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In this paper we investigate the possibility of controlling the color and appearance of surfaces simply by modifying
the height profile of the surface on a nanoscale level. The applications for such methods are numerous: new design
possibilities for high-end products, color engraving on any highly reflective surface, paint-free text and coloration,
UV-resistant coloring, etc. In this initial study, the main focus is on finding a systematic way to obtain these results.
For now the simulation and optimization is based on a simple scalar diffraction theory model. From the results,
several design issues are identified: some colors are harder to optimize for than others, and some can be produced
by only a few height levels, whereas others require more complex structures. It is shown that a wide range of
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results can be obtained. © 2014 Optical Society of America
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1. INTRODUCTION

Structural colors are colors caused by the interaction of light
with small structures—most of them containing features com-
parable to the wavelength of light [1-3]. This makes it possible
to obtain new colors (or appearances) that cannot be obtained
through absorption-based methods like dyeing. Typical exam-
ples of structural colors include CDs, which contain gratings
in the micrometer range, thin-film interference in soap bub-
bles due to their micrometer thickness, and the colorful ap-
pearance of peacock feathers due to even more complex
microstructural effects [2,4].

Already in 1665 the effect of structural colors was de-
scribed in the literature by Robert Hooke: “In this we are able
from a colourless body to produce several coloured bodies,
affording all the variety of Colours imaginable” [5]. This
was only a few years after he formulated the wave theory
of light, and since then many light experiments and color phe-
nomena have been described. This is particularly true regard-
ing the era after the introduction of Maxwell's equations.
Furthermore, the increase in microscope resolution and
computational power in recent decades has made it possible
to study micro- and nanostructures and their interaction with
light on an even more detailed level. This is evident in the
detailed study of the microstructure of the Morpho butterfly
(see [6-8]).

A lot of effort has been put into these investigations, and it
has even been possible to successfully reproduce the color
effect of the Morpho butterfly [9]. Few, though, have tried
to approach structural colors from a different aspect than
biomimicry. In this paper we will consider the inverse prob-
lem: if a color effect is desired, which grating structure can
represent it? Based only on variations of the surface profile,
this paper studies how well color effects can be obtained us-
ing gradient-based optimization of structures analyzed using

0740-3224/14/020207-11$15.00/0

scalar diffraction theory (SDT). More specifically, the results
presented here examine whether it is possible to create a
constant color within a certain angular interval.

The overall aim is to explore the limits of structural colors.
Applications for structural coloring include altering the color
of certain products even though they are made of the same
material by, e.g., changing the casting mold (plastic colora-
tion, preprinted text) [10], new color appearances for product
design, extremely durable colors due to UV stability [11], secu-
rity labeling [12], improved optical materials (antireflective
surfaces, such as moth eye structures [11], color filters
[13], and solar cell films [14]), and more eco-friendly produc-
tion processes that avoid the use of paint.

It is important to stress that structuring an objects surface
is just one out of many fundamentally different methods of
obtaining structural colors. Whereas gratings are often mass
produceable due to cast molding and etching technologies,
other methods with different purposes have been investi-
gated, and a wide range of colors have been produced. Exam-
ples are surface plasmons on structured surfaces with
deposited metallic layers [15,16], controlling absorption of
coated metallic nanoparticles by controlling size parameters
[17], and plasmon effects in carbon nanostructures [18]. All of
these methods are capable of producing a variety of colors,
but with little control of their appearance with respect to
angular distribution. However, in optics the control of angular
distribution and intensities for different purposes has been
studied. In [19] intensities for periodic narrowband structures
were optimized using the nongradient-based particle swarm
optimization method. In [13] surfaces were optimized for solar
cell use. A number of methods for improving antireflective
surfaces exist, one example of which is given in [20]. The
design of such gratings can be seen as a special case (periodic
and single frequency) of the optimization formulation

© 2014 Optical Society of America
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developed in this work. To the best of the authors’ knowledge
the only other works exploring the possibilities of systematic
design of surfaces with angular distributed colors are [21] and
[22]. These papers consider more complex distributions of
material based on the topology optimization approach
(ct. [23]).

The rest of the paper is organized as follows. Section 2 de-
scribes the implementation of the physics and how to obtain a
far-field response for the reflection of a surface, Section 3
describes how to convert light spectra to RGB colors,
Section 4 states the proposed optimization problem for color
optimization, Section 5 presents results from the optimization,
and Section 6 draws conclusions from the study.

2. SCALAR DIFFRACTION THEORY

All simulations in this paper are based on SDT. This theory is
widely used for calculating diffraction gratings and surface
scattering problems such as estimating reflection from rough
surfaces. The simplicity of the mathematical expressions
in SDT means that calculations can be made rapidly, and
they are thus well suited for use in optimization problems
where repetitive simulations are required. SDT—and its
shortcomings—is well described in the literature, and the
most central result in this theory is the relation between
far-field irradiance, E, and a complex amplitude distribution,
U, emerging from the surface of an aperture (which later will
be used as a model for the actual surface profile) [24-26]:

Fwe( L)

where 1 is the wavelength and the coordinate components x,
Y, 2, &, y are as shown in Fig. 1. F represents the Fourier
transform and is defined as

2

ey

J ! 1
E(x,y)zﬁ

FU@ )} En = / " / " U y)e s mardy. (2

The strength of SDT lies in the fact that many different physi-
cal setups can be described by defining U the right way. For
the purpose of this paper, U will describe the complex phase

E (x/ 7 y/ )
x z
dzdy
«H—P >
. y Y
Incoming
wavefront
Far-field
Aperture evaluation
plane plane

Fig. 1. Geometry for the scalar diffraction setup.
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modulation of a plane wave incident on a structured surface
(see Fig. 2 for a 2D example). Using this setup for a material
with constant reflection R, the complex amplitude distribution
is then described as

U(x, y) — AeZniZ(hmf—h(x.y))/A — Ae—4mﬁh(x.y)/le4/rih,ef/l’ (3)

where A = R in the region of interest and A = 0 (nonreflect-
ing/totally absorbing) elsewhere. Since the phase information
will be of no interest in the far field, the constant phase
part with h, is dropped for convenience. Furthermore, this
paper will not consider material properties, but just a full
reflecting surface in free space. Therefore the amplitude will
be dropped as well, so that the complex amplitude function is
described as

U(x.y) = rect (z,y)e w2, @)

where rectg(x) is a function that is 1 for x € Q and 0 other-
wise. A is the region of interest.

A. Perception of Radiated Intensity

The expression in Eq. (1) is not easy to relate to the visual
appearance of a surface. First, appearance is more naturally
perceived with respect to viewing angle (in degrees), and sec-
ond, irradiance is not proportional to the response of the hu-
man eye. Instead radiance will be used, as it possesses this
property [27]. The coordinate system is first scaled and trans-
formed such that

x=ux/2, y=1y/a, 2==z/2 6))

and
a=x/7 p=1/7 y = 2/1, ©)

where 7 = /2% + 9. a and S are referred to as direction
cosines, and their relation to a conventional spherical coordi-
nate system is [28]

a = sin @ cos ¢, )
p = sin 0 sin ¢, ®
y = cos ¢. ©))
” Aperture plane”
h(z) (phase for incoming
A wave defined as zero)

T R SURIR

» T
Fig. 2. Illustration of how a reflective grating can be turned

equivalent to a complex distribution on an aperture plane. The phase
lag is due to the extra distance traveled by the wave.




Johansen et al.

Using this transformation, the radiance L (and not irradiance)
is given as [28,29]

2
Lia.p) = T IF UG 3.0 (@ pP

1

where A, is the area of the aperture, and the last equality can
be shown by substitution of variables in the Fourier integral.
In spherical coordinates this means that the relation between
radiance and irradiance far from the observer is given by
L6, ) = r*E(0, )/ (A cos ), where 7 is the distance from
the source to the observation point. In two dimensions
(the ¢ = 0 plane) the expression in Eq. (10) simplifies to

L(®) =Li0|f{U(x)}(a/ﬂ)l2, an

where L, is now the length of the aperture. This will be the
starting point for all subsequent derivations.

B. Limitations of SDT

The advantage of SDT is the physical knowledge to be gained
from its simplicity, and the disadvantage is that some physical
properties are neglected due to its simplicity (see, e.g., [30] for
a discussion on the interpretation of diffraction gratings). In-
herent in the previous expressions is a small-angle (paraxial)
approximation [28], meaning that the expressions lose their
validity if energy ends up outside of the hemisphere above
the surface. This is where 0 & [-90", 90°] (see, e.g., Fig. 5). This
can in our case be corrected for [28] by normalizing L such
that the energy when integrating over 6 € [-90°,90°] corre-
sponds to the incoming energy, since we assume full reflec-
tion. The extension is called nonparaxial SDT. Since we are
optimizing for small angles and normal incoming light and
do not want structures with features approaching the element
resolution size of the model, which would give rise to this
effect due to the high-spatial-frequency content [28], we have
not found it necessary to do so—only when performing
checks on the validity of the final result obtained. Other
important limitations are that SDT takes only “first surface
reflections” into account, which means that no multiple scat-
tering or surface plasmon effects can be captured in this
way, and that in two dimensions SDT best corresponds to
TM-polarized light. This is because the TM polarization has
the E-field going out of plane in Fig. 2, and the boundary
conditions do not require zero field for electrical components
parallel to a full reflecting plane. For components
perpendicular to the plane, zero field is required, thus making
TE polarization a worse approximation, since on nonhorizon-
tal edges the boundary condition is violated.

C. Discretization of SDT

Normally, diffraction gratings described by SDT are evaluated
using a fast Fourier transform (FFT). In this paper, another
approach is proposed, which consists of representing the
surface using rectangular sections that all have contributions
that can be found analytically. This means that the
formulation can be used for very large as well as small ele-
ments, always yielding a correct solution (to the SDT formu-
lation) and not having to oversample or zero pad the FFT.
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Furthermore, the gradients for the system can be found
analytically. It can also be implemented with a constant
memory consumption independent of the number of ele-
ments. The trade-off for this is speed. If a continuous function
must be analyzed, it can be approximated by taking the aver-
age continuous value in an interval, as when discretizing any
other physical structure (see Fig. 3).

For all simulations in this paper, the rectangular sections all
have a constant width d and are divided into N elements. If
{h,}N=} are the corresponding N heights, as seen in Fig. 3,
then the height function is

N-1
h(x) ~ Z rect(x/d — n)h,,
n=0

1 forO<x<1,
where rect(r) = { (12)
0 otherwise.

Finding the response of this structure is straightforward due
to the linearity of the Fourier transform and the well-known
solution of the Fourier transform of a rectangle:

La) = Lio | (recty, (x)e =m0/} (/)2

2

1 N-1 ‘
= Nd f{z recty yj(x/d - n)e‘4”lh"/’1}(a//1)
n=0
1 N-1 ) 2
= d > e/t Fvect yy(x/d - n)}a/A)
n=0
= S . . z
— N_ Z e~4mihy, /A g o-rida/i g2rinda/dgin o (da/2)
d n=0
2
15 orida/iyn
3 . _ ”' maafA
e~/ sinc(da/2) N et/ (e 'l 13)

const.shape height translation

The different products of this expression all have a physical
interpretation. First, the response is shaped by C(a) =
e~"ida/% sinc(da/A), which is due to the choice of rectangles
as the interpolation function. If d is large, then the sinc function
will give rise to unavoidable zeros in the angular
domain (this is also in agreement with the physics), but for
da/l — 0, the expression converges toward 1, thus not influ-
encing the response if the approximation of & is well resolved.
H, = e *"/* describes the phase change to which the height
at n gives rise, and T, (a) = (e274*/*)* modulates the phase
change with a factor corresponding to the translation of the
structure with respect to the origin. Note that 7', = (T)". It

P
d

Fig. 3. Discretization of a surface into rectangular bumps.
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can furthermore be seen from this expression how all element
contributions are independent of each other. This means
that there is no coupling or other interaction between the
elements, which is also an implicit assumption when using
SDT. The expression can now more compactly be written as
2

1 N-1
L(a) = ’cwﬁZHn(a)Tn(a) 14
n=0

1. Implementation

To calculate the responses in an efficient way, two steps are
taken. First, H,, is precalculated and stored in matrices for a
wide range of equally spaced heights, so when a height is
given, the response is calculated as a linear interpolation of
the two closest heights. This could in general give rise to
two problems: first, such interpolation makes the gradient
piecewise linear, thus not giving continuous derivatives for
the gradient-based optimization algorithm, and second, a lin-
ear interpolation of numbers on the complex unit circle will
not yield correct values. In practice, though, no problems have
been observed regarding these issues, as the interpolation
points are quite close. For all of the experiments in this paper,
a spacing of 1 nm is used. In the second step, it is not neces-
sary to calculate all the translation matrices, because of their
recursive relationship. For our choice of implementation it is
favorable with respect to speed to implement the calculations
using a recursive approach defined by

Tlp’nfl —+ HN,I,n for n > 0,
Hy_; forn =0,

(15)

14 .
P= CNPN, where P, = {

where P satisfies L = |P|?. This formula can be intuitively
understood as starting with the rightmost rectangle at the ori-
gin, translating it d, adding the element that should be to the
left of it, translating the new structure d, and then continuing
this process until all elements have been “pushed” into the
right order. It is interesting to note that the 7'; and 13" are ma-
trices whose size is determined as the product of the number
of wavelengths and the number of reflection angles. The H,,
values depend on the number of height discretization steps
and the number of wavelengths, and there is as such no
dependence on the number of elements used. The calculations
therefore have a constant memory consumption independent
of the number of elements—except the array in which the
element heights are stored. The solving time increases linearly
due to the recursive summation. This is because there is no
coupling between the elements.

2. Gradient Calculation

As the optimization is gradient based, the gradients of the
reflected field with respect to height changes are needed.
Due to the fact that every element is decoupled from every
other, the gradients with respect to the height variation that
are required for the optimization can simply be found as

oP 19

& _ N7 L paringa
oh; N "on
47 ik 47
= —mCTje Azl /3 — _MCTjHj‘ (16)

Johansen et al.

3. COLOR CONVERSION

The color conversion is performed using

R= / Z IQ)F()da, (17
0

6= [Troana, (18)
0

B= / “ Ibwyan, (19)
0

where 7, g, b are the color-matching functions shown in Fig. 4
and I(4) is the light spectrum to be converted [31]. The color-
matching functions are obtained by taking the CIE 1931 2°
standard observer color-matching functions, ¥, ¥, 2, which
are found in [32], and converting them to RGB color-matching
functions by a linear transform with values as specified in [33],
where the white reference used is the D65 illuminant that
resembles the sun. This procedure is the same as in [22].
To simplify the notation, we will refer to colors as three-
dimensional vectors, i.e., C = (R, G, B)’.

A. Randomization

In the literature it has been shown how a random height varia-
tion of a repeated base structure will spread the color re-
sponse to a wider angular range than if no randomization
is introduced, where grating modes will be visible. This has
in particular been studied for the Morpho butterfly, and
numerical as well as experimental results can be found in
[6-9]. For this paper we assume that the same kind of ran-
domization can be added to the developed designs, thus mak-
ing them usable for coloring a surface without strong
diffraction effects. Performing the actual randomization is be-
yond the scope of this paper.

4. OPTIMIZATION PROBLEM

The purpose of optimizing the surface structures is to be able
to obtain a prescribed angular color response with as strong
an intensity as possible. To do so, we have implemented
an algorithm for working on the following optimization
problem:

RGB matching functions

400 450 500 550 600 650 700 750
Wavelength [nm]

Fig. 4. CIE 1931 2° color-matching functions converted to RGB
weighting functions with a D65 illuminant as reference.
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_”C(h~6i)”2+c IVA|®

) — ,
min Jh) =, max = e @R S (Nay?
s.t. hmjn <h< hmax’
. 2
fi(h) = |C(R, ;) x Cy(6,)]] <0. 20)

ElCenz T

where f is the objective function, the f; denotes the M
constraint functions, ||-| is the Euclidean norm, h =
(hg, Ry, ...hy_1) is the design vector describing the heights
of the profile, Vh = (ky — kg, hy — hy, ...hy_1 — hy_3) is a mea-
sure of the height differences between each element, C((9;) is
the prescribed color vector we want to obtain at the angle 6;,
M is the number of angles we consider in the optimization
problem, h;,, h,.x are box constraints, and ¢; and ¢ are
variables used to control the optimization problem, and they
are described below.

The objective is formulated to maximize the worst-case
(with respect to angle) desired color energy, subject to a con-
straint restricting energy in undesired color directions. This
can be seen by considering

IC x Co|l* = [n sing|CIl - |Coll]]*
= [IC|I*- Co|* - sin® g, @D

where ¢ is the angle between the two three-dimensional color
vectors. Here it is seen how the squared cross product is pro-
portional to the product of sin? ¢ and its own length squared.
This means that the term approaches zero for vectors in the
same direction or vectors with no intensity. Since we seek to
maximize the color intensity, the algorithm will in practice try
to satisfy the constraint by having a small angle between the
vectors and not by keeping the intensity low. The variable ¢ is
then used to control how small the angle should be without
violating the constraint and has been set to ¢ = 0.01 for all
optimizations in this paper. This ensures that we obtain a
color close to the prescribed color. The parameter c; is used
for regularization by weighting the total variation of the design
and is discussed in detail in the next section.

Since the optimization problems considered all require a
symmetric color response, we have imposed a symmetry con-
dition on the physical design.

The problem has been solved using the method of moving
asymptotes [34]. This is a gradient-based optimization algo-
rithm, and the gradient of the objective and the constraints
can be calculated analytically using the chain rule, the linear
color transform, and Eq. (16). Other nonlinear solvers han-
dling inequality constraints could have been used as well.

A. Regularization Scheme

Various regularization techniques reviewed in [35] have been
tried out, but based on experiments we prefer a penalization
of the 2-norm of the design gradients, as proposed for other
problems in [36]. The implementation of this is what can be
seen as the last term in the objective function of Eq. (20).
By doing so, a penalty for having huge jumps between neigh-
boring elements is introduced, as well as a penalty for having
sharp edges compared to soft edges. This is because the
height differences are squared, and hence jumps between 0
and 1 are much more heavily penalized than those between
0 and 0.5—e.g., consider how three elements defined such that
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h = (0,0,1) will be penalized more than & = (0,0.5,1). The
obvious goal of removing small features is therefore present,
and furthermore the preference for soft curves makes it easier
for the optimizer to move elements from one level to another.
This is important because we have found that the cost
function often does not have monotonic behavior in going
from one level to another, causing the (gradient-based) opti-
mizer to maintain its “levels” when they are found. At the same
time, no minimum length scale is imposed by this method,
leaving the optimization algorithm free to create features of
any desired size.

In order to avoid any bias in the results caused by the regu-
larization, a continuation approach is used. In contrast to nor-
mal continuation approaches, where an optimization is
initialized with a large penalty/filter parameter and then it
is gradually decreased, here the design is started with ¢; from
Eq. (20) set to zero, and then gradually c, is increased when
the optimizer approaches a convergent design (for these spe-
cific cases, a Karush—Kuhn-Tucker norm smaller than 0.1 has
been used as the criterion) to a large value of ¢; (between 30
and 40) and afterward gradually decreased—using the same
scheme—until ¢; = 0 and the optimizer is then continued until
convergence. Due to the color constraint in the formulation of
the optimization problem, we retain a design with the desired
color, no matter how large we set c¢;, and the maximum c,
value is therefore a parameter defining how many features
we are willing to remove. The maximum size of ¢; is found
not to be very critical for the overall features and
performance of the final design.

B. Setup

To obtain the following results, the setup is as shown in Fig. 5.
That is, the optimization is performed for a 2 pm wide surface
with light incident along the normal of the surface, which is
the only contribution to the far field. The surroundings are
considered absorbing, not present or in other ways nonreflect-
ing. The small surface size is chosen to restrict the problem to
a size that is easier for the optimization to handle, and be-
cause, if a surface is to be colored this way, the most feasible
and production-friendly way would seem to be to find a small
structure that can then be repeated with added randomness
[9]. Another issue is that for larger structures, the incoherence
of light would have to be taken into account [8]. The optimi-
zation is carried out for 20 equidistant wavelengths between
400 and 700 nm. It is found that fewer wavelengths make it
difficult to resolve especially green colors well. The spacing
between angles specified for optimization is 1°, and the
element spacing, d, is set to 10 nm.

Fig. 5. Physics for the optimization problem.
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5. RESULTS

The optimization is performed for two different setups: one
for a simple specular reflection, and another for a constant
color in an angular range of —10° to 10°. The first setup is used
to prove the validity of the procedure by comparing it to ana-
lytical calculations—and also to reveal certain features of the
optimized designs—whereas the second setup tests its useful-
ness for designing more complex color effects that cannot be
predicted by intuition or simple formulas.

It should be noted that since the level of reflected energy is
determined a priori by the SDT formulation (e.g., no extra
absorption or transmission effects possible, such as surface
plasmons), then the colors suppressed in a certain angular in-
terval will be present outside this interval. Roughly speaking,
the complementary color to C, will be spread out in the rest of
the angular domain. This means that a structure scattering
blue around the specular direction will have the red and green
color components “smeared” out in the rest of the angular do-
main, as seen in Fig. 6. Furthermore, all color plots in the fol-
lowing take the form seen in Fig. 6, with curves for R, G, and B
on a background colored by the combined RGB value of the
curves to illustrate the actual color.

A. Designing Specular Reflection

As a benchmark case for the proposed optimization pro-
cedure, optimization of the specular reflection for light inci-
dent normal to a structure is used. For transmission
gratings (by scaling the height, the results can be used for
transmission gratings as well), this type of structure is re-
ferred to as zero-order diffraction (ZOD) and finds its use
in, e.g., color filters.

1. Analytical Solution for the Binary Grating
Using SDT, the expression for zero-order reflection simplifies
a great deal, since this corresponds to putting a« = 0 in

Eq. (13):

— 2
1N1

_ ~4rih, /2
L(O) - ‘NZQ i/

n=0

(22)

Note how the elements lose their dependence on position,
since the translation product becomes unity. This is due to
the fact that we consider light incident normal to the surface
and because of the simple formulation of SDT. In practice the
positioning of the elements can be of importance, since the
geometry should not violate the basic assumptions of SDT.
This means that, e.g., a structure with only one big trench will

1.00
0.75
¢
b 0.50
0.25
0.00

-50 =25 0 25 50
0 [degrees]

Fig. 6. Reflection for a full reflective surface to illustrate how the
color not scattered in the desired directions will be scattered in other
directions. In this plot blue and green are scattered close to the specu-
lar direction, where red is suppressed, meaning that red will have to
be scattered somewhere else.
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be better than one with many small trenches, since the
electromagnetic boundary condition on the vertical edges
are ignored by SDT and the geometry will contain more
high-spatial-frequency content [28].

A particularly simple and relevant case is when we restrict
the heights to take one of two values. This is known as a
binary phase grating and is easy to produce, e.g., by using
etching processes, and is therefore widely used. For this, as-
sume that we allow only two values for k,, which can be de-
fined such that h; is the height difference between the two
elements and hy = 0 [see Fig. 7(c)]; then the response at
Oout = 0° will be expressed by the following simple analytical
expression:

1500.0
1200.0
— 900.0
£
£
<" 600.0 |
300.0
0.0
0
b [%]
(a)
90
1.6
80
1.4
70
— 60 1.2
¢ 5o 1.0
(o]
§ 40 0.8
20 0.4
10 0.2
! 0.0

ol ‘ 1
0 10 20 30 40 50 60 70 80 90
0 [degrees]

(b)

(©

Fig. 7. Analysis of possible colors produceable from the specular
mode of a binary phase grating. The maximum height has been limited
to 1500 nm. (a) Map of binary phase grating zero-order colors as a
function of height and duty cycle (a few RGB values have been
cut, as they were negative or exceeded 1) and (b) possible “color di-
rections” for the colors in (a), where the color vector has been trans-
formed into polar coordinates and the gray scale indicates the (largest
obtained) value of the length, 7, of the color vector. The red, green,
and blue points have been indicated, as well as white and black
(which overlap, since they only vary in intensity), which are repre-
sented by a white circle, and the obtainable test reference is indicated
with a yellow circle. (¢) Example of how a structure can be realized
for certain parameters of k; and b.
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where b is the duty cycle (or filling fraction) of k;. Since
whether or not &, is defined as a positive or negative quantity
with respect to i, (making &, the bump if 2; is negative) gives
rise to a change only in the far-field phase—and not the
amplitude—the function L(b,h;) for b € [0, 1] is symmetric
around b = 0.5, and we therefore need to consider only the
interval b € [0, 0.5]. By converting the spectra obtained with
different choices of 7; and b to colors, it is possible to map
the space of realizable colors for this setup. The result can
be seen in Fig. 7(a). Furthermore, converting the set of color
vectors from Cartesian coordinates to spherical coordinates
using r = VR? + G® + B?, 6 = arccos B/r, ¢ = arctan G/R,
we can plot the possible color directions for binary gratings
to obtain an idea of how well we can fill the color space using
the specular mode of binary gratings. This mapping procedure
makes the color a two-dimensional quantity, which is similar
to plotting & and y from a CIE xyY color space. The result is
shown in Fig. 7(b). From these plots it can be seen that not all
colors are realizable using this approach [as indicated in
Fig. 7(b); e.g., pure red, green, and blue cannot be achieved].
To verify the optimization algorithm for more complex de-
signs, a realizable color using a binary grating and red, green,
and blue will be the targets. As a more or less random
choice, the yellowish color for ky = 275 nm, b = 25% was
chosen as a reference color for the optimization, which
gives rise to (R,G,B) = (0.89,0.96,0.65), or (r,0,¢) =
(1.46,63.4°,47.1°) for specular reflection. In addition to the
pure red, green, and blue color, this was used as the optimi-
zation goal C,.

2. Detailed Analysis

Going into more detail with the color space, it is possible to
find the same yellowish response (generated by a different
spectrum) at (kg,b) ~ (550 nm, 11%), and so it should be
noted that two binary solutions exist. If we instead consider
the pure red, green, and blue color and try to find the points in
the color space matching them best—that is, giving the mini-
mum valid value of e in Eq. (20)—we find, respectively, that
(hy,b) =~ (121 nm, 50%) with & ~ 0.02, (hg,b) ~ (129 nm, 50%)
with e = 0.10, and (R, b) =~ (146 nm, 50%) with e ~ 8.3 - 107%.
Looking at Fig. 7(a), the colors look very dark in that area,
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which means that the low intensity is helping satisfying the
constraint. These solutions are not what the optimization
algorithm will aim for, since they have extremely low inten-
sities and will therefore not satisfy the parallel requirement
in Eq. (20). If we exclude heights below 200 nm and find
the best match for heights above that, we get, respectively,
(hy,b) = (365 nm, 50%) with e ~ 0.23, (hg,b) =~ (790 nm, 50%)
with € = 0.16, and (kq, b) ~ (432 nm, 50%) with ¢ =~ 0.09. This
study confirms the results in Fig. 7(b), where it is seen that
even though a clear blue does not exist in the color space
of simple binary gratings, we can find solutions close to it. Fur-
thermore, it is interesting to see that green needs a fairly large
difference in height. This can probably be explained by the
fact that green is in the middle of the spectrum, and therefore
both the lower and upper parts of the spectrum need to be
suppressed, whereas red and blue each occupy their part
of the spectrum and we just need to suppress the rest.

3. Optimization without Regularization
Running the optimization formulated in Eq. (20) for Cy =
(0,0,1) (blue) at 6, = 0°, with ¢ = 102, no regularization
(c; = 0), and an initial guess with random heights varying
from 250 to 1250 nm, gives the result obtained in Fig. 8. Note
that not starting from zero leaves space for the optimization to
decrease the heights if necessary. The structure is seen to
have very fine one-element features. This is undesirable, as
the small features scatter energy in evanescent modes, and
paraxial SDT does not take this into account, leading to
nonphysical solutions. Besides this, there will be multiple
reflections/scattering and internal scattering that are not
taken into account, and the result will probably be very differ-
ent for TE polarization due to the small features. We therefore
obtain structures that are hardly realizable when the regulari-
zation term is not included. Analyzing the structure using non-
paraxial SDT, the color response changes significantly, as
seen in Fig. 8, and it is clear that the design will not satisfy
our original objective.

To solve all of these problems at once, regularization is
used—as discussed in Section 4.A—to improve the quality
of design with respect to the length scale.

4. Optimization with Regularization

Using the regularization scheme from Section 3.A and rerun-
ning the optimization, the results presented in Fig. 9 are
obtained for blue as well as for the other three prescribed
colors. In the figure, |[f| indicates the final objective value
and N; the number of iterations used. The number of

Nonparaxial response

0 20 = 0
0 [degrees] 0 [degrees]
(b) ©)

Fig. 8. Optimization of ZOD for blue color without any regularization. (a) The obtained design, (b) the color response seen by the optimization
algorithm, and (c) an analysis of the final structure using nonparaxial SDT. This shows that SDT does not capture the physics well, due to scattering

from small feature sizes.
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Fig. 9. Optimization of ZOD using regularization for different colors. All parameters except C, and ¢, are unchanged from the previous example.

The color coordinates for the prescribed design colors are (1, 0, 0),

iterations are for most designs a couple thousand, which is
reasonable, since design evaluation is fast. For more computa-
tionally heavy optimizations, iterations may be decreased by
tuning the regularization parameters. The final results were
generated using nonparaxial SDT to show that the results
are still satisfactory. A much simpler structure for blue is now
obtained at the expense of a decrease in objective value. The
structure is divided into three levels, and no single element
features are present. From Fig. 7(b) it may be seen how
one level would not be enough to generate blue. For red,
the same features may be observed, using only four levels.
However, for green, it seems that many levels are needed
to obtain a good result, but the number of iterations also
indicates that the algorithm has had difficulties obtaining a
good result. An explanation for this could be that the green
color is in the middle of the spectrum, and the grating there-
fore should act more as a bandpass filter, while red and blue
each occupy their end of the visible spectrum, meaning that
their behavior resembles more that of a low- or high-pass
filter, which is normally easier to realize. For the test color,

0, 1, 0), (0, 0, 1), and (0.89, 0.96, 0.65), respectively.

it may be seen that the optimizer found a binary solution
(without regularization, a multilevel structure with worse
performance was found). Its height and duty cycle are
h; =278 nm, b =23%, which is close to the reference
hy =275 nm, b = 25%. The small deviations are probably
due to the fact that this solution still satisfies the color con-
straint but obtains a better objective value.

Running the optimization for the yellowish color with the
starting guess being (kg, b) ~ (550 nm, 11%), which is shown
in Section 5.A.2 to also be a valid solution, we end up with a
slightly perturbed version of the starting guess and an objective
of |f| = 0.946, which is slightly lower than what is observed in
Fig. 9. This confirms how multiple solutions might exist. In prac-
tice several initial guesses have been tried for each color, but
have ended up having more or less the same efficiency.

In general the optimization is found to work well, and a
wide range of ZOD designs can be created using this method.
The designs all have large flat areas divided into levels, even
though there is nothing in the formulation preferring that kind
of design (either with or without regularization), and from this
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Fig. 10. Optimization for blue for 6, € [-10°, 10°] with no regularization (all other parameters are the same as for the ZOD example). (a) The
design obtained, with the dashed line indicating one of the envelopes seen in the structure, (b) the color response seen by the optimization
algorithm, and (c) an analysis of the final structure using nonparaxial SDT.

it may be concluded that at least for the colors considered in
the examples (and a number of other colors tried by the
authors), a few levels are enough to tune a surface to a certain
color in the specular mode. It is also worth noting that we
have observed that for some colors the regularization
method—in addition to yielding a feasible solution—also
leads to a better objective value than without regularization.

B. Wide-Angle Color Optimization

Optimizing for wide-angle color response without regulariza-
tion encounters the same problems as for the ZOD case:
performing the same optimization run—now using an angular
interval of 6, € [-10°, 10"}—yields the result shown in Fig. 10.
Again, SDT did not resolve the color very well, and the
structure has one-element features, so regularization is again
required.

One interesting feature to take note of in Fig. 10 is that it
resembles the result in Fig. 8, but with a nonconstant envelope
for each level. For the colors where the nonregularized ZOD
optimization results in only a few flat levels of height differ-
ence, the wide-angle optimization often turns out to be at the
same levels, but with a nonconstant envelope. Extracting the

envelope and simulating this alone shows that the envelope
shape has the effect of scattering C( in a wider angle than
a flat surface would. This is illustrated in Fig. 11, where
one of the envelopes from Fig. 10 was extracted and a much
flatter response may be seen in the blue region compared to a
flat surface. This indicates that some designs can be obtained
when choosing a color by specifying a height difference, and
then finding an appropriate envelope shape of these heights to
spread out the color in the specified angular domain.

1. Designs with Regularization

To avoid small design features such as those in Fig. 10, we
introduce regularization using the same scheme as in Sec-
tion 4.A. The results are shown in Fig. 12. What is interesting
to note here is that trends similar to the ones from the ZOD
optimization can be found: the structure of the test color and
blue are the simplest, having only three levels and some slight
curvature within more or less the same height difference as
for the ZOD result. For green the profile extends to a slightly
larger height range but otherwise shows the same trends as
blue. For red the optimized structure seems rather simple,
but the response is not flat. This means that when the lowest
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Fig. 11. Comparison of the envelope indicated by a dashed line in Fig. 10(a) and a flat surface having the same length. It is clearly seen how the
shape scatters blue in an almost flat interval from —10" to 10° compared to the flat response.
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Fig. 12. Optimization for different colors for 6,,,, € [-10", 10°] using regularization. Except for C; and ¢, all the parameters are unchanged from the
previous example. The color coordinates for the prescribed design colors are (1, 0, 0), (0, 1, 0), (0, 0, 1), and (0.89, 0.96, 0.65), respectively.

intensities are raised to +10°, the other intensities are raised
as well. A totally flat response for red was probably not ob-
tained because red light has the longest wavelengths, and thus
in general it will scatter less for the 2 pm surface chosen for
these experiments. To verify this, we have tried the same pro-
cedure with d = 20 nm, giving a design domain of 4 pm, and
the result obtained here is indeed flat.

In general it seems that the more complex the ZOD design
is, the more complex the wide-angle design is, and that overall
the procedure seems to be able to find structures satisfying
the constraints independently of the choice of color.

6. CONCLUSIONS

In this paper we have shown how to formulate a structural
color optimization problem and use it for the optimization of
fully reflecting surface profiles to create on-demand angular
color effects. The modeling is carried out using SDT discretized
and solved in a novel way, but all kinds of electromagnetic
methods can be used. The formulation is able to find structures
for ZOD responses as well as wide-angle responses. For surface
profiles it is observed that not all colors are equally easy to

obtain, and explanations for this have been given. First, colors
that can be created by the interference of two different heights/
levels seem to be easier to obtain; second, since the width of
the design domain was fixed and it diffracts to wider angles for
lower wavelengths, blue colors seem easier to obtain for wide-
angle responses; and third, colors that can be obtained by high-/
low-pass filtering instead of bandpass/bandstop filtering seem
easier to obtain—most likely because these types of filters in
general are easier to synthesize. It was also observed that
all designs contain sharp edges as a part of the final design,
which is a consequence of the fact that strong constructive/
destructive interference is needed to filter the colors of the
visible spectrum.

As a part of the study, the colors produceable in the zero-
order mode by two-level interference were also derived ana-
lytically and mapped in Fig. 7(a). To avoid mesh-dependent
features in the design, a regularization scheme was introduced
that exploits the fact that the color was imposed as a con-
straint to the optimization problem. This made it possible
to obtain design with only the essential features, retaining a
good response.
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