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Abstract This paper looks at the influence of slip conditions on heat transfer and the peristaltic flow of a
Johnson–Segalman fluid in an inclined asymmetric channel under the supposition of long wave length. The
asymmetry is produced by choosing the peristaltic wave train on the walls to have different amplitudes and
phase. Both analytical and numerical solutions are presented. The analysis for the analytical solution is carried
out for small Weissenberg number. The closed-form solutions have been obtained for the stream function,
axial velocity, longitudinal pressure gradient and temperature. Numerical calculations are carried out for the
pressure rise. The features of the flow and heat transfer characteristics are analysed by plotting graphs for
different values of emerging parameters and discussed in detail.

Mathematics Subject Classification (2010) 76A05 · 76Z05

1 Introduction

The term peristalsis is used for the mechanism by which a fluid can be transported through a distensible tube
when progressive waves of area contraction and expansion propagate along its length. In physiology, peristal-
sis is an important mechanism for transport of fluid and is used by the body to propel or mix the contents of
a tube as in ureter, gastrointestinal tract, bile duct and other glandular ducts. Some biomedical instruments,
like the blood pumps in dialysis and the heart lung machine use this principle. The mechanism of peristaltic
transport has been exploited for industrial applications like sanitary fluid transport, transport of corrosive fluids
where the contact of the fluid with the machinery parts is prohibited and transport of a toxic liquid used in
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nuclear industry to avoid contamination of the outside environment. Extensive literature on the topic is avail-
able for viscous fluids. But the theory of non-Newtonian fluids has received great attention during the recent
years, because the traditional viscous fluids cannot precisely describe characteristics of many physiological
fluids. The governing equations for such fluids are complicated and highly non-linear and present interesting
challenges to physicists, computer scientists, mathematicians and modellers.

The problem of the mechanism of peristaltic transport has attracted the attention of many investigators
since the first investigation of Latham [17]. The fundamental studies on peristalsis were performed by Fung
and Yih [6] using laboratory frame of reference and then by Shapiro et al. [32] using wave frame of reference.
A number of analytical, numerical and experimental [1,2,7,9,20–26,31,34] studies have been conducted to
understand peristaltic action for different kinds of fluids under different conditions with reference to physi-
ological and mechanical situations. However, the interaction of peristalsis and heat transfer has not received
much attention which may become highly relevant and significant in several industrial processes.Also ther-
modynamical aspects of blood may become significant in processes like oxygenation and hemodialysis when
blood is drawn out of the body.Although there are many models to describe non-Newtonian behaviour of the
fluids, the Johnson–Segalman fluid has acquired a special status in recent years, as it includes as special cases of
classical Newtonian fluid, Oldroyd-B fluid and Maxwell fluid. The Johnson–Segalman model is a viscoelastic
fluid model which was developed to allow for non-affine deformation [14]. Some researchers [15,18,19] used
this model to explain the phenomenon of ’spurt’. Peristaltic motion of Johnson–Segalman fluids in a planar
channel was investigated by Hayat et al. [10]. Elshahed et al. [5] developed the model by considering effect of
magnetic field. Literature survey bears witness to the fact that the information on peristalsis of non-Newtonian
fluids in an asymmetric channel is scant. To the best of our knowledge Haroun [8] have studied the non-linear
peristaltic motion of a fourth-grade fluid in an inclined asymmetric channel. Kothandapani and Srinivas [16]
have investigated the influence of magnetic field on peristaltic transport of a Jeffrey fluid in an asymmetric
channel. This model was further developed by Nadeem and Akram [27] by considering the effect of induced
magnetic field. Srinivas and Pushparaj [33] considered non-linear peristaltic transport in an inclined asym-
metric channel. Das [3] has investigated the effect of peristaltic pumping of a Johnson–Segalman fluid in an
inclined asymmetric channel in the presence of external magnetic field. Recently, Nadeem and Akbar [28]
developed the problem by considering heat and mass transfer effect on peristalsis flow of a Johnson–Segalman
fluid in a vertical asymmetric channel with induced magnetic field.

It is well known that no-slip condition in polymeric liquids with high molecular weight is not appropriate.
This condition also fails in many problems like thin film problem, rarefied fluid problem and flow on multiple
interfaces. Again, when the molecular mean free path length of the fluid is comparable to the distance between
the plates as in nanochannels or microchannels, the fluid exhibits non-continuum effects such as slip flow as
demonstrated experimentally by Derek et al. [4]. Nadeem and Akram [29] have studied the problem of heat
transfer in a peristaltic flow of MHD fluid with partial slip. Hayat et al. [12] have investigated the simultaneous
effects of slip and heat transfer on the peristaltic flow in an asymmetric channel. Hayat and Mehmood [13]
have discussed slip effects on MHD flow of third-order fluid in a planar channel. Recently, Nadeem and Akbar
[30] examined the influence of heat transfer on peristaltic transport of a Johnson–Segalman fluid in an inclined
asymmetric channel which has not been discussed so far when no-slip condition is no longer valid.

Therefore, the main purpose of the present study is to highlight the importance of slip conditions on heat
transfer and peristaltic flow of Johnson–Segalman fluid in a two dimensional asymmetric inclined channel.
The governing equations have been simplified using longwave length approximations. A perturbation solution
is obtained for the case in which Weissenberg number is small. Numerical results are reported for various
values of the physical parameters of interest. The paper has been arranged as follows: Section 2 deals with the
formulation of the problems. In Sect. 3 we discuss the rate of volume flow and boundary conditions. Section 4
contains the closed form solutions of stream function, axial velocity, pressure gradient, pressure rise and tem-
perature. Numerical results and discussion are presented in Sect. 5. The conclusions have been summarized in
Sect. 6.

2 Mathematical formulation of the problem

Consider a two-dimensional infinite asymmetric inclined channel of width d1 + d2 filled with an incompress-
ible Johnson–Segalman fluid (see Fig. 1). We employ a rectangular co-ordinate system with x-axis parallel
and y-axis normal to the channel. The channel flow is produced due to different amplitude and phases of the
peristaltic waves with constant speed c along the channel walls. The shape of the asymmetric channel walls are
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Fig. 1 Schematic diagram of the physical model

h1 = d1 + a1sin 2π
λ

(X − ct), upper wall
h2 = −d2 − a2sin

[ 2π
λ

(X − ct) + φ
]
, lower wall

}
(1)

where a1 and a2 are the amplitudes of the waves, λ is the wave length, t is the time and X is the direction
of wave propagation. The phase difference φ varies in the range 0 ≤ φ ≤ π , in which φ = 0 corresponds to
symmetric channel with waves out of phase and φ = π the waves are in phase and a1, b1, d1, d2 and φ satisfies
the condition [11]

a2
1 + a2

2 + 2a1a2cosφ ≤ (d1 + d2)
2 (2)

The lower wall of the channel is maintained at temperature T1 while the upper wall has temperature T0
The equations governing the motion for the present problem are [3,25,30]

∂U

∂ X
+ ∂V

∂Y
= 0, (3)

ρ

(
∂

∂t
+ U

∂

∂ X
+ V

∂

∂Y

)
U = −∂ P

∂ X
+ μ

(
∂2

∂ X2 + ∂2

∂Y 2

)
U + ∂SX X

∂ X
+ ∂SXY

∂Y
+ ρgsinα, (4)

ρ

(
∂

∂t
+ U

∂

∂ X
+ V

∂

∂Y

)
V = −∂ P

∂Y
+ μ

(
∂2

∂ X2 + ∂2

∂Y 2

)
V + ∂SXY

∂ X
+ ∂SY Y

∂Y
− ρgcosα, (5)

2η
∂U

∂ X
= SX X + m

(
∂

∂t
+ U

∂

∂ X
+ V

∂

∂Y

)
SX X − 2nmSX X

∂U

∂ X
+ m

[
(1 − n)

∂V

∂ X
− (1 + n)

∂U

∂Y

]
SXY ,

(6)

η

(
∂U

∂Y
+ ∂V

∂ X

)
= SXY + m

(
∂

∂t
+ U

∂

∂ X
+ V

∂

∂Y

)
SXY + m

2

[
(1 − n)

∂U

∂Y
− (1 + n)

∂V

∂ X

]
SX X

+m

2

[
(1 − n)

∂V

∂ X
− (1 + n)

∂U

∂Y

]
SY Y , (7)

2η
∂V

∂Y
= SY Y + m

(
∂

∂t
+ U

∂

∂ X
+ V

∂

∂Y

)
SY Y − 2nmSY Y

∂V

∂Y
+ m

[
(1 − n)

∂U

∂Y
− (1 + n)

∂V

∂ X

]
SXY ,

(8)
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ρcp

(
∂T

∂t
+ U

∂T

∂ X
+ V

∂T

∂Y

)
= SX X

∂U

∂ X
+ SY Y

∂V

∂Y
+ SXY

(
∂V

∂ X
+ ∂U

∂Y

)
+ κ

(
∂2T

∂ X2 + ∂2T

∂Y 2

)
, (9)

where U, V are the velocities in the X and Y directions in the fixed frame, α is inclination of the channel with the
horizontal, P is the pressure, ρ is the density, μ is the coefficient of viscosity of fluid, g is the acceleration due
to gravity, T is the temperature, cp is the specific heat at constant pressure and κ is the thermal conductivity.

Let us introduce a wave frame (x, y) moving with velocity c away from the fixed frame (X, Y) by the
transformation

x = X − ct, y = Y, u = U − c, v = V, p(x) = P(X, t) (10)

where u, v are the velocities in the x and y directions in the wave frame and p is the pressure in wave frame.
Introducing the following non-dimensional quantities

x̄ = x
λ
; ȳ = y

d1
; ū = u

c ; v̄ = v
cδ ; δ = d1

λ
; p̄ = d2

1 p
cλ(μ+η)

; h̄1 = h1
d1

; h̄2 = h2
d1

; d = d2
d1

;
a = a1

d1
; b = a2

d1
; R = cd1ρ

μ
; Re = cnρ

μ
; t̄ = ct

λ
; Ec = n2

cp(T0−T1)
; Fr = c2

gd1
; We = mc

d1
;

S̄ = d1 S
μc ; Pr = ρcpν

κ
; θ = T −T1

T0−T1

⎫
⎪⎪⎬

⎪⎪⎭
(11)

and the stream function ψ so that u = ∂ψ
∂y , v = − ∂ψ

∂x in (3)–(9), we finally get (after dropping bars)

δRe

(
∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2

)

= −μ + η

μ

∂p

∂x
+ δ

∂Sxx

∂x
+ ∂Sxy

∂y
+

(

δ2 ∂3ψ

∂2x∂y
+ ∂3ψ

∂y3

)

+ Rsinα

Fr
, (12)

− δ3 Re

(
∂ψ

∂y

∂2ψ

∂x2 − ∂ψ

∂x

∂2ψ

∂x∂y

)

= −μ + η

μ

∂p

∂y
+ δ2 ∂Sxy

∂x
+ δ

∂Syy

∂y
− δ2

(

δ2 ∂3ψ

∂x3 + ∂3ψ

∂x∂2 y

)

− δ
Rcosα

Fr
, (13)

2ηδ

μ

∂2ψ

∂x∂y
= Sxx + Weδ

(
∂ψ

∂y

∂Sxx

∂x
− ∂ψ

∂x

∂Sxx

∂y

)
− 2WenδSxx

∂2ψ

∂x∂y
− We

{

δ2(1 − n)
∂2ψ

∂x2 + (1 + n)
∂2ψ

∂y2

}

Sxy,

(14)

η

μ

(
∂2ψ

∂y2 − δ2 ∂2ψ

∂x2

)

= Sxy + Weδ

(
∂ψ

∂y

∂Sxy

∂x
− ∂ψ

∂x

∂Sxy

∂y

)
+ We

2

{

δ2(1 + n)
∂2ψ

∂x2 + (1 − n)
∂2ψ

∂y2

}

Sxx

− We

2

{

δ2(1 − n)
∂2ψ

∂x2 + (1 + n)
∂2ψ

∂y2

}

Syy, (15)

− 2ηδ
μ

∂2ψ
∂x∂y = Syy + Weδ

(
∂ψ
∂y

∂Syy
∂x − ∂ψ

∂x
∂Syy
∂y

)
+ 2WenδSyy

∂2ψ
∂x∂y + We

{
δ2(1 + n)

∂2ψ

∂x2 + (1 − n)
∂2ψ

∂y2

}
Sxy, (16)

δRe

(
∂ψ

∂y

∂θ

∂x
− δ

∂ψ

∂x

∂θ

∂y

)
= Ec

(

Sxx δ
∂2ψ

∂x∂y
− Sxyδ

∂2ψ

∂x2 + Syx
∂2ψ

∂y2 − Syyδ
∂2ψ

∂y∂x

)

+ 1

Pr

(

δ2 ∂2θ

∂x2 + ∂2θ

∂y2

)

, (17)

where R is the Reynolds number, δ is the wave number, Fr is the Froude number, We is the Weissenberg
number, Ec is the Eckert number and Pr is the Prandtl number.
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3 Rate of volume flow and boundary conditions

The dimensional volume flow rate in the fixed frame is given by

Q =
h1(X)∫

h2(X)

U (X, Y, t)dY (18)

In the wave frame, Eq. (18) reduces to

q =
h1(x)∫

h2(x)

u(x, y)dy (19)

Using Eq. (10) in Eqs. (18) and (19), we have

Q = q + ch1 − ch2 (20)

The average volume flow rate over one period (T = λ
c ) of the peristaltic wave is defined as

Q̄ = 1

T

T∫

0

Qdt (21)

Then using Eq. (20), we receive

Q̄ = q + cd1 + cd2 (22)

Defining the dimensionless mean flows

� = Q̄

cd1
, F = q

cd1
(23)

in fixed and moving frames, respectively, we can write (23) as

� = F + 1 + d (24)

where

F =
h1∫

h2

∂ψ

∂y
dy = ψ(h1) − ψ(h2) (25)

and the dimensionless peristaltic walls are

h1 = 1 + asin2πx,
h2 = −d − bsin(2πx + φ)

}
(26)

where a, b, φ and d satisfy the relation

a2 + b2 + 2abcosφ ≤ (1 + d)2 (27)

Since we are considering the slip flow on the wall, the dimensionless boundary conditions for the present
problem in the wave frame can be written as [12,29]

ψ = F
2 ,

∂ψ
∂y + β

∂2ψ

∂y2 = −1, θ + γ ∂θ
∂y = 1, at y = h1(x),

ψ = − F
2 ,

∂ψ
∂y − β

∂2ψ

∂y2 = −1, θ − γ ∂θ
∂y = 0, at y = h2(x).

⎫
⎬

⎭
(28)

where β is the non-dimensional slip velocity parameter (Knudsen number) and γ is the non-dimensional
thermal slip parameter.
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4 Solution of the problem

4.1 Equations for large wavelength

As the Eqs. (12)–(17) are highly non-linear differential equations, analytical solutions valid for all arbitrary
parameters involved in these equations seem to be impossible to find. Therefore, we carry out our investigation
on the basis that the dimensionless wave number δ is small, that is, δ � 1, which corresponds to the long
wavelength approximation. Then employing long wavelength approximation, one can find from (12)–(17) that

μ + η

μ

∂p

∂x
= ∂Sxy

∂y
+ ∂3ψ

∂y3 + Rsinα

Fr
, (29)

0 = −∂p

∂y
, (30)

Sxx − We(1 + n)Sxy
∂2ψ

∂y2 = 0, (31)

η

μ

∂2ψ

∂y2 = Sxy + We

2
(1 − n)Sxx

∂2ψ

∂y2 − We

2
(1 + n)Syy

∂2ψ

∂y2 , (32)

Syy + We(1 − n)Sxy
∂2ψ

∂y2 = 0, (33)

Ec Pr Syx
∂2ψ

∂y2 + ∂2θ

∂y2 = 0 (34)

Equation (30) shows that p is not a function of y. Then after rearrangement, we get from the above equations

∂2

∂y2

⎡

⎣
(

η
μ

+ 1)
∂2ψ

∂y2 + W 2
e (1 − n2)(

∂2ψ

∂y2 )3

1 + W 2
e (1 − n2)(

∂2ψ

∂y2 )2

⎤

⎦ = 0, (35)

μ + η

μ

dp

dx
= ∂

∂y

⎡

⎣
η
μ

∂2ψ

∂y2

1 + W 2
e (1 − n2)(

∂2ψ

∂y2 )2

⎤

⎦ + ∂3ψ

∂y3 + Rsinα

Fr
, (36)

∂2θ

∂y2 = −Ec Pr

[
η

μ

(
∂2ψ

∂y2

)2

− W 2
e

η

μ
(1 − n2)

(
∂2ψ

∂y2

)4
]

(37)

4.2 Perturbation solution

For small values of W 2
e , Eqs. (35), (36) can be written using the binomial theorems as

∂2

∂y2

[
∂2ψ

∂y2 + W 2
e α1

(
∂2ψ

∂y2

)3

+ W 4
e α2

(
∂2ψ

∂y2

)5
]

= 0, (38)

dp

dx
= ∂3ψ

∂y3 + Rsinα

Fr

(
μ

μ + η

)
+ W 2

e α1
∂

∂y

(
∂2ψ

∂y2

)3

+ W 4
e α2

∂

∂y

(
∂2ψ

∂y2

)5

, (39)

where

α1 = (n2 − 1)η

μ + η
, α2 = (n2 − 1)α1. (40)
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Now, we seek the solutions of (37)–(39) with the boundary conditions (28) for a small Weissenberg number.
We expand flow quantities in a power series of W 2

e as follows:

ψ = ψ0 + W 2
e ψ1 + 0(W 4

e ),

p = p0 + W 2
e p1 + 0(W 4

e ),

F = F0 + W 2
e F1 + 0(W 4

e ),

θ = θ0 + W 2
e θ1 + 0(W 4

e )

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(41)

Substituting (41) into Eqs. (37–39) and then finding the solutions of all systems we arrive at the final
solutions which are defined as

ψ = C1 y
{
6(h1h2 − h1β + h2β) − 3y(h1 + h2) + 2y2} − y + C2

+W 2
e

[
1

6
C4

{
y2(3h1 + 3h2 − 2y) − y(h2

1 + 4h1h2 + h2
2) + h1h2(h1 + h2)

}

−C5(y − h1)(y − h2)(2y − h1 − h2)
{
2y2 − 2y(h1 + h2) + h2

1 + h2
2

} + F1(2y − h1 − h2)

2(h1 − h2)

]
, (42)

θ = C1(h1 − h2) + C3(2y − h1 − h2)
4 + y + γ − h2

h1 − h2 + 2γ

+W 2
e

[
− Ec Prη

1, 680μ
[35C4(2y − h1 − h2)

4 + 224C5(2y − h1 − h2)
6 {

C4 + 81C5(n
2 − 1)

}

+480C2
5(2y − h1 − h2)

8] + C6

]
, (43)

dp

dx
= 12C1 + Rμsinα

Fr (μ + η)
+ W 2

e

[
4

{
C5(h1 − h2)

5 − F1
}

(h1 − h2)2
{
(h1 − h2)2 + 6β

}

]

, (44)

Then the axial velocity u is given by

u = 6C1
{
(h1h2 − h1β + h2β) − y(h1 + h2) + y2} − 1

+W 2
e

[
1

6
C4

{
6y(h1 + h2 − y) − (h2

1 + 4h1h2 + h2
2)

}

+1

8
C5

{
5(2y − h1 − h2)

4 − (h1 − h2)
4} + F1

h1 − h2

]
, (45)

where

C1 = − F0 + h1 − h2

(h1 − h2)2(6β + h1 − h2)
,

C2 = F0

2
+ h1 − h1C1(3h1h2 − 6h1β + 6h2β − h2

1),

C3 = −3Ec PrηC2
1

4μ
,

C4 = 2F1 − C5(h1 − h2)
5

(h1 − h2)2
{
(h1 − h2)2 + 6β

} ,

C5 = 108C3
2μ(n2 − 1)

5(μ + η)
,
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and

C6 = Ec Prη(h1 − h2)
3

1, 680μ
[35C2

4(8γ + h1 − h2) + 224C5(h1 − h2)
2(12γ + h1 − h2)

{
C4 + 81C5(n

2 − 1)
}

+480C2
5(h1 − h2)

4(16γ + h1 − h2)] (46)

The non-dimensional expression for pressure rise per wavelength �Pλ is given by

�Pλ =
1∫

0

dp

dx
dx (47)

where dp
dx

is defined through Eq. (44).
Note that if we put the slip parameters β and γ equal to zero, then the results of the problem reduce exactly to
the same as that found by Nadeem and Akbar [30].

5 Numerical results and discussion

This section aims to analyse the behaviour of the streamlines, axial velocity,pressure gradient pressure rise and
temperature graphically for embedded flow parameters in the present problem. The expression for pressure
rise is calculated numerically using MATHEMATICA.

An interesting phenomenon of peristaltic motion in the wave frame is trapping which is basically the
formation of an internally circulating bolus of fluid by closed streamlines. This trapped bolus is pushed ahead
with the peristaltic wave. This trapping phenomena for different values of We, β and � are shown in Figs. 2,
3, 4, 5, 6, 7, 8. It is observed from Figs. 2 and 3 that the trapped bolus which are moving as whole decreases
in size with the decrease in �. The effects of Weissenberg number We on trapping can be seen from Figs. 2,
4, 5. It is depicted that increase in We the trapping bolus which is moving as a whole increases.These results
are in agreement with the results obtained by Nadeem and Akbar [30]. The effect of slip parameter β on the
trapping is illustrated in Figs. 6, 7 and 8, and it is observed that the size of trapped bolus rapidly decreases
with increasing β.

To study the behaviour of the distributions of the axial velocity u, numerical calculations for several values
of β, We and φ are carried out in Figs. 9, 10 and 11. Figure 9 shows that an increase in β results in decrease of
velocity distribution near the wall but the effect is negligible at the middle portion of the channel. Figure 10
displays that with an increase in We, the velocity increases slightly but there is no effect at the centre of
the channel.The influence of φ on velocity distribution is shown in Fig. 11, and it is observed that the axial

Fig. 2 Streamlines for different values of We, β, �: We = 0.04, β = 0.02, � = 1.93
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Fig. 3 Streamlines for different values of We, β, �: We = 0.04, β = 0.02, � = 1.87

Fig. 4 Streamlines for different values of We, β, �: We = 0.02, β = 0.02, � = 1.93

Fig. 5 Streamlines for different values of We, β, �: We = 0.00, β = 0.02, � = 1.93

velocity increases with an increase of the phase angle φ but the effect is not prominent at the upper portion of
the channel.

Figures 12, 13 and 14 are prepared for the pressure gradient against x for different values of β, Fr , and α It
can be noticed that in the wider part of the channel xε [0, 0.1] and [0.4, 0.5], the pressure gradient is relatively
small, that is, the flow can easily pass without imposition of a large pressure gradient. On the other hand,in a
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Fig. 6 Streamlines for different values of We, β, �: We = 0.04, β = 0.00, � = 1.93

Fig. 7 Streamlines for different values of We, β, �: We = 0.04, β = 0.06, � = 1.93

Fig. 8 Streamlines for different values of We, β, �: We = 0.04, β = 0.09, � = 1.93
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Fig. 9 Velocity distribution for different values of β: a = 0.25, b = 0.4, d = 0.95, x = 0.5

Fig. 10 Velocity distribution for different values of We: a = 0.25, b = 0.4, d = 0.95, x = 0.5

Fig. 11 Velocity distribution for different values of φ: a = 0.25, b = 0.4, d = 0.95, x = 0.5
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Fig. 12 Variation of the pressure gradient with x for different values of β: a = 0.25, b = 0.4, d = 0.95

Fig. 13 Variation of the pressure gradient with x for different values of Fr : a = 0.25, b = 0.4, d = 0.95

Fig. 14 Variation of the pressure gradient with x for different values of α: a = 0.25, b = 0.4, d = 0.9
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Fig. 15 Variation of the pressure rise with x for different values of α: a = 0.25, b = 0.4, d = 0.95

Fig. 16 Variation of the pressure rise with x for different values of Fr : a = 0.25, b = 0.4, d = 0.95

Fig. 17 Variation of the pressure rise with x for different values of β: a = 0.25, b = 0.4, d = 0.95
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Fig. 18 Variation of temperature with y for different values of γ : a = 0.25, b = 0.4, d = 0.95, x = 0.5

Fig. 19 Variation of temperature with y for different values of β: a = 0.25, b = 0.4, d = 0.95, x = 0.5

narrow part of the channel xε[0.1, 0.4] a much pressure gradient is required to maintain the same flux to pass it

especially near x = 0.24. From Fig. 12, it may be noted that β decreases the maximum amplitude of dp
dx

. But
the amplitude of pressure gradient is increased by increasing Fr as given in Fig. 13. In Fig. 14 we have plotted
dp
dx

against x to see the effect of changing inclination angle α and noticed that as inclined angle increases, the
amplitude of pressure gradient increases for different values x .

The variations of pressure rise �pλ per wave length against the mean flow rate � of an asymmetric inclined
channel are illustrated in Figs. 15, 16 and 17 for various physical parameters. In these figures specific attention
is given to the pumping regions, peristaltic pumping(� > 0,�pλ > 0), augmented pumping(� > 0, �P < 0)
and retrograde (� < 0, �pλ > 0). The effects of α on �pλ are shown in Fig. 15. It shows that there is a
linear relation between �pλ and � and an increase of α results in increase in pumping rate. Figure 16 reveals
that �pλ decreases with increasing Fr and is uniform for all pumping region.These observations show good
agreement with the results of Nadeem and Akbar [30]. Figure 17 shows that the retrograde pumping rate
decreases with increase of β and decreases as flow rate increases. However, opposite effects are noticed for
the case of augmented pumping.

To explicitly see the effects of various parameters,say γ and β on temperature, Eq. (43) has been numer-
ically evaluated and the results are presented in Figs. 18, 19. We observed from Fig. 18 that the temperature
increases with increase of γ at the lower portion of the channel but effect is reverse at the upper portion of
the channel. Further, it can be noted that the temperature at the lower wall is minimum and it increases slowly
towards the upper wall. Also it is observed from Fig. 19 that there is a linear relation between θ and y and
temperature decreases with increasing β.
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6 Conclusions

In this work, the effect of slip conditions on peristaltic flow of Johnson–Segalman fluid in an asymmetric
inclined channel are studied. The closed-form analytical solutions of the problem under long wavelength
approximations are obtained. The results are discussed through graphs and concluded the following observa-
tions:

(1) the size of the trapped bolus increases by increasing � and We but effect is reverse for β.
(2) The magnitude of axial velocity increases with the increase in φ and decreases by increasing β near the

wall.
(3) The amplitude of pressure gradient increases by increasing Fr and α but effect is opposite for β.
(4) The peristaltic pumping rate increases with increase of α and decreases by increasing Fr and is uniform

for all pumping region. The retrograde pumping rate decreases with increase of β but effect is reverse for
augmented pumping.

(5) The temperature field decreases with the increase in β while with the increase in γ the temperature field
increases.

These observations agree quantitatively well with those of existing results as mentioned above and hence the
applicability of the present model is well validated. It is hoped that the results obtained will not only provide
useful information for applications in various field of medical science but also serve as a complement to the
previous studies.
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