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I. Introduction

IN RECENT years much new information related to reg-
ulation of human follicle development has become avail-

able. Recent techniques for the investigation of human ovar-
ian tissue include immunocytochemistry (allowing direct
visualization of proteins in tissue), or in situ hybridization for
the in situ detection of DNA or RNA. New tools such as pelvic
ultrasound have been developed allowing the longitudinal
monitoring of follicle growth dynamics in a given patient. In
addition, assays of steroids and peptides in serum and follicle
fluid, together with in vitro cultures of human ovarian cells,
have generated additional information regarding endocrine
and para-/autocrine factors regulating follicle growth.

New insight in the interplay between systemic and in-
traovarian factors regulating development and atresia of fol-
licles may have significant implications. Relevant clinical
conditions include ovarian ageing as well as chronic anovu-
lation in patients presenting with serum FSH and estradiol
(E2) hormone levels within the normal range, frequently
diagnosed as polycystic ovary syndrome (PCOS). More ef-
fective and safe protocols for stimulation of ovarian function
for infertility therapy may be developed. This involves both
gonadotropin induction of ovulation (aiming at single dom-
inant follicle growth in anovulatory patients) and so-called
‘controlled’ ovarian hyperstimulation for in vitro fertilization
(IVF) (aiming at interfering with single dominant follicle
selection to induce ongoing multiple follicle development in
ovulatory women).

Due to ongoing concern regarding the potential for side
effects and long-term health hazards, doses of combined
estrogen/progestin steroid contraceptive pills have been de-
creased continuously since their introduction in the 1960s. It
has been noticed subsequently that tolerance for omission of
pill intake, especially around the pill-free interval, has di-
minished substantially in women using regimens presently
on the market. Modest suppression of pituitary gonadotro-
pin secretion during pill intake and recovery of FSH release
during the pill-free week creates a situation resembling the
early follicular phase of the normal menstrual cycle and
allows for substantial residual ovarian activity.
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Concepts involved in regulation of follicle growth during
gonadotropin induction of ovulation (attempting to enhance
fertility) as well as during steroid contraception (aiming at
inhibiting fertility) are derived from recent findings regard-
ing regulation of ovarian function under physiological cir-
cumstances. Therefore, these three conditions have been se-
lected as the major focus of the present review.

II. Dynamics of Normal Human Follicle Growth
and Selection

A. Gonadotropin-independent and -dependent follicle
growth

Resting primordial follicles continuously enter the grow-
ing pool throughout life (for review see Refs. 1–3). The mag-
nitude of depletion of the primordial follicle pool is depen-
dent on age and is most pronounced during fetal
development. Oocytes are detectable in fetal ovaries after 16
weeks of gestational age. The great majority of oocytes are
lost after the fifth month of intrauterine life, when a maxi-
mum of approximately 7 million germ cells have been re-
ported (3). The presence of growing follicles in fetal ovaries
has been substantiated extensively (4). At birth, both ovaries
contain approximately 1 million primordial follicles. Repro-
ductive life starts with approximately 0.5 million primordial
follicles at menarche. Thereafter, loss of follicles takes place
at a fixed rate of around 1000 per month, accelerating beyond
the age of 35 (5–8). Studies in the rat model suggest indeed
that follicle loss is inversely related to the number of pri-
mordial follicles present in the ovaries (9). Once follicles are
stimulated to grow, they can either reach full maturation and
ovulate or become atretic. Follicles are present in the ovary
at different stages of development, and large numbers of
follicles of different sizes can be observed at any given point
of the menstrual cycle (10). The distribution of developmen-
tal stages of follicles entering atresia may vary with age (11).
It is generally believed that, especially at an early age, loss of
follicles is largely due to atresia of primordial follicles (12).
It is unknown as yet which factors regulate initiation of
growth of primordial follicle (12, 13) and whether maturing
follicles may enter atresia at all developmental stages (14).

When primordial follicles enter the growth phase they
enlarge by an increase in size of the oocyte together with
granulosa cell proliferation (primary follicle). Transition into
the secondary follicle stage involves alignment of stroma
around the basal lamina and the development of an inde-
pendent blood supply. The stroma subsequently differenti-
ates into a theca externa (similar to surrounding stroma cells)
and a theca interna layer. Theca interna cells express LH
receptors early on (15). Development of an antral cavity (at
a follicle size ;100 to 200 mm) divides granulosa cells in cells
surrounding the oocyte (cumulus) and cells that border the
basement membrane. During early preantral follicle devel-
opment, FSH receptors also become detectable on granulosa
cells (7, 15, 16). The time span between a primary and an early
antral follicle in the human is unknown but is proposed to
be several months. Subsequent stages from early antral to
preovulatory follicles exhibit clear morphological character-
istics, and the time interval is assessed to be approximately

3 months (for review see Ref. 12) (Fig. 1). An increase in the
number of granulosa cells is critically important for the ad-
vancement in developmental stages of the follicle. The time
interval required for a given follicle to pass these different
developmental stages can therefore also be assessed by cal-
culating the granulosa cell-doubling time (duration of mi-
totic activity in vitro) (17).

Under normal conditions, only about 400 follicles reach the
mature preovulatory stage and ovulate in a lifetime. Hence,
loss of follicles due to atresia — with apoptosis [i.e. pro-
grammed cell death (18)] as the underlying cellular mecha-
nism — rather than growth and subsequent ovulation should
be considered the normal fate of follicles. The importance of
oxidative stress in inducing atresia (19) and gonadotropins
and various growth factors (‘survival factors’) to suppress
apoptosis (20, 21) has been emphasized recently. FSH de-
creases apoptosis in granulosa cells obtained from hypoph-
ysectomized rats (22) and prevents apoptotic changes of cul-
tured preovulatory follicles (23).

In the human the process of initiation of follicle growth
and subsequent exhaustion of the resting pool of primordial
follicles appears to be regulated independently of stimula-
tion by gonadotropins (24). Follicles become dependent on
stimulation by FSH only at an advanced developmental
stage, as will be discussed later (Section II.E). For instance,
follicles grow up to the early antral stage in long-term hy-
pophysectomized animals (25, 26). Similar numbers of ma-
turing follicles, as compared with controls, have been found
in anencephalic fetuses (27, 28), and exposure of ovaries to
high gonadotropin levels has failed to result in accelerated
follicle loss (12). It appears in the human that follicle devel-
opment up to the antral stage continues throughout life until
depletion of follicles around menopause, even under condi-
tions in which endogenous gonadotropin release is dimin-
ished substantially (5, 29). Such conditions include prepu-
bertal childhood (30–33), pregnancy (34–37), and the use of
steroid contraceptives (see Section IV). In addition, follicle
growth up to the early antral stage has been described in
women with absent gonadotropin secretion, either due to
hypophysectomy, as discussed by Block (1), or to hypotha-
lamic/pituitary failure (38). However, observations in hy-
pogonadal mice suggest that gonadotropins do play a role in
initiation and continuation of follicle growth (39). In the rat
model it has been suggested that theca cell differentiation
and early preantral follicle growth is dependent on subtle
stimulation by LH (40, 41). In addition, assessment of ovarian
morphology of term infant monkeys showed a reduced num-
ber of primordial and primary follicles and increased follicle
atresia after hypophysectomy (42). In conclusion, the ques-
tion of whether the extent and rate of early follicle growth is
dependent on exposure to minute amounts of gonadotropins
remains unsolved (43, 44). Improved knowledge regarding
mechanisms regulating initiation of primordial follicle
growth as well as atresia of early stages of follicle develop-
ment may shed more light on clinical conditions such as
ovarian ageing and premature ovarian failure, as well as the
great individual variability in menopausal age.

In contrast to early follicle development, stimulation by
FSH is an absolute requirement for development of large
antral preovulatory follicles. Duration and magnitude of FSH
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stimulation will determine the number of follicles with aug-
mented aromatase enzyme activity and subsequent E2 bio-
synthesis. High FSH levels usually occurring during the lu-
teo-follicular transition give rise to continued growth of a
limited number (cohort) of follicles. Subsequent develop-
ment of this cohort during the follicular phase becomes de-
pendent on continued stimulation by gonadotropins. In con-
trast to other primate species such as the Booroola sheep (14,
45), in the human only a single follicle from the cohort is
selected to gain dominance and ovulate every cycle. Remain-
ing cohort follicles enter atresia due to insufficient support
by reduced FSH levels. The only exception to this rule is
familial dizygotic twins in which ongoing growth and ovu-
lation of multiple follicles occur (46, 47). A reduced rate of
follicle atresia due to altered intrafollicular steroidogenesis
independent from gonadotropins has recently been pro-
posed as the underlying cause (48).

B. Intrafollicular endocrine changes

The majority of enzymes involved in the biosynthesis of
ovarian steroids belong to the cytochrome P-450 gene family
(for review see Refs. 49 and 50). This group of enzymes
includes: 1) Cholesterol side-chain cleavage enzymes (P-
450SCC), which convert cholesterol to pregnenolone. 2) The

P-450C17 enzyme (involving both 17a-hydroxylase and
C17,20-lyase activity) converts both progestins (pregnenolo-
ne and progesterone) to androgens [dihydroepiandrosterone
and androstenedione (AD), respectively]. 3) The aromatase
enzyme complex (P-450A ROM), converts androgens [AD
and testosterone (T)] to estrogens (estrone and E2, respec-
tively). Moreover, a specific DNA sequence, termed Ad4, has
recently been identified as a transcription factor regulating
the expression of steroidogenic P450 genes. The expression
of Ad4-binding protein (a zinc finger DNA-binding protein
also known as steroidogenic factor-1) has been shown to
correlate with the immunolocalization of steroidogenic en-
zymes in the human ovary (51).

Two enzymes that are not members of the P-450 gene
family are also important for gonadal steroid synthesis: 3b-
hydroxysteroid dehydrogenase, converting D5-steroids
(such as pregnenolone) to D4-steroids (such as progesterone),
and 17 ketosteroid reductase converting AD to T and estrone
to E2.

The cholesterol side-chain cleavage enzyme represents the
major rate-limiting step in steroid hormone synthesis. More-
over, proteins involved in the acquisition of cholesterol (in-
cluding lipoprotein receptors and enzymes involved in de
novo cholesterol synthesis) have also been shown to be im-

FIG. 1. Schematic representation of human ovarian follicle development. Primordial follicles entering the growth phase form primary follicles
(class 1). This is followed by gonadotropin-independent (tonic) growth (class 1 to 4), and eventually gonadotropin (Gn)-dependent growth. Note
that the overall development from a class 1 to a class 5 follicle takes three cycles [Reproduced with permission from A. Gougeon].
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portant for sufficient steroid biosynthesis (50). Patients have
been described with mutations in DNA encoding for a pro-
tein involved in cholesterol transport within the cell (so-
called steroid acute regulatory protein) (52) or encoding for
specific enzymes involved in the steroid synthesis pathway
(for review see Ref. 53). The significance of each step for
normal steroid biosynthesis and subsequent ovarian func-
tion has been clarified by the careful description of under-
lying gene abnormalities and the phenotype expression in
the event that certain steroids are lacking.

In vitro studies using cells isolated from human ovarian
follicles have demonstrated convincingly that theca cells are
the source of follicular androgens (54, 55) — predominantly
AD (56, 57) — whereas granulosa cells only produce E2 when
androgens are added to the culture medium (58–60). In the
human ovarian follicle, immunocytochemistry (with the use
of antibodies against specific enzymes, allowing direct vi-
sualization of the distribution of the enzyme in tissue) as well
as Northern blot analysis of RNA has shown the P-450C17
enzyme to be restricted to the theca cell layer (61, 62), con-
sistent with the notion that these cells are the major site of
intrafollicular androgen production. mRNA levels for
P-450C17 are increased dramatically in preovulatory follicles
(63), which correlate well with augmented 17a-hydroxylase
activity of human theca cells in culture (64). Small antral
follicles were shown to lack P-450AROM mRNA. However,
appreciable quantities of mRNA (63, 65, 66) and the aro-
matase enzyme (62, 67) were observed in dominant follicles
in the late follicular phase. These observations are in keeping
with the high level of aromatase enzyme activity expressed
in vitro by granulosa cells obtained from preovulatory folli-
cles (59, 68). In addition, mRNA expression is in good agree-
ment with immunolocalization of the aromatase enzyme
(66). Synthesis of the P-450AROM enzyme could also be
induced by FSH administration to human granulosa cells in
culture (69). When follicles mature, granulosa cells also ex-
hibit elevated mRNA levels for P-450SCC, LH receptor, ac-
tivin, and inhibin (70).

The theca interna layer of developing follicles responds to
LH and synthesizes androgens (71, 72). AD and its imme-
diate metabolite T are transferred from the theca layer to the
intrafollicular compartment. For this reason these steroids
are present in large quantities in ovarian follicles of all sizes
and represent the main steroid produced by early antral
follicles (73–75). Atretic follicles of all sizes (between 2 and
13 mm diameter) also contain high androgen levels (57, 76)
and low E2 concentrations (77). Granulosa cells become re-
sponsive to FSH only at more advanced stages of develop-
ment and are capable of converting the theca cell-derived
substrate AD to E2 by induction of the aromatase enzyme.
This so-called ‘two-gonadotropin, two-cell’ concept empha-
sizes that adequate stimulation of both theca cells by LH and
granulosa cells by FSH is required for adequate E2 biosyn-
thesis, as has been recognized since the 1940s (54, 78–82).

Large (.8 mm diameter) follicles in the mid- and late
follicular phase of the menstrual cycle contain appreciable
(up to 10,000-fold) higher quantities of E2 compared with
small follicles, as has been shown by numerous authors (60,
75, 76, 83–87). Intrafollicular E2 concentrations were up to
40,000-fold higher than those in peripheral plasma, and 20-

fold higher concentrations of E2 have been observed in ve-
nous blood draining the ovary containing the dominant fol-
licle as compared with the contralateral side (88, 89). It has
been demonstrated in IVF patients that a correlation exists
between the E2/androgen ratio in follicle fluid and follicular
health and fertility potential of oocytes (90). After enucle-
ation of the largest follicle no further differences were found
in steroid levels in blood draining both ovaries (91). A cor-
relation between intrafollicular E2 concentrations and follicle
diameter has been substantiated in large dominant follicles
(75, 77, 83). All studies show low E2 levels in relatively small
(,10 mm diameter) nondominant follicles (57, 68, 76, 77, 83),
and the absence of a correlation between follicle size and E2
levels in this size range (Fig. 2) was emphasized recently (75).
The magnitude of E2 synthesized by granulosa cells in vitro
is dependent on the size of the follicle from which cells were
obtained, with AD metabolized to E2 only by granulosa cells
from follicles beyond 8–10 mm in diameter (59, 68, 92). Fol-
licle fluid E2 concentrations are also correlated with the
amount of aromatase activity expressed in vitro (60). In ad-
dition, granulosa cells in culture produce larger quantities of
E2 in response to similar doses of FSH if cells were obtained
from larger (.8 mm) follicles (59, 68, 92), suggesting in-
creased sensitivity. Moreover, lower doses of FSH induce
similar E2 production by cultured rat granulosa cells ob-
tained from larger follicles, again indicating that cells ob-
tained from more mature follicles exhibit augmented sensi-
tivity for stimulation by FSH (93). Finally, a distinct
relationship was observed between follicle diameter and the
number of granulosa cells that was recovered at each size
(94).

Collectively, overwhelming in vivo and in vitro evidence,
both in animal models and in the human, suggest that en-
hanced E2 biosynthesis is closely linked to preovulatory fol-
licle development and that high estrogen output of the dom-
inant follicle is regulated by FSH-stimulated granulosa cell
function. Development of smaller follicles in the early fol-
licular phase, although dependent on FSH, is not associated
with increased E2 production.

C. Are estrogens needed for follicle development?

As discussed above, dominant follicle development in the
human is closely associated with increased follicular estro-
gen biosynthesis. E2 receptors have been shown to be present
in rat granulosa cells, as studied by ligand-binding assays
(95). Numerous in vitro studies have shown for the rat model
that E2 plays important autocrine roles in stimulating FSH-
induced granulosa cell proliferation (76, 96), aromatase en-
zyme induction (97–99), production of inhibin (100), increase
in E2 and FSH receptors (101), and formation of LH receptors
on granulosa cells (102, 103). In addition, E2 exhibits a para-
crine action on adjacent theca cells by inhibiting androgen
production (72). Estrogen (diethylstilbestrol) treatment of
immature hypophysectomized rats stimulates growth of
large numbers of follicles. Human chorionic gonadotropin
(hCG) and FSH-induced follicle development could be in-
hibited by the administration of estradiol antiserum (104),
suggesting again autocrine stimulatory roles for endogenous
estrogens. Estrogens have also been shown to inhibit apo-
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ptotic changes of ovarian follicles (20). Based on these ob-
servations, the concept has arisen that augmented intrafol-
licular E2 production is a conditio sine qua non for ongoing
follicle maturation. In fact, absent induction of aromatase
enzyme activity has been widely accepted as the underlying
cause of follicle maturation arrest and subsequent anovula-
tion in PCOS (105).

Several lines of evidence, however, gave strong support to
the notion that this may not be the case for higher species,
including the human. Under normal conditions, augmented
E2 levels may merely be associated with normal follicle de-

velopment. A deficiency of the 17a-hydroxylase enzyme due
to a specific gene defect affects both adrenal steroidogenesis
and androgen and estrogen production by the ovary. This
condition is characterized by hypergonadotropic hypoestro-
genic primary amenorrhea, with arrest of follicle develop-
ment at the early antral stage (106). However, normal follicle
development could be induced in these patients by FSH
treatment for IVF (after GnRH agonist suppression of en-
dogenous gonadotropin release) despite extremely low in-
trafollicular levels of AD, T, and E2. Oocytes could be ob-
tained and fertilized in vitro resulting in normal early embryo

FIG. 2. Intrafollicular steroid concentrations as related to follicle diameter in 281 nondominant follicles punctured during various phases of
the menstrual cycle (box and whisker plots; left panel), and 45 dominant follicles punctured during the late-follicular phase (right panel) obtained
from 55 regularly cycling volunteers. Please note that follicle size is only associated with intrafollicular E2 levels when a diameter of 10 mm
or more is obtained. P, Progesterone; AD, androstenedione; E2, estradiol. [Reproduced with permission from T. van Dessel et al.: Clin Endocrinol
(Oxf) 44:191–198, 1996 (75).]
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development (107, 108). In another patient suffering from a
partial P-450C17 (17, 20-lyase step) deficiency, follicle growth
could also be achieved after the administration of exogenous
FSH despite low intrafollicular E2 levels (109). Subsequent
IVF and cleavage rates were not different from normal. More-
over, two unrelated females have been described recently
with mutations in the CYP19 gene (consisting of 10 exons,
and localized on chromosome 15, q21.1 region), resulting in
the total absence of aromatase enzyme activity (110, 111).
Large ovarian cysts have been described in both patients,
suggesting that growth of antral follicles can occur in the
absence of intraovarian estrogen biosynthesis. Recent exper-
iments in monkeys treated with an aromatase inhibitor be-
tween day 8 and 10 of the follicular phase have also excluded
the possibility that increased levels of circulating E2 in the
late follicular phase is required to sustain follicle maturation
(112).

We have recently participated in a study on safety and
pharmacokinetic properties of human recombinant FSH
(113, 114) in hypogonadotropic female volunteers. The com-
plete absence of endogenous as well as exogenous LH in
these subjects did provide the unique opportunity to study
effects of FSH alone on ovarian steroid production and fol-

licle growth (115). Despite a significant increase in serum
FSH levels, in the same order of magnitude as the intercycle
rise in FSH during the normal menstrual cycle, serum E2
levels remained low. However, development of multiple pre-
ovulatory follicles emerged within 14 days. In a single sub-
ject, three large follicles between 13 and 18 mm in diameter
were aspirated, and extremely low intrafollicular levels of
AD and E2 were found (Fig. 3) (87). A normal rise in immu-
noreactive serum inhibin levels in the majority of these
women excluded the possibility of granulosa cell abnormal-
ities per se (38). A discrepancy between serum E2 levels and
follicle development has also been observed in hypogona-
dotropic women comparing purified FSH of urinary origin
and human menopausal gonadotropin (HMG; 1:1 ratio of LH
to FSH activity) (116). When urinary FSH was combined with
long-term GnRH agonist comedication suppressing the en-
dogenous release of LH and FSH, similar observations were
reported (117). It is of special interest to note that large antral
follicles were also observed in the ovaries of two amenorrheic
patients described with inactivating mutations of the LH
receptor (and consequently low E2 production) (118, 119).
These observations in the human confirm the two-cell, two-
gonadotropin concept for adequate E2 synthesis but also

FIG. 3. Endocrine and sonographic observations in a single patient with isolated gonadotropin deficiency receiving daily intramuscular
injections of human recombinant FSH (hrFSH). Serum FSH and LH levels, follicle diameter, and endometrial thickness (as assessed by TVS)
are indicated in the left panel. Serum estradiol levels and follicle fluid estradiol and androstenedione concentrations (three follicles, 13–18 mm
in diameter) from the patient and from regularly cycling controls [both nondominant (3–9 mm) and dominant (13–24 mm) follicles] are depicted
in the right panel. HCG, Human chorionic gonadotropin. [Reproduced with permission from B. C. Schoot et al.: J Clin Endocrinol Metab
74:1471–1473, 1992 (87). © The Endocrine Society.]
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demonstrate convincingly that increased E2 production is not
mandatory for normal follicle growth up to the preovulatory
stage. These observations are fully supported by more recent
similar studies in the monkey. Follicular growth and oocyte
maturation in LH-deficient macaques did occur with FSH
alone (120), and fertilization rates of oocyte obtained from
recFSH/GnRH antagonist-treated monkeys were not com-
promised (121).

It is still uncertain whether estrogen receptors are present
on granulosa cells from higher primates, including the hu-
man. Stouffer and colleagues were unable to show estrogen
receptors on primate granulosa cells by immunocytochem-
istry (122), whereas androgen receptors could be demon-
strated on both theca and granulosa cells (123). However, this
technique may not be sensitive enough to detect low levels
of receptors, and some investigators have recently described
low levels of estrogen receptor mRNA as well as the protein
in human granulosa cells from preovulatory follicles (124,
125). Moreover, direct effects have been described of the
antiestrogen clomiphene citrate on E2 synthesis by cultured
human granulosa cells (126). As opposed to rats, diethylstil-
bestrol administration in juvenile primates resulted in de-
creased numbers of medium sized developing antral follicles
(127). In addition, studies in hamsters have suggested that
estrogens exert inhibitory effects on follicle function (128).

Collectively, these data suggest that in the human, E2 is not
required for follicle development. It appears that, under nor-
mal conditions, augmented E2 synthesis is merely associated
with dominant follicle development, where growth of the
follicle is, in fact, driven by other nonsteroidal (growth) fac-
tors (see also Section II.F). This concept may also bear sig-
nificance for our thinking regarding underlying causes of
anovulation, in particular in polycystic ovaries. Follicles may
cease to mature due to defective intraovarian regulatory
mechanisms rather than the absence of aromatase enzyme
induction per se (129).

During the follicular phase of the normal menstrual cycle
E2 is clearly important for other crucial physiological pro-
cesses such as stimulation of endometrial proliferation, cer-
vical mucus production, and induction of the midcycle LH
surge and subsequent ovulation. Whether oocyte maturation
in the human requires exposure to estrogens remains unclear
at this stage (130–132).

D. In vivo regulation of follicle maturation in the monkey

A series of in vivo studies in the monkey has systematically
addressed endocrine factors regulating follicle growth (for
comprehensive reviews see Refs. 133–137). A significant pro-
portion of these experiments have subsequently been con-
firmed in the human (see Section II.E). Surgical ablation of the
dominant follicle in the late follicular phase of the cycle
blocked the midcycle gonadotropin surge and ovulation.
These observations indicate that no other follicles from the
recruited cohort were capable of replacing the dominant
follicle, presumably due to atretic changes. New follicle re-
cruitment occurred in response to a rise in endogenous FSH
levels, similar to ovarian response after removal of the corpus
luteum. The duration until the next ovulation was 12 days,
which equals the normal follicular phase of the cycle. There-

fore ovulation was delayed after follicle cautery and ad-
vanced after luteectomy (138). Ovarian response to exoge-
nous gonadotropins (as estimated by rising serum E2 levels)
was equal, regardless of whether gonadotropins were ad-
ministered in the follicular or midluteal phase of the cycle
(139). By repeated cautery of the dominant follicle, it was also
shown that the midcycle gonadotropin surge of the preced-
ing cycle plays no role in follicle recruitment for the subse-
quent cycle (140).

Dominant follicle selection, and subsequent asymmetrical
ovarian estrogen output, occurs around the midfollicular
phase (141, 142). The dominant follicle requires continued
though reduced support by FSH. In fact, growth of a single
dominant follicle could be sustained in GnRH antagonist-
treated monkeys by the administration of exogenous FSH in
decremental doses (Fig. 4) (143), suggesting enhanced sen-
sitivity for FSH when the dominant follicle matures (see also
Sections II.B and II.E2). The dominant follicle continued its
development despite relatively low late follicular phase FSH
concentrations, incapable of stimulating growth of less ma-
ture follicles. Subsequent experiments in the monkey model
have addressed the significance of FSH for single dominant
follicle selection. Early follicular phase administration of E2
caused a significant reduction in serum FSH and a length-
ening of the follicular phase (144). Moreover, administration
of antiestrogen antibodies in the early to midfollicular phase
gives rise to elevated serum FSH levels, which interferes with
single dominant follicle selection resulting in ongoing mat-
uration of additional cohort follicles (145, 146).

The above mentioned experiments show similar respon-
siveness of the ovary to endocrine changes in either the luteal
(147) or the follicular phase and provide in vivo evidence for
the concept that gonadotropin-responsive follicles are main-
tained throughout the entire cycle. Follicles can be stimulated
to ongoing and gonadotropin-dependent development
when the appropriate endocrine signal (i.e. elevated serum
FSH levels) is operative. Under normal conditions, elevated
FSH concentrations are present during the luteo-follicular
transition only. Augmented E2 production by the most ma-
ture (dominant) follicle starting around the midfollicular
phase causes a subsequent decrease in FSH levels due to
negative feedback effects of E2 on the hypothalamic-pituitary
axis. The dominant follicle restricts ongoing maturation of
other, less mature follicles from the cohort since FSH levels
drop below their threshold for stimulation of gonadotropin-
dependent growth. The dominant follicle is spared from the
inhibitory influence of reduced FSH stimulation because of
increased sensitivity to FSH (see also Sections II.B and II.E.2).

E. The FSH threshold and window concept for in vivo
follicle growth

1. FSH threshold and follicle recruitment. Due to the demise of
the corpus luteum and the subsequent decrease in estrogen
production (148), FSH levels rise at the end of the luteal phase
of the human menstrual cycle (149). This intercycle rise is
closely synchronized with ovulation, and FSH levels start to
increase 12 days after the preceding LH surge (150). As
mentioned previously, initiation of growth of primordial
follicles occurs continuously and in a random fashion. Fol-
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licle growth will eventually cease and follicles will enter
atresia if the appropriate endocrine signal is lacking. Al-
though each follicle may have an equal potential to reach full
maturation, only follicles that happen to be at a more ad-
vanced stage of development during the intercycle rise in
FSH will gain gonadotropin dependence. The concept that
FSH concentrations above a certain level, referred to as the
‘FSH threshold,’ are needed for ovarian stimulation was first
introduced by Brown in 1978 (151) and substantiated more
recently by Schoemaker and colleagues. The individual vari-
ation in FSH serum levels at which follicle growth was ini-
tiated could be assessed to be between 5.7 and 12.0 IU/liter
with the use of intravenous administration of gonadotropins
in PCOS patients (152, 153). Moreover, multifollicular
growth was shown to be associated with higher FSH con-
centrations above the threshold (153) (Fig. 5), using a low-

dose incremental protocol for FSH induction of ovulation.
Each growing follicle has a threshold requirement for stim-
ulation by circulating FSH. The threshold level should be
surpassed to ensure ongoing preovulatory follicle develop-
ment. This process of rescue of a cohort of follicles from
atresia by FSH stimulation is referred to by most authors as
‘recruitment.’ The recruited cohort represents a group of
follicles at a comparable (but not identical) developmental
stage. This group of follicles, by chance, happened to leave
the pool of resting follicles around the same period of time
several months before. In contrast, other investigators re-
serve this term for the initiation of growth of primordial
follicles (12) (see also Section II.A).

Morphological and endocrine studies suggest that healthy
early antral follicles less than 4 mm in diameter are present
throughout the cycle (89), in keeping with the concept that

FIG. 4. Serum hormone levels (mean 6 SEM; solid line) in four GnRH antagonist-treated monkeys during pulsatile infusion of LH and FSH.
FSH infusion was reduced by 12.5%/day after a rise in serum estradiol levels, whereas LH input was kept constant. The shaded areas represent
control values (n 5 4). Note that estradiol levels continue to increase despite decreasing FSH serum levels. [Reproduced with permission from
A. J. Zeleznik and C. J. Kubik: Endocrinology 119:2025–2032, 1986 (143). © The Endocrine Society.]
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follicles are continuously available for stimulation by FSH.
At the end of the luteal phase, the largest healthy follicles
observed by morphological criteria have been described to be
between 2 to 5 mm in diameter (10, 89, 154), and the number
of recruitable follicles present is believed to be between 10
and 20 for both ovaries. Granulosa cells obtained from fol-
licles in the late luteal phase are significantly more sensitive
to FSH stimulation (as assessed by FSH-induced estrogen
production in vitro) (154), suggesting that these healthy fol-
licles will be recruited for the next cycle. The largest healthy
follicles at the start of the follicular phase of the cycle have
been reported to exhibit a diameter between 4 and 8 mm (94,
155), and no morphological differences exist between these
follicles. These observations strongly suggest that the dom-
inant follicle is selected at a later stage of the follicular phase
of the cycle. Indeed, exogenous HMG administered during
different phases of the menstrual cycle is most effective in
stimulating follicle recruitment if administered during the
late luteal or early follicular phase (156).

Elegant experiments in the human have further substan-
tiated the FSH threshold concept and have generated addi-
tional support for the notion that follicles ready to be re-
cruited are present throughout the menstrual cycle. Removal
of the dominant follicle in the late follicular phase, or luteec-
tomy in the luteal phase during gynecological surgery, re-
sults in new follicle recruitment and subsequent ovulation
(157–159). Enucleation of the corpus luteum in 10 women
was followed by an immediate and rapid decline of E2 and
progesterone levels. This was followed by rising FSH levels,
renewed follicle growth, and ovulation within 16–19 days
after enucleation (159). These experimental results are in full

agreement with observations in the monkey model after
similar intervention and indicate indeed that suppressed
gonadotropin secretion (due to corpus luteum or dominant
follicle steroid production) is responsible for inhibition of
more advanced follicle maturation. Moreover, these obser-
vations are in keeping with the notion that final and gona-
dotropin-dependent follicle growth preceding ovulation
takes approximately 14 days, coinciding with the follicular
phase length of the menstrual cycle. If the intercycle rise in
serum FSH is shortened by the early to midfollicular phase
administration of GnRH antagonist, follicle growth is ar-
rested and new follicle recruitment will follow once medi-
cation is withdrawn (160, 161).

2. FSH window and single dominant follicle selection. In follicles
less than 10 mm, the aromatase enzyme is poorly expressed
(62) and intrafollicular E2 levels are low (Fig. 3) (57, 75, 162).
This also holds true for follicles in the early follicular phase
of the menstrual cycle. E2 production, however, can be stim-
ulated rapidly in vitro by adding FSH to the culture medium
(59, 68, 92). It cannot be readily explained why E2 levels
remain low despite maximum FSH stimulation in the early
follicular phase (163). Intraovarian modification of FSH ac-
tion may be involved (see Section II.F.3). Under normal con-
ditions, the fate of developing antral follicles is closely as-
sociated with their ability to create an estrogen-rich
intrafollicular environment, as discussed previously. It may
be proposed that the follicle selected to gain dominance is the
one that has most rapidly acquired the highest sensitivity for
FSH. This may be the follicle that was at the most advanced
developmental stage when recruited. Indeed, FSH respon-

FIG. 5. Increase in FSH serum levels from basal to above the assessed threshold (ATV, above threshold dose) related to the number of FSH
ampoules infused per day in 16 PCOS patients treated with a low-dose step-up regimen for gonadotropin induction of ovulation. It was proposed
that multifollicular development (Œ) is associated with higher FSH levels above the threshold and more ampoules per day as compared with
patients presenting with monofollicle development (E). [Reproduced with permission from M. van der Meer et al.: Hum Reprod 9:1612–1617,
1994 (153).]
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siveness of cultured granulosa cells (obtained from follicles
at various stages of development) has been shown to be
dependent on follicle size, with more pronounced E2 pro-
duction by cells obtained from larger follicles (59, 68, 92, 162).
Responsiveness to FSH stimulation is also increased in pre-
ovulatory follicles (164). In addition, in the late follicular
phase, steroidogenic function of granulosa cells from the
dominant follicle is also stimulated by LH (165). Finally,
observations in the monkey suggest that increased vascu-
larization of individual follicles (resulting in the preferential
exposure to circulating factors) may also be instrumental in
the selective maturation of preovulatory follicles (166).

Consequently, the FSH threshold for a given follicle is not
fixed but is dependent on its developmental stage and there-
fore changes over time. Indeed, experiments applying GnRH
antagonist for 3 consecutive days in the mid- or late follicular
phase of the cycle have shown convincingly that the devel-
oping follicle becomes more resistant to gonadotropin with-
drawal as it becomes more mature (160). Midfollicular ad-
ministration of GnRH antagonist may induce a transient
follicular arrest without triggering new folliculogenesis (167)
or complete follicle maturation arrest and new follicle re-
cruitment (161), depending on the magnitude and duration
of gonadotropin suppression.

FSH serum levels steadily decrease during the mid- to late
follicular phase of the menstrual cycle. The follicle that has
gained dominance is less dependent on continued support
by high early follicular phase FSH levels. However, circu-
lating FSH levels are suppressed to a concentration below the
threshold for remaining follicles from the recruited cohort.
These follicles will therefore cease to mature and undergo
atresia. Hence, development of the most mature follicle,
closely associated with increased E2 production, secures se-
lection of a single dominant follicle. The FSH ‘gate’ (168) or
‘window’ (169, 170) (Fig. 6, upper panel) concept has been
introduced to emphasize the significance of a transient ele-
vation of FSH above the threshold. This concept emphasizes
the importance of time (i.e. duration of elevated FSH levels)
rather than dose (magnitude of FSH elevation) for single
dominant follicle selection. Previous studies by our own
group in 16 female volunteers have characterized follicular
phase patterns of FSH serum levels and investigated corre-
lations between decremental FSH levels and dominant fol-
licle development (163) (see also Table 1 and Fig. 7, where the
number of volunteers has been extended to 42). This decrease
may be due to negative estrogen feedback on the hypotha-
lamic-pituitary axis (168). However, it seems that the initi-
ation of declining serum FSH levels precedes augmented
ovarian estrogen output. We have observed a clear associ-
ation between the magnitude of decrease in endogenous FSH
serum levels and the E2 rise, indicating that the duration of
FSH stimulation (duration of serum FSH above the thresh-
old) is a major determinant for ovarian E2 production (163).

Indeed, a more pronounced but transient elevation of se-
rum FSH concentrations above the threshold in the early
follicular phase of the normal menstrual cycle (administra-
tion of 450 IU FSH on cycle day 2) did not result in multiple
follicle development and enhanced E2 production during the
late follicular phase. In sharp contrast, low doses of FSH
administered during the mid- to late follicular phase (starting

FIG. 6. Schematic representation of the intercycle rise in serum FSH
levels (FSH threshold/window concept), and follicle growth dynamics
(recruitment, selection, and dominance) during the follicular phase of
the normal menstrual cycle (upper panel). FSH serum levels during
the follicular phase of gonadotropin induction of ovulation using a
step-down dose regimen (starting dose of 150 IU/day) are depicted in
the middle panel. FSH serum levels and follicle growth during the
7-day pill-free interval following combined steroid contraceptive pills
(OAC) are indicated in the lower panel. The FSH threshold is the
serum level required for stimulation of ovarian activity. The FSH
window represents the number of days when FSH concentrations
remain above the threshold. Recruitment represents the transition
from gonadotropin-independent to gonadotropin-dependent follicle
development (follicles are rescued from their destiny to undergo atre-
sia by the intercycle rise in FSH). Selection refers to the process where
a single follicle gains dominance over the remaining follicles from the
recruited cohort.
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on cycle day 4) did elicit a significant rise in serum E2 levels
(Fig. 8) (171) (I. Schipper and B. C. J. M. Fauser, unpublished
observations). Moreover, selection of a single dominant fol-
licle is also prevented if high FSH levels are sustained in
hyperstimulation protocols for IVF. The magnitude of mul-
tiple follicle growth in IVF patients has been shown to be
proportional to the late follicular phase accumulation of FSH
in serum (172). These experiments confirm that the duration
(related to the window concept) rather than the magnitude
(threshold concept) of FSH stimulation determines the num-
ber of developing follicles. We have recognized the crucial
role of decremental serum FSH levels for single dominant
follicle selection under normal conditions and have at-
tempted to develop a decremental (‘step-down’) dose regi-
men for gonadotropin induction of ovulation for treatment
of anovulatory infertility (see Section III.D) (Fig. 6, middle
panel). It could be demonstrated, indeed, that growth of the
dominant follicle is sustained despite reduced late follicular
phase stimulation by decremental doses of exogenous FSH
(173).

On the basis of previous studies it has been proposed that
inhibin is an unlikely factor to play a significant role in
dominant follicle feedback actions, since it appears that sev-
eral antral follicles contribute equally to ovarian immuno-
reactive inhibin secretion. Moreover, inhibin serum levels
did not differ in blood draining the ovary bearing the dom-
inant follicle compared with blood from the contralateral
ovary (174). Inhibin levels did not change during the early
follicular phase. However, early inhibin immunoassays suf-
fered from extensive cross-reactivity with potentially inac-
tive precursors. Exciting new information has become avail-

able recently since the development of new sandwich assays
using monoclonal antibodies directed against the bB-subunit
(the a-subunit combined with bB constitutes inhibin B) or
against bA (inhibin A). Follicular phase serum patterns of
inhibin A appear to be comparable to previously used less
specific assays (175). In contrast, a profound rise in inhibin
B serum levels was observed early in the follicular phase,
suggesting that it is secreted by recently recruited cohort
follicles in response to FSH. This rapid rise in inhibin B occurs
just after the intercycle rise in FSH. It may be proposed that
inhibin B limits the duration of the FSH rise (narrowing the
FSH window) through negative feedback at the pituitary
level and may therefore be crucial for mono follicle devel-
opment. Elevated early follicular phase FSH levels in elderly
ovulatory women were shown to be associated with de-
creased inhibin B secretion, which may be due to a reduced
number of recruitable follicles in women of advanced re-
productive age (176).

TABLE 1. Endocrine and sonographic characteristics of the
follicular phase of the normal menstrual cycle in 42 volunteers#

Median (range)

Cycle day 1
FSH concentration (IU/liter) 4.0 (0.9–9.2)
E2 concentration (pg/ml) 41 (20–129)
Follicle diameter (mm) 6 (4–15)

FSH
Maximum

Concentration (IU/liter) 6.6 (4.3–12.5)
Cycle day 5 (1–9)

Minimum
Concentration (IU/liter) 3.3 (0.8–5.7)
Cycle day 13 (8–16)

Decrease
IU/liter/day 0.4 (0.2–0.8)

Dominancea

Follicle size (mm) 10 (6–15)
Cycle day 7 (3–15)
E2 concentration (pg/ml) 52 (25–112)

Preovulatory (day LH surge)
Follicle size (mm) 21 (15–26)
E2 concentration (pg/ml) 236 (101–415)
Cycle day (LH surge) 16 (11–25)

# Blood sampling was performed daily. Transvaginal ultrasound
was performed every 1–2 days. Median and range for cycle length was
28 (25–35) days. [Derived from Refs. 163, 206, and Schipper et al.
(unpublished observations).]

a Dominance is defined (published previously; Refs. 163, 206) as; 1)
follicle largest in size as assessed by transvaginal ultrasound, 2) at
least 2 mm larger as compared to remaining follicles, and 3) optical
fit in growth curve of dominant follicles.

FIG. 7. Follicular phase serum FSH levels (upper panel), maximum
follicle diameter (mm) (middle panel), and E2 levels (bottom panel)
(mean and 95% confidence intervals) according to cycle day in 42
young volunteers with normal ovarian function. The dotted line in the
middle panel indicates mean size of all observed follicles.
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3. Dominant follicle development. The ability to monitor growth
of a large antral follicle, by means of transabdominal pelvic
ultrasound, was originally described in an anovulatory pa-
tient during gonadotropin induction of ovulation (177). This
noninvasive technique has allowed large-scale characteriza-
tion of dominant follicle growth during the normal men-
strual cycle (178–200). Follicles could be visualized from
8–10 mm onward (181), and usually two to three follicles per
ovary could be identified (188, 189). Follicle size assessed by
ultrasound has been compared with follicle volume as de-
termined by the amount of fluid collected after puncture
(182), or with follicle size during laparoscopy (190). Inter-
observer variability has been shown to be limited (200). Tim-
ing of ovulation could be predicted using ultrasound (180,
186, 187, 193), and the mean size of the preovulatory follicle
reported in various studies ranged between 20 and 27 mm
(201). On an individual basis, a high correlation was ob-
served between follicle size and E2 serum levels (179, 185).
However, major individual variability in size of preovula-
tory follicles (191) results in linear regression, but low overall
correlations between follicle size and serum E2 levels (75, 163,

185, 188, 195, 199). Growth of the dominant follicle is gen-
erally mentioned to be linear, with a mean daily growth rate
around 2–3 mm (163, 183).

Since 1985 the transvaginal route has been introduced for
pelvic ultrasound (202, 203), allowing enhanced imaging res-
olution and a more reliable assessment of changes in number
and size of small follicles (197). Growth of dominant and
nondominant follicles has been studied extensively by our
group using transvaginal sonography (TVS) (for review see
Refs. 204 and 205). Up to 11 follicles (.2 mm in diameter)
could be observed throughout the cycle in each ovary, and
a dominant follicle could be visualized from 10 mm onward
(Fig. 9) on cycle day 9 (Table 1). The size of nondominant
follicles visualized by TVS always remains below 11 mm
(163, 206). The ultrasound observation of dominant follicle
selection correlates strongly with a sudden increase in serum
E2 concentrations (r 5 0.84; P , 0.001), indicating that vi-
sualization of the dominant follicle coincides with enhanced
E2 synthesis (163), as has been shown previously by aug-
mented E2 levels in venous blood draining the ovary bearing
the dominant follicle (88). This in vivo ultrasound observation
also agrees fully with and extends previous studies (as dis-
cussed in Section II.B) showing that: 1) Aromatase activity in
vitro is only observed if granulosa cells were obtained from
follicles beyond 8 mm in size. 2) Augmented intrafollicular
E2 concentrations (and positive immunostaining of the
P-450AROM enzyme) only in follicles beyond 10 mm. It
could also be demonstrated that early follicular phase FSH
levels decrease before the onset of a rise in serum E2 con-
centrations (163, 204), which supports the notion that other
ovarian factors (like for instance inhibin B) are to be held
responsible for narrowing the FSH window.

F. Modulation of FSH action

In the previous section we have focused on the significance
of patterns of serum FSH concentrations for follicle recruit-
ment and selection. However, in addition to the quantity of
hormone released by the pituitary, the FSH signal may also
be altered by a difference in the distribution of various FSH
isoforms, as well as by interference with FSH binding to the
receptor, or by interference with postreceptor signal trans-
duction by, for instance, growth factors. It may also be hy-
pothesized that signal transduction after ligand binding may
be influenced by the existence of various forms of trans-
membrane FSH receptors (so-called ‘splice variants’) (for
review see Ref. 207).

1. Heterogeneity of FSH. Variant forms of FSH are synthesized
and secreted by the anterior pituitary, on the basis of dif-
ferences in oligosaccharide structure of these glycoproteins
as well as the number of incorporated terminal sialic acid
residues. FSH heterogeneity should be considered as a con-
tinuum of molecular forms, each with distinct physiochemi-
cal characteristics. Glycoprotein isohormones with different
carbohydrate side chains can be separated by their differ-
ences in charge. Depending on the sophistication of tech-
niques used, up to 20 isoforms have been characterized for
human FSH. Heavily sialylated (more acidic) FSH has been
described to exhibit reduced receptor binding and in vitro

FIG. 8. Daily follicular phase FSH and E2 serum levels (mean and SE)
in 13 control cycles (E-E), after a single intramuscular injection of 600
IU FSH on cycle day 2 (F-F), 600 IU on day 2 plus 75 IU FSH daily
from cycle day 4 onward (M-M), or 600 IU on day 2 plus 150 IU daily
from cycle day 4 onward (f-f). Thirteen regularly cycling women
were studied during four cycles. This study suggests that in the early
follicular phase a distinct but short elevation of serum FSH levels
above the threshold does not result in increased ovarian response. In
contrast, ovarian activity is significantly enhanced due to a modest
but extended mid- to late follicular phase increase in FSH (effectively
widening the FSH window). [From Lolis DE, Tsolas O, Messinis IE.
The follicle-stimulating hormone threshold level for follicle matura-
tion in superovulated cycles. Fertil Steril 1995; 63:1272–1277; Re-
produced with permission of the publisher, The American Society for
Reproductive Medicine (formerly The American Fertility Society).]
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bioactivity, whereas circulating half-life of these forms is
extended. These forms may be desialylated in the circulation.
In contrast, basic isoforms have been described to be more
biopotent in vitro (2- to 5-fold), whereas the circulating half-
life is significantly reduced (for comprehensive reviews see
Refs. 208 and 209).

Effects of estrogens on the in vivo isohormone profile of
FSH have been repeatedly established. In fact, changes were
found during the normal menstrual cycle, as well as after
menopause. In a small number of women, more basic iso-
forms were described to be present at midcycle (210–212).
Estimates of changes in FSH heterogeneity, as assessed by in
vitro bioassays, during the menstrual cycle are contradictory
(210, 213, 214) and appear to be dependent on the assay
system used. It has been speculated that ovarian follicles are
recruited in the early follicular phase (when gonadal steroid
feedback is low) predominantly by more acidic FSH iso-
forms, whereas follicle selection and rupture later during the

follicular phase is dependent chiefly on more basic FSH
isoforms. However, the net effect of a predominance of more
bioactive but shorted half-life forms on the overall in vivo
biopotency is unknown at this stage, and therefore the phys-
iological significance of described changes in FSH isoforms
remains open for speculation.

2. Direct interference with FSH action. It has been proposed that
low molecular weight proteins specifically interfering with
FSH receptor binding are present in serum (215). In addition,
a high molecular weight FSH receptor binding inhibitor was
partially purified from human follicle fluid by the same
group of investigators (216). However, these proteins have
never been fully characterized, and the physiological rele-
vance remains uncertain (for review see Ref. 207). Cell lines
transfected with the human FSH receptor may prove a valu-
able tool with which to study further the pathophysiological
relevance of inhibition of FSH receptor activation (217–219a).

FIG. 9. Diameters of individual ovarian follicles both in the dominant and contralateral ovary in a single regularly cycling woman. Day 0
represents the day of the LH surge (left panel). Rise in serum estradiol levels and growth of the dominant follicle were synchronized around
the first day of visualization of the dominant follicle by TVS in 16 regularly cycling female volunteers (right panel). [From Pache TD, Wladimiroff
JW, DeJong FH, Hop WC, Fauser BC. Growth patterns of nondominant ovarian follicles during the normal menstrual cycle. Fertil Steril 1990;
54:638–642; and van Santbrink EJP, van Dessell TJHM, Hop WC, DeJong FH, Fauser BCJM. Decremental follicle stimulating hormone and
dominant follicle development during the normal menstrual cycle. Fertil Steril 1995; 64:37–43. Reproduced with permission of the publisher,
The American Society for Reproductive Medicine (formerly the American Fertility Society).]
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3. Intraovarian interference with FSH action by growth factors.
Serum FSH concentrations are maximal in the early follicular
phase of the menstrual cycle. In contrast, circulating E2 levels
start to rise around the midfollicular phase coinciding with
the visualization of a dominant follicle by ultrasound. E2
production, however, can be stimulated rapidly in vitro by
adding FSH to the culture medium (59, 68, 92), and it cannot
be readily explained why early follicular phase E2 levels
remain low despite maximum FSH stimulation (163). The lag
period between maximum FSH stimulation and augmented
ovarian E2 output may be explained by intraovarian inhibi-
tion of FSH action early in the follicular phase or enhance-
ment of FSH action within the dominant follicle (Fig. 10). The
dominant follicle continues to mature despite decreased
stimulation by lower late follicular phase FSH concentra-
tions. This observation of decreased dependence of the dom-
inant follicle on FSH stimulation (as discussed extensively in
Section II.E) strongly suggests that the FSH signal is modified
within the ovary, either at the level of FSH binding to the

receptor or by interference with postreceptor signal trans-
duction. In addition, the intrafollicular rise in E2 levels of the
dominant follicle was believed to be responsible for the de-
creased need for stimulation by FSH through autocrine short
loop up-regulation (220). However, it is now clear that fol-
licles can mature fully without a concomitant rise in E2. This
observation strongly suggests that other (intraovarian) fac-
tors in fact drive growth of the follicle, and disturbed in-
traovarian regulation may prove to be crucially important for
cessation of follicle development in PCOS patients. More-
over, a 2.5-fold difference in maximum early follicular phase
FSH serum concentrations — not correlated with any other
follicular phase parameter, such as length or follicle growth
characteristics (163) — observed in a group of young women
presenting with normal ovarian function suggest distinct
differences in the individual FSH threshold. This observation
implies differences in intraovarian regulation under normal
conditions.

After initial studies regarding effects of different growth
factors on FSH-stimulated granulosa cell function in vitro (for
review see Ref. 221), numerous studies have been under-
taken regarding the potential physiological significance of
growth factors for intraovarian modification of FSH action
(12, 164, 222–225). The majority of growth factors, such as
insulin-like growth factors (IGF) (226), transforming growth
factor-b, fibroblast growth factor, and activin (227), have
been shown to enhance FSH action in vitro. In contrast, other
growth factors have been shown to inhibit FSH-stimulated E2

biosynthesis by cultured human or primate granulosa cells,
including inhibin (228), epidermal growth factor (229–231),
and IGF binding protein (IGFBPs) (232). Decreased follicle
fluid epidermal growth factor and transforming growth fac-
tor-a concentrations have been described when follicles ma-
ture (233–235). Moreover, white blood cell-derived cyto-
kines, such as like tumor necrosis factor, interferon, or
interleukins, have been proposed to be relevant for human
ovarian physiology (236).

Certainly, overwhelming evidence is available regarding
major changes in the IGF system during follicle development
in the human ovary (237). Expression of IGF-II and their
binding protein (IGFBPs), as well as IGF receptors, has been
shown to be dependent on the developmental stage of the
follicle (238, 239). IGFBP-3 was shown to exhibit structural
similarity with the FSH-binding inhibitor (240), and the IG-
FBP profile in follicle fluid has been described to vary during
follicle development, independent from changes in serum
(241). Moreover, proteases capable of specifically decreasing
the level of IGFBP-4 could be demonstrated in estrogen-
dominant follicle fluid only (242), suggesting that more bio-
available IGF-II is available to synergize with gonadotropins
in the dominant follicle. It should be noted, however, that
growth of follicles could be induced by exogenous FSH in a
patient with Laron-type dwarphism (low endogenous IGF-I
secretion due to a familial GH receptor defect) (243), sug-
gesting that IGF-I is not required for normal ovarian func-
tion. Conclusive in vivo evidence that any of the above men-
tioned growth factors play a distinct role in human ovarian
physiology is lacking as yet.

FIG. 10. Schematic representation of potential modification of FSH
action within the ovary, being either inhibitory in the early follicular
phase, or stimulatory in the late follicular phase (top panel), and
growth factors potentially involved in late follicular phase enhance-
ment of FSH action (bottom panel).
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III. Gonadotropin Induction of Ovulation

A. The concept of monofollicle growth in anovulatory
patients

Exogenous gonadotropins have been widely used for the
treatment of anovulatory infertile women since 1958 (for
comprehensive reviews see Refs. 244–250). Although com-
mercially available gonadotropin preparations are generated
through extraction of human urine, the first described ap-
plication involved gonadotropins obtained from human pi-
tuitaries (251). HMG preparations (FSH to LH activity ratio,
1:1), obtained from urine of postmenopausal women, are
administered to stimulate follicle growth, whereas pregnant
women provide the urine source for hCG preparations (with
LH-like activity) to induce ovulation. During the first decade
of clinical use, various dose regimens, such as fixed, inter-
mittent, or flexible incremental or decremental doses, have
been tested (252, 253). It should be realized that at that time
ovarian response could only be estimated by indirect mea-
sures, such as palpation of ovarian size or assessment of
cervical mucus production resulting from ovarian estrogen
secretion. Tools to measure ovarian response after exogenous
FSH have improved considerably over the years.

The great majority of anovulatory patients presently
treated with gonadotropin preparations comprise normogo-
nadotropic (i.e. normal serum FSH concentrations; World
Health Organization, class II) anovulatory infertile women
who failed to conceive during previous antiestrogen medi-
cation. The aim of this treatment modality is to approach
normal conditions as closely as possible; i.e. maturation and
ovulation of a single dominant follicle and subsequent sin-
gleton pregnancy. Characteristics of dominant follicle devel-
opment during gonadotropin induction have been docu-
mented using ultrasound and serum estrogen assays (254–
257). It should be stressed that the goal of induction of
ovulation is completely different from ‘controlled’ ovarian
hyperstimulation for IVF, where the goal is to interfere with
selection of a single dominant follicle to obtain multiple
oocytes for IVF. Therefore, the use of the term induction of
ovulation for IVF is confusing and should be abandoned.

Although gonadotropin therapy has been shown to be
fairly successful in terms of ovulation rates (reported in the
literature between 60–100%) and cumulative pregnancy
rates (reported between 20–75%), complication rates are
high. Major complications include multiple pregnancies
(258), ovarian hyperstimulation (259), and a high rate of early
pregnancy wastage (260). The first two complications have
been shown to be related to the magnitude of multiple follicle
development as estimated by serum estrogen levels (261–
263) and more recently by pelvic ultrasound (264). The high
abortion rate has been suggested to be related to elevated LH
levels (265, 266). In addition, a significant increase in the
overall prevalence of multiple pregnancies over the last
10–20 yr has been established repeatedly in the literature
(267–271), and gonadotropin induction of ovulation is cer-
tainly involved. Inherent problems include social difficulties,
ethical considerations regarding fetal reduction (272, 273),
perinatal morbidity, and increased health care costs (274).

A great individual variability in ovarian response to stim-

ulation by FSH (so-called ‘FSH threshold’) was proposed in
anovulatory patients (151). Moreover, Brown (151) stressed
that only a small margin exists between an effective dose and
a dose generating excessive ovarian response. Unfortunately,
predictors for the FSH threshold of a given patient have not
been identified. The concept of the FSH threshold in anovu-
latory patients was substantiated more recently (152, 153)
with the use of intravenous administration of exogenous
gonadotropins by pump. The threshold level was arbitrarily
extrapolated from the first day a follicle beyond 12 mm could
be observed by transabdominal ultrasound or TVS. No dif-
ference in the FSH threshold was observed, comparing HMG
vs. FSH. Moreover, a 2-fold variation in individual threshold
levels was observed, and higher FSH serum levels above the
assessed threshold were found to be associated with multi-
follicular growth (Fig. 5). Major individual variability in re-
sponse to stimulation by exogenous FSH underscores the
need for careful and frequent monitoring of ovarian response
by ultrasound and/or rapid serum E2 assays (257) and ad-
justment of doses on an individual basis. In general, the focus
is to approach the individual threshold level prudently, to
prevent serum FSH concentrations to increase far above the
threshold. Differences in the FSH threshold level result in
considerable variability in the duration of gonadotropin ad-
ministration in the event that low initial doses are adminis-
tered. Unaltered late follicular phase FSH serum levels in
gonadotropin-induced cycles differ greatly from the follic-
ular phase of the normal menstrual cycle. This condition may
elicit growth of other cohort follicles and, as a result, induce
multiple follicle development.

During the interphase from one menstrual cycle to the
other, serum FSH concentrations surpass the threshold for
stimulation of ongoing and gonadotropin-dependent follicle
development. Serum FSH levels decrease steadily during the
follicular phase, securing the formation of a single dominant
follicle. Only this follicle reaches the full mature state despite
diminished stimulation by FSH, whereas growth of the re-
maining less mature follicles in the cohort ceases due to
insufficient support by FSH. The significance of this pattern
of FSH stimulation is stressed by various intervention stud-
ies, both in the human and in the monkey model, as dis-
cussed extensively in Sections II.D and II.E. The threshold
concept for induction of ovulation focuses only on the mag-
nitude of ovarian stimulation by FSH, but ignores the ele-
ment of time. In contrast, the FSH window concept empha-
sizes the importance of FSH concentrations surpassing the
threshold for a limited period of time only. Decremental dose
regimens for exogenous FSH may be more effective in in-
ducing preferential growth of the leading follicle (Fig. 6,
middle panel). This approach may have implications for go-
nadotropin induction of ovulation, as discussed later in this
section. In addition to the gonadotropin dose, many other
factors may influence treatment outcome. These conditions
will first be discussed.

B. Conditions affecting treatment outcome

1. Patient-related factors. Women diagnosed as hypogonado-
tropic hypogonadism, by definition, suffer from inadequate
stimulation of ovarian function. FSH serum levels are below
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the threshold, and growth of follicles is arrested at a stage
where further development becomes dependent on stimu-
lation by gonadotropins. If FSH levels rise above the thresh-
old, due to exogenous administration of gonadotropin prep-
arations, ovarian response should be normal. Success and
complication rates of gonadotropin induction of ovulation in
these patients is indeed favorable (275–281). However, the
great majority of patients presently treated with gonadotro-
pins present with clomiphene-resistant normogonadotropic
anovulation. Serum FSH and E2 levels in these patients are
within normal limits. Obviously, normal limits for both FSH
and E2 depend heavily on the phase of the menstrual cycle.
As mentioned previously, maximum early to mid follicular
phase FSH levels are twice as high as late follicular phase
concentrations (see also Table 1). Moreover, even in young
regularly cycling women the FSH threshold varies consid-
erably (at least 2-fold). This variability is poorly recognized
in the classification of anovulation on the basis of serum FSH
assays. For a given anovulatory woman, FSH levels ‘within
the normal range’ may simply mean FSH levels below the
threshold for ovarian stimulation. Hence, only the intercycle
rise in FSH above the threshold may be lacking in these
patients.

Normogonadotropic anovulatory women frequently suf-
fer from PCOS. This heterogeneous group of patients is char-
acterized by ovarian abnormalities (polycystic ovaries) com-
bined with distinct endocrine features (elevated serum LH
and/or androgen levels) (282). Various lines of evidence
indicate that early follicle development is normal in these
patients, whereas anovulation is caused by disturbed dom-
inant follicle selection (74). This abnormal condition may be
caused by disturbed intraovarian regulation of FSH action
(129), and therefore response to exogenous FSH may be dif-
ferent from normal. Hence, the presence or absence of ovar-
ian abnormalities in patients may influence treatment out-
come after exogenously administered gonadotropins. This
may explain major differences in the FSH threshold and
duration of stimulation needed to induce preovulatory fol-
licle development in these patients.

Presently, the wish to establish a family is expressed later
in life. Therefore, the population of women seeking help for
infertility is increasing in age. It has been documented that
cumulative conception rates after gonadotropin induction of
ovulation are distinctly different when women under the age
of 35 are compared with older women (276, 280).

Obesity frequently coincides with PCOS, and differences
in pharmacokinetic characteristics of gonadotropin prepa-
rations (283), as well as clinical outcome (284, 285) related to
body weight, have been reported. Moreover, other concom-
itant endocrine disorders such as hyperprolactemia or ad-
renal hyperandrogenemia may also affect treatment out-
come.

2. Hormone preparation-related factors. Preparations of urinary
gonadotropin have been continuously improved since its
commercial introduction. HMG preparations contain similar
(1:1 ratio) FSH and LH activity, as required by regulatory
agencies (286, 287). The most significant improvements of
HMG preparations over the years involved the introduction
of 1) purified urinary FSH (with only minute amounts of LH),

2) highly purified urinary FSH (obtained through an affinity
extraction procedure, removing virtually all of the contam-
inating proteins) (288), and 3) human recombinant FSH prep-
arations (113, 289–291). Other recombinant glycoprotein
preparations — such as recombinant hCG (292), LH (293),
long-acting FSH (FSH-CTP) (294), short-acting (deglycosy-
lated) FSH (295), and single-chain gonadotropins (296) —
will be available soon. This fascinating development cer-
tainly provides the clinical investigator with a whole new set
of tools with which to manipulate ovarian function. More-
over, the clinician will have the unique and challenging op-
portunity to tailor compounds and corresponding circulat-
ing half-lives according to the treatment goal and the
individual needs of the patient. Different host cells produce
recombinant FSH with different isohormone profiles (297).
Therefore in vivo biopotency of a given distribution of FSH
isoforms may vary. However, it is uncertain at this stage
whether this approach my result in improved treatment out-
come.

Since elevated LH levels are believed to be involved in
poor reproductive outcome, many studies have been under-
taken to test whether the administration of urinary FSH, as
compared with HMG, may improve treatment outcome in
PCOS patients. However, all published comparative trials
have failed to show such an effect (298–301). Considerable
batch-to-batch differences have been observed for urinary
gonadotropin preparations (302–304), and therefore the
amount of bioactive FSH administered may vary from pa-
tient to patient, or from cycle to cycle within the same patient.
Clinicians should be aware of the fact that a clear discrepancy
may occur between the number of ampoules administered
and the amount of circulating bioactive FSH actually stim-
ulating the ovaries. Differences in the isohormone profile of
various preparations — with a predominance of more acidic
or basic forms — may be involved (208, 209). Unfortunately,
few studies have been undertaken focusing on immunoac-
tive and bioactive FSH levels and ovarian activity during
gonadotropin induction of ovulation in a clinical setting.

It appears that the route of administration (being either
intraperitoneal or subcutaneous) does not represent a major
factor in determining clinical outcome, although solid com-
parative studies have not yet been published. Some phar-
macokinetic differences have been observed comparing both
routes of administration (305). Patient convenience is cer-
tainly served using the subcutaneous administration route.

3. Other factors involved. Probably the most important single
factor determining success and complication rates for go-
nadotropin induction of ovulation is response monitoring of
the ovary. Presently, this can be performed through frequent
TVS scanning of number and size of developing follicles, and
rapid serum E2 assays. Aims of ovarian monitoring are to
assess the effective FSH dose, duration of FSH medication,
timing of hCG to induce ovulation, and finally prevention of
multiple follicle development. Correlations between serum
E2 levels and number and size of follicles have been studied
(194, 306), and it was shown that E2 production is the net
result of all developing follicles. This is in sharp contrast to
normal follicle development where estrogens are produced
by a single dominant follicle only. It should also be realized
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that the previously established correlation between follicle
development and E2 levels during gonadotropin induction of
ovulation may change in the event that recombinant FSH is
used instead of urinary gonadotropin preparations (115).
There is ongoing debate whether ultrasound alone may suf-
fice or whether both monitoring techniques should be com-
bined to secure maximum safety (194, 263, 307–309). Various
reports have emphasized the possibility of predicting
chances for multiple pregnancies or ovarian hyperstimula-
tion by ultrasound alone (264). However, high E2 levels are
associated with increased chances for ovarian hyperstimu-
lation regardless of ultrasound findings (173, 306).

Concomitant medication, in addition to gonadotropins,
may include: 1) dexamethasone suppression of adrenal an-
drogen production (310); 2) GnRH agonists to suppress en-
dogenous release of LH (and FSH) (311, 312); 3) dopamine
agonists therapy in case of hyperprolactinemia; 4) GH in an
attempt to improve ovarian responsiveness (313); and 5)
luteal support either by hCG or progestins. The concept of
the adjuvant administration of GH is appealing and repre-
sents an innovative attempt to transpose the concept of in-
traovarian regulation to clinical practice. Hsueh and col-
leagues showed in the rat model that GH augmented
intraovarian IGF-I production (314) and granulosa cell dif-
ferentiation (315). However, it was shown more recently that
species differences exist, and that human granulosa cells
exclusively produce IGF-II. Although amplification of go-
nadotropin action on the ovaries by GH could be repeatedly
demonstrated in the human, these studies have failed to
clearly establish an improvement of treatment outcome
(316–318). All in all, none of the above mentioned options
improved pregnancy rates in prospective randomized com-
parative trials.

The amount of hCG administered to induce ovulation may
also vary. Ovarian hyperstimulation does not occur if hCG
is withheld, and therefore various investigators have focused
on triggering ovulation by other means such as GnRH or
GnRH agonists in an attempt to reduce hyperstimulation
rates (319). Moreover, recombinant LH with a shorter half-
life will soon be available to trigger ovulation (293), which
may also reduce chances of hyperstimulation.

There are several other factors that may affect treatment
results but that are usually ignored when differences in out-
come of various studies are compared. First line therapy of
normogonadotropic anovulatory women usually involves
anti-estrogen medication, and gonadotropin medication is
only applied in case of ‘clomiphene resistance.’ This term,
however, is poorly defined in the literature and a major
discrepancy exists between doses applied and number of
months treated. When cumulative pregnancy rates are re-
ported, the duration of gonadotropin treatment (number of
cycles included per patient) varies considerably (reported
between 3 and 12 months) (for review see Ref. 249).

C. Commonly used step-up dose regimen

1. Conventional step-up protocol. Conventional step-up dose
regimens for gonadotropin induction of ovulation are char-
acterized by initial daily doses of two ampoules (5 150 IU of
bioactive FSH). Doses may be increased after 5 days in the
event that ovarian response is judged to be insufficient. This
protocol has been the preferred dose regimen world wide
since the early 1970s. Estimation of ovarian response
changed over time from physical examination to (urine and
later serum) estrogen assays, to abdominal ultrasound, and
more recently TVS. Improved accuracy of response moni-
toring resulted in superior treatment outcome. For more
detailed information regarding reported success and com-
plication rates of this conventional high-dose regimen, see
Table 2. Again, these data should be interpreted with great
caution since patient diagnosis and age, response monitor-
ing, and duration of therapy may vary from study to study.
Collectively, these data suggest that this treatment modality
is effective, with a relatively high complication rate (253,
275–279). This is now believed to be related to FSH serum
levels being too far above the threshold in a great proportion
of patients. However, few studies have focused on FSH se-
rum levels and ovarian response during conventional
step-up cycles (320–322).

2. Low dose, step-up protocol. Although originally developed
on the East coast of North America (323), the low-dose

TABLE 2. Clinical outcome of conventional step-up regimens for gonadotropin induction of ovulation (starting dose 2 ampoules/day) in
normogonadotropic anovulatory infertile women

Author, published year, ref. no.

Thompson and Hansen,
1970 (253)

Oelsner et al.,
1978 (275)

Dor et al.,
1980 (276)

Healy et al.,
1980 (277)

Schwartz et al.,
1980 (278)

Wang and Gemzell,
1980 (279)

Patient diagnosis PCO WHO II WHO II WHO II WHO II PCO
No. of patients 212 318 348 40 88 41
No. of cycles 546 a 1137 159 249 77
Ovulatory cycles (%) 62 a a 93 98 97
Conceptions

per started cycle (%) 10 a a a a a

per ovulatory cycle (%) a a a a 20 a

Cumulative pregnancy rate (%) 26 21 50 75 45 66
Multiple pregnancy rate (%) 17 16 a 25 15 36
Abortion rate (%) 39 42 a 10 33 24
Hyperstimulation rate (%)b 1.1 4 a 14 1.4 12

PCO, Polycystic ovaries; WHO II, World Health Organization, class II (defined as normal serum gonadotropin and/or normal E2 levels).
a No information provided.
b No uniform classification.
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step-up regimen for gonadotropin induction of ovulation has
been the preferred method of stimulation in Europe since
1990. This dose regimen is characterized by low initial daily
gonadotropin doses ranging between one-half and one am-
poule (38–75 IU of bioactive FSH), and doses are only in-
creased by one-half ampoule per day after 14 days, in cases
of insufficient ovarian response. See Table 3 for more detailed
information regarding reported success and complications of
this dose regimen. Overall, this treatment modality seems to
be characterized by low complication rates, at the price of an
extended duration of treatment and possibly a slightly di-
minished success rate (323–334).

This treatment modality is aiming at slowly and prudently
reaching the FSH threshold for stimulation of ovarian activ-
ity, in an attempt to reduce the magnitude of serum FSH
levels surpassing the individual threshold (335). As men-
tioned previously, the individual FSH threshold may vary
considerably. This means that in a given patient, gonado-
tropins are administered for an extended period of time, and
the amount is only augmented after 14 days of treatment in
the event that a relatively high FSH threshold is operative.
Pharmacokinetic studies have indicated that it takes approx-
imately 5 days before steady state FSH levels are reached
when similar gonadotropin doses are administered daily
through the intraperitoneal route (283, 336). Therefore pa-
tients may be exposed to FSH levels that are too low to
stimulate follicle growth for several weeks. It is uncertain
whether ovaries may be sensitized by extended exposure to
subthreshold FSH levels. Similar daily serum FSH levels
were measured preceding hCG administration in patients
treated with low-dose, step-up protocols (330) (E. J. P. van
Santbrink and B. C. J. M. Fauser, unpublished observations).
Hence, in the late follicular phase FSH serum levels remain
above the threshold for an extended period of time, resulting
in a wide FSH window even when low-dose step-up proto-
cols are used. Improved treatment outcome, as compared
with conventional step-up protocols, is likely due to the
reduced magnitude of FSH levels surpassing the threshold
when lower initial doses are used. Improved monitoring of
ovarian response should not be ruled out as an additional

important factor responsible for improved safety of treat-
ment.

On the basis of preliminary findings it has been suggested
that late follicular phase serum FSH levels diminish due to
increased E2 negative feedback only in a subset of patients
exhibiting monofollicle development (153, 337). Observed
differences in late follicular phase FSH concentrations com-
paring patients presenting with monofollicular vs. multifol-
licular development (337) suggest again that the magnitude
of FSH accumulation, which seems unpredictable even dur-
ing low-dose regimens, determines individual response. The
conclusion seems justified that late follicular phase estrogen
steroid feedback is overruled to a variable degree in patients
treated with low-dose step-up gonadotropin doses.

D. Potential for a step-down dose regimen

Zeleznik and co-workers (145) studied the significance of
decreasing FSH serum levels for single dominant follicle
selection in the monkey model. Histological examination of
ovaries 5 days after passive immunization of monkeys with
estradiol antibody infusion revealed the presence of two or
more large follicles, suggesting that interference with the
FSH-suppressive actions of E2 results in continued matura-
tion of secondary follicles. Moreover, GnRH antagonist-
treated monkeys were infused with human LH and FSH. The
LH dose was kept constant and FSH doses were increased
every 3–4 days until serum E2 levels rose. Subsequent re-
duction of the FSH amount with 12.5% per day for 5 days was
accompanied by continued follicle development and a fur-
ther rise in serum E2 levels (Fig. 4) (143). These in vivo ob-
servations indicate a reduced need of the dominant follicle
for FSH, since this follicle continues to mature despite rel-
atively low FSH levels, incapable of stimulating growth of
less mature follicles. Another study focused on cumulative
ovulation rates in HMG-treated monkeys comparing a
step-up and a step-down protocol (338). Most ovulations
were found to occur before day 3 after hCG administration
when the step-down protocol was used. However, additional
follicles ruptured on days 4 and 5 when a step-up protocol

TABLE 3. Clinical outcome of low-dose step-up regimens for gonadotropin induction of ovulation (starting dose 1/2–one ampoule/day) in
clomiphene citrate-resistant anovulatory infertile women, diagnosed as polycystic ovary syndrome

Author, published year, and ref. no.

Seibel et al.,
1984 (323)

Buvat et al.,
1989 (324)

Hamilton-
Fairley et al.,

1991 (325)

Dale et al.,
1993 (330)

Herman et al.,
1993 (331)

Balen et al.,
1994 (332)

Strowitzki
et al.,

1994 (333)

Homburg
et al.,

1995 (334)

Patient diagnosis PCO PCOS PCOS PCOS PCOS PCOS PCOS PCOS
No. of patients 5 23 100 50 30 103 20 25
No. of cycles 6 44 401 66 75 603 27 59
Ovulatory cycles (%) 66 70 72 74 96 68 93 79
Conceptions

per started cycle (%) a 16 a 18 a 14 26 17
per ovulatory cycle (%) a 23 a 22 19 20 28 24

Cumulative pregnancy rate (%) 50 a 55 a 47 72 35 40
Multiple pregnancy rate (%) a 0 4 a 21 18 28 0
Abortion rate (%) a 14 32 33 a 16 0 30
Hyperstimulation rate (%)b a 5 4 3 4 8 15 0

PCO, Polycystic ovaries; PCOS, polycystic ovary syndrome.
a No information provided.
b No uniform classification.
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was applied, and it was concluded by the authors that follicle
maturation was better synchronized resulting in a narrow
‘ovulatory window’ with a step-down protocol.

On the basis of physiological considerations (as discussed
in Section II.E) and the above mentioned studies performed
in the monkey, our group has focused on establishing a
protocol for gonadotropin induction of ovulation applying
decremental doses once ovarian response is established (so-
called ‘step-down’ protocol) (169, 170). The major goal has
been to design a safe and effective dose regimen for gonad-
otropin induction of ovulation that approximates physiolog-
ical circumstances as closely as possible (173, 339–341). Dur-
ing initial studies only, patients were cotreated with a GnRH
agonist in an attempt to reduce chances of interference of
exogenously administered gonadotropins with unpredict-
able changes in endogenous FSH release. Using a regimen of
two ampoules/day with two decreasing steps of one-half
ampoule, daily blood sampling revealed that serum FSH
levels showed a 2.1-fold increase followed by a subsequent
decrease of 10% per day for 4 days (173), remarkably similar
to previous studies in the monkey (143). Growth of follicles
was sustained and ovulation achieved in the great majority
of patients using this step-down regimen. The observed ma-
jor variability in early follicular phase increase in serum E2
(representing differences in the FSH threshold for stimula-
tion of ovarian activity) was shown to predict chances for
ovarian hyperstimulation. In a subsequent study (341) both
immunoreactive and bioactive serum FSH concentrations
were compared between step-down gonadotropin induction
of ovulation and regularly cycling volunteers. Similar max-
imum follicular phase FSH concentrations were noted as well
as similar late follicular phase daily FSH decreases. However,
late follicular phase levels are lower due to a greater number
of days of decreasing FSH levels during the normal men-
strual cycle (median 7 vs. 4 days) (see also Fig. 11, and Table
4). It should be emphasized that daily blood samples were
drawn 24 h after the previous injection. Pharmacokinetic
studies of exogenous gonadotropins (336) revealed maxi-
mum FSH serum levels approximately 6–8 h after injection,
and maximum levels were estimated to be approximately
30% higher as compared with 24 h concentrations. This op-
poses normal conditions where only minimal FSH changes
during the day have been reported (342). In case of mono-
follicle development during step-down gonadotropin pro-
tocols, growth rate and E2 production by the dominant fol-
licle is identical to those of the normal menstrual cycle (340).

Initial dose finding studies have generated a dose regimen
that can be used in clinical practice. We have abandoned the
use of GnRH agonists since 1992 without any loss of clinical
efficacy. A similar FSH dose regimen is applied; i.e. a two-
ampoule/day starting dose shortly after a spontaneous or
progestagen-induced bleeding, followed by a decrease to one
and one-half ampoules/day once a dominant follicle can be
visualized by TVS (at least one follicle $ 10 mm). The dose
is further decreased to one ampoule/day 3 days after the first
dose reduction. See Table 5 for a summary of our clinical
results in 234 cycles (343). Only one or two large preovulatory
follicles were observed in 95% of stimulated cycles, and the
median duration of treatment was 10 days (Fig. 12). Com-
parison of the group of women who did or did not conceive

during treatment showed no significant differences with re-
gard to body weight as well as initial serum LH and T levels,
which appears to be different from observations using the
low-dose, step-up regimen. The observed reduction in the
duration of stimulation, as well as a lower total number of
ampoules per stimulation cycle, may represent significant
benefits in terms of health economics (reduced drug costs per
cycle, possibly a reduced number of visits to the clinic, and
more ovulations in a given time period). See Table 6 for a

FIG. 11. Follicular phase serum FSH levels (upper panel), maximum
follicle diameter (mm) (middle panel), and E2 levels (bottom panel)
(mean and 95% confidence intervals) according to medication day in
22 women with normogonadotropic anovulatory infertility during go-
nadotropin induction of ovulation using a step-down dose regimen.
The dotted line in the middle panel indicates mean size of all observed
follicles. Patients were pretreated for 3 weeks with a GnRH agonist
(Buserelin; 1200 mg/day, intranasally) and medication was continued
until hCG administration. The starting dose of gonadotropins was two
ampoules (5 150 IU FSH)/day intramuscularly. The dose was de-
creased to one and one-half ampoules/day when at least one follicle $
10 mm could be visualized, and to a final dose of one ampoule/day 3
days later. [Derived from Refs. 173 and 341.]
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summary of major findings regarding the step-down proto-
col. It is too early to draw final conclusions regarding success
and complication rates of this treatment modality. Clearly,
only randomized comparative trails with sufficient statistical
power can eventually determine whether the step-down ap-
proach represents a realistic alternative for every day prac-
tice of gonadotropin induction of ovulation.

Various other attempts pointing in the same direction have
been published in the literature. Growth of the dominant

follicle could be sustained in a woman with hypogonado-
tropic hypogonadism when exogenous FSH doses were de-
creased by 10% per day for 4 days after increased estrogen
secretion (344). Clinical results of a step-down regimen in 22
PCOS patients, applying initial doses of three ampoules/
day, with a reduction of the daily dose to one ampoule/day
on day 3 (345) are also summarized in Table 5. Preliminary
results (346) concerning a large multicenter study (involving
175 patients) comparing a step-up and a step-down regimen
(initial dose three ampoules/day) in a prospective random-
ized fashion have been reported in abstract form. This study
suggested a similar number of large preovulatory follicles
comparing both treatment groups, a reduced preovulatory

TABLE 4. Endocrine and sonographic characteristics of the
follicular phase during gonadotropin induction of ovulation using a
decremental dose regimen, in 22 clomiphene-resistant
normogonadotropic anovulatory women#

Median (range)

Day 1 of medication
FSH concentration (IU/liter) 3.6 (0.9–6.3)
E2 concentration (pg/ml) 31 (12–72)
Follicle diameter (mm) 3 (2–4)

FSH
Maximum

Concentration (IU/liter) 7.6 (3.9–10.9)
Medication day 4 (1–9)

Minimum
Concentration (IU/liter) 4.7 (2.7–8.2)
Medication day 7 (4–12)

Decrease
IU/liter/day 1.5 (0.5–6.6)

Dominance (at least one follicle $ 10 mm)
Cycle day 4 (2–7)
E2 concentration (pg/ml) 296 (54–866)

Preovulatory (day of hCG administration)
Follicle size (mm) 19 (18–21)
E2 concentration (pg/ml) 488 (76–3016)
Medication day 8 (5–12)

In these studies patients were pretreated for 3 weeks with a GnRH
agonist (Buserelin; 1200 mg/day, intranasally) and medication was
continued until the day of hCG administration. HMG doses admin-
istered were two ampoules (5 150 IU FSH)/day as the starting dose,
followed by decreasing daily doses of one and one-half ampoules/day
(after dominance) and one ampoule/day (3 days later), intramuscu-
larly. Blood sampling was performed daily. [Derived from Refs. 173
and 341.]

TABLE 5. Clinical outcome of step-down regimens for gonadotropin
induction of ovulation (starting doses two to three ampoules/day)
in clomiphene citrate-resistant normogonadotropic anovulatory
infertile women

Author, published year, ref. no.

Mizunuma et al.,
1991 (345)

van Santbrink et al.,
1995 (343)

Patient diagnosis PCOS WHO II
No. of patients 9 82
No. of cycles 17 234

Ovulatory cycles (%) 100 91
Conceptions

per started cycle (%) 29 16
per ovulatory cycle (%) 29 17

Cumulative pregnancy rate (%) a 47

Multiple pregnancy rate (%) 20 12
Abortion rate (%) a 19
Hyperstimulation rate (%) a 2b

PCOS, Polycystic ovary syndrome; WHO II, World Health Orga-
nization, class II (defined as normal serum FSH and normal E2 levels).

a No information provided.
b Mild cases only.

FIG. 12. Distribution of number of follicles larger than 16 mm (upper
panel), duration of treatment (from day 1 of gonadotropin adminis-
tration until 1 day after hCG injection) (middle panel), and required
number of ampoules of gonadotropins per cycle (bottom panel) in 213
ovulatory cycles after gonadotropin induction of ovulation using a
step-down dose regimen in 82 normogonadotropic clomiphene-resis-
tant anovulatory women. In this clinical study no GnRH agonist
comedication was used. [Adapted with permission from E. J. P. van
Santbrink et al.: Hum Reprod 10:1048–1053, 1995 (343).]
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E2 level in the latter group, and similar ovulation and can-
cellation rates. There were no differences in multiple preg-
nancy and hyperstimulation rates. However, for unknown
reasons the pregnancy rate was significantly reduced after
the step-down protocol. Unfortunately, this study was never
reported in full detail, and the question whether the partic-
ular dose regimen used should be held responsible for ob-
served differences remains unanswered. Preliminary results
applying a sequential step-up and step-down regimen in 20
PCOS patients were reported recently (initial daily dose var-
ied from one to one and one-half ampoules, and doses were
subsequently reduced again to one ampoule daily after the
leading follicle had reached a diameter of 14 mm) (347). As
compared with step-up protocols, a significant reduction in
late follicular phase E2 levels and number of large and me-
dium-sized follicles was observed. Another interesting ap-
proach is the use of sequential treatment with FSH (starting
dose two ampoules/day), followed by pulsatile GnRH ad-
ministration (20 mg pulses, subcutaneously, every 120 min)
when the follicle reached a diameter of 11 mm. Results in 18
hypogonadotropic anovulatory patients were reported re-
cently (348). Late follicular phase serum FSH levels were
greatly diminished when pulsatile GnRH was applied, again
resulting in a significant reduction in the number of large
preovulatory follicles (1.3 vs. 3.9).

IV. Steroid Contraception and Residual Ovarian
Activity

A. The concept of follicle growth during partial and
transient suppression of circulating FSH

Oral contraceptives inhibit ovarian activity and ovulation
through negative feedback actions of administered synthetic
steroids on the hypothalamic-pituitary axis (349). The estro-
gen compound is believed to primarily inhibit FSH secretion,
whereas progestins are supposed to mainly inhibit LH. Key
effects of progestins involve reducing the frequency of the
hypothalamic GnRH pulse generator (350). However, the
contention of disparate effects of steroids on gonadotropin
release has not been carefully investigated, and studies com-
paring the effects of estrogens alone vs. estrogen/progestin
combinations on pituitary-ovarian function are lacking. Ste-
roid contraception is well tolerated, exceptionally effective,

and extensively used worldwide. In an attempt to reduce
side effects and to diminish the potential for short and long-
term complications, estrogen doses have been gradually re-
duced. Since the introduction of oral contraceptives in the
early 1960s, daily doses of ethinylestradiol (EE) in commer-
cially available preparations have been diminished from 150
to 20 mg. Combined steroid pills with EE doses as low as 10
mg/day have proven effective when medication is taken
correctly (351). Combined steroid contraceptives containing
1 mg of micronized estradiol have also been shown to inhibit
ovulation, although control of bleeding was insufficient
(352). In addition, novel, so-called second and third gener-
ation, progestins with reduced androgenic side effects have
been developed and introduced in contraceptive regimens
(353). Progestins may be combined with estrogens or may be
administered alone. Progestin only (oral and depot) prepa-
rations have been tested extensively in recent years to pro-
vide women with the alternative of estrogen-free contracep-
tives. However, reduced suppression of pituitary FSH
release introduced the need for continued progestin medi-
cation, which negatively affects cycle control.

Although pill effectiveness has not been compromised
substantially, diminished suppression of circulating FSH by
reduced steroid doses may give rise to substantial residual
ovarian activity, as well as reduced tolerance for pill omis-
sion or for other circumstances that reduce circulating steroid
concentrations (354–356). Follicle growth and concomitant
E2 production usually occur during the pill-free interval and
the first week of pill intake, or when tablets are missed. Pill
omission has been reported to occur in a substantial pro-
portion of pill users in everyday practice (up to 27% of
women in a 3-month period) (357, 358) and is clearly asso-
ciated with contraceptive failure (359–363). In the great ma-
jority of studies published so far, monitoring of ovarian func-
tion is performed infrequently (screening intervals usually
varies between twice weekly or once every month), and
hormone assays and ultrasound for the assessment of follicle
growth are rarely combined. However, substantial ovarian
activity is uniformly reported when women use steroid reg-
imens that are presently on the market. The concept arises
that FSH levels rise during the pill-free interval above the
‘threshold’ for follicle recruitment (Fig. 6, bottom panel), and
that follicle growth around the stage of dominant follicle
selection is usually arrested after initiation of the next pill
cycle. Improved understanding of ovarian activity during
oral contraceptive medication may help to design novel strat-
egies for steroid contraception.

B. Ovarian suppression during steroid contraception

1. Significance of initiation of pill intake and duration of treatment.
According to some authors previous steroid medication does
not seem to influence suppressive activity of combined ste-
roid contraceptives (364, 365). Starting with the first pill cycle
on a fixed day of the week, as initially advised, may postpone
initiation of pill intake until day 6 of the normal menstrual
cycle. If dominant follicle selection has already occurred
(which may certainly be the case on cycle day 6, as discussed
in Section II.E.3), progression of follicle growth may occur
after pill intake (366). A careful study involving 58 sponta-

TABLE 6. Summary of major findings regarding the step-down
dose regimen (initial doses two ampoules/day, followed by two
decreasing steps to one and one-half and one ampoule/day) for
gonadotropin induction of ovulation

FSH profile resembles FSH levels during the follicular phase of
the normal menstrual cycle

Safe and effective clinical use has been established in an
uncontrolled, single-center study

Short duration of treatment and low number of ampoules per
stimulated cycle, is user friendly, and may suggest health
economics benefits

Absence of apparent effects of obesity and elevated initial LH
levels on treatment outcome

Major individual variability in ovarian response suggest
differences in the FSH threshold. A starting dose of two
ampoules/day is too high for some patients

Potential for further improvement of efficacy and safety
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neous cycles and 22 first oral contraceptive pill cycles con-
vincingly showed that a far greater suppression of ovarian
activity was achieved by starting on day 1 as compared with
day 5. As much as 60% (n 5 11) of day 5 starters reached
dominant follicle development (367). Hence, it should be
advised that the first treatment cycle begin on cycle day 1 or
2 (368). Some investigators observed a trend toward a minor
increase in ovarian activity during extended pill use (369). In
contrast, gonadotropin suppression early in the pill cycle was
reported to be similar over a 9-month treatment period (370).
Few detailed studies have been published regarding the ef-
fect of previous use of oral contraceptives on follicular phase
characteristics after stopping pill intake.

2. Comparison of different steroid doses, compounds, and regimens.
Greater ovarian suppression was observed when pills con-
taining 50 vs. 35 mg EE were compared (351, 371). Moreover,
suppression of FSH was shown to be less pronounced in
monophasics containing 20 mg/day EE as compared with 30
mg/day EE (372). Consequently, the margin for error is re-
duced if doses of daily steroid intake are diminished. Ac-
cording to some investigators, low-dose triphasic pills ap-
pear to be slightly less effective in ovarian inhibition as
compared with monophasic preparations (373–375). Little
difference, if any, was noticed when ovarian activity during
intake of various progestational agents was compared (369,
374, 376, 377).

In contrast, follicle growth up to the preovulatory stage
(378) and sonographic or endocrine evidence of ovulation
have been reported in 30–60% of women in whom continued
progestin-only pills or implants are used (379–384). Studies
employing daily blood sampling showed major differences
in luteal phase characteristics, but all with substantial fol-
licular phase E2 production (382) (Fig. 13). It has become

apparent that the individual response to progestin-only med-
ication is extremely variable. Substantial changes in serum E2
levels coincide with follicle growth in these women. Sur-
prisingly, some women exhibit extended periods with sup-
raphysiological E2 levels, whereas other women show com-
plete ovarian suppression with serum E2 levels in the
postmenopausal range. Moreover, extended use of proges-
tin-only implants may coincide with reduced suppression of
ovarian activity (385). As opposed to combined contracep-
tives, positive feedback effects of endogenous E2 may over-
ride negative feedback actions of exogenous progestins
alone. However, the LH surge is usually blunted and pro-
gesterone may merely be secreted by luteinized follicles.
Because pregnancy rates remain extremely low, it appears
that other mechanisms such as luteal phase deficiency, and
progestin effects directly on cervical mucus quality, endo-
metrial and possibly tubal function prevent conception in
these cases. Irregular bleeding is the major drawback, which
prevents large-scale use of this contraceptive method (386).
A connection between irregular bleeding and residual ovar-
ian activity has been described (383). A discontinued pro-
gestin regimen combined with melatonin, the pineal hor-
mone involved in seasonal breading in some animal species,
has also been explored as a potential contraceptive agent
(387). However, contraceptive efficacy of this regimen has
never been demonstrated.

3. Pill-free interval and pill omission. The pill-free interval may
impair contraceptive efficacy (355). However, potential ben-
efits are the reassurance of monthly withdrawal bleeding, a
lower monthly quantity of synthetic steroids, and improve-
ment of metabolic changes during the pill-free week. A con-
siderable rise in serum FSH levels and subsequent ovarian
activity is usually observed during the pill-free interval and

FIG. 13. Serum hormone (LH, FSH, estradiol, and progesterone) levels in regularly cycling controls (n 5 12; E-E) and depot progestagen
(Norplant) users presenting with luteal activity (n 5 12; F-F), minimal luteal activity (n 5 5;Œ-Œ), or no luteal activity (n 5 14; ‚-‚). [ From
Faundes A, Brache V, Tejada AS, Cochon L, Alvarez-Sanchez F. Ovulatory dysfunction during continuous administration of low-dose levonorg-
estrel by subdermal implants. Fertil Steril 1991; 56:27–31. Reproduced with permission of the publisher, The American Society for Reproductive
Medicine (formerly The American Fertility Society).]

92 FAUSER AND VAN HEUSDEN Vol. 18, No. 1

 at Medical Library Erasmus MC on December 13, 2006 edrv.endojournals.orgDownloaded from 

http://edrv.endojournals.org


the first week thereafter (388–390). At the end of the pill-free
week, integrated gonadotropin concentrations and pulse
patterns (350) were indistinguishable from those of controls,
whereas E2 concentrations were significantly lower (389,
391). Ultrasound scanning on day 7 of the pill-free interval
in 120 volunteers showed follicles more than 10 mm diameter
in 23% of women (392). Frequent monitoring in 31 females
showed that maximum E2 concentrations usually occur on
day 1 of the pill cycle, and maximum follicle diameter (me-
dian 10–12 mm) was observed on day 3 (369). These studies
confirm indeed that maximum ovarian activity is present
shortly after the pill-free week.

Studies from our own group (393) (A. M. van Heusden and
B. C. J. M. Fauser; unpublished observations), applying daily
blood sampling and TVS during the pill-free period in 36
low-dose, combined oral contraceptive pill users (containing
daily doses of 50 mg EE and 2.5 mg lynestrenol) confirm that
maximum FSH levels at the end of the pill-free interval are
similar to early follicular phase maximum levels in the nat-
ural cycle [7.4 (4.1–12.8) vs. 6.6 (4.4–11.2) IU/liter]. Moreover,
maximum E2 levels during or shortly after the pill-free week
are also comparable to E2 levels at the day of dominant
follicle selection in the normal cycle; 36 (8–85) vs. 47 (25–97)
pg/ml. Twenty five percent of women exhibit follicles $ 10
mm. See also Fig. 14, and Tables 1 and 7.

It has appeared that the omission of one or more pills
frequently occurs among oral contraceptive pill users. When
transient interruption of several days of pill intake occurs in
the middle of the pill cycle after a period of at least 7 days
of uninterrupted use, the duration of reduced suppression of
FSH release is not sufficient to allow for substantial reacti-
vation of ovarian function (394). This observation, however,
is not confirmed in all studies (390, 395), and contraceptive
efficacy may still be compromised (396). In addition, the
incidence of spotting was reported to be significantly in-
creased in subjects omitting the pill in the second half of the
pill cycle (394, 397). Ovulation and subsequent conception
may take place when pill omission occurs around the pill-free
interval. Various studies have been undertaken to investigate
ovarian activity after the deliberate and transient interrup-
tion of pill intake during different phases of the pill cycle
(398). Pill omission around the pill-free interval — effectively
extending the period of pituitary recovery — results in more
pronounced ovarian activity with continued growth of fol-
licles (399).

C. Follicle growth dynamics during contraceptive regimens

Between 23 and 90% of combined oral contraceptive pill
users have been reported to exhibit follicles beyond 10 mm
diameter during frequent pelvic ultrasound (367, 369, 375,
388, 392, 400–402) (Fig. 15 and Table 8). Less information is
available regarding accompanying serum E2 levels. In about
25% of cycles, E2 levels were reported to be above early
follicular phase concentrations in control cycles (400). This
should be considered stages beyond dominant follicle selec-
tion, based on findings of follicle size and concomitant ste-
roid production during the spontaneous menstrual cycle
(163, 206) (see also Section II.E.3). Follicles were reported to
grow until a size of 12 mm in 35% of 75 treatment cycles.

Follicles greater than 13 mm were rarely observed in some
reports (388) but were seen frequently in other publications
(400, 403). Preovulatory follicles ($ 18 mm) were observed in
as much as 30% of cycles in a study involving 400 pill cycles
(400). In a recent well designed study, follicles between 10
and 18 mm were observed in 30–50% of volunteers during
treatment days 1–5 (403). Attempts to classify ovarian activ-
ity during oral contraceptive medication (404) have not
gained wide acceptance. A biological rationale and appro-
priate reference values were lacking.

Once contraceptive pill intake is reinitiated, subsequent
follicle maturation is usually arrested and follicles disappear
(369). An elegant study was undertaken to monitor the ca-

FIG. 14. Follicular phase serum FSH levels (upper panel), maximum
follicle diameter (mm) (middle panel), and E2 levels (bottom panel)
(mean and 95% confidence intervals) according to day of the pill-free
interval in 36 women using low-dose combined steroid contraceptive
pills. Ultrasound scans and blood sampling were performed daily (A.
M. van Heusden and B. C. J. M. Fauser). The dotted line in the middle
panel indicates mean size of all observed follicles.
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pacity of these follicles to ovulate. Follicles were allowed to
develop until their diameter reached 12 mm by extending the
pill-free period by 3–7 days (405) (Fig. 16). Despite the ini-
tiation of contraceptive medication, most follicles continued
to grow and responded to hCG administration by both rup-
ture and luteinization. Hence, this study strongly suggests
that follicles that reach a more advanced state of maturation
during steroid contraceptive medication retain the capacity
for continued growth and ovulation despite decreasing FSH
levels. It has been suggested by some authors that the growth
rate of the dominant follicle is slower as compared with
normal conditions, whereas circulating E2 levels remain nor-
mal according to follicle size (367). Incidentally, escape ovu-

lations have been observed during combined steroid con-
traception (400). However, this event rarely occurs with
regular pill intake, because the endogenous LH surge does
not occur even if follicles have reached full maturation (367,
388).

The occurrence of ovarian cysts in some patients may be
related to preovulatory follicle development without subse-
quent ovulation. As described before, this is frequently ob-
served during progestin-only medication. The occurrence of
functional ovarian cysts may be prevented more effectively
by monophasic (especially high-dose) pills as compared with
triphasic combinations (406).

D. Alternative strategies for contraceptive development

Extensive breakthrough bleeding may occur in women
using continued progestin-only contraception. This may be
caused by endometrial atrophy, but may also be related to
considerable individual variability in ovarian activity and
subsequent estrogen production. Extended periods of E2 lev-
els above the normal range for regularly cycling women may
also induce an increased risk for future health hazards.

During the pill-free interval FSH levels are reached that are
in the same order of magnitude as during the early follicular
phase of the normal menstrual cycle. Consequently, follicle
recruitment takes place and dominant follicle selection oc-
curs in a significant proportion of women using combined
steroid contraception. The reduced need of the dominant
follicle for continued support by high levels of FSH (see
Section II.E) suggests that ongoing development until full
maturation may occur despite decremental FSH serum levels
due to the start of pill intake of the next cycle. Substantial
follicle development has indeed been confirmed in contra-
ceptive pill users. Unfortunately, uniform criteria to catego-
rize ovarian activity during various steroid regimens have
not been accepted, which renders it difficult to compare
different studies. It has been documented that ovarian ac-
tivity during similar contraceptive regimens vary widely
(399, 407, 408). This observation may have important clinical
implications because the magnitude of ovarian activity may
be related to contraceptive efficacy, breakthrough bleeding,
and ovarian cyst development. Tolerance for pill omission —
especially early or late in the pill cycle, which effectively
extends the pill-free interval — or for reduced availability of
steroids (due to individual differences in steroid metabolism,
drug interaction, diarrhea, or vomiting) has decreased sub-
stantially with the presently available low-dose contracep-
tives (355). Efficacy may be severely compromised in these
cases. It should also be realized that tolerance for pill omis-
sion will be dependent on the developmental stage of follicles
when pills are missed. On the basis of the above mentioned
considerations, future strategies for further development of
steroid contraceptive regimens (see also Table 9) may in-
clude:

1. The monthly 7-day pill-free interval has become critical
for efficacy (especially tolerance for pill omission) of cur-
rently used low-dose contraceptives. A 7-day pill-free inter-
val was arbitrarily chosen for reassurance to mimic the nat-
ural cycle, when the pill was introduced in the early 1960s.
Doses may be diminished further or tolerance for error of

TABLE 7. Endocrine and sonographic characteristics of the pill-free
week in women using combined steroid contraceptive pills (n 5 36)

Median (range)

Day 1 of the pill-free week
FSH concentration (IU/liter) 0.3 (0.1–7.8)
E2 concentration (pg/ml) 8 (3–25)
Follicle diameter (mm) 5 (3–20)

Day 8 (first day of next pill cycle)
FSH concentration (IU/liter) 5.9 (3.5–12.3)
E2 concentration (pg/ml) 33 (5–83)
Maximum follicle diameter (mm) 8 (4–19)

Maximum FSH
Concentration (IU/liter) 7.4 (4.1–12.8)
Day 7 (2–9)

Maximum E2
Concentration (pg/ml) 36 (8–85)
Day 8 (6–10)

Largest follicle
Diameter (mm) 9 (6–21)
Day 9 (5–10)

Dominance
(% of women with follicles $ 10 mm) 25

Medication involved low-dose combined steroid contraceptive pills.
Sampling was performed daily for 10 days, starting on the first day

of the pill-free week. [Derived from Ref. 393 and A. M. van Heusden
and B. C. J. M. Fauser (unpublished observations).]

FIG. 15. Maximum diameter of the largest follicle (mean and SD)
during six treatment cycles using various contraceptive regimens,
such as multiphasic pills, higher-dose monophasic pills, lower-dose
monophasic pills, and nonsteroidal contraception. [Reprinted with
permission from The American College of Obstetricians and Gyne-
cologists (Obstetrics and Gynecology, 1994, 83:29–34).]
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tablet taking may improve if the pill-free interval is reduced
in length (e.g. to 5 days), or reduced in frequency (e.g. once
every 2–3 months instead of monthly). Indeed, it has been
shown that withdrawal bleeding can be extended to once
every 2 (409, 410) or 3 (411) months in the majority of women,
and it was stated (411) that ‘many of the women who vol-

unteered liked using a contraceptive that also reduced the
frequency of their menstrual periods.’

2. Steroid dose regimens of combined contraceptives may
also be altered. It is uncertain whether there is anything to be
gained by the presently available triphasic regimens. The
most pronounced suppression of FSH is needed early in the

TABLE 8. Overview of studies focusing on residual ovarian activity during combined steroid contraceptive regimens

Author, published year
(Ref.) Study setting Ultrasound observations

(% of women with follicles $ 10 mm) Endocrine observations

van der Vange, 1986
(400)

7 low-dose combinations
(n 5 70)

29%
(17% follicles $ 18 mm)

27% serum E2 levels . 75 pg/ml

Tayob et al., 1990
(392)

Multiple combinations
(n 5 120)

23%

Thomas and Vankrieken, 1990
(388)

30 mg EE 1 75 mg GSD
(n 5 25)

up to 44% No luteal activity

Grimes et al., 1994
(375)

35 mg EE 1 NET mono-, triphasic
(n 5 45)

Between 29–50%
(up to 13% ovarian cysts)

Up to 5% ovulation

Broome et al., 1995
(378)

Triphasic; 30–40 mg EE 1 LNG
(n 5 17)

24%

van der Does et al., 1996
(369)

Triphasic; 30–40 mg EE 1 LNG or
DSG (n 5 31)

Up to 73%
(up to 60% follicles . 15 mm)

1 ovulation, 1 LUF

EE, Ethinyl estradiol; GSD, gestodene; NET, norethisterone; LNG, levonorgestrel; DSG, desogestrel; LUF, luteinized unruptured follicle.

FIG. 16. The ovulatory potential of follicles was studied in 10 women by extending the pill-free interval (up to 7 additional days) allowing follicles
to grow until 12 mm in diameter (E). hCG was administered when follicles attained a diameter of 18 mm (left panel). Serum estradiol and
progesterone levels (median and range) on the day of hCG administration and 7 or 9 days later (right panel) suggest normal ovulatory potential.
[From Killick SR Ovarian follicles during oral contraceptive cycles: their potential for ovulation. Fertil Steril 1989; 52:580–582. Reproduced
with permission of the publisher, the American Society for Reproductive Medicine (formerly The American Fertility Society).]
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pill cycle, and therefore higher doses of steroids may need to
be applied during the first days rather than later in the pill
cycle. Testing of a decremental steroid dose regimen should
perhaps be considered, although it is uncertain whether
bleeding control would be compromised.

3. Low doses of estrogens could be continued during the
pill-free interval without interference with bleeding patterns,
as has been shown for postmenopausal hormone replace-
ment therapy. This may reduce the rise in FSH and subse-
quent recovery of ovarian activity during the pill-free week.

Altogether, the above mentioned attempts are aiming at
reducing the frequency, magnitude, or duration of pituitary
recovery and subsequent initiation of gonadotropin-depen-
dent follicle growth.

4. A completely different strategy focuses on the major
individual variability in residual ovarian activity during sim-
ilar steroid contraceptive medication. A 2.5-fold difference in
maximum circulating FSH concentrations has been observed
by our group in a carefully selected group of volunteers with
normal ovarian function (163). This seems to indicate that a
major individual variability in ovarian sensitivity for FSH
stimulation exists. The observed variability in ovarian sup-
pression during oral contraceptive medication may be re-
lated to a differences in ovarian ‘FSH threshold,’ rather than
differences in sensitivity of the hypothalamic-pituitary unit
for negative steroid feedback. It may be possible to predict
which subject will be prone to escape ovulation and reduced
contraceptive efficacy, by the individual assessment of hor-
mone levels and follicle dynamics during contraceptive med-
ication, particularly at the end of the pill-free interval. This
approach may lead to better tailoring of dose and type of
steroid regimens according to individual needs, providing
an extended strategy for ‘designer’ (412) contraceptive pills.

V. Conclusions and Future Directions

Growth of follicles from the resting primordial stage until
the preovulatory phase takes several months. Only the last
2 weeks of this long trajectory are dependent on stimulation
by gonadotropins and can therefore be manipulated in the
human at present. If maturing antral follicles achieve a dis-
tinct stage of development they are programmed to die. Only
if serum FSH levels surpass a threshold (which is different
from one individual to the other) these follicles are rescued
from atresia, i.e. gain gonadotropin dependence, and con-
tinue their development. Under normal conditions, in-
creased FSH levels above the threshold occur during the
luteo-follicular transition. Subsequent decremental FSH con-

centrations during the follicular phase are crucial for single
dominant follicle selection.

Continued growth of the dominant follicle despite re-
duced late follicular phase stimulation by FSH suggests in-
creased sensitivity. Local autocrine up-regulation by in-
creased intraovarian E2 production has been implemented as
the underlying cause of this reduced need for FSH stimula-
tion. However, increased E2 levels are only associated with
follicle diameter exceeding 10 mm. Moreover, from this size
onward a dominant follicle can be visualized by TVS, sug-
gesting that only dominant follicle development is associated
with increased aromatase enzyme activity in granulosa cells.
Several lines of evidence have convincingly demonstrated
that increased intrafollicular E2 biosynthesis is not manda-
tory for continued follicle growth up to the preovulatory
stage. These observations strongly, although indirectly, sug-
gest that intraovarian modification of FSH takes place
through other factors, and that as yet unidentified factors
drive growth of the dominant follicle. The concept of a re-
duced need for stimulation by FSH of the dominant follicle
bears significance for both gonadotropin induction of ovu-
lation (i.e. stimulation of ovarian function by exogenous FSH
in anovulatory infertile patients) and residual ovarian activ-
ity during low-dose steroid contraceptive regimens.

Gonadotropins have been used worldwide for over three
decades for the treatment of anovulatory patients. Treatment
is successful, although complication rates related to multiple
follicle development remain high. Over the years, tools to
monitor ovarian response have improved considerably and
new drugs have been introduced. In addition, treatment
regimens have been modified by lowering the doses admin-
istered. However, information regarding patient diagnosis
and precise follow-up of the interplay between circulating
FSH concentrations and follicle growth dynamics remains
scarce. It may be possible to further improve the balance
between success and complications by more rigidly applying
physiological concepts. Endocrine profile and follicle growth
during step-down FSH treatment compare almost precisely
to changes observed during the follicular phase of the normal
menstrual cycle.

Presently available, low-dose steroid contraception is
characterized by extensive residual ovarian activity and re-
duced tolerance for omission of pill intake. The endocrine
profile and follicle growth dynamics in pill users during and
shortly after the pill-free interval are compared with the
normal menstrual cycle. Alternative strategies for contracep-
tive development to improve the safety margin can be pos-
tulated on the basis of this comparison.
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