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Abstract. Increasingly, ground-based and airborne geophys-
ical data sets are used to inform groundwater models. Re-
cent research focuses on establishing coupling relationships
between geophysical and groundwater parameters. To fully
exploit such information, this paper presents and compares
different hydrogeophysical inversion approaches to inform a
field-scale groundwater model with time domain electromag-
netic (TDEM) and electrical resistivity tomography (ERT)
data. In a sequential hydrogeophysical inversion (SHI) a
groundwater model is calibrated with geophysical data by
coupling groundwater model parameters with the inverted
geophysical models. We subsequently compare the SHI with
a joint hydrogeophysical inversion (JHI). In the JHI, a geo-
physical model is simultaneously inverted with a groundwa-
ter model by coupling the groundwater and geophysical pa-
rameters to explicitly account for an established petrophysi-
cal relationship and its accuracy. Simulations for a synthetic
groundwater model and TDEM data showed improved esti-
mates for groundwater model parameters that were coupled
to relatively well-resolved geophysical parameters when em-
ploying a high-quality petrophysical relationship. Compared
to a SHI these improvements were insignificant and geophys-
ical parameter estimates became slightly worse. When em-
ploying a low-quality petrophysical relationship, groundwa-
ter model parameters improved less for both the SHI and JHI,
where the SHI performed relatively better. When comparing
a SHI and JHI for a real-world groundwater model and ERT
data, differences in parameter estimates were small. For both

cases investigated in this paper, the SHI seems favorable, tak-
ing into account parameter error, data fit and the complexity
of implementing a JHI in combination with its larger compu-
tational burden.

1 Introduction

Over the last decade, interest in geophysical methods for
hydrogeological site characterization has been increasing
(Vereecken et al., 2004; Hubbard and Rubin, 2000). This is
due to the ability of geophysical methods to provide mod-
els of subsurface properties with a high spatial resolution,
which are difficult to obtain from sparse borehole informa-
tion. Worldwide, significant resources are spent on the col-
lection of regional geophysical data sets. Examples include
airborne electromagnetic (AEM) surveys in Denmark, cov-
ering nearly 60 % of the country for mapping the spatial ex-
tent and assessing the vulnerability of aquifers (Thomsen et
al., 2004), and AEM surveys to map saltwater intrusion in
the USA, Australia, Germany and the Netherlands (Langevin
et al., 2003; Fitzpatrick et al., 2009; Faneca Sànchez et al.,
2012; Burschil et al., 2012). In addition, smaller-scale sur-
veys have been conducted using a variety of geophysical
techniques such as ERT (electrical resistivity tomography,
Kemna et al., 2002), induced polarization (Slater, 2007) and
magnetic resonance sounding (Legchenko and Valla, 2002).
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Fig. 1 SHI (left), CHI (middle) and JHI approach (right). π and γ respectively indicate the geophysical and groundwater model parameters, where the 3 
arrows represent parameter updating until a minimum data and/or constraint misfit is achieved. π: geophysical model parameters; γ: groundwater model 4 
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Fig. 1.SHI (left), CHI (middle) and JHI approach (right).π andγ respectively indicate the geophysical and groundwater model parameters,
where the arrows represent parameter updating until a minimum data and/or constraint misfit is achieved.π : geophysical model parameters;
γ : groundwater model parameters.

A major challenge is to fully exploit the information con-
tent of geophysical data sets, as geophysical techniques do
not measure hydrological subsurface properties directly. A
geophysical inversion and petrophysical relationships are
needed to estimate hydrogeological parameters and state
variables from the geophysical data sets. For this reason,
the inclusion of geophysical data into a groundwater model
is not straightforward. Previous studies have used different
approaches to inform groundwater models with geophysical
data.

1.1 Hydrogeophysical inversion approaches

Hydrogeophysical inversion approaches can be subdivided
into sequential hydrogeophysical inversion (SHI), coupled
hydrogeophysical inversion (CHI) and joint hydrogeophys-
ical inversion (JHI) (Hinnell et al., 2010). The workflow as-
sociated with these 3 methods is shown in Fig. 1.

1. In a SHI, geophysical data is separately inverted to es-
timate the distribution of a geophysical property (e.g.,
maps of electrical resistivity). Estimated geophysical
property maps are subsequently used to derive the
structure of the subsurface or to estimate dynamic
state variables such as solute concentrations and wa-
ter content. For the latter, petrophysical relationships
(Archie, 1942; Topp et al., 1980) are needed to convert
a geophysical property to a hydrological state variable.
Note Fig. 1 only shows an SHI in which inverted geo-
physical parameters are coupled with the static input
structure of a hydrological model; SHI by coupling
dynamic state variables would typically require cou-
pling inverted geophysical parameters with hydrologic
model output.

2. In a CHI, simulated state variables of a hydrologi-
cal model are transformed to a geophysical parameter
distribution using a petrophysical relationship. Subse-
quently, geophysical forward responses are simulated
that can be compared with collected geophysical ob-
servations. In this approach, the geophysical inversion

process is coupled with the hydrological model and a
single objective function is minimized that comprises
both a geophysical and a hydrological component.

3. In a JHI, a simultaneous inversion for multiple geo-
physical and/or hydrological models is undertaken to
exploit differences in parameter resolution for differ-
ent data sets. In the JHI discussed in this paper, input
parameters of a hydrological and geophysical model
are simultaneously estimated using parameter cou-
pling constraints to account for observed correlations
between geophysical and groundwater model parame-
ters (e.g., petrophysical relationships).

Examples of SHI applications include the use of geoelec-
trical methods, electromagnetic methods and ground pene-
trating radar (GPR) to monitor changes in soil water con-
tent or solute concentrations with time (Binley et al., 2001;
Cassiani et al., 2006; Day-Lewis et al., 2003; Huisman et
al., 2003; Kemna et al., 2002; Knight, 2001; Looms et al.,
2008). Of particular interest is the SHI framework presented
by Dam and Christensen (2003) in which inverted electri-
cal resistivities are used to estimate hydraulic conductivity
fields of a groundwater model. As will be explained later,
our JHI approach shows many similarities with this frame-
work. Examples of CHI applications include the estimation
of vadose zone parameters with electrical resistivity and GPR
measurements (Hinnell et al., 2010; Kowalsky et al., 2005;
Lambot et al., 2006, 2009), the estimation of hydraulic con-
ductivity fields with electrical resistivity data (Pollock and
Cirpka, 2012) and the estimation of soil properties with
relative gravimetry and magnetic resonance sounding data
(Christiansen et al., 2011; Herckenrath et al., 2012a). These
studies cover a relatively small spatial scale compared to
field-scale groundwater models. Applications of a CHI on a
more regional scale can be found in (Bauer-Gottwein et al.,
2010; Herckenrath et al., 2012b). JHI methods have been de-
veloped to use multiple geophysical methods for estimating
soil properties (Vozoff and Jupp, 1975; Linde et al., 2006a;
Behroozmand et al., 2012) or to jointly estimate hydrological
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structures and parameter distributions with geophysical and
hydrological data (Hyndman and Gorelick, 1996; Chen et al.,
2006; Linde et al., 2006b; Herckenrath et al., 2012a).

In comparison with a SHI, the main strength of a CHI is to
use a hydrological model to provide an inversion framework
for the geophysical data and constrain the geophysical inver-
sion process. This brings two main advantages, as (1) mea-
surement errors and parameter uncertainties associated with
the independent geophysical inversion are not propagated di-
rectly to the hydrological model and (2) no extensive regu-
larization (e.g., smoothness constraints) is needed to stabilize
the geophysical inversion process (Menke, 1984). These reg-
ularization constraints do not necessarily reflect the hydro-
logical conditions (Day-Lewis et al., 2005; Chen et al., 2006;
Slater, 2007) and in a CHI these are substituted by spatial
correlation structures provided by a hydrological model. In
simple words, the hydrological model provides an interpre-
tation framework for the geophysical data.

The advantage of joint inversion/JHI with respect to SHI
is the exploitation of parameter resolution differences for dif-
ferent data types (Linde et al., 2006a). Concerns pertaining to
joint inversion for multiple geophysical methods are mainly
related to observation weighting strategies and the transfer
of correlated measurement error. When different model types
and setups are used, as in a JHI, transfer of conceptual model
errors is an additional problem.

In this study we confront the SHI and JHI approaches,
without focusing on the JHI and CHI comparison, as these
latter methods cannot easily act as substitute for one another.
This is due to the different nature of coupling between the
hydrologic and geophysical model. In a CHI, hydrological
simulations are coupled with geophysical models while JHI
couples input parameters.

However, JHI and CHI share similar concerns regarding
the propagation of hydrological conceptual model errors, the
definition of petrophysical relationships and the assignment
of weights for various data types. The propagation of hydro-
logical conceptual errors to the geophysical model differs for
SHI, CHI and JHI. In a SHI no conceptual hydrological er-
rors propagates into the geophysical model, but this will be
the case in CHI and JHI. The difference between the latter
two methods is that CHI generally employs a single concep-
tualization for both the geophysical and hydrological model
while JHI allows different conceptualizations for the geo-
physical and hydrological model. Further discussion of this
topic is beyond the scope of this paper, as this problem will
be highly dependent on considered models, available data
sets, the purpose of the hydrogeophysical inversion process
and the employed petrophysical relationships.

1.2 Petrophysical and geometric relationships

Any hydrogeophysical modeling approach (SHI, CHI or
JHI) depends on coupling geophysical and hydrological
models by implementing coupling relationships between

geophysical parameters with hydrological model parame-
ters or hydrological model simulations. Such coupling re-
lationships can be sub-divided in different groups. In this
paper, we consider petrophysical and geometric relation-
ships. Well-known petrophysical relationships are Archie’s
law (Archie, 1942) and the Topp equation (Topp et al., 1980),
that respectively link electrical resistivity and relative electri-
cal permittivity with hydrological properties such as poros-
ity and water content. In the context of field-scale ground-
water modeling, relationships between hydraulic conductiv-
ity and geophysical properties would be of particular inter-
est. Research shows that such relationships exist, includ-
ing a log–linear correlation between hydraulic conductivity
and electrical resistivity (Purvance and Andricevic, 2000;
Niwas and de Lima, 2003), the dependence of chargeabil-
ity on clay-content (Slater, 2007) and the estimation of hy-
draulic conductivity from magnetic resonance sounding data
(Vouillamoz et al., 2008). Typically, petrophysical relation-
ships are site-specific and are established based on field ob-
servations. Site-specific relationships might be extrapolated
for hydrogeological units within the same sedimentary basin,
as previous studies showed the importance of taking into ac-
count geological properties for obtaining a petrophysical re-
lationship (Prasad, 2003; Slater, 2007).

Geometric relationships comprise the use of structures de-
rived from geophysical models to identify spatial geological
information used in hydro(geo)logical models. An example
is given in Burschil et al. (2012), in which AEM, seismic re-
flection and borehole data is used to define the hydrostratig-
raphy of a groundwater model for a complex glacially af-
fected island. Hydrostratigraphy can be estimated as part of
hydrogeological model calibration (Passadore et al., 2012),
in which geometric constraints can be used to tie the hy-
drostratigraphy of a groundwater model with a geophysical
model. This can be relevant for the definition of confining
units and saltwater intrusion models, where aquifer thick-
ness and bathymetry are important properties (Carrera et al.,
2010).

1.3 Aim of this study

Hydrogeophysical inversions are generally used for small-
scale studies. Given the developments in geophysical data
collection for regional groundwater exploration and avail-
able work on petrophysical relationships, we aim to extend
the use of hydrogeophysical inversions for field-scale and
regional groundwater models. For this purpose, we imple-
ment and compare JHI and SHI for a field-scale groundwater
model with TDEM and ERT data. The study faces a number
of specific challenges:

1. The conceptual framework of groundwater models is
prone to large uncertainties (Refsgaard et al., 2006),
due to their scale, limited data availability and the use
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of many simplifying assumptions associated with the
geological model and boundary conditions.

2. The sub-surface volumes represented by groundwater
and geophysical models can be very different, which
limits using a single conceptualization for both mod-
els.

3. Some subsurface processes and/or compartments are
included in the geophysical or hydrogeological model
only and are not represented in the other model.

4. The accuracy of the relationship between geophysical
and groundwater model parameters is difficult to de-
termine.

5. Computational burden and large number of estimated
parameters.

6. Correlated geophysical measurement error.

Based on the first three issues, geophysical and hydrogeo-
logical models usually require different conceptualizations
to achieve an acceptable data fit. This flexibility cannot be
incorporated when the geophysical model is completely con-
structed from hydrological model in- or output as in many
CHI studies.

The strength of coupling between the geophysical and
groundwater models is difficult to determine and can be
based on the assumed accuracy of the (petro)physical rela-
tionships between geophysical and groundwater properties.
This accuracy can be estimated from correlating geophysi-
cal models with available groundwater data (e.g., pumping
tests, borehole data, and lab tests). In a SHI the strength of
coupling constraints can be either based on geophysical pa-
rameter resolution or the accuracy of the petrophysical rela-
tionship.

The fifth challenge is related to the large computational
burden associated with groundwater models and inversion
of geophysical models. Due to the computational burden,
parameter estimation is typically performed using local,
gradient-search algorithms (Doherty, 2010) instead of global
search algorithms like Markov–Chain Monte Carlo based
methods (Vrugt et al., 2009). Gradient-search algorithms,
such as the Levenberg–Marquardt method, do not always
find the true global minimum of the objective function sur-
face due to multiple local minima in parameter space, discon-
tinuous first derivatives, curved multidimensional ridges and
parameter surrogacy (Vrugt et al., 2008). Initial parameter
values are therefore extremely important when using local,
gradient-search techniques.

The final challenge refers to correlated geophysical mea-
surement errors that can be caused by existing infrastructure
(e.g., power lines, buried pipes), neglecting 3-D effects in the
geophysical model (Bauer-Gottwein et al., 2010) and the ap-
plication of inaccurate/limited instrument filters when pro-
cessing geophysical data (Efferso et al., 1999). Character-
istics of correlated noise are location-specific and different

for the various types of geophysical methods and therefore
difficult to quantify. We do not consider correlated measure-
ment error in this paper. An example of how correlated mea-
surement error propagates in a CHI is provided in Hinnell et
al. (2010) and Herckenrath et al. (2012a).

To meet the previous mentioned challenges, we implement
a SHI and JHI in which geophysical model parameters are
tied to groundwater model parameters by adding parameter
coupling constraints. These parameter coupling constraints
can be imposed to subsets of parameters to ensure enough
flexibility to fit the different types of observation data, while
the imposed strength of the parameter coupling constraints
reflects the quality of the relationship between model pa-
rameters that can be derived from field data or geophysi-
cal parameter resolution. Finally, these parameter coupling
constraints are compatible with standard inversion methods
used for groundwater and geophysical models. The presented
SHI-approach is similar to Dam and Christensen (2003),
whereas the JHI is similar to an inversion methodology used
by Doherty and Johnston (2003), which differs from standard
joint inversion approaches, as input parameters are not shared
by multiple models but coupled through additional regular-
ization constraints.

Section 2 provides a theoretical background for the applied
SHI and JHI. Section 3 shows the application of both the SHI
and JHI for a synthetic groundwater model with time domain
electromagnetic (TDEM) data. The implementation of a JHI
and SHI for a real-world groundwater model and geoelec-
tric data (ERT) is described in Sect. 4. Results are given in
terms of parameter estimates, parameter error, model misfit
and computational burden. The paper concludes with a sum-
mary of the benefits, disadvantages and limitations associ-
ated with the presented coupling procedures.

2 Methodology

This section provides a mathematical summary of a SHI and
JHI.

2.1 Sequential hydrogeophysical inversion (SHI)

The SHI starts with a geophysical inversion. Consider a data
set of geophysical observations assembled in vectordg:

dg =
(
ρ1,ρ2, .,ρNg

)T
+ eg. (1)

The symbolρ denotes the geophysical observations, e.g.,
apparent resistivities. SubscriptNg is the number of avail-
able geophysical observations andeg denotes the geophys-
ical measurement error. The geophysical model parameters
that are estimated are assembled in vectorπ :

π = (r1, ., rMr , t1., tMt)
T . (2)

In this paperπ contains a number of layer thicknesses
(t) and layer resistivities (r) for a 1-D electrical resistivity

Hydrol. Earth Syst. Sci., 17, 4043–4060, 2013 www.hydrol-earth-syst-sci.net/17/4043/2013/
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model.Mr andMt represent the number of parameters for
each parameter type and their sum (Mr + Mt) is represented
by Mg.

The SHI starts with a geophysical inversion in which geo-
physical parameters inπ are estimated by fitting the geo-
physical observations indg. For this purpose we follow a
well-established iterative least-squares inversion approach
(Tarantola and Valette, 1982; Menke, 1984).

According to Auken and Christiansen (2004), the inver-
sion problem can be written as

Gg
I
Ph
Rp
Rh

 · δπ =


δdg
δπprior
δπh-prior
δrp
δrh

+


eg
eprior
eh-prior
ep
eh

 . (3)

In the geophysical inversion, a geophysical forward model
is used to calculate apparent resistivities for the electrical
resistivity model defined inπ . Gg is the Jacobian compris-
ing the partial derivatives ofdg with respect to the geo-
physical parameters inπ . Furthermore, four types of regu-
larization constraints are used in the inversion: prior param-
eter constraints, prior depth constraints, vertical constraints
and lateral constraints. These result in four additional oper-
atorsI , Ph, Rp andRh and contribute to the total geophys-
ical observation errore′

g. The implementation and deriva-
tion of these constraints is explained in detail in Auken and
Christiansen (2004).δπprior, δπh-prior, δrp and δrh express
the deviation with respect to the expected value for the prior
parameter constraints, prior depth constraints, vertical con-
straints and lateral constraints.eprior, eh-prior, ep, andeh are
the errors associated with these constraints. More compact
Eq. (3) is

G′
g · δπ = δd ′

g + e′
g. (4)

In the geophysical inversion the following objective func-
tion is minimized by updatingπ ,

ϕg =

 Ng∑
i=1

δdT
g · C−1

g · δdT
g

+ ϕprior + ϕh−prior + ϕRp+ ϕRh (5)

whereϕprior, ϕh-prior, ϕRp, andϕRh represent the objective
function component for the additional parameter constraints
as defined in Auken and Christiansen (2004).

The posterior standard deviation of the estimated geophys-
ical parameters is calculated based on a post-calibrated pa-
rameter covariance matrix, defined as

Cgest=

[
G′T

g C′−1
g G′

g

]−1
, (6)

whereC′
g defines the parameter covariance matrix. Posterior

parameter standard deviations are subsequently calculated as
the square root of the diagonal elements ofCgestusing

STD(πest) =

√
Cgest(s,s), (7)

whereπest represents the final geophysical parameter esti-
mate ands = 1,2, . . . ,Mg.

Next, we consider a set of groundwater observations that
are listed in vectordh,

dh =
(
h1,h2, .,hNh

)T
+ eh, (8)

subscriptNh indicates the number of groundwater observa-
tions represented byh, which can include head data and ob-
served water fluxes.eh defines the measurement errors on the
groundwater data.

The groundwater model parameters are listed in vector

γ = (γ1,γ2, .,γMh)
T , (9)

whereMh represents the number of groundwater parameters;
in this paper these parameters represent hydraulic conductiv-
ities and thicknesses of geological layers. An iterative least
squares approach is used to estimate the parameters listed in
γ . For the groundwater data we write

δdh = Ghδγ + eh, (10)

whereGh is the Jacobian containing all partial derivatives
associated with the groundwater forward mapping.

The second step of the SHI is to calibrate the groundwater
model using the traditional data in vectordh and a number of
estimated geophysical model parametersπest together with
their posterior standard deviations. When a petrophysical re-
lationship is used,πest is first transformed to another property
(e.g., hydraulic conductivity). This yields an additional set of
hydrogeological observations comprised by vectorsh,

sh =
(
pest1,pest2, .,pestNs

)T
, (11)

whereNs is the number of transformed geophysical parame-
ters,p, that are used as additional observations to constrain
the groundwater model parameters. These observations are
connected to the groundwater model parameters as given in
Eq. (12):

δsh = Psδγ + es, (12)

wherePs is a matrix with the dimensions ofγ andNs, con-
taining ones for the groundwater model parameters that are
constrained by the estimated geophysical parameters insh
and zeros for the groundwater model parameters that are not
constrained.es represents the posterior standard deviations
associated with the geophysical parameters. This approach is
analogous to the use of the prior parameter constraints in the
geophysical inversion. The hydrogeological inverse problem
can therefore be described as[

Gh
Ps

]
· δγ =

[
δdh
δsh

]
+

[
eh
es

]
, (13)

or more compact as

G′

h · δγ = δd ′

h + e′

h (14)

www.hydrol-earth-syst-sci.net/17/4043/2013/ Hydrol. Earth Syst. Sci., 17, 4043–4060, 2013
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with parameter update

δγ est=

[
G′T

h C′−1
h G′

h

]−1
G′T

h C′−1
h δd ′

h, (15)

whereCh’ is the joint observation error comprising the error
covariance matrixCh for the hydrogeological observations
andCs for the geophysical observations. Equation (15) min-
imizes the objective functionϕSHI defined as

ϕSHI =ϕh + ϕs =

(
Nh∑
i=1

δdT
h · C−1

h · δd ′T
h

)

+

(
Ns∑
i=1

δsT
h · C−1

s · δsT
h

)
. (16)

Parameter uncertainty is calculated using a posterior pa-
rameter covariance matrix as described by Eq. (7). Note the
SHI is equivalent to the method described in Dam and Chris-
tensen (2003), except for the definition ofes.

2.2 Joint hydrogeophysical inversion (JHI)

In a SHI the strength of coupling between the geophysical
and groundwater model is based ones, which in our imple-
mentation depends on geophysical parameter resolution only.
Another coupling strategy would be to define the strength of
coupling based on the accuracy of established petrophysical
relationships.

In contrast to the SHI, JHI performs one single inversion
for both the geophysical and the hydrogeological model. For
this purpose, the parameters of both models are assembled in
vectorm,

m = (π1,π2, .,πMg,γ 1,γ 2, .,γ Mh
)T . (17)

We introduce a number of coupling constraints between
the geophysical and hydrogeological parameters that are con-
nected to the true model as

Pcδm = δrc + ec, (18)

whereec denotes the error associated with the coupling con-
straint. Because the coupling constraints link different esti-
mated parameters,ec is unknown and has to be defined by
the user. Its definition depends upon the assumed error of the
coupling constraint.ec plays a key role in the JHI framework
and its value can be estimated from available field data that
was used to establish a relationship between a groundwater
and geophysical parameter. In Slater (2007) correlation plots
are provided between geophysical properties and hydraulic
properties. The correlation measure of such analyses can be
used to estimateec.

OperatorPc can have many forms. For example, if we in-
troduce two coupling constraints that set the groundwater
model parametersγ1 andγ2 (geological layer thicknesses),

equal to respectivelyπ1 and π2 (e.g., geophysical model
layer thicknesses), Eq. (18) takes the following form:

[
1 0 · · · 0 −1 0 · · · · · · 0
0 1 0 · · · 0 −1 0 · · · 0

]


π1
π2
...

πMg

γ1
γ2
...

γMh


= 0+ ec. (19)

Note that for petrophysical relationships betweenπ andγ ,
δrc in Eq. (18) often has a nonzero value. An example will
be provided in the case study section. Coupling constraints
betweenπ andγ need to be linear for the current implemen-
tation of the JHI.

Combining Eqs. (4) and (10) with the coupling constraints
in Eq. (18), we obtain the formulation for the JHI:G′

g
Gh
Pc

 · δm =

 δd ′
g

δdh
δrc

+

 e′
g

eh
ec

 , (20)

which can be written more compactly as

G′
· δm = δd + e′. (21)

Many of the entries in JacobianG′ are equal to 0 as
some of the hydrogeological parameter estimates are not af-
fected by the geophysical observation and constraints and
vice versa. The joint observation errore′ is denoted by co-
variance matrixC′:

C′
=

C′
g 0 0

0 Ch 0
0 0 Cc

 . (22)

The model estimate becomes

δmest=

[
G′T C′−1G′

]−1
G′T C′−1δd ′, (23)

which minimizes the objective function

φJHI = φg + φh + φc, (24)

whereφh is the hydrogeological data misfit,ϕgthe geophysi-
cal data misfit andφc the objective function term associated
with the coupling constraints.φc acts as an additional reg-
ularization term mutually constraining the geophysical and
groundwater parameters. A similar approach can be found
in Doherty and Johnston (2003), who estimate parameters of
multiple watershed models.
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 1 
Fig. 2 Groundwater model (a), where red crosses mark head observations, black arrows represent the flux observations used for the 2 
JHI and SHI. The TDEM model (b) comprises a 1D, 2-layer electrical resistivity model. 3 Fig. 2.Groundwater model(a), where red crosses mark head observations, black arrows represent the flux observations used for the JHI and

SHI. The TDEM model(b) comprises a 1-D, 2-layer electrical resistivity model.

2.3 Implementation

The SHI and JHI are applied for two cases. The first case
combines a synthetic groundwater model and a synthetic
TDEM data set. The second case combines a real-world
groundwater model and a field ERT data set.

To generate the geophysical forward responses for
the TDEM and ERT, EM1DINV (HGG, 2008) is used.
EM1DINV is also used to generate a forward response for
the ERT data (Auken and Christiansen, 2004). The geophys-
ical model that is estimated for the TDEM is a 1-D resistivity
model (Fig. 2b), in which typically a number of layer thick-
nesses and layer resistivities are estimated. For the ERT data,
neighboring 1-D resistivity models (Fig. 8a) are tied together
by lateral constraints (Auken and Christiansen, 2004).

The groundwater model in the synthetic example is im-
plemented in Matlab (PDE-tool). For the real-world model
MODFLOW (Harbaugh et al., 2000) is used. More details
about the groundwater models and geophysical data are given
in the next section.

3 Example 1: synthetic study TDEM

3.1 Setup

The first application of the JHI and SHI considers a synthetic
cross-sectional groundwater model and a TDEM sound-
ing. As part of the geophysical inversion a TDEM forward
model is used. This forward model is based on Ward and
Hohmann (1988) and includes the modeling of low-pass fil-
ters (Efferso et al., 1999) and the turn-on and turn-off ramps
described in Fitterman and Anderson (1987).

The groundwater model in the synthetic example consists
of two layers, similar to the geological setup of the field study
we discuss in Sect. 4. The upper layer, with a thicknessDclay,
is considered to be clayey sand with hydraulic conductivity
Kclay [m s−1]. The second layer represents limestone with

hydraulic conductivityKlime. Different values are generated
for these properties as will be explained below. Constant
heads are applied as boundary conditions (right: 1 m; left:
0 m); in the middle of the model domain a river is assumed
to be located with a fixed head of 0. This results in flow from
left to right and flow towards the river. From this realization
we extract a number of groundwater observations, compris-
ing 4 head and 2 flux measurements that are shown in Fig. 2a.
The groundwater parameters (γ ) that need to be estimated in-
clude the hydraulic conductivity of the limestone (Klime) and
the clay (Kclay) and the thickness of the clay (Dclay). Due
to the parameter cross-correlation betweenKclay andDclay,
an additional flux measurement for the limestone is included,
which is not available for most real-world modeling studies.
Typically Dclay is not estimated when calibrating a ground-
water model, due to its correlation withKclay. This parameter
was chosen to illustrate the use of a JHI and SHI, in which the
hydrostratigraphy of a groundwater model is coupled with a
geophysical model.

For the synthetic study we assume the availability of one
TDEM sounding. The parameters of the geophysical model
(π) that are estimated comprise one layer thickness (t1) and
electrical resistivities for layer 1 and 2 (r1 and r2) using
30 synthetic apparent resistivity observations. The simplified
1-D description of the geophysical model is used because of
the negligible effect of the water table variation and unsatu-
rated zone thickness in the model, compared to the geometry
of the model and the TDEM resolution.

In summary, 6 parameters are estimated, 3 for the geo-
physical model and 3 parameters for the groundwater model.
To test the SHI and JHI, we generate 250 observation real-
izations of hydrogeological data (heads and fluxes) and geo-
physical data (apparent resistivities) by adding uncorrelated
measurement error to a model-generated truth. For every re-
alization different values forKclay, Dclay, r1 andt1 are gener-
ated, each representing a model generated truth. The gener-
ation of log10Kclay [m s−1] andDclay [m] values employed
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Table 1.Model properties used in the synthetic example.

Model Property Value

Constant Head (west) [m] 1
Constant Head (east) [m] 0
Constant Head (river) [m] 0
Error Head Measurements [m] 0.02
Error Flux Measurements [ %] 30
Error TDEM Measurements [ %] ca. 3 %; based on a real sounding

Table 2.Coupling constraints standard deviations,ec, used for JHI Runs 1–7.

Constraint Equation Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7

Petrophysical Log10(Kclay) − Log10(r1) +6 3 2 1 0.5 0.3 0.1 0.05
Geometric Dclay− t1 7 5 2 1 0.5 0.1 0.05

mean values of respectively−5 and 25 m with a standard de-
viation of respectively 0.1 and 0.1 m. Subsequently values of
r1 andt1 are generated based on the equations in the second
column of Table 2, including a random component with a
standard deviation,ecorr, that defines the level of correlation
between the geophysical and groundwater model parameters.

Measurement error is then added to the simulation results
of each parameter realization, employing a standard devia-
tion (eh) of ±2 cm for the head observations and±30 % for
the flux measurements. The measurement errors added to the
TDEM data have a standard deviation (eg) of ca.± 3 % of
the measurement value and are based on a real-world TDEM
sounding.

The TDEM measurement error does not only reflect the
standard deviation of the data stack and includes an addi-
tional error component to take into account 3-D effects and
imperfect instrument specifications (e.g., filters, wave form
of the applied pulses). This additional error component will
typically yield correlated measurement errors. For example,
Efferso et al. (1999) provide the effect of different low pass
filters on the TDEM forward response. In this research, how-
ever, we do not investigate correlated errors and thus add un-
correlated measurement error to the TDEM data to be con-
sistent with the Gaussian assumptions of least-squares inver-
sion theory (Tarantola, 2005). Different starting parameters
are used for the calibration of the geophysical and ground-
water model with each observation realization.

3.2 Geometric and petrophysical relationship

To perform the JHI and SHI two types of constraints are em-
ployed between the groundwater and TDEM model, a geo-
metric and a petrophysical constraint. Both relationships are
defined in Table 2. The geometric constraint applies to the
depth of the clay layer (Dclay) and the thickness of the first
layer in the TDEM model (t1).

The petrophysical coupling constraint applies to the hy-
draulic conductivity of the upper layer of the groundwater
model (Kclay) and the electrical resistivity of the first layer in
the TDEM model (r1). This constraint applies a relationship
between the logarithmic values of hydraulic conductivity and
electrical resistivity (Niwas and de Lima, 2003; Slater, 2007).
The petrophysical relationship in Table 2 was arbitrarily cho-
sen, but implies a decreasing hydraulic conductivity for a de-
creasing electrical resistivity, as hydraulic conductivity and
electrical resistivity decrease for increasing clay content. A
typical hydraulic conductivity for clay is 10−5 m s−1 (Fetter,
1994) and 101 �m is a representative electrical resistivity
(Kirsch, 2006), which results in an expected value of−6 for
the petrophysical coupling constraint. Note that this is an ex-
tremely simplified relationship between hydraulic conductiv-
ity and electrical resistivity.

In a first configuration of the synthetic study, we generate
realizations of “true” parameters, using a standard deviation
(ecorr) of 0.01 for the petrophysical relationship and a stan-
dard deviation 0.05 (ecorr) for the geometric relationship. In a
second configuration, we apply largerecorr values of respec-
tively 0.1 and 0.1. As the parameter coupling in the SHI can
be very strong for well-resolved geophysical parameters, this
second configuration is used to test whether or not the SHI
results in worse groundwater parameter estimates when cor-
relation between groundwater and geophysical parameters is
relatively weak.

3.3 SHI

The SHI starts with a geophysical inversion for the TDEM
data after which the estimated electrical resistivity model,
πest, is used as an observation in the calibration process of
the groundwater model. In this caseπest comprises the es-
timated values fort1 andr1, which we employ to constrain
the groundwater model parametersDclay andKclay. For the
weights of these constraints (Dam and Christensen, 2003)

Hydrol. Earth Syst. Sci., 17, 4043–4060, 2013 www.hydrol-earth-syst-sci.net/17/4043/2013/



D. Herckenrath et al.: Sequential and joint hydrogeophysical inversion 4051

 

1 2 3 4 5 6 7
0

20

40

60

80

100

120

strength coupling (1: weak - 7: strong)

er
ro

r 
K

cl
ay

 [
%

]

1 2 3 4 5 6 7
0

20

40

60

80

100

strength coupling (1: weak - 7: strong)

er
ro

r 
K

lim
e [

%
]

1 2 3 4 5 6 7
0

10

20

30

40

strength coupling (1: weak - 7: strong)

er
ro

r 
D

cl
ay

 [
%

]

1 2 3 4 5 6 7
0

5

10

15

20

25

30

strength coupling (1: weak - 7: strong)

er
ro

r 
r 1 [

%
]

1 2 3 4 5 6 7
0

50

100

150

200

250

strength coupling (1: weak - 7: strong)

er
ro

r 
r 2 [

%
]

1 2 3 4 5 6 7
0

10

20

30

40

strength coupling (1: weak - 7: strong)

er
ro

r 
t 1 [

%
]

 1 
Fig. 3 Parameter errors for JHI Run 1-7 for 250 realizations and increasing weight for the coupling constraints (blue dashed lines). The 2 
cyan lines indicate the parameter errors for the 250 SHI runs. Groundwater model parameters are shown in the upper row of figures, 3 
geophysical parameters on the bottom row. Standard deviations of the JHI coupling constraints, ec, are listed in Table 2. 4 
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Fig. 3.Parameter errors for JHI Runs 1–7 for 250 realizations and increasing weight for the coupling constraints (blue dashed lines). The cyan
lines indicate the parameter errors for the 250 SHI runs. Groundwater model parameters are shown in the upper row of figures, geophysical
parameters on the bottom row. Standard deviations of the JHI coupling constraints,ec, are listed in Table 2.

recommendes values of 10−2–10−1 for coupling hydraulic
conductivities and well-resolved electrical resistivities and
values of 101–102 for poorly resolved electrical resistivities.
We employ values based on the posterior standard deviation
of the geophysical parameters, obtained with the geophysical
inversion, to honor the resolution level of parameters inferred
from geophysical data and constraints.

For the SHI, the second line in Eq. (13) becomes

[
1 0 0
0 0 1

] log10(Kclay)

Klime
Dclay

=

(
log10(r1) − 6
t1

)
+ es. (25)

As Klime is not constrained with the geophysical inversion
results, its associated entries (matrixPs, Eq.13) are 0.

3.4 JHI

For the JHI we use the same type of coupling constraints for
the same geophysical and hydrological parameters. However,
now the geophysical parameters are also part of the inversion
and Eq. (18) is used for the coupling constraints. For this
application Eq. (18) becomes

[
1 0 0−1 0 0
0 1 0 0 −1 0

]


log10(r1)

t1
t2
log10(Kclay)

Klime
Dclay

=

(
6
0

)
+ ec, (26)

where the expected value for the geometric constraint be-
tweenDclay and t1 is 0, whereas the petrophysical relation-
ship between log10(Kclay) and log10(r1) is 6. The JHI is un-
dertaken for varying values ofec, as defined by the values
in Table 2. This range is comparable with the recommended
range fores in Dam and Christensen (2003).

The value ofec reflects the strength of the coupling rela-
tionship. Anec of 0.01 means the assumed error of the cou-
pling relationship has a standard deviation of 0.01, marking
a strong coupling relationship compared to an implementa-
tion employing andec of e.g., 10. For the synthetic study the
weight associated with the coupling constraints is varied, by
changing this standard deviation. Table 2 lists 7 different con-
figurations of JHI (referred to as “Runs”) employing different
ec values to increase the weight for the coupling relationship
betweenDclay [m] and t1 [m] and the coupling constraint
between log10(Kclay) [m d−1] and log10(r1) [�m]. For the
petrophysical constraintec is varied from 3 to 0.05; for the
geometric constraintec is varied from 7 to 0.05. These ranges
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Fig. 4 Histograms of data fit for the different components of the objective function in JHI Run 1, 4 and 7.  Results are for 250 2 
realizations. The last column shows data fit for the SHI.  3 
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Fig. 4. Histograms of data fit for the different components of the objective function in JHI Runs 1, 4 and 7. Results are for 250 realizations.
The last column shows data fit for the SHI.

were chosen to cover a JHI with weak coupling constraints
and a JHI assumingec values of similar magnitude compared
to the standard deviations,ecorr, that were used for generating
the correlated “true” parameters.

3.5 Results

First a JHI is conducted for the groundwater and the geophys-
ical model. This was done using 250 observation realizations
and different parameter starting values. 7 JHI simulations are
performed using an increasing strength of coupling between
the TDEM and groundwater model (Runs 1–7). To generate
correlated “true” geophysical and groundwater model param-
eters, standard deviationsecorr of 0.01 and 0.05 are respec-
tively used for the petrophysical and geometric constraint.

Run 1 represents a JHI with a very small weight (i.e., large
ec) for the coupling constraints representing an independent
inversion in which the groundwater model is not informed
with the TDEM model and vice versa. Figure 3 shows all the
parameter estimates pertaining to the JHI Run 1–7 for 250 re-
alizations, expressing how well parameter estimates compare
with the “true” parameter values that were generated. Param-
eter errors in Fig. 3 are given as a percentage with respect to
the “true” parameter value. For JHI Run 1 parameter errors
are up to 100 % forKclay andKlime and up to 40 % forDclay.

Geophysical parameterr1 is well-resolved and shows errors
of less than 7 %.t1 andr2 show errors of respectively 40 and
200 %.

The strength of the coupling constraints is subsequently
increased using smaller values forec (Table 2) in JHI Runs
2–7. The blue dashed lines in Fig. 3 shows how parameter es-
timates react as a result of the stronger coupling constraints.
A large and rapid reduction of error can be observed forKclay
showing an error decrease from 100 % to about 10 %. Esti-
mates forDclay do not improve and errors remain at a value
of up to about 40 %. Geophysical parameter errors are fairly
constant for Runs 1–7, except for a slightly increasing num-
ber of realizations showing larger errors for parameterr1 and
t1 in JHI Runs 6 and 7 in which the coupling constraints have
the largest weight.

Figure 4 provides the data fit for the different data types
and constraints used in the JHI in terms of root-mean squared
error (RMSE). For JHI Run 1, head, flux and TDEM data
are fitted with an RMSE of around 1 for most realizations.
In JHI Run 4 coupling constraints become stronger and the
RMSE for the flux and TDEM data start to increase. The head
data do not clearly show this behavior. The RMSE for the
petrophysical coupling constraint shows a decrease for JHI
Runs 4 and 7, whereas the RMSE of the geometric coupling
constraint increases. The latter demonstrates the dominance
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Fig. 5 Error parameter estimates for the second configuration of JHI and SHI runs using 250 parameter realizations and larger ecorr for 2 
the generated “true” parameters. Blue dashed lines indicate parameter errors for JHI Run 1-7, where the cyan lines indicate the 3 
parameter errors for the SHI. 4 
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Fig. 5. Error parameter estimates for the second configuration of JHI and SHI runs using 250 parameter realizations and largerecorr for the
generated “true” parameters. Blue dashed lines indicate parameter errors for JHI Runs 1–7, where the cyan lines indicate the parameter errors
for the SHI.

of the petrophysical coupling constraint due to the employed
weighting strategy and the high parameter sensitivity ofr1
that is subjected to this constraint.

Secondly, a SHI is applied to evaluate the performance of
the JHI. The cyan lines in Fig. 3 show the parameter errors for
the SHI. These results show a large reduction in parameter
error forKclay andDclay compared to JHI Run 1. For param-
eterKclay this reduction of error is similar to JHI Runs 6 and
7. ForDclay the SHI performs better compared to JHI Runs 6
and 7, indicated by the number of JHI realizations with an er-
ror larger than 15 %. Compared to these runs the geophysical
parameter errors are generally smaller for the SHI. The last
column in Fig. 4 lists the data fit for the SHI. As the inverted
TDEM models of JHI Run 1 are used in the SHI, the his-
togram for the TDEM data is identical to that of the TDEM
data in JHI Run 1. Head and flux data are fitted less well
compared to JHI Run 1. The fit for both coupling constraints
indicate a relatively strong petrophysical constraint.

Finally, a second configuration of JHI and SHI is tested
in which a larger standard deviation (ecorr) was used to gen-
erate less correlated parameter realizations forKclay, Dclay,
r1 andt1; 0.1 for the petrophysical constraint and 0.5 for the
geometric constraint. Figure 5 shows a reduction in param-
eter error forKclay compared to JHI Run 1 from about 100
to 60 %. The SHI resulted in a similar reduction. The im-
provement inKclay, however, is much smaller compared to
the results in Fig. 3. Geophysical parametersr1 andr2 in JHI

Runs 6 and 7, show worse estimates compared to JHI Runs 6
and 7 in Fig. 3.

The average computational burden associated with the in-
version for a single realization was 94 (61+ 33) model calls
for the SHI compared to 306 (153+ 153) model calls for
the JHI. As the estimation of geophysical and groundwater
model parameters is conducted simultaneously, the number
of iterations in which geophysical and groundwater model
parameters are updated are the same, which is not the case in
a SHI. This will result in a larger computational burden for
the JHI.

4 Example 2: case study Risby landfill

As second example we consider a steady-state, real-world
groundwater model for Risby landfill located in Denmark,
to which we refer as the Risby model. This model was de-
veloped by Christensen and Balicki (2010) to characterize
the hydrogeological interaction between a landfill, a local
stream and a regional aquifer that is used for water supply.
Christensen and Balicki (2010) provide a thorough descrip-
tion and discussion of the assumptions underlying the setup
of this model and its results.

We investigate the application of a SHI and JHI to inform
the groundwater model with ERT data that was collected near
Risby landfill (Fig. 6). We first list the basic properties of the
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 1 

Fig. 6 An aerial overview of Risby landfill, the ERT profile, parameter PP1 and available boreholes and hydrogeological observation 2 
data at Risby landfill. 3 Fig. 6.An aerial overview of Risby landfill, the ERT profile, param-
eter PP1 and available borehole and hydrogeological observation
data at Risby landfill.

Risby area and the Risby groundwater model, after which
we conduct a simple linear sensitivity analysis for the differ-
ent hydrogeological parameters in the groundwater model,
followed by the application of a SHI and JHI to inform the
groundwater model with the ERT data.

4.1 Description of Risby landfill

An extensive historical overview of Risby landfill was pro-
vided by Thomsen et al. (2011). Figure 6 lists the key fea-
tures of the study area, which are a landfill and a small
brook called Nybølle stream. The geological setting of Risby
landfill (Højberg et al., 2008; CarlBro, 1988) comprises pre-
Quaternary limestone bedrock overlain by Quaternary glacial
deposits. The pre-Quaternary limestone surface is located be-
tween−10 and+5 m a.m.s.l., corresponding to 20–30 m be-
low the natural terrain surface. The Quaternary glacial de-
posits mainly consist of clay till, but intercalated sand lenses
and sand layers are common. The sandy deposits range in
thickness from a few centimeters to several meters.

4.1.1 Groundwater model

Figure 7a shows the horizontal grid discretization that is used
to simulate groundwater levels near Risby landfill. The grid
cell size employed in the groundwater model is 50 m by 50 m.
Near the landfill a smaller cell size of 12.5 m by 12.5 m is em-
ployed. For the geological setup, 5 continuous layers were
chosen, where the 4 upper layers represent the sand and clay
layers of the glacial clay till and the lowest layer represents
the field-scale limestone aquifer. The top layer of the model,
with its bottom elevation fixed at+15 m a.m.s.l. was subdi-
vided in 3 zones, which represent the extent of the upper
sandy and clayey deposits together with the delineation of
the northern part of the landfill (Fig. 7a).

 

 1 
 2 
Fig. 7 Horizontal discretization of the Risby groundwater model and zonation of layer 1 (a) and the geological setup and boundary 3 
conditions used (b). 4 

Fig. 7. Horizontal discretization of the Risby groundwater model
and zonation of layer 1(a) and the geological setup and boundary
conditions used(b).

Boundary conditions applied in the Risby model are
shown in Fig. 7b and consist of constant heads, derived from
a regional groundwater model, referred to as the GEUS-
model (Højberg et al., 2008). The limestone was assumed
to be impermeable at a level of−50 m a.m.s.l. and a no
flow boundary was therefore assigned. The boundaries for
the top layer and the remaining two clay layers were also
set as no flow boundaries. The symbolsQGEUS, HGEUS and
RGEUS indicate the specified flux, constant head values and
recharge, which were extracted from the regional GEUS-
model. Boundaries for the limestone were set as constant
head boundaries with a hydraulic head equal to 14.9 m. The
isopotential used, was the average simulated head in the
limestone for the period 2001–2005 (Højberg et al., 2008).
Boundaries for the sand layer were prescribed flux bound-
aries. A flux of 7.2× 10−6 m3 s−1 was applied for all cells
along the boundary.

In Christensen and Balicki (2010) the Risby model was
calibrated using 6 parameters listed in Table 3, representing
a uniform hydraulic conductivity for every geological layer,
except for the uppermost layer, which consists of 3 separate
zones and the bottom clay layer for which the hydraulic con-
ductivity was fixed. The observation data comprised 34 head
measurements and 4 flux measurements (Fig. 6).
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Table 3. Inversion results JHI and SHI for Risby landfill.

Inversion result CHI (ec = 0.2) SHI Separate_Inversion

Log10K_clay [m d−1] −7.79± 0.19 7.54± 0.16 −7.52± 0.19
Log10K_sand [m d−1] −3.96± 0.47 −4.26± 0.38 −4.25± 0.44
Log10K_lime [m d−1] −3.85± 0.04 −3.96± 0.14 −3.99±0.66
Log10K_risbyn [m d−1] −2.20± 0.16 −2.33± 0.01 −2.39± 0.63
Log10K_claytop [m d−1] −5.93± 0.33 −5.81± 0.35 −5.80± 0.25
Log10K_sandtop [m d−1] −4.35± 0.33 −4.43± 0.33 −4.42± 0.01
PP1 [m] 26.58± 0.57 28.03± 0.99 28.26± 0.54
Average thick1, model 14–16 [m] 4.53± 3.08 4.55± 2.95 4.55± 2.95
Average thick2, model 14–16 [m] 20.16± 3.94 20.22± 3.98 20.22± 3.98
Average Log10 res1, model 1–10 [�m] 1.02± 0.10 1.01± 0.08 1.01± 0.08
Average Log10 res2, model 1–10 [�m] 1.44± 0.46 1.88± 0.54 1.88± 0.54
Groundwater model runs 210 63 91
Geophysical model runs 3230 1520 1520
Misfit geophysicsφg 0.80 0.79 0.79
Misfit hydrogeologyφh 0.76 0.70 0.65

4.1.2 ERT data

The landfill and its surroundings were mapped using various
geoelectrical profiles for which ERT and induced polariza-
tion data (Slater, 2007) were collected in order to delineate
the landfill, sand pockets and the thickness of the glacial de-
posits overlying the limestone aquifer (Gazoty et al., unpub-
lished data). To demonstrate the SHI and JHI, we used the
data associated with one of these ERT profiles north of the
landfill; the location of the profile is shown in Fig. 6.

Figure 8a shows the inverted resistivity model for the
ERT profile using a few-layer, laterally constrained inversion
(LCI) approach as discussed in Sect. 2.1. This ERT profile
consists of 37 1-D resistivity models with 3 layers and is ori-
entated west–east (model number 0 marks the western point).
The parameters estimated for each of the 37 resistivity mod-
els (5 m spaced) comprise 3 layer resistivities (r1, r2 andr3)

and 2 layer thicknesses (t1 andt2). Lateral constraints were
used with a weight factor of 1.2 for the layer depths (CRh)

and a weight factor of 1.2 for the resistivities between neigh-
boring resistivity models. These weight factors are described
in Auken and Christiansen (2004) and their value is subjec-
tively determined and based on common practice ranges sug-
gested in HGG (2008).

At the location of the ERT profile, boreholes showed a de-
pression in the limestone surface down to ca.−10 m a.m.s.l.
This depression has been interpreted as a buried paleoval-
ley in the pre-Quaternary landscape and its shape is not well
captured with the available boreholes. Another characteristic
are relatively thick sand layers at the eastern part of Risby
landfill.

In Fig. 8a the limestone shows up as a bottom layer of
relatively resistive material of ca. 100–150�m, which dips
down towards the east. Sandy deposits are more abundant at
the eastern part of the landfill as evidenced by the relatively
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Fig. 8 Inverted ERT model obtained after a separate geophysical inversion (a) and using the JHI with ec=0.2 (b) together with a 2 
parameter uncertainty analysis expressed by their standard deviation relative to the parameter estimate. A gray scale marks well (dark 3 
colored) and undetermined parameters (light colored) for the separate geophysical inversion (c) and a JHI with ec=0.2 (d). 4 
 5 

Fig. 8. Inverted ERT model obtained after a separate geophysical
inversion(a) and using the JHI withec = 0.2(b) together with a pa-
rameter uncertainty analysis expressed by their standard deviation
relative to the parameter estimate. A gray scale marks well (dark
colored) and undetermined parameters (light colored) for the sepa-
rate geophysical inversion(c) and a JHI withec = 0.2 (d).

high electrical resistivities of about 50–80�m recorded at
the eastern part of the profile (model numbers 15–37). The
top layer with a resistivity of ca. 10�m is more pronounced
at the western part of the profile (model numbers 1–10), in-
dicating predominantly clayey deposits. The presence of the
landfill and an associated leachate plume might slightly af-
fect this estimated resistivity. Leachate migration is not con-
sidered in this study because the discretization of the ground-
water model is insufficient to accurately simulate this process
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Fig. 9 Scaled Sensitivities for the parameters of the Risby model. 2 Fig. 9.Scaled sensitivities for the parameters of the Risby model.

(Milosevic et al., 2012). Figure 8c shows the uncertainty as-
sociated with the parameters that are estimated in the ERT
model, expressed by their standard deviation as a percentage
of the parameter estimate. This parameter uncertainty anal-
ysis included all the information provided by the data and
parameter constraints. Note light colors in Fig. 8c indicate
relatively poorly resolved parameters, e.g.,r1, r2 and t1 for
models 1–10.

4.2 Informing the Risby model with ERT data

As mentioned before, 6 parameters are estimated in the orig-
inal Risby model (Christensen and Balicki, 2010), which are
listed in Table 3. For these parameters a local, linear sensi-
tivity analysis (Fig. 9) is conducted using PEST (Doherty,
2010). This analysis shows that the hydraulic conductivity
pertaining to the clay layer (Kclay) is the most sensitive pa-
rameter.

To improve the estimate ofKclay a petrophysical relation-
ship is applied, which is used in Eqs. (25) and (26). An
expected value of 9 is used, as clay till has an approxi-
mate hydraulic conductivity of 10−8 m s−1 (Fredericia, 1990;
CarlBro, 1988) and an electrical resistivity of about 101 �m
(Kirsch, 2006). This relationship implies a higher electrical
resistivity is accompanied by a smaller clay content, which,
in turn, results in a higher hydraulic conductivity.r1 andr2 in
resistivity model numbers 1–10 are coupled to the estimation
of Kclay, as the area eastern part of the ERT profile (model
numbers 15–37) contains large sandy deposits embedded in
the clay. As we are only using a 3 layer resistivity model the
average electrical resistivity in this part of the domain would
not reflect the resistivity of the clay appropriately.

As the ERT model also informs about the depth to the
limestone, we introduce an additional parameter (PP1) in
the groundwater model representing the top elevation of the
limestone. PP1 represents a single pilot point (Certes and De-
marsily, 1991) used to interpolate the elevation of the lime-
stone surface together with the available borehole informa-
tion. The location of PP1, which is shown in Fig. 6, is picked
as the depression of the limestone surface, occurring at the
northeastern part of the landfill, is not well characterized. As

expected, the calculated sensitivity, based on Hill (1998), of
this parameter is very small with respect to the hydrogeo-
logical observations (Fig. 9). To demonstrate the effect of
geometric coupling we use parameter PP1 in the inversion
process. Parameterst1 and t2 in model numbers 14, 15 and
16 are coupled to the estimation of PP1.

4.3 SHI

The SHI starts with the estimated geophysical model shown
in Fig. 8a. The scale of the individual 1-D resistivity mod-
els comprised by the ERT model is rather small (electrode
spacing of 5 m) compared to the grid cell size of 12.5 m used
in the groundwater model. For this purpose we have chosen
to constrainKclay with the average electrical resistivity es-
timates,r1 and r2, pertaining to resistivity model numbers
1–10. To constrain the estimation of PP1 we use the average
sum oft1 andt2 pertaining to resistivity model numbers 14,
15 and 16. The weights associated with the constraints were
based on the standard deviations of the geophysical parame-
ter estimates calculated using Eq. (7).

4.4 JHI

We also apply a JHI for the Risby model to estimater1, r2
andKclay using the petrophysical relationship described in
Sect. 4.2. For the estimation of the depth to the limestone we
introduce a geometric coupling constraint between parame-
ters PP1, t1 and t2. The petrophysical coupling constraint is
used for resistivity models 1–10, the geometric constraint for
resistivity models 14, 15 and 16.

4.5 Results

The last column in Table 3 shows the parameter estima-
tion results for a separate inversion of both the geophysical
and the groundwater model. Most of the parameters in the
groundwater model are estimated with relatively small pos-
terior standard deviation. When performing a SHI (Table 3,
column 2), the decrease in parameter uncertainty is negligi-
ble except forKlime andKrisbyn. Parameter estimates remain
similar to the separate inversion, which is likely caused by
the large standard deviations associated with the geophysical
parameters that are coupled with the groundwater model. In
Fig. 8c these parameters show a relatively large standard de-
viation. As we used this standard deviation to determine the
weight of the constraints in the SHI, the constraint might be
too weak to affect the estimation of the groundwater model
parameters significantly.

Figure 10 shows the parameter estimates and 68 %-
confidence intervals for the JHI, when using different weight
values for the coupling constraints (ec). The parameter esti-
mates forKclay andr2 are affected when the weight of the
petrophysical relationship is increased by setting the accept-
able errorec to a smaller value. The geometric constraint
between PP1, t1 and t2 does not have a big impact on the
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Fig. 10. Parameter estimates (black straight line) and confidence bounds (red dashed lines) for different values ofec when performing a
JHI using a petrophysical relationship betweenKclay, r1 andr2 and a geometrical constraint between parameters PP1 and t1 and t2. The
confidence bounds represent the parameter estimate± 2 standard deviations.

estimated values of the geophysical parameters. However the
estimate of PP1 does approximate the geophysical model
better when the constraint is given more weight. The aver-
age depth to the limestone in the ERT model is about 25 m
(t1+ t2). In the groundwater model, this depth is estimated to
be 28.3 m± 0.5 and 28.0 m± 1.0 m using a separate inver-
sion and a SHI, respectively. In the JHI this estimate becomes
ca. 26.6 m± 0.6 m. Table 3 shows that standard deviations
of the groundwater model parameters for the JHI are almost
equivalent compared to the SHI, but smaller compared with
a separate inversion.

The main advantage of the JHI is seen from the estimated
values for the geophysical parameters that are allowed to
change in the JHI. Geophysical layer thicknesses,t1 andt2,
decrease slightly compared with the SHI, while electrical re-
sistivity r2 shows a more significant change.

Figure 8b is the inverted ERT model using the JHI with an
ec of 0.2. Compared with the geophysical inversion results in
Fig. 8a the estimated resistivity of layer 2 dropped from an
average of 75 to ca. 30�m for resistivity models 1–10. These
are the models for which electrical resistivitiesr1 andr2 were
coupled toKclay in the groundwater model. Figure 8d shows
the standard deviations associated with the estimated geo-
physical model obtained with the JHI. The standard deviation

of parameterr2 indicates it is not well determined using the
JHI as was the case in the separate geophysical inversion.
r1 is determined with an approximate standard deviation of
10 %. However, Fig. 8d showst1 is less well resolved for
those model numbers where the petrophysical relationship
is applied. The geometric coupling constraint does not show
any effect on the estimated geophysical models in Fig. 8.

Table 3 lists the RMSE with respect to the geophysical
and hydrogeological observations (respectivelyϕg andϕh),
which was smaller than 1 for all simulations. No significant
increase in data fit was noted, except a slightly higherϕh
for the JHI. Increasing the weight of the coupling constraints
(by decreasingec) or increasing the number of coupling con-
straints, will ultimately result in an increase inϕg andϕh, as
the geophysical and groundwater data will pull parameters in
different directions.

The last entry in Table 3 is the amount of model runs
needed to perform the different inversion types. The JHI re-
quired about twice as many geophysical and groundwater
model runs compared to the separate inversion and ca. 3
times as many groundwater model runs compared with the
SHI.
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5 Discussion and conclusions

This study tested a SHI and a new type of JHI for a ground-
water model and different types of geophysical data. The
JHI estimated geophysical and groundwater parameters si-
multaneously, employing coupling constraints acting as ad-
ditional regularization terms to exploit potential correlation
between geophysical and hydrogeological properties that can
be based on established petrophysical relationships. The SHI
employed similar coupling constraints, but included an inde-
pendent geophysical inversion. The weight of the SHI cou-
pling constraints was based on geophysical parameter reso-
lution.

Both the SHI and JHI approaches can provide consistent
inversion frameworks and offer a high level of flexibility
when coupling groundwater and geophysical models because

1. only selected geophysical model parameters can be
coupled to groundwater model parameters,

2. confidence associated with the hydrological interpre-
tation of a geophysical model can be tuned using dif-
ferent weights for the employed coupling constraints,

3. scale issues can be overcome by coupling several geo-
physical parameters to hydrological parameters or vice
versa,

4. SHI and JHI can be applied for various combinations
of geophysical methods and groundwater models, and

5. SHI and JHI can be used with other types of optimiza-
tion methods (e.g., Markov–Chain Monte Carlo meth-
ods) by adding an additional coupling constraint com-
ponent to the objective function that is minimized.

Furthermore, the JHI and SHI are consistent with state-of-
the-art inversion techniques used for groundwater models,
resistivity and airborne electromagnetic data.

For a synthetic study, comprising a cross-sectional ground-
water model and TDEM data, a JHI and SHI resulted in im-
proved parameter estimates and a reduction in parameter un-
certainty in comparison with a groundwater model that is
not informed with TDEM data. Groundwater parameter esti-
mates using a JHI did not improve compared with a SHI and
resulted in slightly worse parameter estimates for the geo-
physical model when using large weights for the coupling
constraints. A second configuration of the synthetic study,
incorporating lower quality (petro)physical relationships be-
tween geophysical and groundwater parameters resulted in
decreasing performances for both the SHI and JHI. The SHI
performed slightly better compared to the JHI based on the
geophysical parameter estimates and geophysical data mis-
fit. In contrast to the JHI, the SHI overestimated the level
of correlation between geophysical and groundwater param-
eters. To avoid overestimating model coupling strength in
a SHI (which can result in an underestimation of parame-
ter uncertainty), weighting strategies for parameter coupling

constraints should be based on that element (parameter res-
olution or petrophysical relationship) that incorporates the
largest error.

For the case of a real-world, field-scale groundwater model
and an ERT section, parameter uncertainty was significantly
decreased for two parameters in the groundwater model us-
ing both a JHI and SHI. The JHI resulted in different param-
eter estimates for both the groundwater and the geophysical
model, honoring the imposed coupling constraints. Parame-
ter uncertainty was not reduced in comparison with a SHI.

For the cases investigated in this paper the SHI proves to
be more useful based on analyses of parameter estimates and
data fit. In addition, the JHI requires a 2–3 times larger com-
putational burden and is relatively difficult to implement. The
JHI might still be useful when groundwater and geophysical
models can mutually benefit from differences in parameter
resolution. For coupling geophysical models with field-scale
or regional groundwater models, such situation is not likely
to occur as the groundwater models are relatively more prone
to conceptual errors and limited observation data. Finally,
when planning hydrogeophysical surveys and modeling, pa-
rameter sensitivity studies are of crucial importance to ex-
plore parameters that need to be determined, given targeted
groundwater model predictions, and to determine whether
parameter resolution in geophysical models provides oppor-
tunities to constrain these parameters.
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