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ABSTRACT 
 
Several studies have shown that the relationship between 
perceived video quality and frame rate is dependent on the 
video content. In this paper, we have analyzed the content 
characteristics and compared them against the subjective 
results derived from preference decisions between different 
spatial and temporal quality levels. We also propose simple 
yet powerful metrics for characterizing spatial and temporal 
properties of a video sequence, and demonstrate how these 
metrics can be applied for evaluating the relative impact of 
spatial and temporal quality on the perceived overall quality. 
 

Index Terms— Video quality, Frame rate impact 
 

1. INTRODUCTION 
 
Reliable assessment of video quality is essential for the 
development and comparison of different digital 
compression and processing techniques for visual 
information. The subjective perception of video quality is 
known to be dependent on several factors, of which the 
spatial quality (i.e. the distortion of the signal caused by 
compression and possibly transmission errors) is typically 
considered the most prevalent. Most of the objective video 
quality metrics known from the literature are based on solely 
or primarily measuring the difference between the original 
reference video signal and the distorted version of the same 
signal. This type of metrics include Peak Signal-to-Noise 
Ratio (PSNR), the most commonly used metric for 
evaluating video and image quality in the scientific 
community.  

Less attention has been paid to the quality impact of 
temporal resolution. Naturally, lower frame rate implies 
lower perceived quality, but modeling this impact 
mathematically has been proven challenging. Several 
subjective studies have been performed to analyze the 
impact of different frame rates. The studies by Yadavalli et 
al. [1], Brun et al. [2], Huynh-Thu et al. [3] investigated the 
frame rate preferences in low resolution video. In spite of 
different methodologies and parameter sets, all these studies 

have shown that high spatial quality is preferred over high 
frame rate, especially at low bitrates.  Frame rate becomes 
subjectively more crucial for sequences with high spatial 
quality and high resolution. However, the impact of frame 
rate on subjective perception of quality depends highly on 
the degree of motion in the sequences and on the content [4-
6]. In general, sequences with intensive motion seem to be 
more sensitive to frame rate than sequences with little 
motion; however, the tendency is not straightforward.  

The attempts to model the impact of the frame rate on 
the subjective quality as a function of spatial activity have 
shown some success [7-9], but outliers also occur, and 
typically the datasets used in individual studies are rather 
limited. A survey study of quality metric concerning 
temporal resolution can be found in [10]. In this paper, we 
present new subjective results comparing the subjective bias 
between spatial quality and temporal resolution. We have 
also analyzed how different characteristics influence this 
bias, in order to gain more advanced knowledge of the 
perception of frame rate. 
 

2. CHARACTERIZATION OF VIDEO SEQUENCES 
 
In our study, we have used High Definition (HD) video 
sequences originally provided by Technical University of 
Munich, downscaled to 768x432 pixels by LIVE laboratory 
at the University of Texas in Houston [11]. We have chosen 
a subset of seven sequences to represent different content 
and motion types. 

 
2.1 Qualitative Characterization of Content 

To understand the role of content type for the perception of 
frame rate and compression artifacts, we need to understand 
the differences in content types first. Short qualitative 
descriptions of each content are therefore given below. 

Blue Sky: A very high contrast sequence showing dark 
leaves of a tree against bright blue sky, with relatively 
smooth rotating motion. Averagely challenging to compress, 
since some areas are very smooth (blue sky) and some areas 
are very complex (high contrast borderlines between the tree 
and the sky). 



Pedestrian Area: A sequence with intermediate spatial 
complexity showing a view to a pedestrian street. There are 
some spots with fine details, such as pedestrians' clothing 
and the shops with signs, but also some smooth areas, such 
as the pavement of the street. The background is static 
(camera stands still). However, there is relatively intensive 
motion across the view, since there are several pedestrians 
and bicyclists moving in the scene. 

Riverbed: A view of streaming water in a shallow river. 
Detailed patterns of small stones are visible below the water 
surface. In addition, the stream causes constantly alternating 
reflections of light, which makes the sequence very rich in 
details and fine textures, both spatially and temporally. The 
camera stands still, and this is why all the motion in the 
sequence is related to the motion of the water. 

Rush Hour: A sequence showing a street in a city with 
heavy car traffic. There are a lot of details, but not many 
spots with fine detailed textures. The camera stands still and 
most of the motion is related to the moving cars. However, 
the air ripples due to heat, and this is why even the 
background is not perfectly static. 

Station: A sequence showing a railway yard, shot from a 
bridge above the rails. There are areas very rich in details 
and textures, such as the skyline of a city in the background, 
but also some smoother areas, such as the sky. The camera 
stands in a fixed position, but it is smoothly zooming out 
away from the vanishing point. 

Sunflower: A close-up of a bee on a sunflower. A lot of 
details forming a monotonic pattern, but also some smoother 
surfaces, especially in the upper right corner. The bee moves 
in different directions, seemingly randomly. The camera 
performs panning to different directions, apparently 
attempting to follow the bee. 

Tractor: A sequence showing a tractor driving on a 
field. A lot of details and also fine textures across the whole 
image. Different types of motion are also present: camera 
pans to follow the tractor, while the tractor itself is also in an 
intensive motion. 

 
2.2 Quantitative Characterization of Content 

ITU has defined spatial and temporal activity indices, SI and 
TI, for characterizing the spatial and temporal complexity, 
respectively [11]. These indices, based on simple statistical 
properties of the analyzed video sequence, are often used for 
basic classification of video content types. Temporal activity 
metrics based on motion vectors have also been used in 
related work [9], but in order to avoid the computational 
burden of deriving the motion vectors, we have chosen to 
focus on ITU indices and their derivatives in our work. 

The original formulation of SI and TI are given in Eqs 1 
and 2: 

 [ ]))((max nspacetime FSobelstdSI =  (1) 

 [ ])(max 1−−= nnspacetime FFstdTI  (2) 

In Eqs 1 and 2, Fn denotes n:th frame in the sequence, Sobel 
stands for Sobel filtering operation as defined in [12], stdspace 
denotes standard deviation of the values across the spatial 
plane, and maxtime denotes the maximum over the sequence 
of all frames.   

In the literature, several modified definitions for SI and TI 
have been presented [7,8,13]. In those, the average value of 
per-frame indices is often used instead of the maximum 
value; this helps to avoid overemphasizing the impact of 
temporarily appearing objects of high motion or spatial 
details. In addition, standard deviation may be replaced by 
mean value: there is evidence that SI computed from mean 
correlates better with Kolmogorov complexity than SI 
computed from standard deviation [13]. In this paper, we 
have redefined SI and TI as follows: 

 [ ]))(( nspacetime FSobelmeanmeanSI =  (3) 

 [ ])( 1−−= nnspacetime FFstdmeanTI  (4) 

The traditional spatial and temporal activity indices are very 
generic measures. To characterize the video type more 
accurately, we propose some additional measures. We start 
by defining blockwise spatial and temporal activity indices 
Sn,m and Tn,m (Eqs 5 and 6), that are computed separately for 
each block Bn,m of a predefined size (index n denotes the 
temporal position of the block, i.e. frame number, and m the 
spatial position index, m=1..M, where M is the number of 
macroblocks per frame). In this paper, we have used blocks 
of 16x16 pixels, similar to many image and video 
compression algorithms. 

 [ ])( ,, mnspacemn BSobelmeanS =   (5) 

 [ ]mnmntimemn BBstdT ,1,, −−=    (6) 

Using Eqs 5 and 6, we can define two new measures for 
content characterization: spatial and temporal uniformity 
index, SUI and TUI (Eqs 7 and 8). These values are 
normalized with respect to the average values of S and T in 
each frame. 

[ ] [ ]( )MnMntime SmeanSstdmeanSUI ..1,..1, /=  (7) 

[ ] [ ]( )MnMntime TmeanTstdmeanTUI ..1,..1, /=  (8) 

Combining SUI and TUI with SI and TI, a more accurate 
characterization of the content can be obtained. In principle, 
low values of SUI and TUI indicate that spatial and temporal 
activity is uniformly distributed across the frames, whereas 
high values indicate that the activity is distributed more 
unevenly. Roughly, values below 0.7 can be considered as 



low, and above 0.7 as high. In Fig. 1, joint interpretations for 
these measures are summarized. 
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Fig. 1. Proposed content characterization. 

 
Since the motion intensity can alternate significantly not 

only in the spatial plane, but also in the temporal domain, we 
have defined one more measure for content characterization, 
labeled as jerkiness index (JI). It is defined as standard 
deviation of TI across time, normalized with respect to TI: 

  [ ] TIFFstdstdJI nnspacetime /)( 1−−=  (9) 

The numerical content characterizations for the test 
sequences are summarized in Table 1. The numerical results 
are corresponding reasonably well to the qualitative 
descriptions in Section 2.1 and the interpretations of values 
as shown in Fig. 1. 
 
Table 1. Objective content characterizations 
 

Sequence SI SUI TI TUI JI 
Blue Sky 80.50 0.99 31.38 0.89 0.11 
Ped. Area 37.72 0.69 15.14 1.18 0.18 
Riverbed 62.99 0.44 25.78 0.58 0.05 
Rush Hour 33.78 0.87 8.82 1.07 0.16 
Station 38.96 0.61 7.15 0.63 0.29 
Sunflower 47.22 0.64 14.06 0.76 0.37 
Tractor 62.70 0.51 19.31 0.50 0.08 

 
 

3. SUBJECTIVE EXPERIMENT 
 
In this study, we have used a similar methodology as 
described in [14], but we have applied it to higher resolution 
video sequences, as described in Section 2. In addition, the 
tests have been performed in two directions, i.e. from bad 
quality towards good, and vice versa. A short description of 
the method is given below; for more details about the 
methodology, the reader may refer to [7, 14]. 
 
3.1. Methodology 

The methodology used for our subjective study is based on 
pairwise comparisons taken in steps to find the preferred 

path from bad quality to good quality, or vice versa. Quality 
is defined by two dimensions, comprising both spatial and 
temporal quality. At each step, the test subject can choose 
between two sequences, one with higher spatial quality and 
lower frame rate, and another with lower spatial quality and 
higher frame rate. After choosing the preferred sequence, the 
test proceeds to the next quality level, according to the user's 
choice. In this way, the preferred path across the 
spatiotemporal quality plane can be found. The methodology 
is illustrated in Fig. 2. 

When several subjects have performed the test, it is 
possible to find the average path by computing the average 
spatial and temporal quality levels of all the subjects after 
each step. This is done by labeling each spatial and temporal 
quality level by an integer number ranging from one (lowest 
quality) to the number of quality levels (highest quality). 
Then, average position after each step can be obtained by 
averaging the position values in both dimensions. In [7], it 
has also been shown how the distribution of preferences can 
be turned into a quality score. Assuming that the steps 
between levels represent similar change in perceived quality, 
the average paths would follow roughly the diagonal of the 
spatiotemporal quality plane. 
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Fig. 2. Pairwise comparisons resulting in the preferred path 
across the spatiotemporal quality plane. 

 
3.2. Practical study 

It is well known that the relationship between frame rate and 
perceived temporal quality is not linear but closer to 
logarithmic: the changes in temporal resolution are more 
pronounced at low frame rates than high frame rates [3]. For 
our experiments, we have tried to choose uniform intervals 
for spatial and temporal quality with respect to the observed 
quality differences. The frame rate levels are 24, 12, 8, 6, 4 
and 2 frames per second, and different frame rates are 



obtained from the full 24 fps sequences simply by skipping 
frames. 

 Different spatial quality levels have been generated by 
compressing the original sequence with H.264/AVC codec 
using different fixed quantization parameters (QP). To avoid 
quality fluctuation, we have used intra-frames only 
(temporal prediction has not been used). QP values have 
been chosen to represent the range from very bad quality 
(PSNR below 25 dB) to very good quality (PSNR over 40 
dB). Even though we attempted to produce perceptually 
uniform steps, some nonlinearity may still be present; this 
must be taken into account, when analyzing the results.   

A total of 22 subjects participated in the experiment (19 
males and 3 females). The average age was 34.4 years (SD 
8.6). All subjects had normal or corrected to normal vision. 
The average time each subject spent in the experiment, 
excluding training, was around 23 minutes (SD 10). An 
experimental session consisted of 14 trials: each of the seven 
different contents was evaluated by each subject from bad to 
good quality, and from good to bad quality. Presentation 
order of trials was randomized in a Latin Square design. 

The experiment took place in a laboratory especially 
designed for audiovisual quality testing, featuring controlled 
artificial daylight conditions and a wallwash of soft light 
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a) Tractor sequence.  
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b) Sunflower sequence. 
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c) Blue Sky sequence 

Fig. 3. Example paths for sequences a) Tractor, b) Sunflower and c) Blue Sky. 



behind the screen. Content was presented on a 19” TFT with 
mid-grey background as recommended in ITU-R BT.500 
[15]. Viewing distance was approximately 4 times the height 
of the screen, but could be adjusted by the participants. 

 
4. DATA ANALYSIS 

 
As an output of the subjective experiment, each test subject 
produces a path between the lowest spatial and temporal 
quality and the highest spatial and temporal quality. The 
average path can be produced by averaging the positions of 
each test subject after each step. We have attempted to 
choose the spatial quality and frame rate levels so that each 
step represents a uniform change in subjective quality along 
both axes. Therefore, if changes in temporal and spatial 
quality are weighted subjectively equally at each point, the 
average path would follow the diagonal across the 
spatiotemporal quality plane.  

Example results are shown in Fig. 3. for Tractor, 
Sunflower and Blue Sky sequences (starting from bad quality 
towards good, good to bad, and both results combined). 
Levels are numbered from one to six, in increasing order of 
spatial quality and frame rate. The figure shows also 
interpolated heatmaps illustrating the density of test subjects 
in each area along their routes. It is worth noting that the 
highest density areas in the heatmaps do not match 
accurately with the average paths, suggesting that there are 
rather large differences between median paths and average 
paths.  

In order to quantify the average preference bias between 
temporal and spatial quality, we have defined a simple 
metric, based on the average distance between diagonal and 
the average position after each step (endpoints excluded). 
Negative values denote higher emphasis on spatial quality 
(i.e. the average path goes below the diagonal) and positive 
values higher emphasis on frame rate (i.e. the path goes 
above the diagonal). The results are summarized in Table 2. 

In most cases, test subjects seem to have stronger 
preference on high frame rate when they start from good 
quality, than when they start from bad quality. This indicates 

that more attention is paid to temporal resolution when the 
spatial quality is good, and assumedly there is a memory 
effect influencing each choice even after the first step. The 
result is in line with the related research [1,2]. Rush Hour 
and Tractor sequences are exceptions from this observation. 
For them, the paths from good to bad quality and vice versa 
are closer to each other than for the other sequences. 

In the next phase, we attempted to predict the combined 
bias values as listed in Table 2, using the objective content 
characterization indices listed in Table 1. Several related 
studies have shown that high temporal activity tends to 
indicate higher importance of frame rate, and this is why we 
have mainly focused on the temporal characteristics. In Fig. 
4, the quality bias values versus TI are plotted. The plot 
shows clear positive correlation between bias and TI, but 
there are also significant outliers, most notably Pedestrian 
Area and Sunflower. 
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Fig. 4. Dependency between TI and spatial/temporal bias. 
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Fig. 5. Dependency between TI·TUI and spatial/temporal 
bias. 
 

In order to improve estimation, we have tried also other 
ways to use the indices for prediction. It can be assumed that 
in case of panning or other overall motion, TI 
overemphasizes the perceived intensity of the motion. On 
the other hand, local intensive motion may be 
underemphasized, respectively. This is why combining TI 
and TUI by simple multiplication is an appealing alternative 

Table 2. Preference bias between spatial quality and frame 
rate. Negative values indicate that users prefer high spatial 
quality over high frame rate, and positive values vice versa 
 

Sequence bad to good good to bad combined 
Blue sky 0.296 0.804 0.550 
Ped. area 0.129 0.521 0.325 
Riverbed -0.193 0.495 0.151 
Rush hour -0.078 -0.257 -0.167 
Station -0.630 0.154 -0.238 
Sunflower -1.041 -0.778 -0.910 
Tractor -0.141 -0.341 -0.241 

 



 

to measure the overall perceived motion. Indeed, as Fig. 5. 
shows, the prediction accuracy can be improved by 
predicting bias from TI·TUI. Without one significant outlier, 
Sunflower, the linear fit could be improved even further. 

Jerkiness of the outlier sequence, Sunflower, is the most 
significant feature that distinguishes it from the other 
sequences: JI for sunflower is 0.37, whereas the average JI 
for the other sequences is only 0.15. By intuition, it is 
reasonable to assume that the high emphasis on spatial 
quality is related to jerkiness, since natural jerkiness of 
motion could mask the impact of low frame rate. However, 
more subjective experiments should be made to confirm this 
hypothesis. 
 

5. CONCLUSIONS 
 
In this paper, we have studied the relative importance of 
spatial quality and frame rate on perceived quality of video 
sequences roughly of standard definition TV resolution. We 
have observed that there is a strong correlation between 
temporal activity level and perceived importance of frame 
rate. The preference bias between spatial quality and 
temporal resolution can be predicted reasonably accurately 
by using temporal activity information. The observations 
from our study could be used to develop more accurate 
metrics for evaluating both spatial and temporal quality 
components of video sequences. However, the number of 
test sequences in our study is not sufficient for the 
development of such a metric, and larger datasets would be 
required for more rigorous analysis of different influencing 
factors, such as jerkiness of motion. 

At the same time, the proposed content characterization 
based on spatial and temporal activity indices on the one 
hand, and spatial and temporal uniformity indices on the 
other, allows for a more detailed quantitative characteri-
zation, revealing more and meaningful differences between 
videos than traditional measures alone. In the future, it might 
be interesting to expand this study to include the encoding 
case, in which temporally predicted frames are involved.  
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