# EXTREMAL BEHAVIOUR OF SOLUTIONS TO A STOCHASTIC DIFFERENCE EQUATION WITH APPLICATIONS TO ARCH PROCESSES 

Laurens de HAAN*<br>Econometric Institute, Erasmus Universiteit Rotterdam, Postbus 1738, 3000 DR Rotterdam, The Netherlands

Sidney I. RESNICK* $\dagger$<br>Department of Operations Research, Upson Hall, Cornell University, Ithaca, NY 14853, USA

Holger ROOTZÉN* $\ddagger$
Department of Mathematical Statistics, University of Lund, S-22100 Lund, Sweden
Casper G. de VRIES
Department of Economics, Erasmus Universiteit Rotterdam, Postbus 1738, 3000 DR Rotterdam, The Netherlands

Received 1 February 1988
Revised 14 November 1988

We consider limit distributions of extremes of a process $\left\{\boldsymbol{Y}_{n}\right\}$ satisfying the stochastic difference equation

$$
Y_{n}=A_{n} Y_{n-1}+B_{n}, \quad n \geqslant 1, Y_{0} \geqslant 0,
$$

where $\left\{A_{n}, B_{n}\right\}$ are i.i.d. $\mathbb{R}_{+}^{2}$-valued random pairs. A special case of interest is when $\left\{Y_{n}\right\}$ is derived from a first order ARCH process. Parameters of the limit law are exhibited; some are hard to calculate explicitly but easy to simulate.

AMS 1980 Subject Classifications: Primary 60F05; Secondary 60G10, 60G17.
extreme values * ARCH process * stochastic difference equation with random coefficients

## 1. Introduction

Consider a process $\left\{Y_{n}, n \geqslant 1\right\}$ which satisfies the stochastic difference equation

$$
\begin{equation*}
Y_{n}=A_{n} Y_{n-1}+B_{n}, \quad n \geqslant 1, Y_{0} \geqslant 0, \tag{1.1}
\end{equation*}
$$

where $\left\{\left(A_{n}, B_{n}\right), n \geqslant 1\right\}$ are i.i.d. $\mathbb{R}_{+}^{2}$-valued random pairs (cf. Vervaat, 1979). We study the extremal behaviour of $\left\{Y_{n}\right\}$ under rather mild assumptions. Our interest

[^0]in this problem was stimulated by the desire to understand extremal characteristics of the autoregressive conditional heteroscedastic (ARCH) processes introduced by Engle (1982). The first order ARCH process is defined by
\[

$$
\begin{equation*}
\xi_{n}=X_{n}\left(\beta+\lambda \xi_{n-1}^{2}\right)^{1 / 2}, \quad n \geqslant 1, \tag{1.2}
\end{equation*}
$$

\]

where $\left\{X_{n}\right\}$ are i.i.d. $N(0,1)$ random variables, $\beta>0,0<\lambda<1$. Thus $\left\{\xi_{n}^{2}\right\}$ satisfies (1.1) with $A_{n}=\lambda X_{n}^{2}, B_{n}=\beta X_{n}^{2}$. (Higher order ARCH processes, considered for example by Engle, 1982, and Milhøj, 1985, or Bollerslev, 1986, would satisfy the higher order version of (1.1).)

ARCH processes were introduced in econometric modelling because the usual linear time series models, with constant conditional variance and Gaussian tails, are inadequate for many types of financial data. Typically such data exhibit clusters of high and low volatility. The ARCH processes have been successfully applied in modelling exchange rate yields (Domowitz and Hakkio, 1985, and Hsieh, 1988), and stock returns (Engle et al., 1987, and Bollerslev, 1987). Bollerslev and Engle (1986) provide a good review; Bollerslev (1986) and Wciss (1986) give some extensions.

Extreme behaviour is of obvious interest in economics. For example, extreme yields may characterize the occurrence of bankruptcy (McCulloch, 1981) or foreign exchange rate realignments (Flood and Garber, 1984). Because of the importance of extremes, it is natural to inquire into the statistical properties of extremes of the ARCH process (and more generally of solutions of (1.1)). In particular we want to find limiting distributions and to resolve whether or not there is clustering associated with such extremes. These issues are taken up in Section 2. Section 3 is concerned with the numerical computation of some constants appearing in the limiting distributions.

It is rather striking that the building blocks of the ARCH process in (1.2) are normal variates but yet $\xi_{n}$ has Pareto-like tails. The reason for this is the following result of Kesten (1973) given as (iv) of the next theorem which collects some needed information as given in Vervaat (1979).

Theorem 1.1. Suppose (1.1) holds and that there is a $\kappa>0$ with

$$
\begin{equation*}
E A_{1}^{\kappa}=1, \quad E A_{1}^{\kappa} \log ^{+} A_{1}<\infty, \quad 0<E B_{1}^{\kappa}<\infty, \tag{1.3}
\end{equation*}
$$

that $B_{1} /\left(1-A_{1}\right)$ is nondegenerate and that the conditional distribution of $\log \Lambda_{1}$ given $A_{1} \neq 0$ is nonlattice.
(i) The equation

$$
Y_{\infty} \stackrel{\mathrm{d}}{=} A_{1} Y_{\infty}+B_{1},
$$

$Y_{\infty}$ and $\left(A_{1}, B_{1}\right)$ independent, has a solution unique in distribution, given by

$$
Y_{\infty} \stackrel{\mathrm{d}}{=} \sum_{j=1}^{\infty} B_{j} \prod_{i=1}^{j-1} A_{i} .
$$

(ii) If in (1.1) we take $Y_{0} \stackrel{\mathrm{~d}}{=} Y_{\infty}$, then the process $\left\{Y_{n}\right\}$ is stationary.
(iii) No matter how the process $\left\{Y_{n}\right\}$ is initialized

$$
Y_{n} \xrightarrow{d} Y_{\infty},
$$

where " $\rightarrow$ " denotes convergence in distribution.
(iv) There exists a constant $c>0$ such that as $t \rightarrow \infty$,

$$
\begin{equation*}
P\left(Y_{\infty}>t\right) \sim c t^{-\kappa} . \tag{1.4}
\end{equation*}
$$

Remark. Unfortunately it is difficult to get hold of the constant $c$ in (1.4) explicitly, but as we shall argue later, this is of small practical consequence.

In the case of the ARCH process $\left\{\xi_{n}^{2}\right\}$, where $A_{1}=\lambda X_{1}^{2}, B_{1}=\beta X_{1}^{2}$, the conditions (1.3) are readily seen to hold and $\kappa$ is the solution of

$$
\begin{equation*}
E\left(\lambda X_{1}^{2}\right)^{\kappa}=1 \tag{1.5}
\end{equation*}
$$

where $X_{1} \sim \mathrm{~N}(0,1)$. For a specific value of $\lambda(0<\lambda<1)$, the value $\kappa$ is readily found by solving for $\kappa$ in the equation

$$
\begin{equation*}
\Gamma\left(\kappa+\frac{1}{2}\right)=\pi^{1 / 2}(2 \lambda)^{-\kappa} \tag{1.6}
\end{equation*}
$$

For instance, when $\lambda=\frac{1}{2}$, the nonzero root of (1.6) is approximately 2.365 .
The occurrence of the Pareto type tail in (1.4) is more understandable after an outline of Kesten's (1973) argument: By iterating (1.1) we find for $n \geqslant 1$,

$$
Y_{n}=\sum_{k=1}^{n}\left(\prod_{j=k+1}^{n} A_{j}\right) B_{k}+\left(\prod_{j=1}^{n} A_{j}\right) Y_{0}
$$

(where $\prod_{j=n+1}^{n} A_{j}=1$ ). Assumptions (1.3) imply $E \log A_{1}<0$. Kesten shows $\sum_{k=0}^{\infty}\left(\prod_{j=1}^{k} A_{j}\right) B_{k+1}$ has a tail comparable to $\bigvee_{k=0}^{\infty}\left(\prod_{j=1}^{k} A_{j}\right) B_{k+1}$, and the tail of this variable is determined by $\bigvee_{k=0}^{\infty} \sum_{j=1}^{k} \log A_{j}$. Now results for the distribution of the maximum of a random walk with negative drift by means of defective renewal theory (cf. Feller, 1971, Section XII.5, Example c) give (1.4). The occurrence of the Pareto type tail in (1.4) has been further studied in a recent preprint by Goldie (1988).

## 2. Extremal behaviour

Assume the conditions (1.3) of Theorem 1.1 hold. We show below that $M_{n}=V_{i=1}^{n} Y_{i}$ has a type II extreme value limit law. This is the same type of limit as would occur if the $Y$ 's were i.i.d. with marginal distribution satisfying (1.4). However, the norming constants are different in the present dependent case. We will express this by means of the extremal index $\theta$ of the $Y$-process. Loosely speaking, large values of the $Y$-process have a tendency to come in small clusters, which makes $M_{n}$ have the same limit distribution as the maximum of $n \theta$, rather than of $n$, i.i.d. variables with the same marginal distribution (cf. Leadbetter et al., 1983, Section 3.7, and Rootzén, 1988). To describe the clustering of extremes in more detail, we also show that the
time-normalized point process $N_{n}$ of exceedances of a suitably chosen high level $u_{n}$, defined by

$$
N_{n}(A)=\nexists\left\{k / n \in A: X_{k}>u_{n}\right\}
$$

converges to a compound Poisson process $N$. Specifically, in the limiting compound Poisson process events occur as an (ordinary) Poisson process with intensity $\eta=$ $c \theta x^{-\kappa}$ and the multiplicities of the events are independent and with compounding probabilities $\left\{\pi_{k}\right\}$ given in the theorem below, $\pi_{k}$ being the probability that an event has multiplicity $k$. Further, convergence in distribution of point processes (denoted $\xrightarrow{\mathrm{d}}$ ) is as defined e.g. in the appendix of Leadbetter et al. (1983).

Without loss of generality, we suppose throughout this section that $Y_{0} \stackrel{\mathrm{~d}}{=} Y_{\infty}$ so that $\left\{Y_{n}, n \geqslant 1\right\}$ is stationary. If $Y_{n}\left(Y_{0}\right)$ is the solution of (1.1) initialized by some $Y_{0}$ other than $Y_{\infty}$, we have as in Vervaat (1979) that

$$
\begin{equation*}
Y_{n}\left(Y_{0}\right)-Y_{n}\left(Y_{\infty}\right)=\left(\prod_{j=1}^{n} A_{j}\right)\left(Y_{0}-Y_{\infty}\right) \tag{2.1}
\end{equation*}
$$

Since $\prod_{j=1}^{n} A_{j} \rightarrow 0$ a.s., we have for any $a_{n} \rightarrow 0$ that

$$
\begin{aligned}
a_{n}\left(\bigvee_{j=1}^{n} Y_{j}\left(Y_{0}\right)\right) & =a_{n} \bigvee_{j=1}^{n}\left\{Y_{j}\left(Y_{\infty}\right)+\left(\prod_{i=1}^{j} A_{i}\right)\left(Y_{0}-Y_{\infty}\right)\right\} \\
& \leqslant a_{n} \bigvee_{j=1}^{n} Y_{j}\left(Y_{\infty}\right)+a_{n} \bigvee_{j=1}^{n}\left(\prod_{i=1}^{j} A_{i}\right)\left(Y_{0}-Y_{\infty}\right) \\
& =a_{n} \bigvee_{j=1}^{n} Y_{j}\left(Y_{\infty}\right)+o(1)
\end{aligned}
$$

with a similar inequality in the reverse direction, showing that $a_{n} \bigvee_{j=1}^{n} Y_{j}\left(Y_{0}\right)$ and $a_{n} V_{j=1}^{n} Y_{j}\left(Y_{\infty}\right)$ have identical limit laws if one of them has a limit law. The same comment applies to the point process convergence.

Theorem 2.1. If (1.3) holds, then $\left\{Y_{n}\right\}$ has an extremal index $\theta$ given by

$$
\begin{equation*}
\theta=\int_{1}^{\infty} P\left(\bigvee_{j=1}^{\infty} \prod_{i=1}^{j} A_{i} \leqslant y^{-1}\right) \kappa y^{-\kappa-1} \mathrm{~d} y \tag{2.2}
\end{equation*}
$$

and with $a_{n}=n^{-1 / \kappa}$ we have for $x>0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(a_{n} M_{n} \leqslant x\right)=\exp \left\{-c \theta x^{-\kappa}\right\} \tag{2.3}
\end{equation*}
$$

Further, let $N_{n}$ be the time-normalized point process of exceedances of the level $u_{n}=x / a_{n}=x n^{1 / \kappa}, x>0$, as defined above, and let $N$ be a compound Poisson process with intensity $c \theta x^{-\kappa}$ and compounding probabilities $\pi_{k}=\left(\theta_{k}-\theta_{k+1}\right) / \theta, k=1,2, \ldots$, for

$$
\theta_{k}=\int_{1}^{\infty} P\left[\nexists\left\{j \geqslant 1: \prod_{i=1}^{j} A_{i}>y^{-1}\right\}=k-1\right] \kappa y^{-\kappa-1} \mathrm{~d} y
$$

(in particular $\theta_{1}=\theta$ ). Then $N_{n} \xrightarrow{d} N$ as $n \rightarrow \infty$.

Remarks. (1) Hence the distribution function of $M_{n} /(n c \theta)^{1 / \kappa}$ is approximately $\exp \left\{-1 / x^{\kappa}\right\}$. However, the value of $c$ is at present only known for integer values of $\kappa$ and for general $\kappa$ only bounds are available, see Goldie (1988). The main result of the theorem is therefore the existence and representation of the extremal index $\theta$ and of the limits. Since we know $\theta$ and the shape parameter $\kappa$ of the limiting extreme value distribution, all that remains is estimating the unknown scale parameter. This can be done by adapting known results for i.i.d. variables.
(2) An alternative expression for $\theta_{k}$ can be obtained as follows: Let $\left\{S_{j}=\right.$ $\left.\sum_{i=1}^{j} \log A_{i}, j \geqslant 1\right\}$ be the random walk with negative drift. Then

$$
\theta_{k}=\int_{1}^{\infty} P\left[\sum_{j=1}^{\infty} 1_{\left\{S_{j}>-\log v\right\}}=k-1\right] \kappa y^{-\kappa-1} \mathrm{~d} y .
$$

Let $\left\{T_{j}, j \geqslant 1\right\}$ be the sequence $\left\{S_{j}\right\}$ written in decreasing order with repetitions allowed if there are ties, set $T_{0}=\infty$ and let $T_{1}$ be the largest of $\left\{S_{j}, j \geqslant 1\right\}, T_{2}$ be the second largest of $\left\{S_{j}, j \geqslant 1\right\}$, and so on. Then

$$
\sum_{j=1}^{\infty} 1_{\left\{S_{j}>-\log y\right\}}=k-1
$$

if and only if $T_{k-1}>-\log y$ and $T_{k} \leqslant-\log y$, so that

$$
\begin{aligned}
\theta_{k} & =\int_{1}^{\infty}\left(P\left(T_{k-1}>-\log y\right)-P\left(T_{k}>-\log y\right)\right) \kappa y^{-\kappa-1} \mathrm{~d} y \\
& =\int_{1}^{\infty}\left(P \left(\mathrm{e}^{\left.\left.\kappa T_{k-1}>y^{-\kappa}\right)-P\left(\mathrm{e}^{\kappa T_{k}}>y^{-\kappa}\right)\right) \kappa y^{-\kappa-1} \mathrm{~d} y}\right.\right. \\
& =\int_{0}^{1}\left(P \left(\mathrm{e}^{\left.\left.\kappa T_{k-1}>u\right)-P\left(\mathrm{e}^{\kappa T_{k}}>u\right)\right) \mathrm{d} u}\right.\right. \\
& =E\left(\mathrm{e}^{\kappa \min \left(T_{k-1}, 0\right)}-\mathrm{e}^{\kappa \min \left(T_{k}, 0\right)}\right) .
\end{aligned}
$$

Proof of Theorem 2.1. The proof is an application of Theorem 4.1 of Rootzén (1988). For the first part, concerning the extremal index $\theta$, we are required to show that $D\left(u_{n}\right)$ holds for $u_{n}=x / a_{n}=x n^{1 / \kappa}, x>0$, (cf. Leadbetter et al., 1983, p.53, and Rootzén, 1988) and that

$$
\begin{equation*}
\lim _{\varepsilon \downarrow 0} \limsup _{n \rightarrow \infty}\left|P\left(M_{[n \varepsilon]} \leqslant a_{n}^{-1} \mid Y_{0}>a_{n}^{-1}\right)-\theta\right|=0 . \tag{2.4}
\end{equation*}
$$

The mixing condition $D\left(u_{n}\right)$ is obtained similarly as Lemma 3.1 of Rootzén (1986), so we only briefly indicate the changes needed. For $\nu>0$, let

$$
Y_{t}^{\prime \prime}=Y_{t}-A_{t} \cdots A_{t-n \nu+1} Y_{t-n \nu}
$$

so that $Y_{s}$ and $Y_{t}^{\prime \prime}$ are independent for $t-s \geqslant n \nu$, and write $Y_{t}^{\prime}=Y_{t}, a_{n}=n^{-1 / \kappa}, b_{n}=0$, and $G(x)=\exp \left\{-c x^{-\kappa}\right\}$. Inscrting this in the proof of the cited lemma, with $X$ 's replaced by $Y$ 's, it is readily seen that $D\left(u_{n}\right)$ holds provided

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} n P\left(\left|Y_{0}-Y_{0}^{\prime \prime}\right|>\varepsilon n^{1 / \kappa}\right)=0, \tag{2.5}
\end{equation*}
$$

for any $\nu, \varepsilon>0$. However, for $\delta>0$, the quantity in (2.5) can be bounded by

$$
\begin{aligned}
& \underset{n \rightarrow \infty}{\lim \sup } n P\left(Y_{0} \cdot A_{1} \cdots A_{n \nu}>\varepsilon n^{1 / \kappa}\right) \\
& \quad \leqslant \limsup _{n \rightarrow \infty} n P\left(Y_{0}>\delta^{-1} \varepsilon n^{1 / \kappa}\right)+\underset{n \rightarrow \infty}{\limsup } n P\left(A_{1} \cdots A_{n \nu}>\delta\right) \\
& \quad \leqslant c(\delta / \varepsilon)^{\kappa}+\underset{n \rightarrow \infty}{\limsup } n\left(E A_{0}^{t}\right)^{n} / \delta^{\iota},
\end{aligned}
$$

for any $t \geqslant 0$, by (1.4) and Markov's inequality. Now, (1.3) can be seen to imply (cf. Section 3 below) that there is a $t>0$ with $E A_{0}^{t}<1$, so that the last expression equals zero for this choice of $t$, and since $\delta>0$ is arbitrary, this implies (2.5), and hence that $D\left(u_{n}\right)$ is satisfied.

Now we concentrate on verifying (2.4). We need an auxiliary process

$$
Y_{n}^{\#}=\prod_{j=1}^{n} A_{j} Y_{0}, \quad Y_{0}^{\neq}=Y_{0}
$$

which thus satisfies

$$
\begin{equation*}
Y_{n}^{*}=A_{n} Y_{n-1}^{*}, \quad n \geqslant 1, \tag{2.6}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\Delta_{n}:=Y_{n}-Y_{n}^{\#}, \quad \Delta_{0}=0 \tag{2.7}
\end{equation*}
$$

satisfies

$$
\Delta_{n}=A_{n} \Delta_{n-1}+B_{n}, \quad n \geqslant 1, \quad \Delta_{0}=0
$$

i.e. $\left\{\Delta_{n}\right\}$ satisfies (1.1) with a different initial condition. Set $M_{n}=V_{j=1}^{n} Y_{j}, M_{n}^{\#}=$ $V_{j=1}^{n} Y_{j}^{*}$. Since the $A_{n}$ and $B_{n}$ are nonnegative, we have that

$$
\begin{aligned}
& P\left(M_{[n \varepsilon]}>a_{n}^{-1} \mid Y_{0}>a_{n}^{-1}\right) \\
& \quad \geqslant P\left(M_{[n \varepsilon]}^{\#}>a_{n}^{-1} \mid Y_{0}>a_{n}^{-1}\right) \\
& \quad=\int_{1}^{\infty} P\left(a_{n} \bigvee_{j=1}^{[n \varepsilon]} \prod_{i=1}^{j} A_{i} Y_{0}>1 \mid a_{n} Y_{0}>y\right) \frac{P\left(a_{n} Y_{0} \in \mathrm{~d} y\right)}{P\left(a_{n} Y_{0}>1\right)}
\end{aligned}
$$

and since $P\left(Y_{0}>a_{n}^{-1} y\right) / P\left(Y_{0}>a_{n}^{-1}\right) \rightarrow y^{-\kappa}$ uniformly for $y \geqslant 1$ we find

$$
\begin{align*}
& \underset{n \rightarrow \infty}{\liminf } P\left(M_{[n \varepsilon]}>a_{n}^{-1} \mid Y_{0}>a_{n}^{-1}\right) \\
& \quad \geqslant \int_{1}^{\infty} P\left(\bigvee_{j=1}^{\infty} \prod_{i=1}^{j} A_{i}>y^{-1}\right) \kappa y^{-\kappa-1} \mathrm{~d} y=\theta \tag{2.8}
\end{align*}
$$

For an inequality in the reverse direction, write $Y_{j}=Y_{j}^{\#}+\Delta_{j}$ so that

$$
\begin{aligned}
P\left(M_{[n \epsilon]}>a_{n}^{-1} \mid Y_{0}>a_{n}^{-1}\right) & =P\left(\bigvee_{j=1}^{[n \varepsilon]}\left(Y_{j}^{*}+\Delta_{j}\right)>a_{n}^{-1} \mid Y_{0}>a_{n}^{-1}\right) \\
& \leqslant P\left(M_{[n e]}^{*}+\bigvee_{j=1}^{[n \varepsilon]} \Delta_{j}>a_{n}^{-1} \mid Y_{0}>a_{n}^{-1}\right)
\end{aligned}
$$

and for any $\delta>0$ we find the above bounded by

$$
\begin{aligned}
& P\left(M_{[n \varepsilon]}^{*}>a_{n}^{-1}(1-\delta) \mid Y_{0}>a_{n}^{-1}\right)+P\left(\bigvee_{j=1}^{[n \varepsilon]} \Delta_{j}>\delta a_{n}^{-1} \mid Y_{0}>a_{n}^{-1}\right) \\
& \quad=(\Lambda)+(\mathrm{B}),
\end{aligned}
$$

say. Now

$$
(\mathrm{B}) \leqslant \sum_{j=1}^{[n \varepsilon]} P\left(\Delta_{j}>\delta a_{n}^{-1}\right) .
$$

Examining (2.1) we realize that the solutions of (1.1) are monotone with respect to the initial value. Since $\Delta_{0}=0 \leqslant Y_{0}=Y_{\infty}$, we find $\Delta_{j} \leqslant Y_{j}\left(Y_{\infty}\right) \stackrel{\text { d }}{=} Y_{\infty}$ and thus

$$
(\mathrm{B}) \leqslant \sum_{j=1}^{[n \varepsilon]} P\left(Y_{\infty}>\delta a_{n}^{-1}\right)=[n \varepsilon] P\left(Y_{\infty}>\delta a_{n}^{-1}\right) \rightarrow \varepsilon c \delta^{-\kappa}
$$

For (A) we find upon examining the logic which led to (2.8) that as $n \rightarrow \infty$,

$$
(\mathrm{A}) \rightarrow \int_{1}^{\infty} P\left(\bigvee_{j=1}^{\infty}\left(\prod_{i=1}^{j} A_{i}\right)>y^{-1}(1-\delta)\right) \kappa y^{-\kappa-1} \mathrm{~d} y
$$

and thus

$$
\begin{align*}
& \lim _{\varepsilon \downarrow 0} \limsup _{n \rightarrow \infty} P\left(M_{[n \varepsilon]}>a_{n}^{-1} \mid Y_{0}>a_{n}^{-1}\right) \\
& \quad \leqslant \int_{1}^{\infty} P\left(\bigvee_{j=1}^{\infty}\left(\prod_{i=1}^{j} A_{i}\right)>y^{-1}(1-\delta)\right) \kappa y^{-\kappa-1} \mathrm{~d} y \\
& \quad=(1-\delta)^{-\kappa} \int_{(1-\delta)^{-1}}^{\infty} P\left(\bigvee_{j=1}^{\infty}\left(\prod_{i=1}^{j} A_{i}\right)>z^{-1}\right) \kappa z^{-\kappa-1} \mathrm{~d} z \\
& \quad \rightarrow \int_{1}^{\infty} P\left(\bigvee_{j=1}^{\infty}\left(\prod_{i=1}^{j} A_{i}\right)>z^{-1}\right) \kappa z^{-\kappa-1} \mathrm{~d} z \tag{2.9}
\end{align*}
$$

as $\delta \rightarrow 0$. We now get (2.4) by combining (2.8) and (2.9).
The second part of the theorem is obtaincd similarly, with only straightforward changes of the arguments, now using (ii) of Theorem 4.1 of Rootzén (1988) instead of (i).

## 3. Computing the extremal index

The extremal index $\theta$ given by

$$
1-\theta=\int_{1}^{\infty} P\left(\bigvee_{j=1}^{\infty}\left(\prod_{i=1}^{j} A_{i}\right)>y^{-1}\right) \kappa y^{-\kappa-1} \mathrm{~d} y
$$

will in general be difficult to compute analytically in closed form. However, it is easy to simulate this quantity. Let

$$
S_{j}=\sum_{i=1}^{j} \log A_{i}
$$

and suppose $E_{\kappa}$ is a random variable with exponential density and parameter $\kappa$, which is independent of $\left\{S_{j}\right\}$. Then we may write

$$
\begin{equation*}
1-\theta=E 1_{\left\{\vee_{j}^{\infty}=1 s_{i}>-E_{k}\right\}}, \tag{3.1}
\end{equation*}
$$

which suggests running replications of the random walk and counting the number of replications where the random walk exceeds the level $-E_{\kappa}$. A mechanism is needed to determine how many steps the random walk is allowed to run on each replication, so consider the following: For any $t>0$,

$$
\begin{align*}
P\left(S_{j}>-E_{\kappa}\right) & =P\left(\exp \left\{t\left(S_{j}+E_{\kappa}\right)\right\}>1\right) \\
& \leqslant E\left(\exp \left\{t\left(S_{j}+E_{\kappa}\right)\right\}\right) \\
& =E\left(\exp \left\{t S_{1}\right\}\right)^{j} E\left(\exp \left\{t E_{\kappa}\right\}\right) \\
& \leqslant \varphi^{j}(t) \kappa /(\kappa-t), \quad 0 \leqslant t<\kappa, \tag{3.2}
\end{align*}
$$

where $\varphi(t)=E \exp \left\{t S_{1}\right\}=E A_{1}^{t}$. A convenient choice of $t$ is the value $t_{0}$ which minimizes $\varphi(t)$. Since $\varphi^{\prime}(0)=E \log A_{1}<0$, this exists in $(0, \kappa)$ and can be found by solving $\varphi^{\prime}(t)=0$. Using the value of $t_{0}$ and summing (3.2) yields

$$
\begin{equation*}
P\left(\bigvee_{j-m+1}^{\infty} S_{j}>-E_{\kappa}\right) \leqslant\left[\frac{\varphi^{m+1}\left(t_{0}\right)}{1-\varphi\left(t_{0}\right)}\right] \kappa /\left(\kappa-t_{0}\right)=: b\left(t_{0}\right) . \tag{3.3}
\end{equation*}
$$

For $m>0$ and large, set

$$
1-\theta_{z^{*}}=E 1_{\left\{V_{j-1}^{\prime \prime}, 1 S_{j}>-E_{k}\right\}}
$$

and for $N$ a large number of replications, we set

$$
\begin{equation*}
\left.1-\hat{\theta}_{\# \#}=N^{-1} \sum_{i=1}^{N} 1_{\left\{V_{j=1}^{m}\right.} S_{j}^{(i)}>-E_{k}^{(i)}\right\}, \tag{3.4}
\end{equation*}
$$

where the superscript $i$ refers to the replication number. We know

$$
\frac{\left(1-\hat{\theta}_{\#}\right)-\left(1-\theta_{\neq}\right)}{\left\{\theta_{\#}\left(1-\theta_{\#}\right) / N\right\}^{1 / 2}}
$$

is approximately $\mathrm{N}(0,1)$ so an approximate $100(1-\gamma) \%$ confidence interval for $\theta_{*}$ is $\hat{\theta}_{\#} \pm z_{\gamma / 2}(4 N)^{-1 / 2}$. Furthermore

$$
\begin{aligned}
0 & \leqslant(1-\theta)-\left(1-\theta_{\neq}\right) \\
& =P\left(\bigvee_{j=1}^{\infty} S_{j}>-E_{\kappa}\right)-P\left(\bigvee_{i=1}^{m} S_{j}>-E_{\kappa}\right) \leqslant P\left(\bigvee_{j=m+1}^{\infty} S_{j}>-E_{\kappa}\right),
\end{aligned}
$$

which from (3.3) is bounded by the geometric bound $b\left(t_{0}\right)$ and so the approximate $100(1-\gamma) \%$ confidence interval for $\theta$ is

$$
\left(\hat{\theta}_{\nexists}-z_{\gamma / 2}(4 N)^{-1 / 2}-b\left(t_{0}\right), \hat{\theta}_{\nRightarrow}+z_{\gamma / 2}(4 N)^{-1 / 2}\right)
$$

Since

$$
\theta_{k}=P\left(\sum_{j=1}^{\infty} 1_{\left\{S_{j}>-E_{k}\right\}}=k-1\right)
$$

we can estimate $\theta_{k}$ in a similar way from the same simulations by counting the number of replications where the number of exceedances of $-E_{\kappa}$ is $k-1$. Now the obvious estimator of $\theta_{k}$ is

$$
\begin{equation*}
\hat{\theta}_{* k}=N^{-1} \sum_{i=1}^{N} 1_{\left\{\sum_{j-1}^{m} 1_{\left.\left\{s_{j}\right\rangle-E_{k}\right\}}=k-1\right\}} \tag{3.5}
\end{equation*}
$$

so that a $100(1-\gamma) \%$ confidence interval for

$$
\theta_{\nexists k}=P\left(\sum_{j=1}^{m} 1_{\left\{S_{j}>-E_{\kappa}\right\}}=k-1\right)
$$

is $\hat{\theta}_{\neq k} \pm z_{\gamma / 2}(4 N)^{-1 / 2}$. As before,

$$
\begin{aligned}
0 & <\theta_{k}-\theta_{\# k} \\
& =P\left(\sum_{j=1}^{\infty} 1_{\left\{S_{j}>-E_{k}\right\}}=k-1\right)-P\left(\sum_{j=1}^{m} 1_{\left\{S_{j}>-E_{k}\right\}}=k-1\right) \\
& \leqslant P\left(\sum_{j=m+1}^{\infty} 1_{\left\{S_{j}>-E_{k}\right\}}>0\right) \leqslant \sum_{j=m+1}^{\infty} P\left(S_{j}+E_{\kappa}>0\right),
\end{aligned}
$$

and as before this has the bound $b\left(t_{0}\right)$. Hence the approximate $100(1-\gamma) \%$ confidence interval for $\theta_{k}$ is

$$
\left(\hat{\theta}_{\not \not * k}-z_{\gamma / 2}(4 N)^{-1 / 2}, \hat{\theta}_{\neq k}+z_{\gamma / 2}(4 N)^{-1 / 2}+h\left(t_{0}\right)\right) .
$$

Finally we return to the ARCH process (1.2). Clearly $\left\{\xi_{n}^{2}, n \geqslant 1\right\}$ satisfies (1.1) and the conditions (1.3). Hence the extremal index and compounding probabilitics for $\xi_{n}^{2}$ are given by Theorem 2.1 and can be computed from (3.4) and (3.5). Since an exceedance of $u^{2}$ by $\xi_{t}^{2}$ is the same as an exceedance of $u$ by $\left|\xi_{n}\right|$, the process $\left\{\left|\xi_{n}\right|\right\}$ has the same extremal index and compounding probabilities. Table 3.1 gives values of the extremal index $\theta$ and the compounding probabilities $\pi_{k}=\left(\theta_{k}-\theta_{k+1}\right) / \theta$ for these processes, based on the described simulation. The length $m$ of the random walk and the number $N$ of replications are $m=1000, N=1000$. Different rows of the table are based on separate simulations. The values obtained for $\varphi\left(t_{0}\right)$ in the table clearly render $b\left(t_{0}\right)$ negligible for the given value of $m$.

Table 3.1
Extremal index $\hat{\theta}$ and compounding probabilities $\hat{\pi}_{k}$ for the absolute value $\left|\xi_{k}\right|$ of the ARCH process, based on $N=1000$ simulations of length $m=1000$

| $\lambda$ | $\kappa$ | $\hat{\theta}$ | $\hat{\pi}_{1}$ | $\hat{\pi}_{2}$ | $\hat{\pi}_{3}$ | $\hat{\pi}_{4}$ | $\hat{\pi}_{5}$ | $t_{0}$ | $\varphi\left(t_{0}\right)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.1 | 13.24 | 0.997 | 0.997 | 0.003 | 0.000 | 0.000 | 0.000 | 4.99 | 0.009 |
| 0.3 | 4.180 | 0.887 | 0.892 | 0.094 | 0.011 | 0.003 | 0.003 | 1.64 | 0.261 |
| 0.5 | 2.365 | 0.727 | 0.751 | 0.168 | 0.055 | 0.014 | 0.008 | 0.962 | 0.500 |
| 0.7 | 1.586 | 0.579 | 0.623 | 0.208 | 0.081 | 0.046 | 0.022 | 0.663 | 0.655 |
| 0.9 | 1.152 | 0.460 | 0.527 | 0.209 | 0.119 | 0.046 | 0.042 | 0.494 | 0.757 |
| 0.95 | 1.072 | 0.438 | 0.524 | 0.184 | 0.118 | 0.063 | 0.037 | 0.462 | 0.777 |
| 0.99 | 1.014 | 0.422 | 0.51 | 0.20 | 0.11 | 0.06 | 0.04 | 0.439 | 0.791 |

The table describes the occurrence of large, positive or negative values of the ARCH process. However, the behaviour of large (positive) values, i.e. the extremal index and compounding probabilities for the ARCH process $\left\{\xi_{n}\right\}$ itself, can also be deduced from the same simulations. Clearly $\left\{\xi_{n}\right\} \stackrel{\text { d }}{=}\left\{C_{n} \sqrt{\xi_{n}^{2}}\right\}$, where the $\left\{C_{n}\right\}$ are i.i.d., independent of $\left\{\xi_{n}\right\}$ and $P\left(C_{1}=1\right)=P\left(C_{1}=-1\right)=\frac{1}{2}$. Hence the point process of exceedances by $\xi_{n}$ is obtained from the corresponding process for $\left|\xi_{n}\right|$ by independent thinning, and this easily gives the extremal index and compound Poisson limit of the $\xi$-process itself. For $x>0$, let $u_{n}=x n^{1 /(2 \kappa)}$. Then

$$
P\left(\xi_{1}>u_{n}\right)=\frac{1}{2} P\left(\xi_{1}^{2}>u_{n}^{2}\right) \sim \frac{1}{2} c\left(u_{n}^{2}\right)^{-\kappa}=\frac{1}{2} c x^{-2 \kappa} n^{-1}
$$

where $c$ and $\kappa$ are the constants appearing in (1.4) for the $\xi_{n}^{2}$-process. Hence the probability that the maximum of $n$ independent variables with this distribution is less than $u_{n}$ is given by

$$
\begin{equation*}
P\left(\xi_{1} \leqslant u_{n}\right)^{n} \rightarrow \exp \left\{-\frac{1}{2} c x^{-2 \kappa}\right\} \quad \text { as } n \rightarrow \infty . \tag{3.6}
\end{equation*}
$$

Next, let $N_{n}$ be the time-normalized point process of exceedances of $u_{n}^{2}$ by $\left\{\xi_{t}^{2}\right\}$, and let $1 \leqslant \tau_{1}<\tau_{2}<\cdots$, be the times of occurrence of these exceedances. Then

$$
\begin{align*}
& P\left(\max \left\{\xi_{1}, \ldots, \xi_{n}\right\} \leqslant u_{n}\right) \\
& \quad=\sum_{k=0}^{\infty} P\left(N_{n}((0,1])=k, C_{\tau_{1}}=\cdots=C_{\tau_{k}}=-1\right) \\
& =\sum_{k=0}^{\infty} P\left(N_{n}((0,1])=k\right) 2^{-k} \\
& \quad \rightarrow \sum_{k=0}^{\infty} P(N((0,1])=k) 2^{-k} \quad \text { as } n \rightarrow \infty, \tag{3.7}
\end{align*}
$$

where $N$ is the limiting compound Poisson process for $\left\{\xi_{t}^{2}\right\}$ given in Theorem 2.1. Let $N^{\prime}$ be the Poisson process with intensity $\eta=c \theta x^{-2 \kappa}$ which governs the occurrence of points in $N$, let $\left\{\pi_{k}\right\}$ be the compounding probabilities and introduce their probability generating function $I I(u)=\sum_{k=1}^{\infty} \pi_{k} u^{k}$. Further, let $\left\{\pi^{* l}(j)\right\}_{j=l}^{\infty}$ be the
$l$-fold convolution of $\left\{\pi_{k}\right\}$, i.e. $\pi^{* \prime}(j)$ is the probability that the sum of $l$ independent variables with point probabilities $\pi_{k}$ assumes the value $j$. It then follows that

$$
\begin{aligned}
\sum_{k=0}^{\infty} & P(N((0,1])=k) 2^{-k} \\
& =\sum_{k=0}^{\infty} \sum_{l=0}^{k} P\left(N^{\prime}((0,1])=l\right) P\left(N((0,1])=k \mid N^{\prime}((0,1])=l\right) 2^{-k} \\
& =\sum_{k=0}^{\infty} \sum_{l=0}^{k} \frac{\eta^{\prime}}{l!} \mathrm{e}^{-\eta} \pi^{* l}(k) 2^{-k} \\
& =\sum_{l=0}^{\infty} \sum_{k=l}^{\infty} \pi^{* l}(k) 2^{-k} \frac{\eta^{l}}{l!} \mathrm{e}^{-\eta} \\
& =\sum_{l=0}^{\infty} \Pi\left(\frac{1}{2}\right)^{\prime} \frac{n^{l}}{l!} \mathrm{e}^{-\eta} \\
& =\exp \left\{-\eta\left(1-\Pi\left(\frac{1}{2}\right)\right)\right\}
\end{aligned}
$$

Inserting $\eta=c \theta x^{-2 \kappa}$ it follows that

$$
P\left(\max \left\{\xi_{1}, \ldots, \xi_{n}\right\} \leqslant u_{n}\right) \rightarrow \exp \left\{-c \theta x^{-2 \kappa}\left(1-\Pi\left(\frac{1}{2}\right)\right)\right\}
$$

and comparing with (3.6) it is seen that the extremal index $\theta^{\prime}$, say, for the ARCH process $\left\{\xi_{n}\right\}$ itself is

$$
\begin{equation*}
\theta^{\prime}=2 \theta\left(1-\Pi\left(\frac{1}{2}\right)\right), \tag{3.8}
\end{equation*}
$$

where $\theta$ is the extremal index for $\left\{\xi_{n}^{2}\right\}$. Since $\Pi\left(\frac{1}{2}\right)<\frac{1}{2}$ we have $\theta<\theta^{\prime}<1$.
It is now readily seen that also the compounding probabilities $\pi_{k}^{\prime}$ for the ARCH process can be obtained from the $\pi_{k}$ 's for $\left\{\xi_{t}^{2}\right\}$ as

$$
\begin{equation*}
\pi_{k}^{\prime}=\left(1-\Pi\left(\frac{1}{2}\right)\right)^{-1} \sum_{l=k}^{\infty} \pi_{l}\binom{l}{k} 2^{-l} \tag{3.9}
\end{equation*}
$$

Table 3.2 contains the extremal index and compounding probabilities for the ARCH process, computed from the simulations in Table 3.1 by means of (3.8), (3.9) (in this we of course have used $\pi_{k}$ 's also for larger values of $k$ than those listed in Table 3.1).

Table 3.2
Extremal index $\hat{\theta}^{\prime}$ and compounding probabilities $\hat{\pi}_{k}^{\prime}$ for the ARCH process, computed from the simulations in Table 3.1

| $\lambda$ | $\kappa$ | $\hat{\theta}^{\prime}$ | $\hat{\pi}_{\prime}^{\prime}$ | $\hat{\pi}_{2}^{\prime}$ | $\hat{\pi}_{3}^{\prime}$ | $\hat{\pi}_{4}^{\prime}$ | $\hat{\pi}_{5}^{\prime}$ |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.1 | 13.24 | 0.999 | 0.998 | 0.002 | 0.000 | 0.000 | 0.000 |
| 0.3 | 4.180 | 0.939 | 0.941 | 0.054 | 0.004 | 0.001 | 0.000 |
| 0.5 | 2.365 | 0.835 | 0.844 | 0.124 | 0.025 | 0.006 | 0.001 |
| 0.7 | 1.586 | 0.721 | 0.742 | 0.176 | 0.054 | 0.018 | 0.007 |
| 0.9 | 1.152 | 0.612 | 0.651 | 0.203 | 0.079 | 0.034 | 0.016 |
| 0.95 | 1.072 | 0.589 | 0.631 | 0.203 | 0.088 | 0.040 | 0.019 |
| 0.99 | 1.014 | 0.571 | 0.621 | 0.202 | 0.088 | 0.042 | 0.021 |

## Acknowledgement

We want to thank Charles Goldie for making us aware of Kesten's paper. L. de Haan and H. Rootzén acknowledge with thanks the hospitality of the Statistics Department of Colorado State University during the summer of 1987.

## References

T. Bollerslev, Generalized autoregressive conditional heteroskedasticity, J. Econometrics 31 (1986) 307-327.
T. Bollerslev, A conditionally heteroscedastic time series model for speculative prices and rates of return, Rev. Econ. Statist. 69 (1987) 542-547.
T. Bollerslev and R.F. Engle, Modelling the persistence of conditional variances, Econ. Rev. 27 (1986) 1-50.

1. Domowitz and C.S. Hakkio, Conditional variance and the risk premium in the foreign exchange market, J. Internat. Economics 19 (1985) 47-66.
R.F. Engle, Autoregressive conditional heteroscedastic models with estimates of the variance of United Kingdom inflation, Econometrica 50 (1982) 987-1007.
R.F. Engle, D.M. Lilien and R.P. Robins, Estimating time varying risk premia in the term structure: the ARCH model, Econometrica 55 (1987) 391-407.
W. Feller, An Introduction to Probability Theory and its Applications, Vol. II (Wiley, New York, 1971).
R.P. Flood and P.M. Garber, Collapsing exchange-rate regimes: some linear examples, J. Internat. Economics 17 (1984) 1-13.
C.M. Goldie, Implicit renewal theory and tails of solutions of random equations, Preprint, Sussex University, Brighton, UK, 1988.
D.A. IIsieh, The statistical propertics of daily forcign exchange rates: 1974-1983, J. Internat. Economics 24 (1988) 129-145.
H. Kesten, Random difference equations and renewal theory for products of random matrices, Acta Math. 131 (1973) 207-248.
R. Leadbetter, G. Lindgren and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes (Springer, New York, 1983).
J.H. McCulloch, Interest rate risk and capital adequacy for traditional bank and financial intermediaries, in: S.J. Maisel, ed., Risk and Capital Adequacy in Commerical Banks (Univ. of Chicago Press, Chicago, 1981).
A. Milhøj, The moment structure of ARCH processes, Scand. J. Statist. 12 (1985) 281-292.
H. Rootzén, Extreme value theory for moving average processes, Arm. Probab. 14 (1986) 612-652.
H. Rootzén, Maxima and exceedances of stationary Markov chains, J. Appl. Probab. 20 (1988) 371-390.
W. Vervaat, On a stochastic difference equation and a representation of non-negative infinitely divisible random variables, Adv. in Appl. Probab. 11 (1979) $750-783$.
A. Weiss, Asymptotic theory for ARCH models: estimation and testing, Econometric Th. 2 (1986) 107-131.

[^0]:    * Research supported in part by NSF grant MCS 01763 at Colorado State University.
    $\dagger$ This author was also partially supported by the Mathematical Sciences Institute of Cornell University.
    $\ddagger$ This author was also partially supported by the Air Force Office of Scientific Research Contract AFSOR 85 C0144 at the Center for Stochastic Processes, Chapel Hill, North Carolina.

