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We propose an inverse design methodology for systematic design of nanostructured surfaces for color effects. The
methodology is based on a 2D topology optimization formulation based on frequency-domain finite element sim-
ulations for E and/orH polarized waves. The goal of the optimization is to maximize color intensity in prescribed
direction(s) for a prescribed color (RGB) vector. Results indicate that nanostructured surfaces with any desirable
color vector can be generated; that complex structures can generate more intense colors than simple layerings; that
angle independent colorings can be obtained at the cost of reduced intensity; and that performance and optimized
surface topologies are relatively independent on light polarization. © 2013 Optical Society of America

OCIS codes: (230.1950) Diffraction gratings; (230.4170) Multilayers; (310.6628) Subwavelength structures,
nanostructures; (330.1690) Color; (330.7326) Visual optics, modeling.
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1. INTRODUCTION
Structural colors are caused by interference effects from light
interaction with nanostructures rather than by pigments. The
vivid colors generated by the nanostructures are evident in
many animals and plants [1], e.g., the Morpho butterfly
displays a blue color due to a tree-like multilayer structure
[2] and the Papilio palinurus displays a bright green color
[3]. Even though structural color effects have been of scien-
tific interest for centuries [4], renewed interest has been
sparked in recent years due to advances in nanotechnology.

Particularly the wings of the Morpho butterfly, as already
mentioned, have been studied intensively for their optical
properties and structural coloration. With the development
of the electron microscope, it has been possible to observe
the periodic ridge structure giving rise to the structural color.
The ridge structure has a treelike shape that resembles a mul-
tilayer structure. The multilayer structure is tuned such that a
reflection band occurs for the “blue” wavelengths. However,
the color appears blue in a too-wide angular range compared
to traditional grating and multilayer theories. The explanation
is the height randomization of individual ridges, which de-
stroys interference and hence causes smooth angular color
appearance. In [5] a numerical analysis is conducted on the
3D nanostructure, which is the source of the blue color of
the Morpho butterfly wings. Further studies on numerical
modeling of Morpho structures and their randomness can
be found in [6], and a methodology for rendering of Morpho

wings can be found in [7].
Much research has been centered on analyzing and artifi-

cially replicating the structures found in nature—so-called
biomimetics or biomimicry [3,8]. However, in the present
work we take another approach. Instead of mimicking what
nature produced, we define the inverse design problem: find
a dielectric nanostructure that displays a prescribed color
effect. In this way we are not limited to what can be found

in nature—we should be able to produce any desired color
effect. The work is motivated by the developments in
nanotechnology, improving the possibilities for achieving
submicrometer features on surfaces also in large batch sizes.
Examples of future applications are within design of non-
degradable colors [8] and paint-free productions [9].

In previous studies [10–12], a method based on topology
optimization [13] has been formulated for designing nano-
structured surfaces with extreme reflection or transmission
properties. Here we extend [12] by including a near- to far-
field transformation of the reflected light and converting
the scattered far-field spectrum to colors. With this extension,
we obtain a methodology based on topology optimization for
designing nanostructured multilayered surfaces displaying
prescribed structural color properties.

Topology optimization is an inverse design methodology
based on repeated analyses (finite element or finite difference
analysis in frequency or time domain), gradient computations
and material redistribution based on mathematical pro-
gramming concepts. Topology optimization was originally
developed for mechanical design problems [13,14] but has
since then been extended to a number of other physics
areas, including nanophotonics [15–17], antennas [18], and
metamaterials [19].

The power of the topology optimization method is that it
can suggest novel geometries without any geometrical restric-
tions. Obviously, this extreme design freedom may also result
in structures that are difficult to manufacture using currently
available technologies. If the manufacturing technology and
its limitations are known, one may introduce manufacturabil-
ity as a part of the optimization problems as, e.g., seen in our
previous work, where we introduced a connectivity constraint
[11]. Obviously, imposing constraints on the geometrical free-
dom limits the achievable color response. To give the reader
an idea of this aspect, we compare the performance of the
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designs achieved with full geometrical freedom with corre-
sponding performances for designs that are limited to be
simple layerings.

The rest of the paper is organized as follows. Section 2
describes the finite element modeling procedure, the near-
to far-field mapping, the color-conversion scheme, as well
as the randomization that suppresses diffraction effects.
Section 3 describes the inverse design methodology, the
optimization problem, and the numerical procedure. Section 4
discusses a range of optimized surface structures for different
design goals, and Section 5 concludes on the work.

2. MODELING OF COLOR-DISPLAYING
NANOSTRUCTURED SURFACES
A. Numerical Model
The numerical setup is similar to our previous study [12] but
extended with a near- to far-field transformation as well as a
color-conversion process. The computational domain is given
in 2D and consists of three regions: an air region ΩA; a design
region ΩD; and a bulk region ΩB, see Fig. 1. Assuming invari-
ance of the electromagnetic properties in the out-of-plane di-
rection, Maxwell’s equations simplify to the scalar Helmholtz
equation. The scalar Helmholtz equation governs the physics
for steady-state electromagnetic wave problems with a sinus-
oidal Ez or Hz polarized plane wave of angular frequency ω
using ejωt to convert from phasor to time notation. Here
we state the governing equation for an Ez polarized wave.
Equivalent equations for Hz polarization are easily obtained
by interchanging Ez↔Hz and ϵr↔μr . The scalar Helmholtz
equation is given as [20, p. 9]

∇ · �μ−1r ∇Ez� � k20ϵrEz � 0; (1)

where ϵr is the relative permittivity, μr is the relative
permeability, and k0 � ω∕c is the free-space wave number.
The domain is truncated using perfectly matched layers

(PML) [20] at the top and bottom boundaries. The governing
equation in the ΩPML regions is

∂
∂x

�
sy

sx
μ−1r

∂Ez

∂x

�
� ∂

∂y

�
sx

sy
μ−1r

∂Ez

∂y

�
� k20sxsyϵrEz � 0; (2)

where sx and sy are complex functions of the position and gov-
ern the damping properties of the PML. The incident field Ei

z is
given as

Ei
z � Ez0 exp

�
−jk0

���������
μrϵr

p
k̂ · r

�
; (3)

where Ez0 is the amplitude of the wave, k̂ � �k̂x; k̂y�T is the
normalized directional wave vector, and r � �x; y�T is the
spatial position vector. The incident wave is generated by a
surface electric current density Js on Γi only having a z

component given by (see Appendix A)

Jsz � 2 cos�θin�
��������������
ϵ0ϵrμr
μ0

r
Ei
z; (4)

where θin is the angle of the incoming wave to the normal of
Γi. The periodic Bloch–Floquet boundary conditions on Γp are
given by

Ez�x; d� � Ez�x; 0� exp
�
−jk0

���������
μrϵr

p
d sin�θin�

�
: (5)

The problem is solved using the finite element method (FEM)
[20], and discretization details can be found in [12].

The field in close proximity and inside the nanostructure is
found with the solution of the FEM problem. However, the
reflected wave will most likely propagate a distance equal
to many wavelengths before reaching the eye of an observer.
Hence, the field of interest is the far field and not the near field
found from the FEM solution. To accommodate this, a near- to
far-field transformation is performed on the radial component
of the scattered field based on Huygen’s principle [20] and dis-
carding any terms that decay faster than 1∕�ρ�1∕2 where ρ is
the observation distance. The radial component of the scat-
tered far-field Esr

z can be extracted from the near field using
the following expression from [20]:

Esr
z �ρ; λ; θout� ≈

��������
jk0

8πρ

s
exp�−jk0ρ�…

Z
d

0

�
�n̂y sin�θout� � n̂x cos�θout��Es

z…

−
1
jk0

�
n̂x

∂Es
z

∂x
� n̂y

∂Es
z

∂y

��
…

exp�jk0�x cos�θout� � y sin�θout���dy; (6)

where Es
z � Ez − Ei

z is the scattered field and θout is the obser-
vation direction. Note that the line integral along the boundary
Γi in Eq. (6) is only defined along the y axis because the line
for Γi is constant with respect to x. The normalized reflection
factor L�λ; θout� in the direction θout of the scattered far-field is
found as

Fig. 1. Computational domain composed of an air region ΩA, a TiO2
region ΩB, and a design domain ΩD, where SiO2 and TiO2 is distrib-
uted to form the nanostructure. The periodicity of the structure is
modeled with Bloch–Floquet boundary conditions at Γp.
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L�λ; θout� �
ρλ

cos�θinc� cos�θout�
jEsr

z �ρ; λ; θout�j2
jEi

z�λ�j2
; (7)

where θinc is the angle of the incoming wave to the normal of
the surface. In the above equation, we have multiplied with ρ
in order to make the reflection factor independent of the ob-
servation distance.

The numerical model, including far-field transform, was
tested against structures with analytical solutions such as a
cylinder as well as the Morpho butterfly wing microstructure
from [5].

B. Color Conversion
Since colors (of nonemitting objects) are only perceived when
lit by a light source, the reflection of the dielectric nanostruc-
ture must be analyzed in a well-defined light environment. The
so-called D65 standard illuminant spectrum that resembles
daylight [21] is chosen as the light source. The reflected spec-
trum is then converted to coordinates in the RGB color space
by applying the color-matching functions [22] shown in Fig. 2:

R�θout� � Kc

Z
760

380
D65�λ�r̄�λ�L�λ; θout�dλ

≈ Kc

X
λ

D65�λ�r̄�λ�L�λ; θout�Δλ; (8)

G�θout� � Kc

Z
760

380
D65�λ�ḡ�λ�L�λ; θout�dλ

≈ Kc

X
λ

D65�λ�ḡ�λ�L�λ; θout�Δλ; (9)

B�θout� � Kc

Z
760

380
D65�λ�b̄�λ�L�λ; θout�dλ

≈ Kc

X
λ

D65�λ�b̄�λ�L�λ; θout�Δλ; (10)

where Kc is a scaling factor and the integration is approxi-
mated by summation for 20 discrete, equidistant wavelengths
between 380 and 760 nm. Note that the D65 spectrum is taken
into account in the expression, and hence FEM simulations

can be carried out with equal input intensity for each wave-
length. The match among the color-matching function, refer-
ence illuminant, and light source further ensures that a
reflected flat spectrum will appear white, as expected intui-
tively. The scaling factor Kc is found such that the RGB values
from the specular reflection of a fully reflecting surface are 1.
Note that this normalization does not guarantee that individ-
ual RGB numbers do not exceed unity or go below zero. This
is due to the negative intervals of the color-matching functions
(cf. Fig. 2).

C. Suppressing Diffraction Effects
Reflection from strictly periodic structures lit by a plane wave
creates diffraction. Diffraction is constructive and destructive
interference, resulting in light only being reflected at certain
angles. These reflection angles are wavelength-dependent.
This means that a perfectly periodic structure illuminated
by white light as seen in Fig. 3(a) will reflect a rainbow pattern
as illustrated in the reflected spectra of Fig. 3(b). This effect
can, for example, be observed when looking at a compact disc
(CD). The angles of reflection are determined by the period of
the surface structure. To avoid this, random height displace-
ments can be introduced to remove the interference effects
and make it possible to predict the total reflected intensity
as the reflected intensity from one “period.” This has been
shown in theory as well as in practice in [6,23,24] and is a com-
bination of random height variation and light incoherence,
which obscure phase information in the reflected electromag-
netic wave. Reference [5] demonstrates relevant random
height distributions and [24] shows that a binary height distri-
bution in practice is enough if the wanted color can be rep-
resented by a small band of wavelengths. The random
height interval can in general be kept below half of the longest
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Fig. 2. Color-matching functions for finding the RGB channels of a
light spectrum. The functions are derived using the 1931 CIE 2° stan-
dard observer weighting function [21] to obtain the XYZ tristimulus
values and afterward converted to the RGB working space using a
D65 reference while following ISO 22028-1:2004.

Fig. 3. Perfectly periodic nanostructure (a) with corresponding dif-
fraction pattern (b) and a height randomized structure (c) with the
diffraction effect eliminated (d). The display colors are exaggerated
for the purpose of illustration. The area surrounded by the dashed line
corresponds to one “unit cell.”
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wavelength of interest corresponding to a phase change of
360° at that wavelength.

The simulations are carried out assuming that a random
variation can be applied afterward (see, e.g., [23]) as illustrated
in Fig. 3(c), giving rise to the reflected spectra seen in Fig. 3(d),
where all diffraction effects are removed.Wewill not deal with
this aspect in further detail here, but assume that a random
height variation as seen in [5] can be applied to make the re-
sponse from one period of the structure appear similar to
the response of an array of randomized cells.

3. INVERSE DESIGN METHODOLOGY
A. Material Distribution by Topology Optimization
Light can be reflected and/or refracted at interfaces between
two media, depending on the spatial placement and distribu-
tion of the material properties (ϵr and μr). Hence, control of
these material properties allows wave manipulation for vari-
ous purposes, e.g., creating reflection bands for coloration.
Here we work with a TiO2 substrate with a nanostructure
composed of TiO2 and SiO2; however, the developed topology
optimization methodology can handle any simple (linear,
homogeneous, isotropic) material combinations including
metallic structures [25] and also frequency-dependent
material properties. The method works by varying the distri-
bution of materials within a bounded design domain in order
to optimize certain responses of the physical system. In the
design domain ΩD between the air and TiO2 substrate, the rel-
ative permittivity can be varied continuously on an element
basis between the permittivity for SiO2 (ϵSiO2

r � 2.25) and
TiO2 (ϵ

TiO2
r � 7.02). We employ a standard density-based top-

ology optimization method [16] and restrict our investigations
to nonmagnetic materials (μr � 1). A continuous design
variable γ ∈ �0; 1� is introduced for each element in the design
domainΩD and controls the element material properties. Here
γe � 0 corresponds to SiO2 and γe � 1 corresponds to TiO2:

ϵr�γe� � ϵSiO2
r � γe�ϵTiO2

r − ϵSiO2
r �: (11)

The continuous design variable formulation allows us to solve
the optimization problem with efficient gradient-based design
updates [26]. In principle, the optimization may result in “gray
scale” results, i.e., elements that neither correspond to SiO2

nor to TiO2; however, the robust design formulation devel-
oped in [27,28] and also used in [12] ensures almost discrete
designs through a continuation strategy. Symmetric solutions
are ensured by mirroring of design variables.

B. Optimization Problem
The idea of the inverse design methodology is to find a nano-
structure that displays a desired color effect in a specific angle
or angular range. The desired color is given as a reference in
the RGB color space RGBr � �Rr; Gr; Br �. The direction of the
color vector RGB�θout� (for nonzero length) decides the color,
and the length decides the color intensity. In order to create a
desired color effect, it is crucial that the color vector from the
nanostructure is parallel to the reference color vector. This is
ensured by imposing a constraint on the normalized cross-
product between the actual and the prescribed color vectors.
With the color vector constrained in the desired direction in
the color space, the normalized intensity of the reflected light
is maximized. Furthermore, a volume constraint is imposed to
prevent congestion in the design domain. The optimization

problem is formulated as a maxmin formulation for design
problems involving a color effect in an angular range or differ-
ent colors reflected in different directions simultaneously. The
optimization maxmin problem maximizing the minimum
intensity of several angular directions is formulated as

max
γ

Φ :� min
k�1;…;N

jRGB�θkout�j2
jRGBk

r j2
;

s:t:
jRGB�θkout� × RGBk

r j2
jRGBk

r j2
≤ τ2; k � 1;…; N;

1
VΩD

Z
ΩD

γdΩD − β ≤ 0;

0 ≤ γ ≤ 1; (12)

where k is the index of the N angular directions, τ is the high-
est admissible value of the error between the actual and pre-
scribed color vectors, VΩD

is the total volume of the design
domain ΩD, and β is the admissible volume fraction. The con-
straint on the color vector is introduced for each angular di-
rection in the problem. The prescribed reference colors in the
color constraints do not need to be the same but can be set to
any desired RGB value. The average of the RGB values ob-
tained from both Ez and Hz polarized waves is used in
Eq. (12) for unpolarized color effects.

The design is updated iteratively using the gradient-based
optimization routine method of moving asymptotes (MMA)
[29]. The normalized intensity given as Φ in Eq. (12) is used
as a performancemeasure for the nanostructures, and the sen-
sitivities are obtained using the adjoint method [15]. The max-
min problem in Eq. (12) is in general a challenging problem
due to non-differentiability of the min-function. To circumvent
this, the problem is reformulated to the so-called bound-for-
mulation, which is a standard conversion allowed by the
MMA optimizer. The interested reader is referred to the
MMA paper [29] and Svanberg’s publicly available codes for
further explanations.

The design procedure for black is constructed as a special
case. The objective for black is to absorb or transmit the light
for all visible wavelengths and thereby have zero reflection.
Hence the maximum intensityΦ�θout� at several angular direc-
tions is minimized in the optimization problem [cf. Eq. (12)]
while using white as a reference color (Rr � 1, Gr � 1,
Br � 1). The lower the value of Φ, the better the nanostruc-
ture is in displaying black.

The proposed procedure is implemented in MATLAB
utilizing parallel computations for the frequency sweeps.
Convergence is typically reached after 500–1000 material
redistribution steps, where the main computational effort in
each step consists in the forward and adjoint FEM solutions
for the 20 frequencies. This effort may be significantly reduced
using Padé approximants for the frequency sweeps [15], a
feature we will implement in future versions of the code. Pres-
ently, one optimization runs overnight on an eight-processor
computer.

4. STRUCTURAL COLORS GENERATED BY
TOPOLOGY OPTIMIZED
NANOSTRUCTURES
In this section, we demonstrate the procedure’s ability to de-
sign nanostructured surfaces with tailored color properties
for narrow and wider viewing angles, for polarized and
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Fig. 4. Color optimization for 0° observation angle. The left column shows the material distribution; the center column the frequency
response seen from the observer; and the right column shows the angular color spectrum including individual color distributions. Structures
(a)–(h) are optimized for red (RGBr � �1; 0; 0�), green [0,1,0], blue [0,0,1], yellow [0,1,1], magenta [1,0,1], cyan [1,1,0], black [0,0,0], and white
[1,1,1], respectively.
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non-polarized light, as well as for prescribed iridescent, i.e.,
angular dependent, color properties. The nanostructuring is
obtained by a nanostructured mix of SiO2 and TiO2 on a
TiO2 substrate.

We consider a periodically repeated symmetric design
domain as indicated with gray in Fig. 1. The period is d �
1000 nm and the thickness is lD � 600 nm. The design domain
is discretized with 120 × 200 finite elements and amaximum of

Fig. 5. Color optimization for 0° observation angle but design freedom limited to simple layered Bragg-like structures. Other details can be read
from the caption of Fig. 4.
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β � 65% of TiO2 (ϵTiO2
r � 7.02) can be distributed in the SiO2

(ϵSiO2
r � 2.25) base material. The choice of design domain

thickness lD is chosen arbitrarily. A very small thickness will
not be able to produce interesting color effects whereas a

large thickness (i.e., much larger than the wavelength) will re-
sult in intense colors and be of less challenge to the optimizer.

We have used τ � 0.05 as default value in Eq. (12), i.e., we
allow a 5% deviation from the desired color vector. Choosing a

Fig. 6. Color optimization for −30° to 30° observation angle with full design freedom. Other details can be read from the caption of Fig. 4. The three
curves in the reflection plots correspond to the reflection spectra for the three optimization angles (0°, 15°, and 30°).
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smaller value will make it harder for the optimizer to converge
and will most probably not be visually perceptible anyway. As
initial designs, we have used both pure SiO2 as well as a Bragg
grating designed to have a reflection band at a wavelength cor-
responding to the desired color. When running the optimiza-
tion for different initial designs we minimize the risk of finding

a less desirable local optimum. In each case, we show the op-
timized design with the best performance out of the two initial
designs. In most cases, the difference in performance is small
anyway.

To begin with, we consider three different cases all with
normal (0°) incident light: (1) optimizing the color in the

Table 1. Objective Values for RGBOptimizations Corresponding to 0°, 0°Constrained to Simple Layerings and

Wider Angular Spectrum [−30°, 30°]a

Objective Figure R G B Y M C W B

0° 4 1.03 0.97 1.04 0.96 0.91 0.94 0.90 0.00
0° layer 5 0.82 0.55 1.02 0.95 0.83 0.93 0.89 0.00
[−30°, 30°] 6 0.43 0.36 0.34 0.34 0.34 0.31 0.29 0.00

aThe objective values correspond to Figs. 4, 5, and 6, respectively. Colors are abbreviated red (R), green (G), blue (B), yellow (Y), magenta (M), cyan (C),
black (B), and white (W).

Fig. 7. Color optimization for combined Ez andHz polarization. (a)–(c) Structures optimized forHz polarization corresponding to those optimized
for Ez in Figs. 4(c), 5(c), and 6(c), respectively. (d)–(f) Similar structures optimized for combined Ez and Hz polarization. Red curves in the
reflection plots correspond to Hz polarization and black to Ez.
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specular direction (0°) with free topology; (2) optimizing the
color in the specular direction (0°) with the geometry re-
stricted to simple (Bragg grating-like) layerings; and (3) opti-
mizing the color in the angular range (−30° to �30°) with free
topology. In practise, the optimizations for angular intervals
are only optimized for N discrete angles (here N � 5, which
is reduced to N � 3 for symmetry reasons). For the three for-
mulations, we optimize structured surfaces to produce the six
main colors: red, green, blue, magenta, yellow, and cyan as
well as black and white. The results are shown in Figs. 4, 5,
and 6, respectively. The result of each individual optimization
is presented as a bitmap picture of the optimized topology (left
panel), reflection spectra for each output angle and polariza-
tion (middle panel), and an angular color spectrum with back-
ground color corresponding to the perceived color and
individual curves for the three basis colors: red, green, and
blue (right panel). The Φ values given for each example de-
notes the color intensity as defined in Eq. (12).

The optimization problem is highly nonconvex, and conver-
gence to a global optimum cannot be guarantied. However, a
continuation strategy runs with different starting guesses, and
previous experience make us confident that very good solu-
tions are found. In order to perform a sanity check of the ob-
tained results, we compare objective functions for the three
cases in Table 1. As expected, the reduced design freedom,
as represented by the layered structures in Fig. 5, cannot in
all cases produce the same intensity as the freely optimized
structures from Fig. 4. Likewise, the structures optimized
for a wider angular interval (Fig. 6) show much lower angular
color intensity. It also can be seen that the color intensities for
green and magenta are lower than for the others colors, espe-
cially for the simple layered structures. This also is to be
expected since the forming of green and magenta requires
a stop band and a pass band, respectively, whereas all other
colors can be obtained by simpler low or high-pass filters.

From the comparisons above, it is clear that freely opti-
mized structures in Fig. 4 are indeed better than simple lay-
ered ones in Fig. 5. With the increased design freedom, it is
possible not only to create simple 1D gratings with specific
pass and stop behavior but also to scatter light away from
the observation point or alternatively to create more complex
structures that may improve transmission of frequencies un-
wanted in the reflection spectrum. Both possibilities may lead
to improved color response at the observation point.

The red, green, and magenta designs perform surprisingly
bad for the simple layered designs in Fig. 5. However, these
are also the designs that resemble layered structures the least
for the full design freedom in Fig. 4. Hence, it is concluded that
complex structures seen in Figs. 4(a), 4(b), and 4(e) are in-
deed needed to ensure intense and pure colors.

For the structures optimized for broad angular response in
Fig. 6, the simple layered structures become highly subopti-
mal since they only reflect light back in a limited angular
range. Instead all the optimized designs exhibit rather com-
plex structures that are difficult to interpret. They all exhibit
a kind of directional photonic crystal structure, and it is ob-
served that the periodicity varies with wavelength. For exam-
ple, the structure optimized for red color generation (long
wavelength) has larger and more distant inclusions than
the structure optimized for blue color generation (short wave-
length). For the chosen cell size, the angle for first-order dif-
fraction for red light is 43°, and for blue light it is 27°. Hence,
when optimizing color for the angular interval [−30°, 30°], red
will have an advantage since it does not need to include
second-order diffraction effects in order to reflect evenly in
a broad angular interval. This observation may explain the
superiority of the red design in Fig. 6 compared to the other
colors.

The previous designs were all obtained for a single polari-
zation. In Fig. 7 we demonstrate the effect of polarization

Fig. 8. Optimization for prescribed iridescent colors. Red color [1,0,0] intensity is optimized for −43° observer direction, and blue color intensity
[0,0,1] is optimized for 27° observer direction. Designs (a)–(c) correspond to optimized structures for Ez, Hz, and combined Ez to Hz polarization,
respectively. Red curves correspond to the reflection in the −43° direction and blue to the reflection in the 27° direction.
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on structures optimized for blue color generation.
Figures 7(a)–7(c) show the designs optimized for Hz polariza-
tion, which can be compared to the similar ones optimized for
Ez polarization in Figs. 4(c), 5(c), and 6(c), respectively.
These designs appear not to be qualitatively much different
from each other, indicating that polarization is not a big issue
from a design view point. Figures 7(d)–7(f) show the corre-
sponding designs optimized for both polarizations simultane-
ously. Color intensities only drop insignificantly, indicating
that it is quite easy to design polarization-independent struc-
tural color surfaces using the developed methodology.

The final example considers the design of a surface with
angular-dependent (iridescent) color properties. Again, the in-
coming light is perpendicular to the surface, but we require
the reflected colors to be red in the −43° direction and blue
in the 27° direction. The optimized structures for Ez and Hz

polarization are shown in Figs. 8(a) and 8(b), respectively. It is
observed that large red and blue color intensities can be ob-
tained in the prescribed directions, and that the color is vague
green in between. If the green color is unwanted, one may pre-
scribe black for the zero-degree reflection angle, making
the optimization generate a structure that transmits more
of the green color instead of reflecting it. Figure 8(c) shows
the same optimization performed for simultaneous Ez and Hz

polarization. Again, requirements for nonpolarized response
do not alter the obtainable color intensities significantly.
The optimized structures are difficult to interpret; however,
slanted layered structures can be seen that help to redirect
the waves in the desired directions.

5. CONCLUSION
We have proposed a systematic procedure for generating
nanostructured surfaces with prescribed structural color re-
sponse. The procedure is demonstrated for a number of cases,
including generation of arbitrary colors in narrow- or wide-
angle intervals as well as for angular-dependent or iridescent
color generation. The developed software is general and can
be applied to any kind of material properties. For the exam-
ples, we considered a TiO2∕SiO2 nanostructure on a TiO2 sub-
strate, but the procedure also can handle single material
structures in air. In this case, manufacturing constraint must
be included to prevent nonconnected parts as, for example,
seen in [12]. In the present paper, we allow full design
freedom, which results in strong color effects even for thin
design domains. If complex nanostructures are not allowed
by the manufacturing process, additional constraints must
be imposed, inevitably resulting in decreased color-generation
performance. The proposed procedure can find many applica-
tions. It may be used for the optimal study of structural color
surfaces found in nature, extended to three dimensions,
allowing for more advanced color effects, and extended to
plasmonic design problems for color generation (cf. [30])
or thin film solar cells [31,32].

APPENDIX A: DERIVATION OF IMPRESSED
SURFACE ELECTRIC CURRENT DENSITY
On the incoming wave boundary Γi, we have the boundary
condition [20, p. 10]

n̂ × �H2 −H1� � J � ẑJsz; (A1)

where n̂ � x̂n̂x � ŷn̂y is the downward pointing normal to Γi,
and H2∕H1 are the magnetic fields existing just above/below
Γi, respectively, and Jsz is the impressed surface electric cur-
rent density, which only has a z component since the H fields
and the normal are perpendicular to ẑ. For simple media, it
holds that H � 1∕�jωμrμ0�∇ × E, and since we have defined
E � ẑEz, this in turn leads to

∇ × E � x̂
∂Ez

∂y
− ŷ

∂Ez

∂x
: (A2)

The cross-product n̂ ×H from this can be found to be

n̂ ×H � 1
jωμrμ0

�
n̂y

∂Ez

∂y
� n̂x

∂Ez

∂y

�
� 1

jωμrμ0
n̂ · �∇Ez�; (A3)

where μr is assumed constant around Γi. Combining Eqs. (A1)
and (A3), the expression

n̂ · �∇Ez2 − ∇Ez1� � ẑjωμrμ0Jsz (A4)

is obtained, where Ez1, Ez2 are the z components of E1, E2

related to H1, H2, respectively. Since we cannot expect to
excite a wave in one direction without exciting one in the
opposite direction as well, we define the fields that should
be excited by Jsz to be

E1 � ẑEz0 exp
�
−jk0

���������
μrϵr

p
k̂1 · r

�
;

E2 � ẑEz0 exp
�
−jk0

���������
μrϵr

p
k̂2 · r� jϕ

�
; (A5)

where ϕ is a constant chosen such that E1, E2 match on Γi.
Assuming that Γi is parallel to the y direction and defining
k̂1 ≡ k̂ � �k̂x; k̂y�T such that the incoming wave is equivalent
to Eq. (3), then k̂2 � �−k̂x; k̂y�T . This in turn means that
∇Ez1 � −jk0

���������
μrϵr

p
k̂Ez1 and ∇Ez2 � −jk0

���������
μrϵr

p
k̂2Ez2, which,

combined with Eq. (A4), leads to

Jsz �
jk0

���������
μrϵr

p
jωμ0μr

n̂ · �k̂1Ez1 − k̂2Ez2�: (A6)

Since the two electrical fields are the same on Γi and n̂ �
�1; 0� for Γi along the y axis, the surface electric current den-
sity exciting the wave in Eq. (3) (and also a wave in the other
direction) can then be found as

Jsz � 2k̂x

��������������
ϵ0ϵrμr
μ0

r
Ez;1: (A7)
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