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We consider limit distributions of extremes of a process {Y,,} satisfying the stochastic difference 

equation 

Y,,=A,,Y,,-,+B,,, nzl, Y,,zO, 

where {A,,, B,,} are i.i.d. IWt-valued random pairs. A special case of interest is when { Y,,} is derived 

from a first order ARCH process. Parameters of the limit law are exhibited; some are hard to 
calculate explicitly but easy to simulate. 
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1. Introduction 

Consider a process {Y,,, n 3 l} which satisfies the stochastic difference equation 

Y, =A,Y,_,+ B,, n21, Y()20, (1.1) 

where {(A,,, B,), n a 1) are i.i.d. IW:-valued random pairs (cf. Vervaat, 1979). We 

study the extremal behaviour of {Y,} under rather mild assumptions. Our interest 
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in this problem was stimulated by the desire to understand extremal characteristics 

of the autoregressive conditional heteroscedastic (ARCH) processes introduced by 

Engle (1982). The first order ARCH process is defined by 

& =x,(p+A[2,_,)1’2, ns 1, (1.2) 

where {X,} are i.i.d. N(0, 1) random variables, p > 0,O <A < 1. Thus {[;} satisfies 

(1.1) with A, = AX:, B, = PX;. (Higher order ARCH processes, considered for 

example by Engle, 1982, and Milhoj, 1985, or Bollerslev, 1986, would satisfy the 

higher order version of (l.l).) 

ARCH processes were introduced in econometric modelling because the usual 

linear time series models, with constant conditional variance and Gaussian tails, 

are inadequate for many types of financial data. Typically such data exhibit clusters 

of high and low volatility. The ARCH processes have been successfully applied in 

modelling exchange rate yields (Domowitz and Hakkio, 1985, and Hsieh, 1988), 

and stock returns (Engle et al., 1987, and Bollerslev, 1987). Bollerslev and Engle 

(1986) provide a good review; Bollerslev (1986) and Weiss (1986) give some 

extensions. 

Extreme behaviour is of obvious interest in economics. For example, extreme 

yields may characterize the occurrence of bankruptcy (McCulloch, 1981) or foreign 

exchange rate realignments (Flood and Garber, 1984). Because of the importance 

of extremes, it is natural to inquire into the statistical properties of extremes of the 

ARCH process (and more generally of solutions of (1.1)). In particular we want to 

find limiting distributions and to resolve whether or not there is clustering associated 

with such extremes. These issues are taken up in Section 2. Section 3 is concerned 

with the numerical computation of some constants appearing in the limiting distribu- 

tions. 

It is rather striking that the building blocks of the ARCH process in (1.2) are 

normal variates but yet & has Pareto-like tails. The reason for this is the following 

result of Kesten (1973) given as (iv) of the next theorem which collects some needed 

information as given in Vervaat (1979). 

Theorem 1.1. Suppose (1.1) holds and that there is a K > 0 with 

EA: = 1, EA: log+ A, < 03, O< EB;<oo, (1.3) 

that B,/(l -A,) is nondegenerate and that the conditional distribution of log A, given 

A, # 0 is nonlattice. 

(i) The equation 

Y$ A,Y,+B,, 

Y, and (A,, B,) independent, has a solution unique in distribution, given by 

Y, 2 ; B, ‘n’ A;. 
j=1 i=, 

(ii) Zf in (1.1) we take YOz Y,, then the process {Y,,} is stationary. 
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(iii) No matter how the process {Y,,} is initialized 

Yn4 Ye, 

where “-%” denotes convergence in distribution. 

(iv) There exists a constant c>O such that as t + ~0, 

P( Y,> t) - ctCK. 0 (1.4) 

Remark. Unfortunately it is difficult to get hold of the constant c in (1.4) explicitly, 

but as we shall argue later, this is of small practical consequence. 

In the case of the ARCH process {tz}, where A, = AX:, B, = @Xf, the conditions 

(1.3) are readily seen to hold and K is the solution of 

E(AX$” = 1, (1.5) 

where X1 - N(0, 1). For a specific value of A (O< A < l), the value K is readily found 

by solving for K in the equation 

r(K + f) = 7T”2(2A))K. (1.6) 

For instance, when A = 4, the nonzero root of (1.6) is approximately 2.365. 

The occurrence of the Pareto type tail in (1.4) is more understandable after an 

outline of Kesten’s (1973) argument: By iterating (1.1) we find for n 3 1, 

(where lI,k+, Aj = 1). Assumptions (1.3) imply E log A, < 0. Kesten shows 

CF=‘=, (fl:_, Aj)Bk+, has a tail comparable to Vy=?=, (nF=, Aj)Bk+, , and the tail of this 

variable is determined by VT=‘=, Ilk_, log A,. Now results for the distribution of the 

maximum of a random walk with negative drift by means of defective renewal 

theory (cf. Feller, 1971, Section X11.5, Example c) give (1.4). The occurrence of the 

Pareto type tail in (1.4) has been further studied in a recent preprint by Goldie (1988). 

2. Extremal behaviour 

Assume the conditions (1.3) of Theorem 1.1 hold. We show below that M,, = V:=, Y, 

has a type II extreme value limit law. This is the same type of limit as would occur 

if the Y’s were i.i.d. with marginal distribution satisfying (1.4). However, the norming 

constants are different in the present dependent case. We will express this by means 

of the extremal index 0 of the Y-process. Loosely speaking, large values of the 

Y-process have a tendency to come in small clusters, which makes M,, have the 

same limit distribution as the maximum of n0, rather than of n, i.i.d. variables with 

the same marginal distribution (cf. Leadbetter et al., 1983, Section 3.7, and Rootzen, 

1988). To describe the clustering of extremes in more detail, we also show that the 
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time-normalized point process N,, of exceedances of a suitably chosen high level 

u,, defined by 

N,(A) = #{k/n E A: X, > u,} 

converges to a compound Poisson process N. Specifically, in the limiting compound 

Poisson process events occur as an (ordinary) Poisson process with intensity n = 

COX-” and the multiplicities of the events are independent and with compounding 

probabilities {rk} given in the theorem below, ~~ being the probability that an event 

has multiplicity k. Further, convergence in distribution of point processes (denoted 

G) is as defined e.g. in the appendix of Leadbetter et al. (1983). 

Without loss of generality, we suppose throughout this section that Y0 z Y, so 

that {Y,,, n 3 l} is stationary. If Y,,( YO) is the solution of (1.1) initialized by some 

Y, other than Y,, we have as in Vervaat (1979) that 

(2.1) 

Since n,?= I A, + 0 a.s., we have for any a, + 0 that 

=a, il y,(yoz)+o(l) 
j=l 

with a similar inequality in the reverse direction, showing that a, Vy=, Yj ( Yo) and 

a, V,“_, Yj ( Y,) have identical limit laws if one of them has a limit law. The same 

comment applies to the point process convergence. 

Theorem 2.1. If (1.3) holds, then {Y,,} has an extremul index 0 given by 

(2.2) 

and with a,, = n~‘jK we have for x > 0, 

lim P( a,M, S x) = exp{ -cC?x~“}. 
n+cC 

(2.3) 

Further, let N,, be the time-normalized point process of exceedunces of the level 

u, =x/u, = xn’lK, x > 0, as defined above, and let N be a compound Poisson process 

with intensity cOx-” and compoundingprobabilities nk = ( Bk - &+,)I 0, k = 1,2,. . . , for 

jai: h A,>y-’ 
I 1 =k-1 Ky-“-‘dy 

r=, 

(in particular 8, = 0). Then N,,s N us n + ~0. 
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Remarks. (1) Hence the distribution function of M,/(ncB)“” is approximately 

exp{-l/x”}. However, the value of c is at present only known for integer values 

of K and for general K only bounds are available, see Goldie (1988). The main 

result of the theorem is therefore the existence and representation of the extremal 

index 0 and of the limits. Since we know 13 and the shape parameter K of the limiting 

extreme value distribution, all that remains is estimating the unknown scale para- 

meter. This can be done by adapting known results for i.i.d. variables. 

(2) An alternative expression for &$ can be obtained as follows: Let {S, = 

Es=, log A;,j> 1) be the random walk with negative drift. Then 

‘x DE 
0k = 

i [ 1 
I’ ,“, I~.s,>~iogy) = k - I Ky--K-’ dy. 

I 

Let { 7;,j 2 l} be the sequence {S,} written in decreasing order with repetitions 

allowed if there are ties, set T, = co and let T, be the largest of {S,, j 2 l}, T, be the 

second largest of {S,, j 2 l}, and so on. Then 

:I {S,>-logy) =k-1 
j=l 

if and only if Tkml > -logy and Tk i -logy, so that 

I 

n 
Bk = (P( Tkp, > -log y) - P( Tk > -log y))Ky-K-’ dy 

1 

Z 
I 

O” (P(e”qm1 > yP”) - P(eK7h > ~~~“))&-’ dy 
1 

= ‘(P(e”‘;~l>u)-P(e”Th>u))du 
I 0 

= E(e Kmin(T,_,,O)_, ~min(T~.O)). 

Proof of Theorem 2.1. The proof is an application of Theorem 4.1 of Rootzen (1988). 

For the first part, concerning the extremal index 8, we are required to show that 

D(u,) holds for u, =x/a, =xn”“, x>O, (cf. Leadbetter et al., 1983, p. 53, and 

Rootzen, 1988) and that 

lim lim sup IP(M1,,,s a;‘1 Yo> ai’) - el =O. 
El0 n+m 

(2.4) 

The mixing condition D(u,) is obtained similarly as Lemma 3.1 of Rootzen (1986), 

so we only briefly indicate the changes needed. For v > 0, let 

Y:’ = Y, -A, . . . A,+nv+l Y,p,,,, 

so that Y, and Y:’ are independent for t-s > nv, and write Y: = Y,, a,, = n-‘lK, b, = 0, 

and G(x) = exp{-cx-“}. Inserting this in the proof of the cited lemma, with X’s 

replaced by Y’s, it is readily seen that D(u”) holds provided 

lim sup nP(I Y. - Y,“l > ~n”~) = 0, (2.5) 
n-co 
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for any v, E > 0. However, for 6 > 0, the quantity in (2.5) can be bounded by 

lim sup nP( Y0 * A, . . . A,, > en “K) 
n-cc 

s lim sup nP( YO> 6-‘cn”K) +lim sup nP(A, * * * A,, > 6) 
n-a3 n*m 

s c(S/S)~ +lim sup n(EAh)“/G’, 
n+m 

for any t 3 0, by (1.4) and Markov’s inequality. Now, (1.3) can be seen to imply 

(cf. Section 3 below) that there is a r > 0 with EA; < 1, so that the last expression 

equals zero for this choice of t, and since 6 > 0 is arbitrary, this implies (2.5), and 

hence that D(u,,) is satisfied. 

Now we concentrate on verifying (2.4). We need an auxiliary process 

Y:= fi A,Y,, Y: = Y,, 
j=1 

which thus satisfies 

Yf=A,Yf_,, n=-1, 

and hence 

A,,:= Y, - Yf, do=0 

satisfies 

(2.6) 

(2.7) 

A,, = A,A,_, + B,, n 2 1, Ao=O, 

i.e. {A,,} satisfies (1.1) with a different initial condition. Set A4, = Vy=, Yj, Mf = 

V.F=, Y,“. Since the A, and B, are nonnegative, we have that 

P(M[,,,> C’l Y”> a,‘) 

z I+$,,> a,‘1 YO> a,‘) 

and since P( Y,, > a,‘~)/ P( Y,, > a,‘) + yPK uniformly for y 3 1 we find 

lim inf P(M[,,,> a,‘( Yo> a,‘) 
n+cc 

oc 
2 

I ( 
P 7 fi Ai >y-’ qpKml 

> 
dy = 0. 

1 j=l I=1 

For an inequality in the reverse direction, write k; = Y,” + Aj so that 

(2.8) 

[n&l 
P(MI,,I>u,‘( Y”>u,‘)=P //’ (Y,“+Aj)>U,‘(Yo>Ui’ 

j=1 > 

[n-l 
<I-’ M$,,+ V Ajxza,‘I Yo>u,’ 

j=1 > 
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and for any 6 > 0 we find the above bounded by 

[nEl 

P(MI#,,I>u,‘(~-~)~ Yo>a,‘)+P V A~>SU,‘I Y~>u,’ 
j=l > 

=(A)+(B), 

say. Now 

[nEl 
(B)G 1 P(Aj>6a,1). 

j=l 

Examining (2.1) we realize that the solutions of (1.1) are monotone with respect to 

the initial value. Since A, = 0 s Y. = Y,, we find Aj s y ( Ym) 2 Y, and thus 

[n&l 
(B)G C P(Y,>~u,‘)=[~~]P(Y,>~u,‘)~Ec~~~. 

j=l 

For (A) we find upon examining the logic which led to (2.8) that as n + 00, 

(A)+ j,m P ( jF, (fi, A) >Y-‘(I- K))K).-“-1 dy 

and thus 

1~~ lim sup P(M,,,,> a,‘[ Yo> a,‘) 
n-tm 

(2.9) 

as S + 0. We now get (2.4) by combining (2.8) and (2.9). 

The second part of the theorem is obtained similarly, with only straightforward 

changes of the arguments, now using (ii) of Theorem 4.1 of Rootzen (1988) instead 

of(i). 0 

3. Computing the extremal index 

The extremal index 8 given by 
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will in general be difficult to compute analytically in closed form. However, it is 

easy to simulate this quantity. Let 

Sj = i log Ai 
i=l 

and suppose E, is a random variable with exponential density and parameter 

EA: . A convenient choice of t is the value to which 

minimizes cp( t). Since q’(O) = E log A, < 0, this exists in (0, K) and can be found 

by solving cp’( t) = 0. Using the value of t, and summing (3.2) yields 

For m > 0 and large, set 

l- o# = E~,,;Y~,,>-,+J 

and for N a large number of replications, we set 

l-&=N-’ ; 1 r; i=l w_,S:“>-EI’)} 2 

where the superscript i refers to the replication number. We know 

(3.3) 

(3.4) 

(l-&-(1-0,) 

{e,(l- ‘M/NI”” 

is approximately N(0, 1) so an approximate lOO( 1 - y)% confidence interval for 0# 

is i, i z,,,~(~N)-“*. Furthermore 

OS(l-e)-(l-e,) 

=P 7 S,>-E, 7 
j=l j=m+l 
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which from (3.3) is bounded by the geometric bound b( to) and so the approximate 

lOO(1 - y)% confidence interval for 19 is 

(L- z,,,(~N))~‘~- b(t,), &+~~,~(4N)-r’*). 

Since 

m 
ok = P 1 l{S,>_-E,) = k - 1 

j=l 

we can estimate ok in a similar way from the same simulations by counting the 

number of replications where the number of exceedances of -E, is k - 1. NOW the 

obvious estimator of ek is 

so that a lOO(1 - r)% confidence interval for 

m 

6 C IIs,>-E,,= k- 1 

j=* 

is &,, * z,,,,(~N)-“~. As before, 

=P jt, I,,,>-,x)=k-1 jgl I,,,>-,,=k-1 

SP f 1 P(S,+ E, >O), 
\j=m+l 

and as before this has the 

confidence interval for 6k is 

(&k-2y12(4N)-“2, 

bound b(t,). Hence the approximate lOO(l- y)% 

&k++zy,2(4N)-“2+ b(t,)). 

Finally we return to the ARCH process (1.2). Clearly {[z, n 2 1) satisfies (1.1) 

and the conditions (1.3). Hence the extremal index and compounding probabilities 

for 6; are given by Theorem 2.1 and can be computed from (3.4) and (3.5). Since 

an exceedance of u* by E: is the same as an exceedance of u by )&/, the process 

{I&,\} has the same extremal index and compounding probabilities. Table 3.1 gives 

values of the extremal index 0 and the compounding probabilities %-k = (ok - ok+,)/ 8 

for these processes, based on the described simulation. The length m of the random 

walk and the number N of replications are m = 1000, N = 1000. Different rows of 

the table are based on separate simulations. The values obtained for q(t,) in the 

table clearly render b(t,) negligible for the given value of WI. 
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Table 3.1 

Extremal index e^ and compounding probabilities Gk for the absolute value I& of the ARCH process, 

based on N = 1000 simulations of length m = 1000 

0.1 13.24 0.997 0.997 0.003 0.000 0.000 0.000 4.99 0.009 

0.3 4.180 0.887 0.892 0.094 0.011 0.003 0.003 1.64 0.261 

0.5 2.365 0.727 0.75 1 0.168 0.055 0.014 0.008 0.962 0.500 

0.7 1.586 0.579 0.623 0.208 0.081 0.046 0.022 0.663 0.655 

0.9 1.152 0.460 0.527 0.209 0.119 0.046 0.042 0.494 0.757 

0.95 1.072 0.438 0.524 0.184 0.118 0.063 0.037 0.462 0.777 

0.99 1.014 0.422 0.51 0.20 0.11 0.06 0.04 0.439 0.791 

The table describes the occurrence of large, positive or negative values of the 

ARCH process. However, the behaviour of large (positive) values, i.e. the extremal 

index and compounding probabilities for the ARCH process {&} itself, can also be 

deduced from the same simulations. Clearly {&} 2 { C,,J[i}, where the {C,,} are 

i.i.d., independent of {&} and P( C, = 1) = P( C, = -1) = 4. Hence the point process 

of exceedances by & is obtained from the corresponding process for ) &) by indepen- 

dent thinning, and this easily gives the extremal index and compound Poisson limit 

of the &process itself. For x > 0, let u,, = xr~“(‘~). Then 

P([, > U,) = $qZ$:> U’,, - $c(u’,))* = $Y2Kn-‘, 

where c and K are the constants appearing in (1.4) for the t’n -process. Hence the 

probability that the maximum of n independent variables with this distribution is 

less than u, is given by 

P(t, S u,)” + exp{-$5’“} as n + co. (3.6) 

Next, let N,, be the time-normalized point process of exceedances of u’, by {[:}, 

andlet l~~,<r~<..*, be the times of occurrence of these exceedances. Then 

P(max{S,, . . . , &> G ~1 

= f P(N,((o,l])=k,c,,=..~=c,,=-l) 
k=O 

= f P(N,,((O, I]) = k)2-k 
k=O 

+ kto P(N((O, 11) = kTk as n-,03, (3.7) 

where N is the limiting compound Poisson process for {e:} given in Theorem 2.1. 

Let N’be the Poisson process with intensity n = cOxpZK which governs the occurrence 

of points in N, let {mk} be the compounding probabilities and introduce their 

probability generating function II(u) = I:= 1 nku k. Further, let {r*‘(j)};=, be the 



L. de Haan et al. / Extreme values 223 

I-fold convolution of { rk}, i.e. n*‘(j) is the probability that the sum of I independent 

variables with point probabilities %-k assumes the value j. It then follows that 

k=O 

; P(N’((0, 11) = I)P(N((O, 11) = kl N’((0, 11) = 1)2Pk 
k=O I=0 

= kFo ,io $ e-"n-*'(k)2-k 

=f f 
I=0 k=/ 

7r*'(k)2-k $ em7 

=exp{-~(1 -n(+))}. 

Inserting n = cOx P2K it follows that 

P(maxG, . . . , &}G u,)+exp{-cBxP2”(1 -n(i))} 

and comparing with (3.6) it is seen that the extremal index O’, say, for the ARCH 

process {&} itself is 

0’=20(1 -n(i)), (3.8) 

where 0 is the extremal index for (8:). Since n(:) < 4 we have 0 < O’< 1. 

It is now readily seen that also the compounding probabilities r; for the ARCH 

process can be obtained from the %-k’s for {S:} as 

/ 
(3.9) 

Table 3.2 contains the extremal index and compounding probabilities for the ARCH 

process, computed from the simulations in Table 3.1 by means of (3.8), (3.9) (in 

this we of course have used %-k’s also for larger values of k than those listed in 

Table 3.1). 

Table 3.2 

Extremal index L? and compounding probabilities 4; for the ARCH process, computed from the 

simulations in Table 3.1 

A K 

0.1 13.24 0.999 0.998 0.002 

0.3 4.180 0.939 0.941 0.054 

0.5 2.365 0.835 0.844 0.124 

0.7 1.586 0.721 0.742 0.176 

0.9 1.152 0.612 0.651 0.203 
0.95 1.072 0.589 0.63 1 0.203 
0.99 1.014 0.571 0.621 0.202 

7;; 6; 4; 

0.000 0.000 

0.004 0.001 

0.025 0.006 

0.054 0.018 

0.079 0.034 

0.088 0.040 

0.088 0.042 

0.000 
0.000 

0.001 

0.007 

0.016 

0.019 

0.02 1 
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