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CD4
+ T-cell activation is differentially modulated by bacteria-primed

dendritic cells, but is generally down-regulated by n-3

polyunsaturated fatty acids

Introduction

CD4+ T-cell activation occurs through the interaction of T

cells with antigen-presenting cells (APCs) and is mediated

by the antigen–receptor complex (TCRn/CD3) and costim-

ulatory molecules, especially the positive costimulators

CD28 and inducible costimulator (ICOS), and the negative

costimulator cytotoxic T-lymphocyte antigen-4 (CTLA-4;

CD152).1 Efficient T-cell activation depends not only on

the type of APC stimulation, but also on the effectiveness

in clustering of key elements in the immunological synapse,

which is mandatory for efficient signal transduction

through the plasma membrane. Accordingly, the composi-

tion of plasma membrane lipids plays an important modu-

lating role in T-cell activation, as supported by recent

reports on the differential influence of lipids on the capac-

ity of the immune system to become activated.2–6 A princi-

pal characteristic of long-chain n-3 polyunsaturated fatty

acids (PUFAs) is the potential to down-regulate many

aspects of immune responses, including lymphocyte prolif-

eration, cytokine responses and antigen presentation on

APCs.7–12 One central element in studies revealing T-cell-

suppressive effects of n-3 PUFAs seems to be engagement

of the T-cell receptor (TCR) and/or CD28.7,13,14 Thus, it

appears that signalling cascades induced through the TCR

and/or CD28 may be affected by the incorporation of n-3
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Summary

Appropriate activation of CD4+ T cells is fundamental for efficient initia-

tion and progression of acquired immune responses. Here, we showed

that CD4+ T-cell activation is dependent on changes in membrane n-3

polyunsaturated fatty acids (PUFAs) and is dynamically regulated by the

type of signals provided by dendritic cells (DCs). Upon interaction with

DCs primed by different concentrations and species of gut bacteria, CD4+

T cells were activated according to the type of DC stimulus. The levels of

CD80 were found to correlate to the levels of expression of CD28 and to

the proliferation of CD4+ T cells, while the presence of CD40 and CD86

on DCs inversely affected inducible costimulator (ICOS) and cytotoxic

T-lymphocyte antigen-4 (CTLA-4) levels in CD4+ T cells. For all DC

stimuli, cells high in n-3 PUFAs showed reduced ability to respond to

CD28 stimulation, to proliferate, and to express ICOS and CTLA-4.

Diminished T-cell receptor (TCR) and CD28 signalling was found to be

responsible for n-3 PUFA effects. Thus, the dietary fatty acid composition

influences the overall level of CD4+ T-cell activation induced by DCs,

while the priming effect of the DC stimuli modulates CD80, CD86 and

CD40 levels, thereby affecting and shaping activation of acquired immu-

nity by differential regulation of proliferation and costimulatory molecule

expression in CD4+ T cells.

Keywords: costimulation; dendritic cell; lipid; nutritional immunology;

signalling; T cell

Abbreviations: APC, antigen-presenting cell; CTLA-4, cytotoxic T-lymphocyte antigen-4; DC, dendritic cell; FA, fatty acid; FCS,
fetal calf serum; ICOS, inducible costimulator; iDC, immature DC; IL, interleukin; LPS, lipopolysaccharide; MHC class II, major
histocompatibility complex class II; MLN, mesenteric lymph node; MUFA, monounsaturated FA; PBS, phosphate-buffered saline;
PE, phycoerythrin; PUFA, polyunsaturated fatty acid; SFA, saturated fatty acid; SPL, spleen; TCR, T-cell receptor; Th, T helper.
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PUFAs into cellular lipids. Disruption of lipid raft integrity

has been suggested as one underlying mechanism for n-3

PUFA-mediated T-cell inhibition, as a result of the

displacement of signalling proteins [e.g. linker for activa-

tion of T cells (LAT)] from the raft regions of the mem-

branes.4,15,16 Although previous studies focusing on the

effects of n-3 PUFAs on T cells have identified mechanisms

by which the n-3 PUFAs may act at the cellular level,

the correlations between APC signal strength and the

presence of higher levels of dietary n-3 PUFAs, and hence

the amounts of cellular n-3 PUFAs, in modulating CD4+

T-cell responsiveness and expression of costimulatory

molecules remain to be defined.

The type and level of costimulatory molecule expression

on activated CD4+ T cells are considered as key elements

for the activation of adaptive immune responses. For B-cell

activation, one important mechanism is engagement of

B-cell-derived CD40 and CD40 ligand (CD40L) on

activated CD4+ T cells. Notably, the T-cell costimulatory

molecule ICOS is recognized to play an essential role in

CD40L regulation,17 but our knowledge of the modulation

of ICOS displayed on CD4+ T cells is limited. ICOS is a

member of the CD28 family,18 but in contrast to CD28,

ICOS is not constitutively expressed on naı̈ve T cells and

does not costimulate the production of interleukin (IL)-2.

Moreover, ICOS differs from CD28 and CTLA-4 in that it

binds to B7RP-1 [ICOS-ligand (ICOS-L), B7h,19] instead

of CD80 (B7�1) and CD86 (B7�2). ICOS is implicated in

some human autoimmune diseases, as increased ICOS

expression is found on T cells from, for example, patients

with rheumatoid arthritis20 or systemic lupus erythemato-

sus.21 In mice, ICOS expression has been related to both T

helper (Th)1-mediated and Th2-mediated diseases, with

ICOS-deficient mice being resistant to the development

of rheumatoid arthritis,22 whereas blockade of ICOS in

an allergic airway disease model leads to decreased Th2-

mediated inflammation as well as to reduced serum

immunoglobulin E (IgE) production.23

The T-cell costimulatory molecule, CTLA-4, plays a

critical role in the down-regulation of T-cell activation.

CTLA-4 ligation to B7 results in the inhibition of T-cell

activation by blocking cytokine production and cell cycle

progression.24 In general, B7 family-related costimulatory

molecules are considered to modify the TCR signal, either

by enhancing (CD28/ICOS) or abrogating (CTLA-4) it.25

Hence, because of the importance of these costimulatory

molecules for T-cell fate as well as their dependency of

proper raft formation, modulation of CD28, ICOS and

CTLA-4 expression levels by cellular lipids might be a

way to selectively regulate T-cell responses by the diet,

thereby affecting adaptive immunity.

In this study, we examined the influence of an n-3

PUFA-rich diet on the ability of CD4+ T cells to respond

to an exogenous signal provided by dendritic cells (DCs)

primed with different bacteria, corresponding to a variety

of microbe-associated molecular patterns, and compared

the effects with that obtained by TCR/CD28 cross-linking,

thus assessing the direct effect of lipids on T cells when

activated through the TCR and CD28. Our data provided

evidence that CD4+ T cells are distinctly regulated by bac-

teria-primed DCs, giving rise to variations in proliferation

as well as to CD28, ICOS and CTLA-4 expression levels,

but that dietary n-3 PUFA supplementation leads to gen-

erally reduced responsiveness of CD4+ T cells as a result

of diminished TCR/CD28 signalling in CD4+ T cells.

Materials and methods

Mice

All mice were purchased from Taconic (Lille Skensved,

Denmark) and were used at 8–12 weeks of age. At the

onset of each experiment, BALB/c mice were transferred

from a standard chow diet (Altromin 1324; Altromin,

Lage, Germany) to one of two experimental diets com-

posed of (wt%): 56% corn-starch (Bestfood Nordic,

Skovlunde, Denmark), 20% casein (Miprodan milk pro-

teins; Arla Foods, Viby, Denmark), 10% sucrose (Danisco

Sugar, Copenhagen, Denmark), 5% salt mixture including

trace elements (prepared in-house), 4% cellulose powder

(MN 100; Frisenette, Ebeltoft, Denmark), 0�5% choline

chloride (Merck, Darmstadt, Germany), 0�5% vitamin

mixture (prepared in-house) and 4% fat, differing in the

fatty acid (FA) compositions as described in Table 1. The

oils were composed of melted coconut and safflower oil

[saturated fatty acid (SFA) diet], and fish oil (Eskimo-3

Food; Cardinova AB, Uppsala, Sweden) and safflower oil

(n-3 PUFA diet). Oils were purchased from a local dis-

tributor and stored in the dark at 4� until use. The diets

contained sufficient essential PUFAs. The fish oil

(Eskimo-3 Food; Cardinova AB) is stabilized with a mix-

ture of natural antioxidants (Pufanox�; Cardinova AB)

and contains 4�5 IU/g of vitamin E. Mice were given

experimental diets for 2 weeks. Before each experiment,

the diets were freshly prepared and then frozen. All

animal studies were approved by The Danish Animal

Experiments Inspectorate and were carried out according

to the guidelines of ‘The Council of Europe Convention

for the Protection of Vertebrate Animals used for Experi-

mental and other Scientific purposes’.

Antibodies, cytokines and reagents

Purified anti-CD3 (NA/LE, clone 145-2C11) and purified

anti-CD28 (NA/LE, clone 37�51) were purchased from BD

Biosciences (Franklin Lakes, NJ). A PKH26 Red Fluores-

cent Cell Linker kit was obtained from Sigma-Aldrich (St

Louis, MO) and used for PKH26 staining of CD4+ T cells.

The magnetic antibody cell sorting (MACS) CD4 isolation

kit was from Miltenyi (Bergish Gladbach, Germany).
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Antibodies used for flow cytometry were: allophycocyanin-

conjugated CD4 (clone RM4-5), phycoerythrin (PE)-

conjugated CTLA-4 (clone UC10-4B9), PE-conjugated

ICOS (clone 7E.17G9), PE-conjugated CD86 (clone GL1),

allophycocyanin-conjugated CD11c (clone HL3) (all BD

Biosciences, San Diego, CA), PE-conjugated CD28 (clone

37�51, eBioscience, San Diego, CA), PE-conjugated major

histocompatibility complex class II (MHC class II) (clone

NIMR-4), PE-conjugated CD40 (clone 1C10) and PE-con-

jugated CD80 (clone 1G10) (all Southern Biotech, Bir-

mingham, AL). Murine immunoassay kits [interferon-c
(IFN-c), IL-10 and IL-5] were all obtained from R&D Sys-

tems (Minneapolis, MN).

Bacterial strains

The bacterial strains were all gut flora-derived and

selected according to specific immunoregulatory proper-

ties on murine DCs from a larger screening study of

Gram-positive strains performed in our group (Zeuthen

et al., manuscript in preparation). The bacteria were

grown, harvested and killed by exposure to ultraviolet

(UV) light, as described in Zeuthen et al.26 The dry

weight of bacteria was determined by freeze-drying aliqu-

ots and correcting for phosphate-buffered saline (PBS)

content. Bacteria were stored at )80�.

Generation and culture of DCs

DCs were generated from bone marrow cells derived

from C57BL/6 in the presence of granulocyte–macro-

phage colony-stimulating factor (GM-CSF) (15 ng/ml),

as previously described.27 On day 8, cells (approxi-

mately 1 · 107 cells/petri dish) were stimulated for

18 hr with 0�1 or 100 lg/ml of UV-killed gut flora-

derived bacteria or lipopolysaccharide (LPS) (1 lg/ml

final concentration of Escherichia coli O26:B6; Sigma-

Aldrich), without the addition of fresh GM-CSF to

culture plates. DCs cultured with culture medium alone

were termed immature DCs (iDCs). The purity of DCs

was > 90%, as determined by CD11c staining followed

by flow cytometry.

CD4+ T-cell activation

CD4+ T cells were positively selected from spleen (SPL)

and mesenteric lymph nodes (MLNs) using anti-CD4

microbeads (MACS; Miltenyi), according to the manufac-

turer’s instructions, and were more than 85% (SPL) and

98% (MLN) pure, as assessed by flow cytometry. For

PKH26 labelling, CD4+ SPL T cells were diluted to

1 · 107 cells/ml in 2 lM PKH/diluent C (Sigma-Aldrich),

incubated first for 3 min, then for 1 min with fetal calf

serum (FCS) (1 : 1, v/v) and then extensively washed in

culture medium containing 10% FCS. For proliferation

assays using stimulation with anti-CD3/CD28, CD4+ SPL

T cells were seeded at 2 · 105 cells per well into round-

bottomed 96-well plates (Nunc, Roskilde, Denmark) con-

taining plate-bound anti-CD3 (2 lg/ml), with or without

anti-CD28 (5 lg/ml) in complete medium in which

2% heat-inactivated autologous, diet-dependent serum

replaced FCS. Before each experiment, a pool of autolo-

gous serum from each dietary group was obtained by

heart puncture during anaesthesia; the serum was col-

lected into sterile, non-heparized tubes, centrifuged at

3000 g for 10 min and heat inactivated at 56� for 30 min.

After incubation for 72 hr, each culture was pulsed with

[3H]thymidine (0�25 lCi; Amersham, Bucks, UK) for

18 hr to assess proliferative activity by liquid scintillation

counting (Tri-Carb�; Packard, Meriden, CT). The change

in counts per minute (Dc.p.m.) was calculated by sub-

tracting the average of triplicate cultures of stimulated

cells from that of control cells. To measure total cell

divisions, PKH-labelled CD4+ SPL T cells were cultured

as described above and, after 4 days of incubation, the

cells were washed once, resuspended in PBS/1% azide and

analysed using flow cytometry.

For DC-induced T-cell proliferation, graded numbers

of bacteria-treated DCs or iDCs were cultured with allo-

genic PKH-labelled CD4+ SPL T cells (105 cells per well

in 96-well round-bottom plates, corresponding to DC :

T-cell ratios of 1:10, 1:20 and 1:40) for 5 days in

Table 1. Fatty acid composition of experimental diets (wt %)1

n-3 PUFA SFA

C6:0 ND 0�7 ± 0�0
C8:0 ND 6�8 ± 0�6
C10:0 ND 5�0 ± 0�3
C12:0 ND 34�3 ± 0�2
C14:0 5�9 ± 0�1 13�0 ± 0�2
C16:0 15�7 ± 0�1 8�9 ± 0�6
C16:1 6�3 ± 0�2 0�1 ± 0�0
C18:0 3�4 ± 0�2 3�5 ± 0�2
C18:1 (n-9) 10�3 ± 0�2 8�5 ± 0�3
C18:1 (n-7) 2�4 ± 0�1 0�2 ± 0�0
C18:2 (n-6) 19�4 ± 0�2 18�5 ± 1�1
C18:3 (n-3) 0�7 ± 0�0 ND

C20:1 (n-9) 0�9 ± 0�0 ND

C18:4 (n-3) 2�4 ± 0�1 ND

C20:4 (n-3) 0�6 ± 0�0 ND

C20:5 (n-3) 14�1 ± 0�9 ND

C21:5 (n-3) 1�1 ± 0�2 ND

C22:6 (n-3) 9�4 ± 0�7 ND
P

SFA 26�1 ± 0�9 72�3 ± 0�1
P

MUFA 25�1 ± 0�6 9�1 ± 0�9
P

n-6 PUFAs 19�6 ± 0�0 18�5 ± 1�1
P

n-3 PUFAs 29�2 ± 1�5 ND

1Only fatty acids (FAs) of > 0�5 wt% are listed. Data represent the

mean ± standard deviation (SD) from three experiments.

MUFA, monounsaturated fatty acid; ND, not detectable; PUFA,

polyunsaturated fatty acid; SFA, saturated fatty acid.
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complete medium in which 1% autologous, diet-dependent

murine serum replaced FCS. The total number of CD4+

T-cell divisions was recorded using flow cytometry.

Flow cytometry

For surface staining of CD4+ T cells and DCs, cells were

incubated with antibody to FcR (24G2) and stained with

the appropriate antibodies or isotype controls in PBS

containing 0�15% (v/v) sodium azide and 1% FCS. For

intracellular staining of CTLA-4, CD4+ T cells were fixed

in PBS containing 4% methanol-free formaldehyde,

washed in PBS containing 0�1% saponin and 0�5% bovine

serum albumin (BSA) (both from Sigma), blocked with

anti-FcR and incubated with appropriate antibodies or is-

otype control in PBS containing 0�1% saponin and 0�5%

BSA. Cells were analysed on a FACSarray flow cytometer

(BD Biosciences). Data analyses were performed using

FCS EXPRESS (Version 3; De Novo Software, ON, Canada).

Cytokine determinations

Supernatants collected after 48 hr of anti-CD3/CD28-

induced activation of SPL or MLN CD4+ T cells were

assayed for IFN-c, IL-10 and IL-5 by enzyme-linked

immunosorbent assay (ELISA), according to the manufac-

turer’s instructions.

Fatty acid analysis

Lipids were extracted from cells as previously described.28

Phospholipids (PL) were isolated from the cell extract,

using preparative thin-layer chromatography (TLC) with a

solvent system consisting of heptane : 2-propanol : acetic

acid (95:5:1, v/v/v). Lipid spots were visualized by spray-

ing with 20,70-dichlorfluorescein (1 g in 500 ml of EtOH),

scraped from the plates and FA methyl esters were pre-

pared essentially as described previously.28 The FA methyl

esters were separated on a 50 m SP-2380 column (Sigma-

Aldrich, Brøndby, Denmark) in a Hewlett Packard 6890

gas-chromatograph (GC), in split mode using helium as

the carrier gas. The GC settings were as follows: injector

temperature, 250�; split-ratio, 20:1; carrier-flow, 1�2 ml/

min; detector temperature, 270�; air flow in detector,

400 ml/min; hydrogen flow, 30 ml/min. The temperature

started at 50� and was increased to 140� at a rate of

30�/min; this temperature was maintained for 2 min,

and hereafter the temperature was increased to 220�
at a rate of 2�/min and the oven was maintained at

220� for 5 min before the temperature was increased to

250� at a rate of 10�/min. The final temperature was

maintained for 17 min. FA methyl esters was identified

using authentic standards. Calibration was performed

using a quantitative standard (Nu-Check Prep Inc.,

Elysian, MN).

Statistical analysis

Data were tested for statistical significance using an

unpaired t-test or a two-way analysis of variance (ANOVA),

as described in the figure legends. Bivariate correlations

were performed with Spearman’s correlation analysis. All

data were analysed using GRAPHPAD PRISM software (ver-

sion 4�03; GraphPad Software, La Jolla, CA). A P-value

of � 0�05 was considered significant.

Results

Changes in n-3 PUFA content affect CD3/CD28-
induced CD4+ T-cell activation

To examine the specific effect of changing the dietary

amount of n-3 PUFAs on the cellular FA compositions

in CD4+ T cells, we fed two different diets (Table 1)

ad libitum to BALB/c mice for 14 days. The phospholipid

FA composition of SPL CD4+ T cells revealed that the

dietary n-3 PUFAs was incorporated into cell membranes

at the expense of n-6 PUFAs, with similar amounts of

total cellular PUFAs being present in the two dietary

groups, leading to threefold differences in the n-6 : n-3

PUFA ratios between the two groups (Table 2). Conver-

sely, the differences between SFA and monounsaturated

fatty acid (MUFA) contents in the two diets were not

reflected in the phospholipid FA composition of the

CD4+ T cells from the two groups.

The effect of the n-3 PUFA diet versus the SFA diet on

CD4+ T-cell activation was initially examined by cross-

linking with anti-CD3 and anti-CD28 (Fig. 1). The prolif-

erative capacity of CD4+ T cells was significantly lower in

cells with a high n-3 PUFA content, compared withcells

low in n-3 PUFAs (Fig. 1a). Tracking the total number of

cell divisions over 4 days confirmed that cells with a high

n-3 PUFA content had markedly decreased numbers of

cell divisions compared to cells with a low n-3 PUFA

content (Fig. 1b, P < 0�0001). Moreover, incorporation of

n-3 PUFAs into cell membranes was found to signifi-

cantly reduce the production of IFN-c and IL-10, whereas

the production of IL-5 was unaffected (Fig. 1c).

n-3 PUFAs diminish signalling through TCR and
CD28 in activated CD4+ T cells

As the effects of n-3 PUFAs on CD4+ T cells are particularly

clearly exposed upon TCR and CD28 activation, as shown

in Fig. 1, we examined whether the expression and/or func-

tion of costimulatory molecules, especially CD28, on CD4+

T cells is directly influenced by n-3 PUFAs.

In accordance with earlier findings,14 surface expression

of CD28 on resting SPL CD4+ T cells was found not to

be affected by changes in the amounts of cellular n-3 PU-

FAs (Fig. 2a). The same was observed for resting CD4+ T
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cells from MLNs (Fig 2a). To clarify whether the lower

activation ability of CD4+ T cells with higher n-3 PUFA

content was caused by reduced signalling via the TCR

alone, or if signalling via both the TCR and CD28 was

implicated, we added either anti-CD3 alone or anti-CD3

and anti-CD28 together. The effects on cellular prolifera-

tion (Fig. 2b) and IFN-c production from SPL CD4+ T

cells (Fig. 2c), showed that higher cellular n-3 PUFA con-

tents reduced signalling through the TCR and completely

abolished any additive effect via CD28. Cells high in n-3

PUFAs were also found to have a lower expression level

of the costimulator ICOS upon anti-TCR and anti-CD28

activation (Fig. 2d), indicating that co-upregulation of

ICOS as a result of potent TCR and CD28 activation is,

to some extent, reduced in n-3 PUFA-rich CD4+ T cells.

Proliferation is dynamically regulated by the FA
content and DC signal strength

To further address the effect of n-3 PUFAs on CD4+ T-cell

activation at the level of TCR and costimulatory molecule

regulation, we co-cultured CD4+ T cells, from the two die-

tary groups, with allogenic DCs. The DCs were primed with

different concentrations and genera of gut bacteria in order

to study the effect of the strength of the DC signal on the

CD4+ T-cell activation capacity. Gut bacteria were selected

because they expose different microbe-associated molecular

structures and have diverse priming effects on DCs. Two

Gram-positive species of bacteria [Lactobacillus acidophilus

X37 (L. acidophilus X37) and Bifidobacterium longum Q46

(B. longum Q46)] and one Gram-negative gut commensal

[Escherichia coli Nissle 1917 (E. coli Nissle)] were used in

the study. DCs matured by LPS were included in the study

for comparison. Upon stimulation with bacteria or with

LPS, the surface expression of MHC class II, CD80, CD86

Table 2. Fatty acid composition (in mol %) of CD4+ T cells from

mice fed the indicated diets1

n-3 PUFA SFA

C14:0 0�6 ± 0�1 1�1 ± 0�4
C16:0 29�4 ± 3�3 29�1 ± 3�7
C16:1 (n-7) 1�4 ± 0�4 1�3 ± 0�3
C18:0 19�2 ± 1�8 18�2 ± 1�9
C18:1 (n-9) 7�0 ± 0�2 7�5 ± 0�4
C18:1 (n-7) 3�0 ± 0�6 3�7 ± 0�5
C18:2 (n-6) 9�6 ± 0�5 7�1 ± 1�9
C20:2 (n-6) 0�8 ± 0�3 1�0 ± 0�2
C20:3 (n-6) 1�3 ± 0�3 1�1 ± 0�1
C20:4 (n-6) 12�9 ± 2�7 20�4 ± 3�32

C20:5 (n-3) 1�8 ± 0�9 ND

C22:4 (n-6) 0�6 ± 0�2 2�6 ± 0�4
C22:5 (n-6) 0�2 ± 0�0 0�8 ± 0�2
C22:5 (n-3) 3�8 ± 0�5 1�2 ± 0�6
C22:6 (n-3) 8�0 ± 0�9 4�3 ± 1�5
P

SFA 49�3 ± 3�6 48�4 ± 4�0
P

MUFA 11�8 ± 0�5 12�7 ± 0�9
P

n-6 PUFAs 25�4 ± 3�1 33�0 ± 3�12

P
n-3 PUFAs 13�5 ± 1�3 5�5 ± 1�02

n-6/n-3 PUFAs 1�9 ± 0�2 6�0 ± 0�5

1CD4+ T cells were isolated from spleens upon 14 days feeding with

the diets. Data are fatty acid (FA) compositions in mole percentages

of major fatty acids (> 0�5 mol%) from the phospholipid fraction,

and represent the mean ± standard deviation (SD) from three exper-

iments each performed with a pool of cells from seven mice.
2P < 0�001 by two-way analysis of variance (anova) and Bonferroni’s

post hoc test.

MUFA, monounsaturated fatty acid; ND, not detectable; PUFA,

polyunsaturated fatty acid; SFA, saturated fatty acid.
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Figure 1. n-3 Polyunsaturated fatty acid (PUFA) incorporation into

cell membranes inhibits CD3/CD28-induced CD4+ T-cell activation.

(a) Proliferation of CD4+ spleen (SPL) T cells isolated from BALB/c

mice fed diets containing high levels of saturated fatty acids (SFAs)

or n-3 PUFAs for 14 days. CD4+ T cells (2 · 105 cells) were cultured

in 96-well round-bottom plates in the presence of plate-bound anti-

CD3 (2 lg/ml) and anti-CD28 (5 lg/ml) for 4 days. During the last

18 hr of incubation, [3H]thymidine was added. Data represent

means ± standard deviation (SD) from four experiments, each using

CD4+ T cells pooled from seven mice. (b) PKH-labelled CD4+ T

cells from mice with the two dietary treatments were cultured for

4 days, as described above. Proliferation of CD4+ T cells was mea-

sured using flow cytometry to assess the PKH dilution in dividing

cells. Percentages of dividing cells are given below (anti-CD3/

anti-CD28-stimulated, black) or above (unstimulated, black line),

respectively. The SDs from four experiments are given in parenthe-

ses. Histograms are one representative result of four experiments. (c)

Cytokine production in supernatants [interferon-c (IFN-c), interleu-

kin (IL)-10 and IL-5] from CD4+ T cells activated as described in

panel a and measured using enzyme-linked immunosorbent assay

(ELISA). Data are means ± SD (n = 4). ***P < 0�001, *P < 0�05,

analysed using the unpaired t-test.
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and CD40 on DCs increased when exposed to a high con-

centration (100 lg/ml) of bacteria and 1 lg/ml of LPS,

compared with exposure to a lower concentration (0�1 lg/

ml) of bacteria, (Fig. 3). For B. longum Q46 and L. aci-

dophilus X37 at 0�1 lg/ml, the expression of CD80, CD86

and CD40 was similar to that of DCs cultured with med-

ium alone (iDC), in that low expression of all surface mark-

ers was observed (Fig. 3b). With regard to MHC class II

expression, the two concentrations of E. coli Nissle induced

a level of MHC class II similar to that induced by LPS and

100 lg/ml of L. acidophilus X37, whereas the two concen-

trations of B. longum Q46 and the low concentration of

L. acidophilus X37 induced lower levels of MHC class II.

For all surface markers measured, E. coli Nissle and

LPS were found to be the most potent stimulators. At the

high concentration, L. acidophilus X37 was, however,

more potent in up-regulating MHC class II and CD40

than E. coli Nissle (and LPS), the latter being more potent

in up-regulating the B7 molecules. A higher expression

level of the costimulatory molecules on DCs is assumed

to directly reflect the strength of the signal provided to

CD4+ T cells.

The proliferation-inducing capacity of the differentially

matured DCs on CD4+ T cells was examined by culturing

the CD4+ T cells with increasing numbers of DCs. Nota-

bly, the number of cell divisions in DC-induced CD4+ T

cells was found to be highly dependent on the FA compo-

sition of the CD4+ T-cell membrane (P < 0�0001 between

diets; two-way ANOVA comparing curve slopes from the

two diet treatments with the DC treatments, Fig. 4a) and

less dependent on the DC maturational level (P = 0�055).

Incorporation of n-3 PUFAs into the CD4+ T-cell mem-

brane caused a significant reduction in cell proliferation,

with the highest proliferation of T cells being obtained

with DCs treated with 100 lg/ml of E. coli Nissle. Nota-

bly, the proliferation induced in n-3 PUFA-rich cells with

E. coli Nissle-primed DCs resembled that induced by

iDCs in the SFA group (as illustrated by the slope values,

Fig. 4a), clearly illustrating the reduced, but not abro-

gated, proliferative capacity of n-3 PUFA-rich cells. In the

presence of a higher n-6 : n-3 PUFA ratio in the cell

membrane, the greatest proliferation of CD4+ T cells was

induced by DCs treated with both concentrations of

E. coli, as well as by the highest concentration of both

lactobacilli strains and LPS. Correlations of the prolifera-

tion data (Fig. 4a) with the expression level of the DC

surface markers (Fig. 3) revealed that high expression lev-

els of CD80 and CD86 on DCs affect the cell division rate
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Figure 2. Incorporation of n-3 polyunsaturated fatty acids (PUFAs)

in CD4+ T cells reduces T-cell receptor (TCR)/CD28-induced

signalling without affecting CD28 surface expression in resting cells.

(a) CD4+ T cells isolated from spleen (SPL) and mesenteric lymph

nodes (MLNs) from BALB/c mice fed two different diets [n-3 PUFA

or saturated fatty acids (SFAs)] for 14 days were surface stained with

phycoerythrin (PE) anti-CD28 monoclonal antibody (mAb) (filled

histograms), without previous activation, and analysed by flow

cytometry. The mean percentage of positively stained cells are indi-

cated above the marker. Histograms are representative of one of

three experiments, whereas means and standard deviations (SDs)

(given in parentheses below the marker) are based on three experi-

ments. The empty histograms represent isotype-stained cells. Median

fluorescence intensity (MFI) values for the groups are as follows:

SPL, n-3 PUFA: 2091 ± 523, SFA: 2041 ± 150 (NS); MLN, n-3

PUFA: 2407 ± 163, SFA: 1942 ± 251 (NS). (b) Proliferation of SPL

CD4+ T cells after 4 days of culture with plate-bound anti-CD3

(2 lg/ml), with or without the addition of anti-CD28 (5 lg/ml),

assessed as described in the legend to Fig. 1a. Data are means ± SD

(n = 4). c.p.m., counts per minute. (c) Interferon-c (IFN-c) produc-

tion measured using enzyme-linked immunosorbent assay (ELISA) in

supernatants from SPL CD4+ T cells cultured for 2 days as described

for panel b. Data represent means ± SD (n = 4). (d) Inducible costi-

mulator (ICOS) expression in day 2 SPL CD4+ T cells activated with

anti-CD3 and anti-CD28 (filled histograms); empty histograms corre-

spond to the isotype control. The histograms representative of one of

three experiments. The mean percentages of positively stained cells

are indicated above the marker, and the SD is shown in parentheses

(n = 3). The MFI for ICOS, n-3 PUFA: 2307 ± 145, and for SFA:

2941 ± 64 (*). *P < 0�05 by unpaired t test, NS, non-significant.
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in CD4+ T cells (correlation analysis not shown), while

the DC expression levels of CD40 and MHC class II were

found to be of minor importance with respect to prolifer-

ation-inducing capacity. In line with this, the iDCs

induced the lowest proliferation in the CD4+ T cells

(from both dietary groups); a proliferation which resem-

bled that induced by DCs stimulated with 0�1 lg/ml of

the two lactobacilli strains.

Based on our observation of CD28 signalling to reduce

the proliferation of n-3 PUFA-rich CD4+ T cells upon

anti-TCR and anti-CD28 cross-linking (Fig. 2) and the

influence of the expression level of the CD28-ligands

CD80 and CD86 on T cell division rate, we tested the

effect of CD28 expression levels on CD4+ T cells upon

interaction with the differentially matured DCs. Notably,

the percentage of CD28-positive cells was lower when

CD4+ T cells were co-cultured with a potent DC priming

and proliferation-inducing stimulus (i.e. E. coli Nissle at

100 lg/ml) (Fig. 4b), presumably because of activation-

induced internalization of CD28 upon activation through

CD80/CD86, as previously reported.29 Importantly, a

lower membrane n-6 : n-3 PUFA ratio gave rise to higher

CD28 expression in DC-activated SPL-derived CD4+

T cells (Fig. 4b), indicating that n-3 PUFA-rich cells are

slower to respond to CD80/CD86 signalling than cells

with a threefold higher membrane n-6 : n-3 PUFA ratio.
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Figure 3. The expression level of major histocompatibility complex (MHC) class II and the costimulatory molecules CD80, CD86 and CD40

depends on the concentration and the genera of gut-derived bacteria. On day 8, immature dendritic cells (iDCs) (1 · 107 cells) were cultured

with two concentrations (0�1 or 100 lg/ml) of either Gram-positive bacteria (Lactobacillus acidophilus X37 or Bifidobacterium longum Q46) or a

Gram-negative bacterium (Escherichia coli Nissle) for 18 hr. Lipopolysaccharide (LPS) from E. coli O26:B6 was added at 1 lg/ml, or DCs were

cultured with medium alone (iDCs). The surface phenotype of day 9 DCs was defined by flow cytometry after staining cells with phycoerythrin

(PE)–MHC class II, PE–CD80, PE–CD86 or PE–CD40 monoclonal antibodies (mAbs), and gating on 20 000 viable DCs. (a) Histograms of sur-

face expression levels of MHC class II, CD80, CD86 and CD40. The grey-shaded histogram corresponds to 0�1 lg/ml of bacteria, and empty his-

tograms (black line) correspond to 100 lg/ml of bacteria. The isotype-stained cells are shown as thin histograms on the iDC plots. Numbers

represent mean geometrical median fluorescence intensities (MFIs) of three experiments (grey numbers refer to grey histograms and black num-

bers to solid lines). Histograms correspond to the values obtained from one of three representative experiments. (b) Bar diagrams representing

the variation in the data shown in panel a. Data are mean geometrical MFIs of three experiments + standard deviation (SD). The data on levels

of surface marker expression on DCs are used to correlate to effects on CD4+ T cells in terms of proliferation and costimulatory molecule expres-

sion and therefore no statistical analyses were performed on the DC marker expression display.
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Data for CD4+ T cells from MLNs resembled those from

SPL (data not shown). In line with this, an inverse corre-

lation was found between the percentages of CD28-posi-

tive cells and the cell division for each DC treatment and

diet group (Fig. 4c), indicating again that lack of CD28

responsiveness might explain the lower proliferation abil-

ity of n-3 PUFA-rich CD4+ T cells. To test if the differ-

ences in CD28 expression on CD4+ T cells after co-

culture with differentially primed DC were caused by

changes in B7 expression on DCs, we performed correla-

tion analyses between CD28 expression levels versus

CD80 and CD86 expression levels on DCs (Fig. 4d). No

significant correlation was found for CD28 versus CD86,

whereas if adjusted for diet treatment, a significant corre-

lation was found for CD28 versus CD80 (P = 0�048), but

for the n-3 PUFA group only, if not adjusted. To study

the effect of enhancing the dietary intake of n-6 PUFAs,

we included a third diet group in one of the experiments,
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Figure 4. Proliferation of CD4+ T cells depends on the dendritic cell (DC) signal strength and the T-cell responsiveness towards CD28 signalling.

(a) Spleen (SPL) CD4+ T cells were isolated from BALB/c mice fed either the n-3 polyunsaturated fatty acid (PUFA) or the saturated fatty acid

(SFA) diet for 14 days, labelled with PKH and cultured at 105 cells per well with grading doses of bacteria-stimulated DCs, stimulated as

described in Fig. 3. After incubation for 5 days, flow cytometry was performed to examine the dilution of PKH in order to assess CD4+ T-cell

divisions. The percentages of T-cell divisions were determined as described in Fig. 1b. Each data point represents the mean ± standard deviation

(SD). The data represent three experiments. The number given above each proliferation curve indicates the slope of the curve (· 10)3), as analy-

sed by linear regression analysis. (b) SPL CD4+ T cells were co-cultured with in vitro-stimulated DC (at a ratio of 10:1, cultured as described in

Fig. 3) for 5 days, and then analysed for CD28 expression by flow cytometry, gated on viable CD4+ T cells. The data are mean + SD from two

experiments. (c) Inverse linear correlation between the percentage of CD28-positive CD4+ T cells (from Fig. 4b) and the cell-division ability for

cells cultured at the DC : T-cell ratio of 1:10 (Fig. 4a). Linear regression lines are shown for both dietary groups: R2 (n-3 PUFA), 0�57; and R2

(SFA), 0�78. (d) Inverse linear correlations between CD28 expression on CD4+ T cells [expressed as median fluorescence intensity (MFI)] and

DC expression of CD80 and CD86 (from Fig. 3). Correlation coefficients, CD80: n-3 PUFA: r = )0�89, P = 0�012, SFA: r = )0�64, P = 0�14.

CD86: n-3 PUFA: r = )0�68, P = 0�11, SFA: r = )0�50, P = 0�27. (a,b) Differences in proliferation or percentage of CD28 expression between the

two dietary groups and the different DC stimuli were tested by two-way analysis of variance (anova) and Bonferroni’s post hoc test. P-values for

the effects of diets and DC stimuli on proliferation and CD28-positive cells are given in the text (a) or in the figure (b). No interaction between

the diets and the DC stimuli was observed.
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in which the dietary content of n-6 PUFAs was increased

to 40 wt%, while keeping the dietary n-3 PUFA content

at 2 wt% (and the SFA content similar to that of the n-3

PUFA group). However, no further effects in regard to

the cellular FA composition in CD4+ T cells was

observed, and the cell proliferation was similar to that of

the SFA group (data not shown).

CTLA-4 and ICOS levels depend on n-3 PUFA
content and DC signal strength

To evaluate the significance of the signal transmission

capability in CD4+ T cells on costimulatory molecule

expression, induced through DCs, in the CD4+ T cells

harbouring different n-3 PUFA levels, we measured the

expression of CTLA-4 and ICOS upon activation with the

differentially primed allogenic DCs.

The percentage of ICOS-positive cells was shown to

depend on both the DC signal and the cellular PUFA

ratio, with the lowest percentages observed in cells with

the highest n-3 PUFA content (Fig. 5a). Interestingly, we

found an inverse correlation between the expression level

of CD40 on DCs and the percentages of ICOS-positive

SPL and MLN CD4+ T cells (Fig. 5b, data not shown for

MLN), thus indicating an indirect link between CD40L

and ICOS expression on CD4+ T cells.

With respect to CTLA-4, we measured the con-

tents of cell-surface protein and intracellular protein

simultaneously, in order to account for the total pool of

CTLA-4, as CTLA-4 molecules are recognized to be
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Figure 5. The expression level of the T-cell costimulatory molecules inducible costimulator (ICOS) and cytotoxic T-lymphocyte antigen-4 (CTLA-

4) is dependent on the CD40 level on dendritic cells (DCs), and is reduced in n-3 polyunsaturated fatty acid (PUFA)-rich CD4+ T cells. Spleen

(SPL) CD4+ T cells, derived from mice fed diets high in n-3 PUFAs or saturated fatty acids (SFAs), were co-cultured with in vitro-stimulated DCs

(at a ratio of 10:1, DCs were cultured as described in Fig. 3) for 5 days, stained with fluorescein-conjugated antibodies and analysed by flow cytom-

etry with gating of viable CD4+ T cells. (a) The percentage of ICOS- and CTLA-4-positive cells. Data are mean + standard deviation (SD) from two

experiments. Differences in expression of T-cell surface markers between the two dietary groups and the different DC stimuli were tested by two-

way analysis of variance (anova) and Bonferroni’s post hoc test. P-values are given in the boxes. No interaction between the diets and the DC stim-

uli was observed. (b) Linear regression analysis between CD40 or CD86 expression on DCs (Fig. 3) and mean percentage of ICOS-positive or

CTLA-4-positive SPL CD4+ T cells (Fig. 5a). Difference between dietary treatments, ICOS versus CD40: P < 0�0001, CTLA-4 versus CD86:

P = 0�0002 (from linear regression analysis). Spearman’s correlation coefficients are given below (n-3 PUFA) or above (SFA) the regression lines.
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rapidly endocytosed from the surface.30 The percentage

of CTLA-4-positive cells was observed to follow the same

tendencies as seen for ICOS, with lower percentages of

positive SPL and MLN CD4+ T cells in the n-3 PUFA

group and upon stimulation with the most mature DCs

(Fig. 5a). CTLA-4 expression on SPL and MLN CD4+

T cells was found to correlate with the level of CD86

expression on DCs (Fig. 5b), as well as with CD40 expres-

sion (data not shown, n-3 PUFA, r = )0�93, P = 0�0067,

SFA, r = )0�82, P = 0�034).

Collectively, a lower TCR/CD28 responsiveness in cells

high in n-3 PUFAs was directly reflected by a lower per-

centage of ICOS-positive and CTLA-4-positive SPL and

MLN CD4+ T cells, while the DC signal strength, depend-

ing on the genera and concentration of bacteria, distinctly

regulated the expression level of CD28, CTLA-4 and

ICOS on CD4+ T cells.

Discussion

CD4+ T cells are central for activation of the acquired

immune system, and the capacity of CD4+ T cells to

respond to signals provided by APCs is critical for the

resulting immunity. Here, we examined the influence of

the dietary and cellular lipid profile and the DC signal

strength on the ability of CD4+ T cells to express the co-

stimulatory molecules CD28, ICOS and CTLA-4 and to

proliferate after interaction with differentially primed

DCs. Such information will provide us with basic knowl-

edge into the regulatory effects of dietary lipid composi-

tion on CD4+ T-cell responses.

Our use of differentially matured DCs permitted dis-

tinction between the influence of the DC signal strength

and the cellular lipid profile for CD4+ T-cell activation, a

dynamic inter-relationship that has not yet been

described. We found that the capacity of CD4+ T cells to

respond to an exogenous signal provided by DCs was

greatly affected by the potency of the DC stimuli (partic-

ularly exemplified by differences in the expression of

CD80, CD86 and CD40), resulting in diverse regulation

of CD4+ T-cell proliferation and expression of all costim-

ulatory molecules investigated (CD28, CTLA-4 and

ICOS). Importantly, for all DC stimuli, we found that the

cellular PUFA ratio affected the activation ability of CD4+

T cells, with a cellular n-6 : n-3 PUFA ratio of 2 requiring

a larger threshold in order to become activated compared

to cells with an n-6 : n-3 PUFA ratio of 6. The cellular

n-6 : n-3 PUFA ratio in CD4+ T cells was found to be regu-

lated primarily by the dietary n-3 PUFA content. Based

on the present results, we consider reduced signal trans-

duction through the TCR and CD28 as a key contributor

to the reduced proliferation and costimulatory molecule

expression found in n-3 PUFA-rich CD4+ T cells.

We demonstrated here that the strength of the DC sig-

nal plays a distinct regulatory role in the proliferation

and expression of costimulatory molecules in CD4+ T

cells. The strength of the DC signal is regulated by all

microbes, and thus also by viruses, parasites, fungi and

pathogenic bacteria, and is based on their carriage of

microbe-associated molecular patterns. The present data

are therefore not only valid for gut bacteria-induced

priming of DCs, but may describe a general down-regula-

tory mechanism of dietary and cellular n-3 PUFAs on

CD4+ T-cell responses. In this study, we used different

generas and concentrations of gut bacteria to prime the

DCs to display different levels of the surface markers

MHC class II, CD80, CD86 and CD40, as also previously

reported by our group.27,31 This approach enabled us to

perform correlations between DC surface display and

CD4+ T-cell activation. Significant correlations were

found between the expression level of CD80 on DCs and

the inverse percentage of CD28-positive cells on the pro-

liferation ability of CD4+ T cells, emphasizing that the

intensity of the CD80 signal from DCs has a greater effect

on cell proliferation (via CD28 costimulation) than the

magnitude of MHC class II, CD86 or CD40 signalling.

Conversely, CD40 and CD86 expression levels on DCs

were found to correlate inversely with the percentage of

ICOS-positive CD4+ T cells and also with the percentage

of CTLA-4-positive CD4+ T cells. Similar regulatory con-

trol of CD40, ICOS-L (B7RP-1) and CD86 on primed

DCs may explain this finding, as there is no evidence for

CD40 and ICOS or CTLA-4 to directly interact. Indeed,

the correlations between CD28 and CD80 expression lev-

els, as well as between the CTLA-4 and CD86 expression

levels, add to the current knowledge on the effect of B7

molecules on DCs for regulation of CD28 and CTLA-4.

In the present study we did not measure ICOS-L, but our

data on CD40 and CD86 expression on DCs shows a sim-

ilar pattern of CD86 and CD40 regulation in DCs

(Fig. 3b). Yet others have reported high expression levels

of ICOS-L on immature DCs, and down-regulation upon

stimulation with LPS, thus implying that ICOS-L is regu-

lated inversely to CD40 and CD86.32 In regard to CD4+

T-cell costimulatory molecules, it was previously demon-

strated that co-regulation of costimulatory molecules is

occurring (e.g. ICOS costimulation involving up-regula-

tion of CD40L on T cells).17 Based on our findings here,

it would be of interest to pay specific attention to the

mechanistic regulation of these molecules on DC and

CD4+ T cells, but as the influence of the cellular lipid

content was our main focus in this study, this aspect was

not further studied. The inverse association found to be

present between CD40 and CD86 on DCs, and between

ICOS and CTLA-4 on CD4+ T cells could, to some

extent, be caused by an activation-induced internalization

of CD4+ ligands upon DC ligand interaction, as previ-

ously reported for CD28,29 and for B-cell-expressed

ICOS-L after interaction with ICOS transfectant cell

lines,21 but cannot be the sole mechanism, as revealed
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from the CTLA-4 measurements. CTLA-4 was measured

simultaneously both intracellularly and at the surface, and

therefore the total lower percentage of CTLA-4-positive

cells after stimulation with DCs expressing high levels of

CD40 and CD86 cannot result from internalization of

CTLA-4 only; rather de novo synthesis of the molecule

may be reduced. As CTLA-4 is recognized to be induced

in cells in order to down-regulate CD4+ T-cell activa-

tion,24 the lower percentages of CTLA-4 in CD4+ T cells

after potent stimulation by DCs may be a direct result of

enhanced activation of the cell, and thus delayment

of CTLA-4 expression. In relation to the down-regulation

of ICOS-positive cells with strong DC stimulation, we

are, however, not able to come up with any firm conclu-

sions, as most current literature indicates that ICOS is

important for positive costimulation. Yet, the most likely

reason for the ICOS expression pattern is activation-

induced internalization of the ligand, as also assumed to

be the case for CD28. This is strongly supported by the

proliferation data showing that the most potent DC stim-

uli induce the highest proliferative probability in CD4+ T

cells, thus clearly signifying that the CD4+ T cells with

the lowest percentage of surface CD28 and ICOS expres-

sion are the ones being activated most.

The data reveal a dichotomy between the down-regula-

tion of the percentage of CD28-positive and ICOS-posi-

tive cells by potent DC stimuli, presumed to indicate

higher CD4+ T-cell activation, and the lower number of

ICOS-positive cells and CTLA-4-positive cells in n-3

PUFA-rich cells, which, by using the same assumption,

also might be ascribed to even higher activation. How-

ever, as proliferation ability is lowered in n-3 PUFA-rich

cells, and because the percentages of ICOS-positive and

CTLA-4-positive cells after stimulation with iDCs are

lower in n-3 PUFA-derived cells than in SFA-derived

cells, we imply that this duality is caused by a general

reduction of TCR and CD28 signalling in n-3 PUFA-rich

cells. Diminished TCR and CD28 signalling will give rise

to lower levels of CTLA-4 and ICOS expression in DC-

activated CD4+ T cells, as both costimulators are recog-

nized to be regulated by TCR activation and further

enhanced by CD28 stimulation.29,33 In turn, this also

results in reduced proliferation ability in the n-3 PUFA-

rich group. Still, independently of the differences in signal

transmission seen between the two dietary groups, the

strength of the DC signal was equally important for the

resulting activation level of the CD4+ T cells in terms of

proliferation and costimulatory molecule expression,

emphasizing that the n-3 PUFA-rich CD4+ T cells are

indeed sensing the differences in DC signal strength,

despite being less responsive.

One probable explanation for the observed reduction in

CD4+ T-cell reactivity might be disruption of raft integ-

rity, as n-3 PUFAs are reported to incorporate into raft

lipids,2 leading to displacement of lipid raft-associated

proteins involved in both TCR- and CD28-mediated sig-

nalling (e.g. LAT and PKCh), 2,34 but several other mech-

anisms may also play a role. CD28 is constitutively

expressed at constant levels on naı̈ve cells, and is recruited

to lipid raft regions during T-cell activation.35,36 In the

event of lipid raft disruption by some n-3 PUFAs, it will

therefore not be surprising that we observed a general

down-regulation of DC-induced, as well as anti-CD3 and

anti-CD28-induced, CD4+ T-cell activation in cells high

in n-3 PUFAs. Lipid raft-mediated effects of n-3 PUFAs

would also explain the diversity in production of IL-5

versus IFN-c and IL-10 seen in activated CD4+ T cells, as

IL-5 transcription was previously reported not to involve

LAT activation.37 No effect of the cellular FA composition

was found in regard to CD28 surface expression in resting

CD4+ T cells, thus excluding a direct regulatory effect of

cellular PUFAs on CD28 surface display. This latter find-

ing is in agreement with a previous report from Ly

et al.14

Both ICOS and CTLA-4 are important for regulation of

acquired immunity, and a lower percentage of activation-

induced ICOS- and CTLA-4-positive cells in the n-3

PUFA group is therefore proposed to directly influence

the propensity of CD4+ T cells to activate and regulate

adaptive immune responses. Enhanced ICOS expression

has recently been linked to some autoimmune diseases,

such as rheumatoid arthritis,20 a disease in which patients

usually benefit from n-3 PUFA supplementation.38 It is

plausible that the effect of n-3 PUFA in patients with

rheumatoid arthritis is caused by the reduction in ICOS

expression on CD4+ T cells induced by the presence of

cellular n-3 PUFA; however, multiple mechanisms are

probably involved, including the general reduction of

CD4+ T-cell responsiveness in cells high in n-3 PUFAs. In

contrast to ICOS and CD28, CTLA-4 serves as a negative

regulator of T-cell responses,1 being indispensable in

preventing fatal lymphoproliferative disease,39 which

emphasizes that CTLA-4 is essential for maintaining

immune homeostasis. Upon T-cell activation, CTLA-4 is

expressed on the surface within 2–3 days after activation,

but, because of rapid endocytosis from the cell surface,

the majority of protein is present in intracellular vesi-

cles.30 Our data on diminished CTLA-4-levels in n-3

PUFA-rich stimulated cells indicates that CTLA-4 is not

actively involved in the reduced proliferation observed for

CD4+ T cells high in n-3 PUFAs, as formerly suggested

by Ly et al.14

Despite several previous studies identifying specific cel-

lular mechanisms affected by, especially, n-3 PUFAs in

regard to T-cell responsiveness, the consequence of the

dietary n-6 : n-3 PUFA ratio for general T-cell activation

is still incompletely defined. In cell types other than

immune cells, the cellular n-3 PUFA and n-6 PUFA

membrane levels were previously reported to highly

reflect the dietary composition.40 Conversely, membranes
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remain relatively constant in their SFA and MUFA con-

tent over a wide range of dietary variations for these fatty

acids.40 We found that this was indeed also the case for

CD4+ T cells, emphasizing that the dietary n-6 : n-3

PUFA ratio, rather than the SFA, MUFA or absolute n-6

PUFA intake, influences the cellular lipid composition.

Collectively, our data showed that the dietary n-6 and

n-3 PUFA contents regulate the cellular n-6 : n-3 PUFA

ratio, with a high n-6 : n-3 PUFA ratio being essential for

CD4+ T cells to respond strongly to external signals (e.g.

provided by bacteria-primed DC). Incorporation of cellu-

lar n-3 PUFAs is central in regard to reduced signal trans-

duction through the TCR and CD28. A deregulation of

signalling through the TCR and CD28 was found to affect

the modulation of other T-cell costimulatory molecules,

such as ICOS and CTLA-4, demonstrated here to be

reduced upon the presence of cellular n-3 PUFA at the

same time as being regulated by the DC signal strength.

Importantly, the presence of cellular n-3 PUFA does not

prevent CD4+ T-cell activation but rather leads to

reduced responsiveness, which, in terms of aberrant

immune reactions such as autoimmunities and allergies,

might decrease the propensity of antigen-specific CD4+ T

cells to become activated by requiring a generally higher

threshold of stimulation in order to induce immune acti-

vation. In addition to the present and previously revealed

effects of n-3 PUFA on CD4+ T cells, dietary PUFAs have

previously been shown to affect the function of DCs and

other APCs, giving rise to reduced expression of surface

molecules and diminished cytokine production.12 Thus,

during in vivo conditions, DC-induced activation of

CD4+ T cells high in n-3 PUFAs might be reduced even

more than currently revealed here, where we used in vitro

stimulation with DCs that had identical lipid composi-

tions.

Conclusively, the present findings demonstrate that the

activation of CD4+ T cells clearly depends upon

the strength and the type of the DC signal, but that the

responsiveness of cells is reduced in n-3 PUFA-rich cells,

thus indicating that changes in the dietary n-3 PUFA

content play a central role in the overall ability of CD4+

T cells to respond to an exogenous signal provided by

DCs.
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