of dataset D.

Lemma 1 of subsection 2.2 also holds for interval datasets if we de�ne the minimal and

maximal extension of an interval dataset as follows:

De�nition 9 If D = (D;�) is a monotone interval dataset, we de�ne �D
min

: X ! C and

�D
max

: X ! C as follows: for all x 2 X

�D
min

(x) =

(
maxf�`(y) : y 2 D \ #xg if x 2 "D

cmin otherwise

and

�D
max

(x) =

(
minf�r(y) : y 2 D \ "xg if x 2 #D

cmax otherwise.

With this de�nition, the following extension of Lemma 1 to monotone interval datasets

holds:

Lemma 5 If D = (D;�) is a monotone interval dataset, then for the functions �D
min

and

�D
max

the following statements hold:

(i) �D
min

; �D
max

2 �(D)

15

(ii) �(D) = f�̂ : �D
min

� �̂ � �D
max

and �̂ monotoneg.

Proof: The proof can almost be copied from the proof of Lemma 1 and it is left to the

reader. 2

Remark 3.1 Note that De�nition 9 is actually a special case of De�nition 3, if we take

as interval class labeling � : �`(x) = �r(x) = �(x), for x 2 D. With this choice of �,

Lemma 5 also becomes a corollary of Lemma 1.

3.2 Redundancy for interval datasets

Note to the July 1997 edition: the text of this subsection will be published in the Supple-

ment to this Technical report.

3.3 Projection: n-ary splits

As noted in subsection 2.5, an n-ary decision tree is formed by successive splits using tests

t of the form

t = fXi = ag (6)

Thus, if we move from node T to node Ta � T using a test of the form (6), Ta will be

de�ned by Ta = fx 2 T : xi = ag. The resemblance of this process to the projection of a

space X to a subspace Xt = fx 2 X : x satis�es tg motivates the following de�nitions.

De�nition 10 If t is a test of the form (6) for some i 2 f1; : : : ; ng; a 2 f0; : : : ; nig, and

D � X is any subset of the input space X , then the projection �t(D) of D is de�ned as

�t(D) = f(x1; : : : ; xi�1; a; xi+1; : : : ; xn) : (x1; : : : ; xn) 2 Dg:

De�nition 11 If D = (D;�) is a monotone interval dataset and t is a test of the form (6)

for some i 2 f1; : : : ; ng, a 2 f0; : : : ; nig, then the projection �t(D) of this interval dataset

D is an interval dataset D
0
= (D0; �0) with

8><
>:

D0 = �t(D)

�
0

`(x) = �D
min

(x) for all x 2 D0

�
0

r(x) = �D
max

(x) for all x 2 D0:

Remark 3.2 For points x 2 D0 with x 2 D (i.e. points that were already in the subspace

before projection), we have automatically: �
0

`(x) = �`(x) and �
0

r(x) = �r(x), because of

the monotonicity of dataset D.

For example, take the dataset of the beginning of Section 3.1 written as an interval

dataset D:

001 0,0

002 1,1

112 2,2

202 2,2

212 3,3

16

If the test t = fX1 = 1g, the projected dataset �t(D) becomes

101 0,2

102 1,2

112 2,2

In fact, �t(f001; 002; 112; 202; 212g) = f101; 102; 112g and �D
min

(101) = 0, since 001 is the

only element in D smaller than 101 and �`(001) = 0. In the same vein, �D
max

(101) = 2,

since the smallest element in D larger than 101 is 112, which has �r(112) = 2. Proceeding

in the same manner, one �nds the interval of the data element 102. The interval of 112

does not have to be calculated, since it is also a member of D, and thus keeps its interval.

Now, let �(D) be the set of monotone extensions �̂ : X ! C of dataset D. Let �t(�(D))

be the set of all restrictions �̂jXt to the subspace Xt of functions �̂ 2 �(D). Furthermore,

let �(�t(D)) be the set of all monotone extensions of the projected dataset �t(D). Then

we have the following projection theorem:

Theorem 1 If D = (D;�) is a monotone interval dataset, t is a test of the form (6) for

some a 2 1; : : : ; ni; i 2 1; : : : ; n, and �t(D) = (D0; �
0
) as in De�nition 9 is its projection,

then

(i) for x 2 D \D0 : �
0

`(x) = �`(x) and �
0

r(x) = �r(x)

(ii) �t(D) is a monotone interval dataset

(iii) �(�t(D)) = �t(�(D)).

Proof: Part (i). If x 2 D, then �
0

`(x) = �D
min

(x) = �`(x) and �
0

r(x) = �D
max

(x) = �r(x)

see the Remark following De�nition 11.

Part (ii). Both �
0

` and �
0

r are restrictions to D0 of �D
min

and �D
max

. These last two are

monotone according to Lemma 5. So �
0

` and �
0

r are monotone as well, and the assertion

to be proved follows from the remark following De�nition 7.

Part (iii). First we prove the � part of the assertion. Let �̂ : Xt ! C be a restriction

to Xt of a function �̂ 2 �(D). Then � is monotone on Xt and �D
min

� �̂ � �D
max

. For

x 2 D0 we have �
0

`(x) = �D
min

(x) and �
0

r(x) = �D
max

(x), so on D0 we have �
0

` � �̂ � �r.

Thus �̂ is a monotone extension of �t(D).

Next, we prove the � part of the assertion. Let �̂ : Xt ! C be a monotone extension

of �t(D) = (D0; �
0
); of course, we then have

�
0

`(x) � �̂(x) � �
0

r(x); for x 2 D0: (7)

Now, we must extend �̂ from Xt to the whole space X . To accomplish this, we take the

following detour. We de�ne a new non-interval dataset ~D = (~D; ~�). Next, we show that

this dataset ~D is monotone, and that ~� = �̂ on Xt. So any monotone extension of ~D will

be an extension of �̂ to the whole space X . Such an extension will then be proved to be

a member of �(D), which will �nish the proof.

Let ~D = (~D; ~�) be de�ned as follows: ~D = Xt [D and ~� : ~D ! C is de�ned as

~�(x) =

8><
>:

�`(x) for x 2 D n Xt and xi < a

�̂(x) for x 2 Xt

�r(x) for x 2 D n Xt and xi > a

17

Note that by this de�nition ~D is devided into three subsets, which we will call A, B and

C respectively. We will now show that ~� as de�ned is monotone on ~D. Let x and y be

arbitrary elements of ~D, with x � y. We then have six cases:

1) x and y both in A. In this case ~�(x) � ~�(y) follows from the monotonicity of �`.

2) x and y both in B. The monotonicity of �̂ does the job.

3) x and y both in C. Since �r is monotone, we are done.

4) Suppose x 2 A and y 2 B. The other way around is impossible since x � y. Now,

let x0 be the projection of x on Xt, then we also have x0 � y, since xi � yi, and the

other components are implied by x � y. So we can write

~�(x) = �`(x) � �
0

`(x
0) � �̂(x0) � �̂(y) = ~�(y):

If we number these (in)equalities from (1) to (5), we can say that (1) follows from

x 2 A, (2) follows from the de�nition of �D
min

and the fact that x � x0, (3) follows

from equation (7), (4) from the monotonicity of �̂ and (5) from y 2 B.

5) Suppose x 2 A and y 2 C. Again, the other way around is impossible since x � y.

We then have
~�(x) = �`(x) � �r(x) � �r(y) = ~�(y)

where (1) follows from x 2 A, (2) from De�nition... of an interval dataset, (3) from

the monotonicity of �r on D and (4) from y 2 C.

6) Suppose x 2 B and y 2 C. Let y0 = �t(y), so y0 2 D0 and y � y0. Again, we have

x � y0, and we can write

~�(x) = �̂(x) � �̂(y0) � �
0

r(y
0) � �r(y) = ~�(y)

with arguments similar to those of 4).

This proves the monotonicity of ~� on ~D. The de�nition of ~� implies, that �` � ~� � �r on

D, so any monotone extension of ~D will also be a monotone extension of D. This shows

that any monotone extension of ~D can be taken as extension of �̂ to the whole space X. 2

Remark 3.3 From part (i) of this Theorem, it follows that for points x, that already

belonged to subspace Xt before projection, the interval [�`(x); �r(x)] does not change by

projection. From part (ii) it follows that the projected dataset �t(D) may in turn serve

as the dataset for the construction of a new tree beginning at the new mode, on subspace

Xt. From part (iii) it follows, that during projection, no information gets lost, nor that

spurious information gets introduced: each solution of the re�ned problem corresponds

with a solution of the whole problem, and vice versa.

A consequence of the commutativity of the projection- and the extension operator, as

proved in Theorem 1, is the following

18

Corollary 3 If t1 = fXi = ag and t2 = fXj = bg are two tests of the form (6), then

�(�t2(�t1(D))) = �t2(�(�t1(D))) = �t2(�t1(�(D))):

In words: the dataset which you get after two (or more) projection steps, has the same

solution set as the original dataset, provided these solutions are restricted to the subspace

at hand.

We get another consequence of this theorem by comparing the minimal and maximal

extension of the original and the projected datasets. If on Xt the whole set of monotone

extensions is the same before and after projection, then also the minimal and maximal

extensions of both datasets must be the same:

Corollary 4 If t is a test of the form (6), then on Xt

�D
min
jXt = �

�t(D)

min

and

�D
max

jXt = ��t(D)
max

:

Of course, this also holds for two projection steps t1 = fXi = ag and t2 = fXj = bg. If

t1 ^ t2 is the conjunction of the two tests then, on subspace Xt1^t2

�D
min
jXt1^t2 = �

�t2(�t1(D))

min

and

�D
max

jXt1^t2 = �
�t2(�t1(D))
max :

As a direct consequence of these last equations, let us consider the following situation:

from dataset D we construct after one projection step t1, dataset �t1(D). If subsequently,

we project this dataset one more time using test t2, it might be questioned which dataset

must be referred to for calculating the intervals of this new dataset: D or �t1(D)? The

answer is, of course, that this does not matter: both give the same intervals for �t2(�t1(D)).

Formally, this could be written down as follows:

�t1^t2(D) = �t2(�t1(D))

where the equality sign means that both the set of datapoints and all associated intervals

of the mentioned datasets are the same.

As an illustration of this point, consider again the dataset D:

001 0,0

002 1,1

112 2,2

202 2,2

212 3,3

After one projection step with t1 = fX1 = 1g this dataset becomes D
0

112 2,2

101 0,2

102 1,2

19

as we have seen before. After a second projection step with t2 = fX3 = 0g we get the

following dataset D
00

100 0,2

110 0,2

as can be seen, since �D
0

min
(100) = �D

0

min
(110) = 0 and �D

0

max
(100) = �D

0

max
(110) = 2. However,

we also have �D
min

(100) = �D
min

(110) = 0 and �D
max

(100) = �D
min

(110) = 2. Thus, the

intervals of 100 and 110 can be calculated with either D
0
or D.

3.4 Projection: binary splits

For the induction of binary trees, we need projections �t based on a test t of the form

t = fXi � ag (8)

or

t = fXi � ag (9)

A subspace corresponding with a test t of this form we shall again call Xt, p.e. Xt = fx =

(x1; : : : ; xn) 2 X : xi � ag, if t is of form (8) or (9).

For projections using tests of this form, we shall use a de�nition slightly di�erent from

the one in the preceding subsection:

De�nition 12 If t is a test of the form (8) or (9), we de�ne

�t(x) =

(
x for x 2 Xt

(x1; : : : ; xi�1; a; xi+1; : : : ; xn) for x 62 Xt:

If D � X is any subset of X , then �t(D) = f�t(x) : x 2 Dg.

Note that any points outside the subspace are only projected to the edge of the subspace,

not to the interior! With this de�nition of the projection of a subset of X , we can leave

the de�nition of the projection of an interval dataset (De�nition 11) unchanged for the

binary case. Again, consider the example of dataset D

001 0,0

002 1,1

112 2,2

202 2,2

212 3,3

If a split into t1 = fX1 � 0g and t2 = fX1 � 1g is a�ected, we get the following datasets

�t1(D) and �t2(D):

001 0,0

002 1,1

012 1,2

101 0,2

102 1,2

112 2,2

202 2,2

212 3,3

20

Note, that the second dataset contains no element 201, although it is a projection of 001

into the set fX1 � 1g.

We shall now prove that in this case the equivalent of Theorem 1 remains valid.

Theorem 2 If D = (D;�) is a monotone interval dataset, and t is a test of the form

(8) or (9) for some a 2 Xi, i 2 f1; : : : ; ng and �t(D) = (D0; �
0
) de�ned according to

De�nition..., then we have

(i) for x 2 D \D0 : �
0
(x) = �(x)

(ii) �t(D) is a monotone interval dataset

(iii) �(�t(D)) = �t(�(D)).

Proof: Part (i). For points x 2 D0 with x 2 D we have �t(x) = x, so �
0

`(x) = �D
min

(x) =

�`(x) and �
0

r(x) = �D
max

(x) = �r(x), which proves this part.

Part (ii). Both �
0

` and �
0

r are monotone on Xt, since on Xt they are equal to the

monotone functions �D
min

and �D
max

respectively.

Part (iii). The � part is exactly equal to the � part of Theorem 1. So let us proceed

with the � part. First, we will give an argument that deals with the case t = fXi � ag. At

the end of the proof we will show how to deal with the case t = fXi � ag. Let �̂ : Xt ! C

be a monotone extension of �t(D) = (D0; �
0
), so that

�
0

`(x) � �̂(x) � �
0

r(x) for x 2 D0: (10)

Our task is to extend �̂ to all of X . We shall go about in a way similar to the proof of

Theorem 1:

Let ~D = (~D; ~�) be a non-interval dataset, de�ned as follows: ~D = Xt [D and let
~� : ~D ! C be de�ned as

~�(x) =

(
�̂(x) for x 2 Xt

�r(x) for x 2 D n Xt

Note that by this de�nition ~D is devided into two subsets, which we will call A and B

respectively. Note further, that for x 2 B we have xi > a. We must now show that ~� as

de�ned is monotone on ~D. So, let x; y 2 ~D be anyelements from ~D, with x � y.

Case 1. If x and y are both members of A, or if both are members of B, then clearly
~�(x) � ~�(y), for both �̂ and � are monotone.

Case 2. Let x 2 A and y 2 B; the other way around is impossible, since x � y.

Furthermore, let y0 = �t(y), so y0 2 D0, and y0 � y. Then we also have x � y0, for

xi � a = y0i and all other components components are implied by x � y. So, we have

~�(x) = �̂(x) � �̂(y0) � �
0

r(y
0) � �r(y) = ~�(y)

where the second (in)equality follows from the monotonicity of �̂ and the third (in)equality

follows from (10). So ~� is monotone on ~D in all cases. Now, as an extension of �̂ we take

an arbitrary monotone extension of dataset ~D. For such an extension �̂ we have �̂ 2 �(D),

so part (iii) has been proven for the case t = fXi � ag. To cover the case t = fXi � ag it

is su�cient to de�ne ~D = (~D; ~�) as follows: ~D = Xt [D and

~�(x) =

(
�`(x) for x 2 D n Xt (so: xi < a)

�̂(x) for x 2 Xt:

21

With this choice of ~D we can almost duplicate the above proof. We leave this to the

reader. 2

We end this subsection with two remarks.

Remark 3.4 Although it might seem to be necessary for the case t = fXi � ag to use as

the projected dataset the set

�t(D) =
[
b�a

�tb(D); with tb = fXi = bg

it appears from Theorem 2 that all datapoints from
S
b<a �tb(D) that were not inD before,

are redundant in �t(D).

As an example, the data element 201 with interval [0; 2] would be clearly redundant in the

dataset �t2(D) following De�nition 12, as can be seen from the theorem of Section 3.2.

Remark 3.5 Let jDj be the number of datapoints in a dataset D = (D;�). So jDj = jDj.

Then from Theorem 2 it follows that for t = fXi � ag and t = fXi � ag

j�t(D)j � jDj:

This will be very helpful while building a tree: it means that the deeper we go into the

tree, the smaller the associated datasets become.

3.5 Algorithms for the minimal and maximal trees

In this subsection we will propose some complete algorithms for inducing decision trees. We

will treat both the binary and the n-ary case, and we will use the technique of projection

that was explained in the preceding paragraphs. The trees produced by the proposed

algorithms will be implementations of the minimal resp. maximal monotone extensions of

a monotone dataset.

We will start with input spaces that satisfy both Assumption 1 and Assumption 2

(Section 2.5). In Section 3.6 we will show, that the same result can be reached with

Assumption 1 only.

We will now proceed to specify the update rule, the splitting rule, the stopping rule

and the labeling rule of the proposed algorithms. Once these have been speci�ed the

algorithm for the induction will be known: see Figure 4 of the beginnig of this section.

Note that in this subsection we will only treat algorithms that use local datasets.

We start with the update rule: when a new node T is formed, it must be one of the

form (8) or (9) and the new dataset DT will be formed from the dataset D of the parent

node as follows

(U): DT = �t(D) [MT

where �t is de�ned in De�nition... and MT = (MT ; �) with

MT = fa; bg

and

�`(a) = �D
min

(a); �r(a) = �D
max

(a)

�`(b) = �D
min

(b); �r(b) = �D
max

(b):

22

Here, a and b stem from the fact that T must be of the form

T = fx 2 X : a � x � bg:

Thus, a is the minimal element of T and b is the maximal element of T .

Next, we consider the splitting rule S(T;D). We assume that each split of a node T

will be of the form

(S1): T = TL [TR

with

TL = fx 2 T : xi � cg

and

TR = fx 2 T : xi > cg

for some c 2 Xi. Note that, because of Assumption 2, TR can also be written as TR =

fx 2 T : xi � c0g for some c0 2 Xi.

The stopping rule, that will be used, will have the following form: we will stop at node

T when for its associated interval dataset D = (D;�) we have either

(H1): 8x; y 2 D : �`(x) = �`(y)

or

(H2): 8x; y 2 D : �r(x) = �r(y)

Thus, we will stop in a node when either all left points or all right points of the intervals

of the datapoints in this node will be equal. During the course of an algorithm we will use

either (H1) or (H2), not both alternatingly.

Next we come to the labeling rule �(T;D). This rule will only be �red when either

(H1) or (H2) is true, so all leftpoints or all rightpoints of the intervals of all datapoints

will be the same. Now we de�ne

(L): �(T;D) =

(
�`(x) for any x 2 D; if (H1) holds

�r(x) for any x 2 D; if (H2) holds:

Finally we will have to add the following re�nement to the splitting rule S(T;D): when

we work with the stopping rule (H1), at each splitting of the form TL = fXi � cg,

TR = fXi > cg, we will have to pick c 2 Xi such that

(S2): 9x; y 2 D with �`(x) 6= �`(y); x 2 TL and y 2 TR:

If we work with stopping rule (H2), at each splitting we will have to pick c 2 Xi such that

(S3): 9x; y 2 D with �r(x) 6= �r(y); x 2 TL and y 2 TR:

Now, we are in a position to formulate the main theorem of this section.

Theorem 3 If X is an input space that satis�es Assumption 1 and 2, if D = (D;�) is a

monotone dataset on X , if the functions update, S, H and L satisfy either

(i): (U), (S1), (S2), (H1) and (L)

23

or

(ii): (U), (S1), (S3), (H2) and (L)

then the algorithm described in Figure 4 of this section will generate a monotone binary

decision tree T with associated class labeling �T . Furthermore we have in case (i): �T =

�D
min

and in case (ii): �T = �D
max

, the minimal, respectively maximal monotone extension

of D.

Proof: We prove the theorem for case (i). Case (ii) is similar, and will be left to the

reader.

a) First we will prove that for each leaf T where the stopping rule �res, we have

�T (x) = �D
min

(x); for all x 2 T: (11)

By de�nition, (10) holds for x 2 DT , viz. on DT �T (x) is equal to �`(x) which is equal

to �D
min

(x), see the Projection Theorem and the de�nition of �t(D) in De�nition 11. Now,

let cT be the value of �T (x) for x 2 T . That this value is constant follows from (4) and

(6). We must now show that

�D
min

(x) = cT ; for all x 2 T: (12)

If a and b are resp. the minimal and the maximal element of T , then a; b 2 DT because

of (2), so we also have

�D
min

(a) = cT and �D
min

(b) = cT :

But, since �D
min

is monotone, we have for all x 2 T = fx : a � x � bg

cT = �D
min

(a) � �D
min

(x) � �D
min

(b) = cT ;

which proves (12) and consequently (11).

b) Since (11) holds for all leaves, the assertion about �T in the theorem is now proved as

well. The monotonicity of T now follows from the monotonicity of �D
min

.

c) Finally, we must show that the tree is �nite. This follows from the fact that for each

new TL and TR, we always have jTLj < jT j and jTRj < jT j, see Corollary 2 of the last

subsection. Eventually, the size of the dataset with a node must diminish until it consists

of a single element. Then (H1) automatically holds, and the stopping rule �res. Thus the

tree never becomes deeper than the number of elements in the original dataset. 2

As an example of the operation of the above algorithm, let us look at the bank loan

dataset D of Table 1, which is �rst transformed into the following interval dataset D:

001 0,0

002 1,1

112 2,2

202 2,2

212 3,3

Suppose for the �rst split we use the test fX1 � 0g. As shown in the example under

De�nition 12, we get the following projected datasets

24

001 0,0

002 1,1

012 1,2

101 0,2

102 1,2

112 2,2

202 2,2

212 3,3

However, by the update rule these datasets are supplemented with the minimal and max-

imal elements of their nodes: 000 with interval [0; 0] and 022 with interval [1; 3] are added

to the left dataset; 100 with interval [0; 2] and 222 with interval [3; 3] are added to the

right dataset, ending up with

000 0,0

001 0,0

002 1,1

012 1,2

022 1,3

100 0,2

101 0,2

102 1,2

112 2,2

202 2,2

212 3,3

222 3,3

Proceeding with the left dataset we see that the left endpoints of the intervals are not all

equal so we can not stop yet. Thus, the node must be split again. Suppose we split it

using the test fX3 � 1g to give the following projected datasets:

000 0,0

001 0,0

011 0,2

021 0,3

002 1,1

012 1,2

022 1,3

To the left dataset the maximal element 021 with interval [0; 3] is added by the update

rule. We now see, that all the left endpoints of the intervals in the left dataset are equal

to 0. Thus, we can stop, make a leaf, and assign class 0 to it. Proceeding in this way, we

end up with the decision tree of Figure 6. When we use stopping rule (H2) we get the

decision tree of Figure 7.

Having shown in Theorem 3 how binary decision trees can be constructed, we now

turn our attention to n-ary trees. It turns out that the n-ary case is only a slight variation

of the binary case: only the splitting rule must be changed, the other rules can remain

what they are. In fact, the splitting rule S(T;D) must have the following form. At each

node, the associated subset T is split into ni + 1 subsets, if the variable Xi is used as a

splitting variable with values 0; 1; : : : ; ni. Thus, the splitting rule will have the form

(S1�) : T = T0 [T1 [: : : [Tni

where

Tj = fx 2 T : xi = jg

for each j 2 f0; 1; : : : ; nig. In addition, the variable Xi must be chosen such that

(S2�) : 9x; y 2 D : xi 6= yi

whether or not stopping rule (H1) or (H2) is used.

25

X1 � 0

X3 � 1

0 1

X3 � 1

X2 � 1

0 X1 � 1

0 X3 � 0

0 3

X1 � 1

X2 � 0

1 2

X2 � 0

2 3

Figure 6: Decision Tree for the Minimal Extension: binary case

X1 � 0��
��

X2 � 0��
��

X3 � 1��
��

0
�
�� S

SS
1

�
�
�
�� Q

Q
Q
QQ

X2 � 1��
��

2
�
�� S

SS
3

!!
!!

!!
!!! aaaaaaaaa

X2 � 0��
��

2
�
�� S

SS
X1 � 1��

��

X2 � 1��
��

2
�
�� S

SS
3

#
#
c

c
cc

3

Figure 7: Decision Tree for the Maximal Extension: binary case

26

Using these changes in the splitting rule, we can now formulate the analog of Theorem 3

for the n-ary case.

Theorem 4 If X is an input space that satis�es Assumption 1 and 2, if D = (D;�) is a

monotone dataset on X , if the functions update, S, H and L satisfy either

(i): (U), (S1*), (S2*), (H1) and (L)

or

(ii): (U), (S1*), (S2*), (H2) and (L)

then the algorithm described in Figure 4 of this section will generate a monotone n-ary

decision tree T with associated class labeling �T . Furthermore we have in case (i): �T =

�D
min

and in case (ii): �T = �D
max

, the minimal, respectively maximal monotone extension

of D.

Proof: The proof remains the same, due to the fact that a set T associated with a node

in an n-ary tree, just as in the binary case, has the form

T = fx 2 X : a � x � bg

for some a; b 2 X , see Corollary 2 of Section 2.5. Thus, the proof of Theorem 3 will work

here as well. 2

As an example of the operation of the described algorithms, let us look at our running

example dataset D

001 0

002 1

112 2

202 2

212 3

which becomes after the projection step fX1 = 1g

112 2,2

101 0,2

102 1,2

However, the update rule adds two elements to this last set, the minimal element 100 with

interval [0; 2] and the maximal element 122 with interval [2; 3], yielding

100 0,2

101 0,2

102 1,2

112 2,2

122 2,3

Now, even if we use stopping rule (H2) we cannot stop yet, since not all right-ends of the

intervals are equal.

27

Running the algorithm of Theorem 4 for stopping rule (H1) gives the decision tree of

Figure 8

X1

X3

0 0 1

X3

0 0 X2

1 2 2

X3

0 0 X2

2 3 3

Figure 8: Decision Tree for the Minimal Extension: n-ary case

and running it with stopping rule (H2) yields the tree of Figure 9.

X1

X2

X3

0 0 1

2 3

X2

2 2 3

X2

2 3 3

Figure 9: Decision Tree for the Maximal Extension: n-ary case

We close this section with a number of remarks.

Remark 3.6 Note that these theorems actually prove a whole class of algorithms to

be correct: the requirements set by the theorem to the splitting rule are quite general.

Almost nothing is said in the requirements about how to select the attribute Xi. Obvious

28

candidates for attribute-selection are the well-known impurity measures like entropy, Gini

or the twoing rule, see Breiman et al. [4].

Remark 3.7 It is possible to simplify the algorithms described in Theorem 3 and 4 in

the following way. One can leave out the MT -part in the update rule (U), provided the

original dataset D is supplemented with two data elements, viz. xmin, the minimal element

of the whole input space X , and xmax, the maximal element of X . Of course, one assigns

to these data elements the intervals [�D
min

(xmin); �
D
max

(xmin)] and [�D
min

(xmax); �
D
max

(xmax)]

respectively. It is easy to show that the projections of the points xmin and xmax on a node

T , are equal to the minimal, resp. maximal elements of that node. This situation renders

the MT -part super
uous, in case xmin and xmax are added to the original dataset D.

Remark 3.8 Another simpli�cation of the algorithms of Theorem 3 and 4 is possible, if

one is only interested in either a tree for the minimal extension or a tree for the maximal

extension, not in both. In that situation, it is not needed to work with the interval

datasets: for instance, if one only wants a tree for the minimal extension, it is su�cient

to work with the left endpoints of all the intervals, as can be seen when one scrutinizes

the described algorithm. Thus, in that situation one can refrain from calculating the right

endpoints of the intervals altogether: they are not needed. A similar remark can be made

if one is only interested in a tree for the maximal extension.

3.6 Changes needed for Continuous Attributes

Note to the July 1997 edition: the text of this subsection will be published in the Supple-

ment to this Technical report.

4 Induction of Monotone Decision Trees: Global Algorithms

In this section we will describe another class of algorithms for the induction of both

binary and n-ary decision trees. These algorithms will only make use of a global dataset,

as explained in the beginning of Section 3. Such a global dataset will be a non-interval

dataset, so we return to our original concept of a dataset of De�nition 1. The decision

trees generated by the algorithms of this section will not be necessarily representations of

the minimal or maximal extension of the dataset at hand. In general, the labeling rules

associated with the trees of this section will be somewhere in between the minimal and

maximal extension. As will be shown in Section 5, the trees of this section tend to be

much smaller than the trees generated by the algorithms of Section 3.

4.1 Algorithms for Discrete Attributes

We will start with the description of the global algorithm for the binary tree case. To start

with, we will assume the input space X to satisfy the Assumptions 1 and 2. In Section 4.2,

we will explain how we can dispense with Assumption 2. As noted in the beginning of

Section 3, we only need to specify a splitting rule, a stopping rule, a labeling rule and

an update rule. Together these are then plugged into the algorithm of Figure 5 to give a

complete description of the algorithm under consideration. Note that by Corollary 1 of

Section 2.5 each node to be split or to be made into a leaf has the form

T = fx 2 X : a � x � bg (13)

29

for some a; b 2 X .

We start with describing the update rule. When this rule �res, the dataset D = (D;�)

will be updated. In our algorithm at most two elements will be added to the dataset, each

time the update rule �res. Recall, that because T is of the form (13), a is the minimal

element of T and b is the maximal element of T . Now, either a or b, or both will be added

to D, provided with a well-chosen labeling. If a and b both already belong to D, nothing

changes. Here is the complete update rule:

update (var D; T):

if a 62 D then

begin

D := D [fag;

�(a) := �D
max

(a)

end;

if b 62 D then

begin

D := D [fbg;

�(b) := �D
min

(b)

end

Figure 10: The Standard Update Rule

The splitting rule S(T;D) must be such that at each node the associated subset T is

split into two nonempty subsets

S(T;D) = (TL; TR) with TL = fx 2 T : xi � cg and TR = fx 2 T : xi > cg

(14)

for some i 2 f1; : : : ; ng, and some c 2 Xi. Note, that because of the assumption (see

Section 2), TR can also be written as TR = fx 2 T : xi � c0g for some c0 2 Xi. Furthermore,

the splitting rule must satisfy the following requirement: i and c must be chosen such that

9x; y 2 D \ T with �(x) 6= �(y); x 2 TL and y 2 TR: (15)

Next, we consider the stopping rule H(T;D). As a result of the actions of the update

rule, both the minimal element a and the maximal element b of T belong to D. Now, as

a stopping rule we will use:

H(T;D) =

(
true if �(a) = �(b),

false otherwise.
(16)

Finally, the labeling rule L(T;D) will be simply:

L(T;D) = �(a) = �(b): (17)

For the proof that this algorithm works we will need two lemma's.

Lemma 6 Let D = (D;�) be a monotone dataset with D � X and � : D ! C. Let x0 be

an arbitrary element of X nD, and let c0 2 C be such that

�D
min

(x0) � c0 � �D
max

(x0):

30

If D0 = (D0; �0) is de�ned as follows:

8><
>:

D0 = D [fx0g

�0(x) =

(
�(x) for x 2 D

c0 for x = x0

then the following assertions are true:

(i) D is a monotone dataset

(ii) �D
min

� �D
0

min
� �D

0

max
� �D

max

(iii) �(D0) � �(D).

Proof: Part (i). To prove that D0 is a monotone dataset we only need to prove that for

any x 2 D:

x � x0) �(x) � �0(x0)

and

x0 � x) �0(x0) � �(x):

But, if x � x0 and x 2 D, then �(x) � �D
min

(x0) according to the de�nition of �D
min

, so

�(x) � �D
min

(x0) � c0 = �0(x0). The case x0 � x can be treated similarly.

Part (ii). Follows from the de�nition of �D
min

and �D
max

and the fact, that D � D0.

Part (iii). Let �̂ be an arbitrary element of �(D0). So �̂ is monotone and �D
0

min
� �̂ �

�D
0

max
. According to part (ii) of this lemma, we also have �D

min
� �̂ � �D

max
. Thus, �̂ is also

a monotone extension of D. 2

Lemma 7 If D = (D;�) is a monotone dataset and a; b 2 D, such that a � b and

�(a) = �(b) = c 2 C, then for all �̂ 2 �(D) we have for all x 2 T = fx 2 X : a � x � bg

�(x) = c:

Proof: From the monotonicity of � it follows that for x 2 T :

c = �(a) � �(x) � �(b) � �(b) = c: 2

Now we can formulate and prove the main theorem of this section.

Theorem 5 If X is an input space that satis�es Assumption 1 and 2, if D = (D;�) is a

monotone dataset on X , if the functions S;H;L satisfy (14), (15), (16) and (17), then the

algorithm of Figure 5 of Section 3 together with the update rule of Figure 6 will generate

a monotone decision tree T with �T 2 �(D).

Proof: The update rule of the algorithm generates a �nite sequence of datasets D1;D2; : : : ;Dk,

with Di = (Di; �i);Di 2 X ; �i : Di ! C; 1 � i � k, such that, according to Lemma 1, each

Di is monotone, D � D1 � D2 � : : : � Dk,

�D
min

� �D1

min
� : : : � �

Dk

min
� �Dk

max
� : : : � �D1

max
� �D

max
;

and

�(Dk) � : : : � �(D1) � �(D):

31

The update rule guarantees, that the minimal and maximal element of each node, where

the stopping rule �res, are members of the dataset. So for such a node, Lemma 2 asserts

there is just one labeling rule for this node: �T . For the last dataset Dk we must have:

all minimal and maximal elements of all leaves are members of Dk, so �(Dk) will consist

of just one member: �T . The process must be �nite since we have a �nite input space X ,

and each Di must be a subset of X . 2

Again, just like the comparable theorems of Section 3, note that this theorem actually

proves a whole class of algorithms to be correct: the requirements set by the theorem

to the splitting rule are quite general. Nothing is said in the requirements about how

to select the attribute Xi and how to calculate the cut-o� point c for a test of the form

t = fXi � cg. Obvious candidates for attribute-selection and cut-o� point calculation are

the well-known impurity measures like entropy, Gini or the twoing rule, see Breiman et

al. [4].

As an illustration of the operation of the presented algorithm we will use it to generate

a monotone decision tree for the dataset of Table 1. As an impurity criterium we will

use entropy, see [6]. Starting in the root, we have T = X , so a = 000 and b = 222.

Now, �D
max

(000) = 0 and �D
min

(222) = 3, so the elements 000:0 and 222:3 are added to

the dataset, which then consists of 7 examples. Next, six possible splits are considered:

X1 � 0; X1 � 1;X2 � 0;X2 � 1;X3 � 0 and X3 � 1. For each of these possible splits we

calculate the decrease in entropy as follows. For the test X1 � 0, the space X = [000; 222]

is split into the subset TL = [000; 022] and TR = [100; 222]. Since TL contains three

data elements and TR contains the remaining four, the average entropy of the split is
3

7
� 0:92 + 4

7
� 1 = 0:97. Thus, the decrease in entropy for this split is 1:92� 0:97 = 0:95.

When calculated for all six splits, the split X1 � 0 gives the largest decrease in entropy, so

it is used as the �rst split in the tree. Proceeding with the left node T = [000; 022] we start

by calculating �D
min

(022) = 1 and adding the element 022:1 to the dataset D, which will

then have eight elements. We then consider the four possible splitsX2 � 0;X2 � 1;X3 � 0

and X3 � 1, of which the last one gives the largest decrease in entropy, and leads to the

nodes TL = [000; 021] and TR = [002; 022]. Since �D
min

(021) = 0 = �(000), TL is made

into a leaf with class 0. Proceeding in this manner we end up with the decision tree of

Figure 11 which is easily checked to be monotone.

X1 � 0��
��

X3 � 1��
��

0
�
�� S

SS
1

�
�
�
�� Q

Q
Q
QQ

X1 � 1��
��

2
�
�� S

SS
X2 � 0��

��

2
�
�� S

SS
3

Figure 11: Decision Tree for the Bank Loan Dataset produced by the Standard Algorithm

32

Remark 4.1 A slight but sometimes useful variation of the above algorithm is the fol-

lowing. We change the update rule to

update (var D; T):

if T is homogeneous then

begin

if a 62 D then

begin

D := D [fag;

�(a) := �D
max

(a)

end;

if b 62 D then

begin

D := D [fbg;

�(b) := �D
min

(b)

end

end

Figure 12: Update Rule: a variation

thus, only adding the corner-elements to the dataset if the node T is homogeneous, i.e. if

8x; y 2 D \ T : �(x) = �(y):

If T is homogeneous, we will use the notation �T for the common value �(x) of all x 2 D\T .

The stopping rule becomes:

H(T;D) =

(
true if T is homogeneous and �(a) = �(b),

false otherwise

and the labeling rule:

L(T;D) = �(a) = �(b) = �T :

With these changes the theorem remains true as can be easily seen. However, whereas

with the standard algorithm from the beginning one works at 'monotonizing' the tree,

this algorithm starts adding corner elements only when it has found a homogeneous node.

For instance, if one uses maximal decrease of entropy as a measure of the performance of

a test-split t = fXi � cg, this new algorithm is equal to Quinlan's ID3-algorithm, until

one hits upon a homogeneous node; from then on our algorithm starts adding the corner

elements a and b to the dataset, enlarging the tree somewhat, but making it monotone.

We call this process cornering. Thus, our algorithm can be seen as a method that �rst

builds a traditional (non-monotone) tree with a method such as ID3, C4.5 or CART,

and next makes it monotone by adding corner elements to the dataset. This observation

yields also the possible use of this variant: if one has an arbitrary (non-monotone) tree

for a monotone classi�cation problem, it can be 'repaired' i.e. made monotone by adding

corner elements to the leaves and growing some more branches where necessary.

As an example of the use of this remark, suppose we have the following monotone

dataset D:

33

000 0

001 1

100 0

110 1

Suppose further, that someone hands us the following decision tree for classifying the

above dataset:

X1 � 0��
��

X3 � 0��
��

0
�
�� S

SS
1

�
�
�
�� Q

Q
Q
QQ

X2 � 0��
��

0
�
�� S

SS
1

Figure 13: Non-monotone Decision Tree

This tree indeed classi�es D correctly, but although D is monotone, the tree is not.

In fact, it classi�es data element 001 as belonging to class 1 and 101 as 0. Clearly, this

is against monotonicity rule (1). To correct the above tree, we apply the algorithm of

Remark 4.1 to it. We add the maximal element of the third leaf 101 to the dataset with

the value �D
min

(101) = 1. The leaf is subsequently split and the resulting tree is easily

found to be monotone:

X1 � 0��
��

X3 � 0��
��

0
�
�� S

SS
1

��
��

��
� HHHHHHH

X2 � 0��
��

X3 � 0��
��

0
�
�� S

SS
1

#
#
c

c
cc

1

Figure 14: The above tree, but repaired

Of course, if we would have grown a tree directly with the above dataset D with the

standard algorithm we would have ended up with a smaller tree, which is equally correct

and monotone:

34

X2 � 0��
��

X3 � 0��
��

0
�
�� S

SS
1

�
�� S

SS
1

Figure 15: Monotone Tree produced by the Standard Algorithm

Nevertheless, it helps to know that we can make an arbitrary tree monotone by splitting

up some of the leaves and adding a few more branches.

Remark 4.2 The main algorithm of this section further suggests the following selection

criterion. First note, that for each T = fx 2 X : a � x � bg with T \D 6= ; we have

�D
max

(a) � �D
min

(b):

This can be seen as follows: let x0 be an element of T \D, then

�D
max

(a) � �(x0) � �D
min

(b):

We now de�ne the variation of the dataset on T as follows:

var (T) = j[�D
max

(a); �D
min

(b)]j � 1

It is clear that var(T) = 0 i� �D
max

(a) = �D
min

(b). Clearly, this measure can be used as

an impurity measure, and the decrease in variation can be taken as an attribute selection

criterium. However, some experiments have shown that it is inferior to entropy or Gini:

trees grown with this impurity measure tend to be somewhat larger than those grown with

entropy or the Gini-index.

4.2 Changes Needed for Continuous Attributes

Note to the July 1997 edition: the text of this subsection will be published in the Supple-

ment to this Technical report.

5 Experiments

We did some experiments to get an idea of the usefulness of our methods and to compare

them with those of Ben-David[1, 2, 3] and Makino et al.[5]. First we did some experiments

to investigate the size of the trees that our methods would generate, also in comparison

with other methods.

We generated random monotone datasets with 10, 20, 30, etc. examples and built

trees with each of those datasets, using four di�erent methods: ID3 as a general method,

which does not generate monotone trees, and three methods presented in this report:

35

MinEx, which is the method for inducing bivariate Minimal Extension trees introduced

in Section 3, MT1 is the variation method of Remark 4.1, MT2 is the main method of

Section 4 which we called the Standard Algorithm. As an aside, we use the abbreviation

MT for Monotone Tree. For each number of examples we generated four di�erent datasets,

each from a universe with 5 attributes, each having 3 possible values, while all data

elements where evenly divided over 4 classes. The results for the number of leaves of the

generated trees are shown in Table 2.

examples ID3 MinEx MT1 MT2

10 7.3 17.8 16.0 8.3

20 12.5 37.3 30.0 19.8

30 17.0 46.5 44.8 32.0

40 21.5 49.0 43.8 36.8

50 30.8 62.3 48.8 40.3

60 31.0 67.5 53.3 45.8

70 38.3 68.3 57.5 48.8

80 43.3 79.3 67.5 62.7

90 47.5 80.8 68.0 63.3

100 57.8 88.5 79.0 66.0

Table 2: Size of trees: Number of Leaves

The size of a tree can also be measured by looking at the depth of a tree. One way to

measure this depth is the average path length: the average length of a path from the root

of the tree to a leaf. For instance, the average path length of the tree of Figure 15 is 1.67

since there are two paths of length 2 and one of length 1. In Table 3 you will �nd the

results of our measurements, where the size of the generated trees is measured in average

path length.

examples ID3 MinEx MT1 MT2

10 2.6 3.6 3.2 2.8

20 3.6 4.9 4.5 4.2

30 3.9 5.2 5.0 4.8

40 4.3 5.4 5.0 4.8

50 4.9 5.8 5.3 5.2

60 4.8 6.0 5.4 5.2

70 5.1 5.8 5.5 5.4

80 5.4 6.2 5.9 5.8

90 5.5 6.3 5.9 5.8

100 5.8 6.4 6.2 6.0

Table 3: Size of Trees: Average Path Length

Another measure of the depth of a tree is the expected number of comparisons needed

to classify an arbitrary new example presented to the tree. If T1; : : : ; Tk are the leaves of

a tree, this measure can be calculated as

Expected Number of Comparisons Needed =
kX
i=1

`i
jTij

jX j

36

where `i is the length of the path from the root to the leaf Ti. One advantage of this method

of measuring the size of a tree is, that it can also be applied to a non-tree method such

as OLM [1], where a new example also must be compared with a number of elements of

the OLM-database. Thus, this measure is also a measure of the e�ciency of the generated

classi�ers. The results are shown in Table 4.

examples ID3 OLM MinEx MT1 MT2

10 3.3 6.8 5.2 4.8 3.5

20 4.0 11.9 6.3 5.6 4.8

30 4.6 15.1 6.4 6.0 5.6

40 4.8 18.4 6.6 6.0 6.0

50 5.6 22.5 6.9 6.3 6.0

60 5.6 24.6 6.9 6.6 6.5

70 6.1 27.0 7.0 6.8 6.4

80 6.1 26.0 7.2 6.8 6.7

90 6.2 27.7 7.1 6.8 6.7

100 6.4 34.0 7.1 6.9 6.7

Table 4: Expected Number of Comparisons Needed

Thus, it seems that as a classifying tool, decision trees are much more e�cient than a

method such as OLM, although OLM produces genuinely monotone classi�cation rules.

As a second experiment we did an attempt to investigate the generalizing power of

the proposed methods. Again, we generated random monotone datasets of size 10, 20,

etc. But now we used these datasets for 3-fold cross validation experiments: we build a

tree on two thirds of a dataset, and tested the tree on the remaining one third. Each

cross validation experiment was repeated four times. The average percentage of correctly

classi�ed examples will be found in Table 5 for each of the �ve methods we tested.

examples ID3 OLM MinEx MT1 MT2

10 40.1 29.9 37.5 55.6 55.6

20 27.4 19.0 32.0 37.9 38.9

30 37.0 29.0 43.0 48.3 45.8

40 52.6 34.8 49.8 57.5 55.1

50 32.5 25.1 36.0 47.1 46.6

60 46.7 28.3 42.1 54.0 56.3

70 49.0 26.0 45.3 56.0 55.3

80 35.0 22.5 41.0 51.5 48.7

90 55.3 28.9 51.1 64.5 63.6

100 47.0 29.3 46.3 61.2 59.0

Average 42.3 27.3 42.3 53.4 52.5

Table 5: Percentage Correctly Classi�ed in 3-fold Cross Validation

As a tentative result, it seems that our methods of Section 4 are better in predicting a

class for a new example than the other methods for these monotone problems.

As a third and �nal experiment we wanted to compare our main methods with those

of Makino et al. To do this we could only consider two class problems, since their method

37

works only in that situation. Thus, we generated monotone datasets for two class problems

with size 10, 20, etc., we generated trees with Makino and our Standard method MT2, and

we measured the size of the resulting trees, with the above three criteria. In addition, we

measured the speed of the algorithm for generating the trees in seconds on our computer.

The results are shown in Table 6.

leaves average depth # comparisons speed

examples Makino MT2 Makino MT2 Makino MT2 Makino MT2

10 4.6 6.4 2.6 2.7 2.0 2.2 24.2 1.2

20 7.8 8.0 3.5 3.5 2.7 2.6 33.8 1.8

30 11.0 11.6 4.0 4.2 3.2 3.1 38.8 2.6

40 15.6 15.8 4.8 4.9 3.5 3.5 51.4 2.8

50 16.0 15.8 5.1 4.8 3.4 3.4 62.6 3.2

60 23.2 24.6 5.6 5.5 4.2 4.2 98.8 5.0

70 23.3 24.7 5.5 5.4 4.2 4.3 94.3 5.3

Table 6: Comparison with Makino et al.

It appears that our algorithm MT2 in the 2-class situation generates trees of comparable

size, but it is 10 to 20 times as fast as the method of Makino et al.

6 Conclusion and further remarks

We have provided a number of tree generation algorithms for monotone classi�cation

problems with discrete and continuous domains and k classes. This improves and extends

results of Ben-David [1] and Makino et al. [5]. In this report we discussed some further

experiments with the two-class problem that show that our algorithm is 10 to 20 times as

fast as that of [5].

Acknowledgement

We thank Ren�e van Dordregt for many discussions and for help with the experiments.

References

[1] Ben-David, A., Sterling, L., Pao, Y.H., (1989). Learning and classi�cation of mono-

tonic ordinal concepts. In Computational Intelligence vol. 5, 45-49.

[2] Ben-David, A., (1992). Automatic generation of symbolic multiattribute ordinal

knowledge-based DSSs: methodology and applications. In Decision Sciences, vol. 23,

1357-1372.

[3] Ben-David, A., (1995). Monotonicity maintenance in information-theoretic machine

learning algorithms. In Machine Learning, vol. 19, 29-43.

[4] Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J., (1984). Classi�cation and

regression trees. Chapman and Hall, NewYork. Second Edition 1993.

38

[5] Makino, K., Suda, T., Yano, K., Ibaraki, T., (1996). Data analysis by positive deci-

sion trees. In International symposium on cooperative database systems for advanced

applications (CODAS), Kyoto, 282-289.

[6] Quinlan, J.R., (1986). Induction of decision trees. In Machine Learning, vol. 1, 81-106.

39

