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ABSTRACT

The effectiveness of probabilistic structural testing depends
on the characteristics of the probability distribution from
which test inputs are sampled at random. Metaheuristic
search has been shown to be a practical method of optimis-
ing the characteristics of such distributions. However, the
applicability of the existing search-based algorithm is lim-
ited by the requirement that the software’s inputs must be
a fixed number of numeric values.

In this paper we relax this limitation by means of a new
representation for the probability distribution. The repre-
sentation is based on stochastic context-free grammars but
incorporates two novel extensions: conditional production
weights and the aggregation of terminal symbols represent-
ing numeric values.

We demonstrate that an algorithm which combines the
new representation with hill-climbing search is able to effi-
ciently derive probability distributions suitable for testing
software with structurally-complex input domains.

Categories and Subject Descriptors
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1. INTRODUCTION
The term ‘statistical testing’ has a number of meanings in

the context of software verification, but refers here to a form
of probabilistic structural testing described by Thévenod-
Fosse and Waeselynck [12, 13, 14]. The strategy is to ran-
domly sample test inputs from an input profile (a proba-
bility distribution over the input domain) having a particu-
lar property: that every structural element in the software-
under-test is exercised as frequently as possible by the sam-
pled inputs.

Statistical testing is, potentially, a very effective testing
strategy. As for deterministic forms of structural testing,
the codes’s structure provides guidance as how the testing
effort should be applied in order to detect faults throughout
software. But statistical testing additionally shares the ben-
efits of other probabilistic methods of generating test inputs.
In particular, it is easy to generate inputs for tests sets of
any chosen size by repeatedly sampling from the input pro-
file. This flexibility in the test set size enables the most
effective use to be made of the available testing time and
resources. Thévenod-Fosse and Waeselynck demonstrated
empirically that the combination of structural guidance and
flexible test size enables statistical testing to be more effec-
tive at detecting faults than both uniform random testing
and deterministic structural testing [12].

However, a significant barrier to the use of statistical test-
ing is the cost of finding a suitable input profile: it is difficult
to derive a probability distribution over the software’s input
domain that induces an effective distribution over the soft-
ware’s structural elements.

In our previous work, we demonstrated a cost-effective
search-based algorithm for deriving suitable input profiles
[9, 10]. The algorithm represented candidate input profiles
as a Bayesian network and therefore had a significant limi-
tation: it could be applied only to software for which inputs
consisted of a fixed number of numeric values. In this paper,
we propose a grammar-based representation that overcomes
this limitation.

The contributions we make are:

1. A new representation for input profiles that is capable



of generating structurally-complex test inputs. The
complexity may arise from constraints on the validity
of the input, a mixture of categorical and numeric data,
and the use of variable-length sequences. The new rep-
resentation is based on stochastic context-free gram-
mars, but incorporates two novel extensions. Firstly,
conditional production weights introduce a limited form
of context-sensitivity and enable the representation of
more subtle probability distributions than would nor-
mally be possible. Secondly, terminal symbols repre-
senting numeric values are aggregated so as to reduce
the size of the representation and thereby facilitate its
optimisation using search. (Section 3.1)

2. A search method that may be applied to the grammar-
based representation in order to derive input profiles
suitable for statistical testing. (Section 3.3)

3. A demonstration of the cost-effectiveness of a search
algorithm using three diverse software examples, and
empirical evidence that the two novel extensions to
the grammar facilitate the derivation of input profiles.
(Section 4)

2. BACKGROUND

2.1 Statistical Testing
Statistical testing requires that the input profile—the prob-

ability distribution over the input domain of the software-
under-test (SUT) from which inputs are sampled—satisfies
an adequacy criterion. The criterion is expressed in terms of
a set, C, of coverage elements such as structural elements of
the SUT’s source code or functional elements of the SUT’s
specification. For each coverage element, ci ∈ C, let pi be
the probability that the coverage element is exercised by a
single input chosen at random from the given input profile,
and p be the minimum of the pi. The adequacy criterion
requires that p (which we refer to as the minimum coverage
probability) be as large as possible.

The rationale for this criterion is efficient coverage of the
structural elements. Let Q be the probability that every
coverage element is exercised by at least one test case in the
test set. The relationship between Q, p, and the test size N

is given by (adapting a result given in [13]):

Q = 1− (1− p)N (1)

For effective testing, Q should have a value close as possible
to 1 in order to cover as much of the software as possible.
Maximising the minimum coverage probability enables ei-
ther (a) an increase in Q for a given test set size (which will
improve the fault-detecting ability); or (b) a reduction in
the test size (and thus the testing costs) while maintaining
an acceptable value of Q.

To construct input profiles with suitably high minimum
coverage probabilities, both static and dynamic techniques
are described in the literature.

Gouraud and Denise describe a static technique which as-
signs weights to edges in the SUT’s control-flow graph in
order to sample execution paths in a manner that satis-
fies the statistical testing adequacy criterion [5, 2]. How-
ever, computationally expensive constraint-solving (similar
to that used in symbolic execution) is required to derive test

inputs which exercise the sampled paths, and many of sam-
pled paths are infeasible in practice. Both these factors limit
the scalability of the technique.

Thévenod-Fosse and Waeselynck describe a dynamic tech-
nique [13, 14]. The minimum coverage probability of a can-
didate input profile is estimated by executing an instru-
mented version of the SUT with inputs sampled from the
profile. The results are used to guide the manual adjustment
of the profile, and the process repeated until a suitable value
of the minimum coverage probability is attained. However,
Thévenod-Fosse and Waeselynck speculate that this tech-
nique is unlikely to be practical for large SUTs in its manual
form.

2.2 Deriving Input Profiles Using Search
In our previous work, we demonstrated that metaheuristic

search can automate the dynamic technique of Thévenod-
Fosse and Waeselynck, and thereby reduce the cost of deriv-
ing suitable input profiles for statistical testing [9].

We made the assumption that inputs to the SUT were a
fixed number of integer or real-valued arguments. This as-
sumption enabled input profiles to be represented as Bayesian
networks: directed acyclic graphs in which nodes correspond
to input arguments, and edges describe conditional depen-
dence between arguments. The conditional distributions at
each node were represented by partitioning the domain of
the input vector component into bins and assigning a prob-
ability to each bin.

To derive input profiles using this Bayesian network repre-
sentation, we use random mutation hill-climbing to optimise
the edges between nodes, the number and size of bins at a
node, and the probabilities assigned to each bin.

In subsequent work, we demonstrated an enhancement to
the search algorithm that improved performance by a factor
of five for some SUTs [10]. The enhancement—described as
‘direction mutation’—used additional information obtained
from executing the instrumented SUT to bias the mutation
operators to parts of the candidate input profile that ex-
ercised the coverage element(s) having the lowest coverage
probability.

Although this work has shown that metaheuristic search
is an effective and cost-efficient approach to deriving input
profiles, the assumption of inputs being a fixed number of
numeric values limits the SUTs to which this approach may
be applied. It is this limitation we seek to remove using the
new reprentation described in this paper.

3. PROPOSED SEARCH ALGORITHM

3.1 Representation

3.1.1 Stochastic Context-Free Grammars

Formal grammars define a language of strings: sequences
of symbols drawn from a set of terminal symbols. The
grammar restricts valid strings to be a subset of all pos-
sible sequences of terminals by means of production rules:
only strings that can be constructed by the application of
the grammar’s production rules are valid. The productions
of context free-grammars, on which our representation is
based, have the form:

V → X1 X2 ...Xn

where V is one of an additional set of symbols called vari-
ables, and the Xi are either variable symbols or terminals.



The generation a valid string from the grammar begins
with a string consisting of a single copy of the designated
‘starting’ variable symbol, usually denoted S. Generation
proceeds by considering the leftmost variable in the current
string. A production is chosen which has the this variable on
the left-hand side, and the variable is replaced in the string
with the symbols on the right-hand side of the production
rule. The process of replacing variables continues until the
string contains no variable symbols.

As an example, consider the following context-free gram-
mar for defining simple arithmetic expressions. (For clarity,
we surround terminal symbols in this and subsequent gram-
mars by single quotes. We also use the standard notation
of concatenating productions with same left-hand side vari-
able, separating the alternative right-hand sides using verti-
cal bars: X → Y | Z is equivalent to the two productions X
→ Y and X → Z.)

S → Expr

Expr → Num | Expr Op Expr

Num → ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’

Op → ‘+’ | ‘-’ | ‘*’ | ‘/’

This grammar generates valid strings such as ‘4 + 3 * 5’,
but does not generate invalid strings such as ‘- 3 1’.

In a stochastic context-free grammar (SCFG), each pro-
duction is additionally annotated by a weight. During string
generation, if more than one production could be applied,
the weights are interpreted as a probability distribution and
one of the productions is chosen at random according to
distribution.

When used as a representation for input profiles, the gram-
mar productions define the valid inputs to the SUT, and the
weights are used to define the probability distribution over
the inputs, i.e. an input profile. (We note, however, that
some types of input structures cannot be represented using
context-free grammars.)

3.1.2 Conditional Weights

Context-free grammars are so-called because the set of
productions that may be applied to a variable does not
change depending on the symbols occurring before or after
the variable in the string during the generation process; this
is a consequence of only a single variable being permitted
on the left-hand side of production rules.

The context-free property simplifies the grammar repre-
sentation, but limits the types of input profiles that may be
represented using the weights of a SCFG. Consider again
the example grammar for generating simple arithmetic ex-
pressions. If an optimal input profile must avoid too many
divide-by-zero arithmetic operations (i.e. the substring ‘/

0’), the only mechanism available to do this is to assign a
low weight to the production Op → ‘/’, or to the produc-
tion Num → ‘0’. However such weights would also reduce
the probability of otherwise desirable substrings such as ‘/
2’ and ‘+ 0’.

To overcome this limitation, we enhance the standard
form of SCFGs by introducing conditional weights for the
productions. A ‘child’ variable may be identified as having
one or more ‘parent’ variables (the set of which may include
the child variable itself) on which it is dependent. The distri-
bution of weights over the productions for the child variable
are then conditionally dependent on which productions were
most recently applied to the parent variables.

For example, we may identify the variable Num in our ex-

ample grammar as being dependent on the variable Op. The
weights over the 6 productions for Num are then conditionally
dependent on which production was most recently applied
to Op. In effect, there are 5 (potentially different) distribu-
tions of weights over the productions of Num: one for each of
the 4 possible productions of Op, plus a further distribution
that is used if no production has yet been applied to Op.

The conditional dependency of weights extends the types
of input profiles that may be represented by introducing a
limited form of context-sensitivity (but only in the weights;
the grammar itself remains context-free). It would, for ex-
ample, enable divide-by-zero errors to be avoided more ac-
curately by setting the weight of Num → ‘0’ to a low value
only in the conditional distribution used when the most re-
cent production applied to Op was Op → ‘/’, but retaining
a normal weight for Num → ‘0’ for all the other productions
of Op.

The conditional dependency between variables—which par-
ents are related to which child variables—is discovered by
the search algorithm; it does not need to be specified a pri-
ori.

3.1.3 Aggregation of Numeric Terminals

Some variables in the grammar may be used to represent
a numeric range. For example, the variable Num in the exam-
ple grammar above represents an integer in the range [0, 5].
When the cardinality of the range is small, it is feasible
to use a separate production for each possible value in the
range. However, for much larger ranges, such an approach
would create an excessive number of productions and asso-
ciated weights: it is unlikely that it would be practical to
optimise such a large representation using search.

To accommodate large numeric ranges, we propose a fur-
ther extension to the standard form of SCFGs. Variables
representing numeric ranges are identified as special type
that we term ‘binned variables’. Rather than specifying a
production for each possible value in the range, the range is
instead partitioned into a small number of bins.

For example, if the variable Num instead represented the
range [−32768, 32767], it might be partitioned into three
bins (of different sizes) as follows:

Num → [−32768,−2480] | [−2479, 238] | [239, 32767]

When one of these three productions is chosen during the
generation of a string from the grammar, the output is not
the bin, but a value picked at random from a uniform dis-
tribution across the bin. For example, if the production Num

→ [−2479, 238] is applied, then the output is an integer be-
tween -2479 and 238.

By aggregating a potentially large number of terminals
into a much smaller number of bins, the size of the repre-
sentation is reduced; we speculate that this will improve the
practicality of the search process.

The number and lengths of bins need not specified a pri-
ori : the search process attempts to derive a suitable parti-
tioning.

3.2 Fitness Metric
The fitness metric is an estimate of the minimum coverage

probability induced by the candidate input profile. It is
evaluated by sampling a number (K) of inputs from the
stochastic grammar, and executing an instrumented version
of the SUT with the inputs. For each coverage element ci,



the estimated coverage probability, pi, is the proportion of
the K inputs that exercised the element one (or more) times.
The lowest value of pi across all the coverage elements is an
estimate of the minimum coverage probability.

Since the sample of inputs is of finite size, the fitness met-
ric is an estimate and may sometimes be higher than the
‘true’ value for the candidate input profile. In this situa-
tion, the input profile may be retained in error over many
iterations of the search. In our previous work, we were able
to minimise this effect by continuing to evaluate the current
input profile (for up to µeval hill-climbing iterations), and
re-calculating a more accurate estimate of fitness from the
accumulated instrumentation data.

3.3 Search Method
There is some correspondence between the new grammar-

based representation and the previous Bayesian network rep-
resentation. For this reason, we propose a hill-climbing
search similar to that described in [10].

3.3.1 Random Mutation Hill-Climbing

The search begins from an random input profile construct-
ing by randomising the weights, conditional dependencies
between variables, and number and size of bins in the gram-
mar. A limit (µprnt) may be specified for the number of
parent variables any one variable may be conditionally de-
pendent on, and on the number of bins that a binned vari-
able may have (µbins): both the initial random profile and
neighbours created by mutation respect these limits.

At each iteration of the hill-climb, a small number (λ)
of neighbours to the current input profile are created by
applying one of the following mutation operators:

Mprb increases or decreases a single production weight by
a factor ρprb;

Madd adds a conditional dependency between two variables;

Mrem removes a conditional dependency;

Mlen increases or decreases the length of one bin by a factor
ρlen;

Mspl splits a bin into two new bins;

Mjoi joins two adjacent bins.

Each mutation operator Mx has an associated weight, wx:
operators with higher weights are more likely to be applied
when creating a neighbour.

The neighbours are evaluated, and if the fittest neighbour
is fitter than the current input profile, the neighbour be-
comes the current profile in the next iteration.

3.3.2 Directed Mutation

We incorporate an enhancement to the search method
that we describe as ‘directed mutation’. (This enhance-
ment was discussed in section 2.2 above, and is explained
in detail in our previous work [10].) When the fitness of
the current input profile is evaluated, data is maintained as
to which productions gave rise to inputs that exercised the
coverage element(s) with the minimum coverage probability.
The weights (and bins, if a binned variable) associated with
these productions are then mutated with a higher likelihood
when creating neighbours of the current input profile.

Directed mutation is implemented by grouping the muta-
tion operators into three groups:

Gedge operators that modify conditional dependencies: Madd

and Mrem;

Gbins operators that modify production weights and bin
terminals directly: Mlen, Mspl, Mjoi, and Mprb;

Gdrct consists of the same weight- and bin-modifying op-
erators as Gbins, but applies them only to production
weights and bins that contributed strings that exer-
cised the element(s) with the lowest coverage proba-
bility.

Each group Gx has associated weight Wx. When choosing
a mutation operator to apply, a group is first chosen at ran-
dom according to the group weights, and then a mutation
operator is chosen at random from that group according to
the mutation operator weights. The group weights control
the ‘strength’ of directed mutation effect.

If the minimum coverage probability is zero, one or more
coverage elements must have been exercised by none of the
sampled inputs and so there is no data available with which
to apply directed mutation. In this situation, the algorithm
foregoes the local mutation operators described above and
constructs entirely random neighbours (in the same way as
initial random profile). The motivation is to rapidly explore
the search space in order to find a region where the minimum
coverage probability is non-zero and directed mutation will
be effective.

4. EMPIRICAL DEMONSTRATION

4.1 Objectives
The objectives of the empirical work described in this sec-

tion are:

1. To demonstrate that proposed search algorithm is able
to derive input profiles suitable for testing software
taking structurally-complex inputs.

2. To assess whether the two extensions to the standard
form of stochastic context-free grammars—conditional
production weights and the aggregation of numeric
terminals—facilitate the search algorithm.

4.2 Software Under Test

4.2.1 circBuff

circBuff is the implementation of a circular buffer con-
tainer in the BOOST C++ library, version 1.50. The testing
objective is coverage of branches in the public methods of
the public interface class of the container. (We omit the
copy constructor and assignment operator in order to avoid
a step-change in the complexity of the grammar since these
methods take a further container object as a parameter.)
The number of branches to be covered is 78. The public
methods of the class constitute approximately 700 lines of
code, but not all methods include branched code.

Since the container object maintains state between method
calls, it is not sufficient for the test case to be a single method
call. Instead, we consider a test input to be a sequence of
method calls and we use the grammar shown in Figure 1 to
create such inputs. The grammar defines a valid structure
for the sequence of method calls: a constructor, method calls
to the constructed object that fill the buffer, method calls



S → Constructor FillMethods Methods ‘destructor’
Constructor → ‘circular_buffer[0]’ BufferCapacity

| ‘circular_buffer[1]’ BufferCapacity BufferSize
FillMethods → FillMethod FillMethods | FillMethod
FillMethod → ‘push_front’ | ‘push_back’

Methods → Method Methods | Method
Method → ‘push_front’ | ‘push_back’

| ‘linearize’ | rotate’ IteratorPos
| ‘set_capacity’ BufferCapacity

| ‘resize’ BufferSize
| ‘rset_capacity’ BufferCapacity
| ‘rresize’ BufferSize

| ‘insert[0]’ IteratorPos
| ‘insert[1]’ IteratorPos Number

| ‘rinsert’ IteratorPos | ‘erase[0]’ IteratorPos
| ‘erase[1]’ IteratorPos IteratorPos
| ‘rerase[0]’ IteratorPos

| ‘rerase[1]’ IteratorPos IteratorPos
| ‘pop_front’ | ‘pop_back’

| ‘front’ | ‘back’ | ‘operator[]’ Number
BufferCapacity → [0,9]

BufferSize → [0,9]
IteratorPos → [0,9]

Number → [0,9]

Figure 1: The grammar defining inputs to circBuff

S → EpuckCluster ObjClusters

EpuckCluster → EpuckClustAzimuth EpuckClustDist Epucks
Epucks → Epuck

Epuck → EpuckAzimuth EpuckDist EpuckAngle
ObjCluster → ObjClustAzimuth ObjClustDist Objects

ObjClusters → ObjCluster | ObjCluster ObjClusters

Objects → Object | Object Objects
Object → Obstacle | Patch

Obstacle → ObstAzimuth ObstDist ObstRadius
Patch → PatchAzimuth PatchDist PatchRadius

EpuckClustAzimuth → [0,359]
EpuckClustDist → [0,199]

EpuckAzimuth → [0,0]

EpuckDist → [0,0]
EpuckAngle → [0,359]

ObjClustAzimuth → [0,359]
ObjClustDist → [400,599]

ObstAzimuth → [0,359]
ObstDist → [0,99]

ObstRadius → [10,99]

PatchAzimuth → [0,359]
PatchDist → [0,99]

PatchRadius → [10,99]

Figure 2: The grammar defining inputs to epuck.

that operate on the buffer, and finally a call to the destruc-
tor. Terminals, such as ‘push_front’, specify method calls.
(The suffices of the form [n] distinguish between overloaded
methods.) Parameters to method calls are represented by
the four binned variables at the end of the grammar. Re-
cursion in the grammar enables the generation of variable-
length sequences of method calls.

The strings generated by the grammar are interpreted by
a test harness and applied to an instrumented version of the
container class. The object returned by a call to a construc-
tor method is stored by the harness and subsequent method
calls are made to that object.

4.2.2 epuck

‘E-pucks’ are small, relatively cheap robots used in robotics
research. The SUT epuck is controller code that forms part
of a lightweight simulator for e-puck robots written in C by
Paul O’Dowd of the University of Bristol. Features sup-
ported by the simulator include infra-red proximity detec-
tion, communication between robots, the placement and de-

object cluster

arena centre

cluster centre

arena

patch

obstacle

Figure 3: The mission environment specified in terms of
object clusters.

tection of coded patches on the floor, and the placement of
static obstacles in the environment.

The controller code has two significant conditional state-
ments: the first tests whether an obstacle is nearby and if
so, directs the robot to take avoidance; the second tests for
the presence of coded ‘food’ patches on the floor and if so,
attempts to maintain position over the patch. The testing
objective is to exercise the four branches from these two
conditional statements during a short ‘mission’ lasting the
equivalent of 10 seconds in the simulation.

A test input is a configuration of the robot’s environment
in which the mission occurs, consisting of fixed circular arena
and a number of obstacles and patches.

The configuration is described by the grammar listed in
Figure 2, which defines obstacles and patches in terms of
groups we call object clusters. An example of two clusters
is shown in Figure 3. The objects in the cluster—obstacles
and patches—are defined using distances and angles from
centre of the cluster.

The recursion in the grammar permits different numbers
of object clusters, each with different numbers of obstacles
and patches, to be generated. Binned variables are used to
generate the positions of clusters, obstacles, patches, and
e-pucks; and the radii of obstacles and patches.

Strings generated by the grammar are interpreted by a
test harness and used to configure the simulated environ-
ment. To avoid unrealistic environments, only the first three
obstacles and first three patches are configured. Similarly,
only the first e-puck specified by the generated string is
added to the arena.

The controller code itself consists of 53 lines of code, but
the testing process requires the code to be executed as part
of the much larger simulator. The mission duration of 10
seconds is equivalent to 500 time steps in the simulation.
While the real-world elapsed time for each simulated mission
is much less than a second, this is nevertheless much longer
than the execution of time of the other two SUTs used in
this empirical work.

4.2.3 tcas

The previous Bayesian network representation could be
applied only to SUTs with inputs consisting of a fixed num-
ber of numeric arguments. In order to demonstrate that
the new grammar-based representation is also practical for



S → A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12
A1 → [0,39999]

A2 → [0,1]
A3 → [0,1]
A4 → [0,39999]

A5 → [0,4999]
A6 → [0,39999]

A7 → [0,3]
A8 → [0,39999]

A9 → [0,39999]
A10 → [0,2]
A11 → [1,2]

A12 → [0,1]

Figure 4: The grammar defining inputs to tcas.

SUTs with this simpler form of input domains, we include
a common example from the testing literature: the Traf-
fic Collision Avoidance System (TCAS) used by commercial
aircraft. The code was provided by the Software-artifact
Infrastructure Repository [3].

The SUT takes 12 integer arguments, and thus the gram-
mar consists only of 12 binned variables—one for each argu-
ment across the valid range of the argument—plus the start
variable (Figure 4). This simple grammar always processes
each variable exactly once and always in the same order.
For this (and similar) grammars, the fixed generation or-
der enables the search space to be reduced by restricting
the conditional dependencies between variables: the parent
variable must be processed earlier than child, otherwise the
dependency would have no effect.

The testing objective is coverage of all reachable 62 con-
ditions (atomic Boolean predicates) in both conditional and
assignment statements.

4.3 Empirical Method
The empirical demonstration compares four variants of

the algorithm implemented in C++:

1. The standard hill-climbing algorithm as described in
section 3.

2. A variant in which conditional production weights are
prohibited (by setting the parameter µprnt to 0).

3. A variant in which the range of a numeric variable
is not partitioned into bins (by setting the parameter
µbins to 1).

4. An equivalent form of random search: instead of cre-
ating neighbours by application of a single mutation
operator, an entirely random profile is generated (in
the same way that the initial random profile is con-
structed).

For each variant and for each SUT, 16 trials—each using
a different seed to the pseudo-random number generator—
were run. Each trial executed on a single CPU core. The
clock speed of, and memory accessible to, the cores were
typical of a desktop PC. The trials ran for 20,000 iterations
for circBuff and tcas, taking on average of 14 minutes and
1.5 minutes per trial, respectively. Each execution of epuck
during fitness evaluation takes much longer than the other
two SUTs, so the algorithm trials ran for a fewer number of
iterations: 400 iterations, taking on average of 22 minutes
per trial.

During each trial, the fitness (the estimated minimum
coverage probability) of the best input profile found so far

Parameter Description Setting
K evaluation sample size 302
λ neighbourhood sample size 9
ρprb production weight mutation factor 54.002
ρlen bin length mutation factor 2.755
Wbins Gbins group weight 1000
Wedge Gedge group weight 144
Wdrct Gdrct group weight 10584
wrem Mrem mutation weight 1000
wadd Madd mutation weight 689
wprb Mprb mutation weight 1000
wjoi Mjoi mutation weight 886
wspl Mspl mutation weight 1159
wlen Mlen mutation weight 1028
µprnt max. parent variables per child 1

µbins max. terminal bins per variable 2
√

|C|
µeval max. evaluations per profile 10

Table 1: The algorithm parameter settings. (The parame-
ters are described in section 3.3. The expression |C| denotes
the number of coverage elements.)

was recorded in order to assess the trajectory taken by the
search. (The fitness of the best profile so far is not neces-
sarily the same as that of the current profile owing to the
re-evaluation mechanism described in section 3.3.)

The remaining algorithm parameter settings are listed in
Table 1. The settings were re-purposed from the result of
tuning the older Bayesian network algorithm to a different
set of SUTs [8]. In order to reduce the threat to validity
of using a single set of parameter settings, the parameters
were not tuned to new grammar representation nor to the
new SUTs under consideration here.

4.4 Results
The results are summarised in Figure 5 for each of three

SUTs. The graphs illustrate the trajectory of the search by
plotting the average fitness, calculated as the mean across
all 16 trials of the algorithm variant, at each iteration of the
algorithm. The fitness plotted is the estimated minimum
coverage probability of the best profile found so far, and so
this value is the fitness of the input profile that would have
been returned by the search algorithm if it had been stopped
at that iteration. The 95% confidence intervals, indicated
by error bars at regular intervals along the trajectory, were
calculated by bootstrap resampling.

We choose to summarise the results as trajectories to en-
sure that any conclusions we draw are reliable and not an
artefact of a particular point at which we might choose to
stop the algorithm.

The raw data from the algorithm trials is available at:
http://www.cs.york.ac.uk/~smp/supplemental/.

4.5 Discussion
For all three SUTs, the hill-climbing algorithm (solid line

trajectories) derives input profiles with the highest minimum
coverage probability. (For epuck, there is no statistically
significant difference between this algorithm and the variant
that does not use conditional production weights: the er-
ror bars overlap across the entire trajectories.) As discussed
in section 2.1, profiles with the highest minimum coverage
probability will be the most cost-effective when used for sta-
tistical testing. We are not aware of any analysis in the lit-
erature of the best possible value of the minimum coverage
probability for these SUTs against which we may compare
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Figure 5: Trajectories for the four search algorithms. The
solid line plots the mean fitness of the best profile found to
date at each iteration for the algorithm using the standard
hill-climbing search method; the dashed line is the variant
that omits any dependencies between variables; the dash-dot
line is the variant that omits binning; and the dotted line is
the algorithm using random search. The error bars show the
95% confidence interval; for clarity, they are plotted only at
regular intervals.

these results. However, by applying equation (1), we note
that all the coverage elements will be covered (with a prob-
ability, Q, of 0.99) using test set sizes of 38 for circBuff, 5
for epuck, and 51 for tcas. (At such a high value of Q, such
test sets will often exercise every coverage element more than
once.) These relatively small test sizes demonstrate that the
search algorithm is effective at deriving input profiles.

For both circBuff and tcas, the algorithm variant that
does not use conditionally dependent weights (dashed trajec-
tories) derives profiles with a lower fitness than the standard
hill-climbing algorithm. This difference is statistically sig-
nificant across a wide range of iterations (the error bars do
not overlap). We conclude that the novel extension of con-
ditional production weights facilitates the search algorithm.

For all three SUTs, the algorithm variant that does not
partition numeric variables into bins (dash-dot trajectories)
derives profiles with a much lower fitness than the standard
hill-climbing algorithm, and the difference is statistically sig-
nificant. This is only partial evidence in support of aggre-
gating numeric terminals. We do not produce empirical evi-
dence in this paper for the other part of the argument: that
if each numeric range were represented by separate termi-
nals for each possible value, then the search space would be
impractically large. Instead, we argue merely that for SUTs
taking many thousands of different numeric inputs (such as
tcas), this is a reasonable assumption.

Finally, for all three SUTs, random search (dotted trajec-
tories) derives profiles with a much lower fitness than the
hill-climbing algorithm. This result provides a check that
the task of deriving input profiles for these SUTs is not a
trivial search problem.

5. RELATED WORK
The use of grammars to generate test inputs is an estab-

lished practice known as grammar-based testing. It is moti-
vated by the need to generate test data for SUTs for which
the nature of valid inputs is highly-constrained. For ex-
ample, grammar-based testing can be used to generate test
inputs—source code—for compilers and interpreters [7, 4].
Inputs consisting of random sequences of characters would
be almost always raise errors in the lexer or parser phases
of a compiler; the code of subsequent compilation phases
would remain untested. A grammar, however, ensures the
construction of semantically correct source code, enabling
the compiler functionality to be fully tested.

In many cases, the grammar is deterministic and input
data is generated by bounded-exhaustive enumeration: all
valid language strings are generated up to a chosen size-
related bound. However, a few techniques sampled inputs
at random from stochastic grammars. Applications of this
probabilistic approach include: testing of hardware arith-
metic circuits in simulation [6]; differential testing of com-
pilers [7]; and testing the bytecode verifier in Java Virtual
Machine implementations [11]. In all these examples, the
grammar’s production weights were manipulated manually
to achieve desirable properties in the randomly-sampled test
inputs.

In this paper we have demonstrated the use of automated
search—rather than manual manipulation—to adjust the
weights of a stochastic grammar for this purpose; the desir-
able property in our case being a high value of the minimum
coverage probability. In this respect, our approach is most
similar to the recent work of Beyene and Andrews [1].



Although Beyene and Andrews’ approach is not framed
explicitly in the context of statistical testing, it achieves sim-
ilar objectives. Grammars for structured HTML and XML
inputs are converted to stochastic data generation programs,
and the weights in the generation programs are optimised by
metaheuristic search for high coverage of the SUTs.

Our proposed search algorithm differs from Beyene and
Andrew’s technique in two notable aspects.

Firstly, we use a grammar representation that incorpo-
rates two novel extensions: conditional production weights
and the aggregation of numeric terminal symbols. Our em-
pirical results show that these extensions enable the search
algorithm to derive input profiles with significantly better
minimum coverage probability.

Secondly, the adequacy criterion in Beyene and Andrew’s
experiments was statement coverage: between 50% and 73%
of the statements were covered using large test sets of size
1000. Our empirical demonstration uses the much stronger
adequacy criteria of branch and condition coverage. More-
over, we calculated above that we are able to (effectively)
guarantee that 100% of the coverage elements would be ex-
ercised using much smaller test sets. (Since the SUTs used
in the empirical work of this paper are not the same as those
used by Beyene and Andrews, a more rigorous comparison
of the two approaches is not currently possible.)

6. CONCLUSION
In this paper we proposed a novel grammar-based repre-

sentation for input profiles, and demonstrated a search algo-
rithm using this representation that is capable of efficiently
deriving input profiles suitable for statistical testing. The
grammar-based representation enables the algorithm to be
applied to a wide range of software, in particular software
with structurally-complex inputs. For three real-world ex-
amples, the algorithm took only a few minutes to derive
suitable input profiles using computing resources equivalent
of a desktop PC. Since the approach is automated and uses
readily-available, affordable computing resources, the costs
associated with deriving input profiles for statistical testing
are reduced.

The new representation extends stochastic context-free
grammars through the use conditional production weights
and aggregating numeric terminal symbols in bins. The em-
pirical results provide evidence that both of these novel ex-
tensions facilitate the search process.

The grammar-based representation and associated search
algorithm provide a generic mechanism for describing and
optimising probability distributions over the input domain
of a SUT: they could be applied to the problems other than
statistical testing for which the objective is to induce a par-
ticular probability distribution over the executed software.
For example, the objective could be to exercise particular
parts of the software that have been neglected by earlier
testing; to focus on components that have a history of faulty
behaviour; or to explore non-functional properties such as
execution time.

As future work, we are investigating the use of stochastic
grammars that are more flexible than context-free grammars
and will facilitate the representation of input profiles for a
yet wider range of SUTs.
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