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ABSTRACT

Poorly controlled diabetes is characterized by

premature cardiovascular mortality and

morbidity. The mechanisms linking

hyperglycemia with accelerated atherosclerotic

disease have not been fully elucidated; however,

are thought to be mediated through vascular

inflammation, oxidative stress and endothelial

dysfunction. The advent of incretin-based

therapy, whether by increasing endogenous

glucagon-like peptide (GLP)-1 and

glucose-dependent inhibitory polypeptide by

inhibition of their breakdown using di-peptidyl

peptidase 4 inhibitors, or augmenting GLP-1

activity using either exendin-4-based drugs or

synthetic GLP-1 analogs promised not just

improvements in glycemic control, but

improvements in endothelial function, lipid

profiles and markers of vascular inflammation.

As such, it was anticipated they would

demonstrate cardiovascular benefit in those

with diabetes, indeed early meta-analyses

suggested cardiovascular events would be

reduced. To date, however, this benefit has

failed to materialize, indeed the cardiovascular

outcome trials, whilst meeting their primary

endpoint of cardiovascular safety, have failed to

demonstrate any improvements in stroke or

myocardial infarction. This review will explore

the data and attempt to answer the question:

what went wrong?

Keywords: Cardiovascular outcomes; DPP-4

inhibition; Endothelial function; GLP-1

receptor agonists; Incretin

INTRODUCTION

Diabetes mellitus currently affects

approximately 415 million people worldwide

[1]. It is estimated the global health expenditure

on diabetes is approximately $673billion; indeed

in the USA alone the cost is approximately $320

billion. Of this cost, however, only 12% is spent
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on directlymanaging the diabetes itself, with the

majority of the expenditure being on the

complications of the disease [2]. Cardiovascular

disease is the most common cause of death and

disability among people with diabetes; the

diagnosis conferring a twofold excess risk of

cardiovascular disease, independent of the

usually accompanying adverse lipid and weight

profile [3]. Therefore, reducing the

cardiovascular risk of people with diabetes has

beenat the forefrontof diabetes researchwith the

intention of improving the health andwellbeing

of the population whilst simultaneously

reducing the global financial burden of the

disease. At the core of cardiovascular

protection, good blood pressure control, weight

reduction, improved physical activity and

appropriate statin usage have been

demonstrated to substantially reduce event rate

[4].

Diabetes is diagnosed and characterized by

hyperglycemia, and thus for many years, strict

glycemic control was thought to be key to

improving cardiovascular events. Whereas tight

glycemic control unequivocally improves

microvascular outcomes, the benefit has not

been consistently demonstrated in the

macrovasculature [5–7]. Multiple explanations

have been presented for this lack of benefit, or

in the case of the ACCORD study

(ClinicalTrials.gov identifier, NCT00000620)

the apparent harm [6]. There is still no

unifying accepted theory. Many have

suggested the predominantly insulinocentric

approach to the management of glucose may

have contributed to the lack of benefit [8] as

these therapies are associated with significant

weight gain [9] and risk of hypoglycemia [10].

Although unlikely to account for the complete

lack of benefit seen in these studies it is

generally accepted that these recognized

complications of treatment mitigate the

benefit of good glycemic control. Indeed, the

2.7-fold excess cardiovascular mortality

reported in the systematic review and

meta-analysis of observational studies was in

part attributed to these complications of

treatment [11]. As such, it was hoped the

advent of incretin-based therapies, designed to

support physiological regulation of glycemia

without precipitating hypoglycemia or weight

gain, would provide an alternative treatment

strategy with cardioprotective benefits. Early

phase 2 and 3 studies provided promising

results, however, as yet, these benefits have

failed to be demonstrated.

This review will explore the pre-clinical and

early clinical data and compare it with the

subsequent larger clinical trials to propose

potential explanations for the disconnect

between the physiological benefits presented

in early work and the lack of apparent benefit

demonstrated in large-scale cardiovascular

safety studies.

This article is based on previously conducted

studies and does not involve any new studies of

human or animal subjects performed by any of

the authors.

THE INCRETIN SYSTEM IN HEALTH
AND DISEASE

The pathophysiology of diabetes includes

attenuated pancreatic a and b cell function

resulting in inappropriate glucagon release and

diminished insulin production, cellular insulin

resistance in the muscles, liver, brain and

adipose tissues, increased renal glucose

reabsorption and impairments of the incretin

system [12]. Incretins are peptides secreted from

the gut in response to ingestion of food. The

two peptides, glucose-dependent insulinotropic

polypeptide (GIP) and glucagon-like
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polypeptide 1 (GLP-1) account for as much as

90% of the ‘‘incretin effect’’ first described by

Jean LaBarre in 1930 [13]. They are responsible

for as much as half of the glucose-dependent

insulin release after food ingestion in addition

to suppressing glucagon release. Further, in

health they have been attributed with several

preparatory responses to nutrition, including

suppressing hepatic gluconeogenesis,

promoting satiety and inhibiting gastric

emptying. People with diabetes have reduced

incretin production and enhanced degradation

by the enzyme di-peptidyl peptidase-4 (DPP-4)

[14]. Research into these pathophysiological

deficits has resulted in the successful

development and use of therapies either

increasing endogenous GLP-1 by inhibiting its

breakdown by DPP-4 or administering synthetic

GLP-1 receptor agonists. The latter class of drugs

is further subdivided into agents based on

exendin-4, originally isolated from the Gila

monster of the Southwestern United States,

which has approximately 50–53% homology

with human native GLP-1 making it resistant to

DPP-4 degradation, but interacts with the GLP-1

receptor, or the synthetic GLP-1 analogs which

share up to 97% homology with endogenous

GLP-1, but have been engineered to resist DPP-4

breakdown. These agents stimulate appropriate

insulin secretion, suppress inappropriate

glucagon release and thus regulate glucose

with a low risk of hypoglycemia. There is

substantial interest, however, in the

non-glycemic effects these agents had.

CARDIOVASCULAR EFFECTS
OF INCRETIN-BASED THERAPY

In vitro studies exploring the effect of GLP-1

on endothelial function demonstrate that

there are vascular benefits which are not

mediated through improvements in

hyperglycemia, weight loss or the

accompanying blood pressure reduction.

Exendin-4 stimulates proliferation of

endothelial cells, a critical step in endothelial

repair, arterial healing, and angiogenesis, by a

GLP-1 receptor-dependent mechanism [15].

The endothelial dysfunction that characterizes

premature atherosclerosis is attenuated in

human umbilical vein endothelial cells

(HUVECs) exposed to the GLP-1 analog

liraglutide similarly through GLP-1

receptor-dependent mechanisms [16].

Liraglutide also shows marked anti-oxidative,

anti-inflammatory, and anti-apoptotic effects

on HUVECs exposed to tumor necrosis factor

alpha (TNFa) [17], and attenuates the

accompanying endothelial cell dysfunction

[18]. Additionally, liraglutide reduced

hyperglycemia-induced endoplasmic reticulum

stress in HUVECs via mitochondrial fusion

processes, thereby reducing apoptosis [19].

Interestingly this effect may be a direct

mitochondrial effect rather than a GLP-1

receptor-mediated effect. Exenatide, however,

failed to protect rat femoral arterial ring

endothelial cells from triglyceride-induced

cellular dysfunction [20].

In the animal models GLP-1 also appears to

have favorable effects on vascular function,

independent of its glucose lowering effects.

GLP-1 administration mediates

endothelial-dependent relaxation in the rat

pulmonary artery [21, 22], which was attenuated

in the presence of a nitric oxide synthase

antagonist suggesting the involvement of nitric

oxide (NO) inmediating its vascular effects. This is

supported by observations that GLP-1 promotes

NO-dependent relaxation of mouse mesenteric

arteries [23]. The GLP-1 vascular effect appears to

vary by vascular bed, causing

endothelial-independent relaxation, via the

GLP-1 receptor, in femoral arteries [24] but
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having no impact on rat aorta isolates [21]. GLP-1

is also protective against ischemia–reperfusion

injury in isolated rat hearts [23, 25–28] and has

renoprotective (reducing proteinuria and

microalbuminuria) effects, in addition to the

cardioprotective effects in Dahl salt-sensitive

hypertensive rats [29]. Whether these effects are

mediated directly via the GLP-1 receptor is

unclear, as the vasodilatory effects have been

observed to be both dependent [24] and

independent [23] of the GLP-1 receptor. In the

latter of these studies, GLP-1(9-36), which is the

product from the degradation of GLP-1 by DPP-4,

mediated relaxation of mouse mesenteric arteries

[23]. Thus, it is clearly evident that GLP-1 acts as a

vasodilator in animal models potentially having

cardioprotective properties, although whether

this is dependent on GLP-1 receptor or another

mechanism remains to be elucidated.

Early work in humans replicated these

findings. Acute administration of GLP-1

increased flow-mediated dilatation

(endothelial dependent) in type 2 diabetic

male subjects with coronary artery disease but

had no significant effect on young healthy, lean

male subjects in whom no existing failure of

endogenous GLP-1 activity would be

anticipated [30]. In a broader general

population sample aged 18–50 years, GLP-1

did improve forearm blood flow by

approximately 30% and augmented

endothelial-dependent forearm blood flow

response to acetylcholine by up to 40% [31].

Conversely, endothelial-independent function

was not influenced by the acute administration

of GLP-1 in either diabetic or healthy

individuals suggesting GLP-1 improves

function rather than structure [30, 31]. GLP-1

infusions were also shown to improve regional

and global left ventricular function when

administered within 6 h of an acute

myocardial infarction and improve systolic

function after successful primary angioplasty

in those with severe left ventricular dysfunction

[32].

Observations from early clinical trials

suggested these benefits would extend into

improvements in cardiovascular outcomes. A

meta-analysis of the GLP-1 receptor agonist use

demonstrated a reduction in blood pressure of

3.6/1.4 mmHg, weight of 2.9 kg and total

cholesterol of 0.1 mmol/L [33]. A

retrospective analysis of obese people with

type 2 diabetes suggested an improvement in

both blood pressure and C-reactive protein

with the exendin-4-based GLP-1 Receptor

agonist, exenatide [34]. A meta-analysis of the

prospective liraglutide effect and action in

diabetes (LEAD) studies, the registration

program for the GLP-1 analog, liraglutide,

demonstrated improvements in lipid profile,

B-type natriuretic peptide, high-sensitivity

C-reactive protein and plasminogen activator

inhibitor-1 all of which have been associated

with cardiovascular outcomes [35]. These

benefits have also been demonstrated with

exenatide and the DPP-4 inhibitor sitagliptin,

suggesting this is a class effect [36, 37].

Reductions in postprandial triglycerides and

apoB48, again both tightly associated with

cardiovascular risk, have been demonstrated

with both the DPP-4 inhibitor, vildagliptin

[38], and the GLP-1 analog, liraglutide [39].

CARDIOVASCULAR OUTCOME
DATA

During pre-clinical investigation of incretin

therapies, most trials record and adjudicate

cardiovascular events. Although differing in

protocols, the standardized recording and

reporting of major adverse cardiac events

(MACE) allows for meaningful meta-analyses.
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In a meta-analysis of 25 trials lasting[6 months

and reporting at least one cardiovascular event,

GLP-1 receptor agonists demonstrated a

significant 49% reduction in MACE (p\0.03)

compared to placebo and a trend towards a 22%

improvement versus active comparator. This

failed to reach statistical significance due to the

small numbers of events, short-term nature of

the studies and the low-risk nature of the

participants [40]. A similar benefit was seen in

DPP-4 inhibitor trials, although with 70 trials to

analyze, the 29% reduction in MACE was highly

significant [41]. Again this analysis was limited

by the relatively short duration of the studies

and the relatively pure and healthy populations

that were studied in these regulatory trials.

Since the concern over rosiglitazone

potentially increasing cardiovascular events

(subsequently refuted), licensing with the Food

and Drug Administration (FDA), however,

requires a priori cardiovascular outcome trials

(CVOTs) to demonstrate cardiovascular safety

in anti-glycemic agents. As such there are

currently in excess of 100,000 people with

diabetes worldwide participating in CVOTs

using incretin-based therapies. To date, four of

the trials have reported the trial to evaluate

cardiovascular outcomes after treatment with

sitagliptin (TECOS, ClinicalTrials.gov identifier,

NCT00790205) [42], saxagliptin and

cardiovascular outcomes in patients with type

2 diabetes (SAVOR-TIMI 53, ClinicalTrials.gov

identifier, NCT01107886) [43] and the

examination of cardiovascular outcomes with

alogliptin versus standard of care (EXAMINE

ClinicalTrials.gov identifier, NCT00968708)

[44], using DPP-4 inhibitors, and the

evaluation of lixisenatide in acute coronary

syndrome (ELIXA, ClinicalTrials.gov identifier,

NCT01147250) using lixisenatide. Whilst

meeting all of the safety requirements of the

FDA, many have felt disappointment regarding

the lack of benefit achieved in these trials. The

TECOS study randomized 14,671 people with

diabetes and established cardiovascular disease

to receive sitagliptin or placebo. After a median

of 3.0 years, there was no difference in the

composite of cardiovascular outcome namely

cardiovascular death, nonfatal myocardial

infarction, nonfatal stroke, or hospitalization

for unstable angina, with a hazard ratio (HR) of

0.98 (95% confidence interval [CI] 0.88–1.09).

The EXAMINE study explored the effect of

alogliptin in people with type 2 diabetes

post-myocardial infarction or acute coronary

syndrome for a median of 18 months and

demonstrated a similar HR of 0.96 (95% upper

limit of confidence interval 1.16) compared to

placebo. SAVOR-TIMI demonstrated an HR of

exactly 1.0 (95% CI 0.89–1.12) when comparing

saxagliptin with placebo in 16,492 people at risk

of or with a history of cardiovascular events for

a median 2.1 years. The ELIXA study differed

from the DPP-4-based studies, in that it was

originally designed to demonstrate the

superiority of the exendin-4-based GLP-1

receptor agonist, lixisenatide, over placebo

after acute coronary syndrome. The 6068

participants recruited after acute coronary

syndromes took either lixisenatide or placebo

for a median of 25 months. Again, there was no

difference in cardiovascular events (HR 1.02,

95% CI 0.89–1.17) although this still met the

FDA’s requirements for demonstrating

cardiovascular safety.

Of these studies, the result that generated

most attention was the post hoc analysis of the

non-adjudicated outcome for admissions due to

heart failure in the SAVOR-TIMI study. In the

first 6 months of the study there was an increase

of 0.7% in hospitalization due to heart failure,

which amounted to a 27% relative risk increase

[45]. Despite the fact these were

non-adjudicated outcomes in patients with
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pre-existing heart failure, the highly significant

increase in events raised considerable concerns.

As a result, existing studies were required to

perform an analysis of heart failure admissions.

The EXAMINE study showed a similar trend of

19% increase in admissions, although due to

small numbers this did not reach significance

[46]. TECOS, reassuringly, showed no increase

in heart failure signal with an HR of 1.0 (95% CI

0.83–1.20). There are several potential reasons

that have been hypothesized for this. The first

simply suggests that the treatment of

hyperglycemia reduces the osmotic diuresis

effect of glucose, thereby increasing the

symptoms of pre-existing heart failure. Others

have hypothesized that this is simple statistical

chance, although the similar trend in EXAMINE

would appear to refute this. Other potential

mechanisms include the potential for drug

interactions, notably with

angiotensin-converting enzyme

(ACE)-inhibitors or diuretics, which are more

likely with saxagliptin which does interact with

the CYP3A4/A5 inhibitors of the cytochrome

p450 pathway. This, however, does not account

for the trend seen with alogliptin. An

alternative explanation is found in the other

metabolites of DPP-4; B-type natriuretic peptide

(BNP), neuropeptide Y (NPY), peptide YY (PYY),

substance P and stromal cell-derived factor 1

alpha (SDF-1a) [47]. These are all cardioactive

substrates that influence vascular function. In

isolation and in animal models increasing these

by inhibition of DPP-4 should result in

improved function; however, it is unknown

whether interaction between and the relative

balance of such factors paradoxically diminish

function. Further, long-term DPP-4 inhibition

may upregulate alternative compensatory

degradation mechanisms, such as neutral

endopeptidases. This is analogous to the

increased chymase activity in long-term

ACE-inhibitor use that sees angiotensin 2

levels rise to pre-treatment levels within

12 months. Neutral endopeptidases

preferentially degrade BNP, thereby reducing

the cardioprotective natriuretic effect in those

with heart failure. The neutral effect of

sitagliptin in TECOS, however, despite similar

populations makes the latter explanation less

likely.

WHAT CAUSES THE DISCONNECT
BETWEEN THE EARLY CLINICAL
WORK AND THE RANDOMIZED
CONTROLLED TRIALS?

There has been much deliberation as to why the

potential benefit promised in thepre-clinical and

early clinical work has not been realized in the

definitive randomized controlled trials. One

hypothesis explores the possibility that this

may be simply due to the duration of the

studies. Indeed, if the heart protection study

(HPS) or the Scandinavian simvastatin survival

study (4S) had been censored at 18 months or

2 years they would have not demonstrated any

benefit from simvastatin [48, 49], yet statin

therapy is widely accepted as a core element of

cardiovascular risk reduction. If this is the case,

studies such as the liraglutide effect and action in

diabetes: evaluation of cardiovascular outcome

results (LEADER, ClinicalTrials.gov identifier,

NCT01179048) [50] and the cardiovascular

outcome trial of linagliptin versus glimepiride

in type 2diabetes (CAROLINA,ClinicalTrials.gov

identifier, NCT01243424) [51] trials that have a

study minimum duration of 3.5 years (the point

at which the HPS curves were clearly diverged)

should show benefit. The reduction in

cardiovascular events suggested by the early

meta-analyses, however, was present in studies

with a mean duration of 44.1 weeks [41]. Thus,
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duration of exposure to agents may not be the

only factor.

Another significant difference between the

regulatory studies that contributed to the

meta-analyses and the subsequent

cardiovascular outcome trials is the duration

of diabetes in those studied. Regulatory studies

tend to be performed in otherwise well

participants, early in diabetes. Complex

multi-morbid patients, such as those enrolled

in TECOS, EXAMINE, SAVOR-TIMI and ELIXA

are rarely used in these studies to minimize

inter-participant variability and maximize the

ability to detect differences. Event driven

cardiovascular outcome trials, however, prefer

high-risk patients to maximize the event rate

and increase study power. This necessitates a

longer duration of diabetes and multi-morbidity

driven polypharmacy.

To date, the only trial to demonstrate

cardiovascular benefit from glycemic control is

the UKPDS (ClinicalTrials.gov identifier,

NCT01099865) [5], which took newly

diagnosed people with diabetes. The

subsequent glycemic control trials, ACCORD,

ADVANCE (ClinicalTrials.gov number,

NCT00145925) and VADT (ClinicalTrials.gov

identifier, NCT00032487) failed to demonstrate

benefit [6, 7, 52, 53]. The failure to achieve

benefit in these studies has been attributed to

existing bad legacy effect from the preceding

8–12 years of poor glycemic control. Until

recently it was felt that this legacy effect was

purely an incremental accumulation of vascular

damage, rather than an ongoing process. Recent

work has demonstrated early adverse glycemic

exposure triggers acute changes in protein

expression, notably p66SHC in the

mitochondria. This adaptor protein functions

as a redox enzyme within the mitochondria

responsible for reactive oxygen species

generation and subsequent cellular apoptosis,

vascular inflammation and endothelial

dysfunction [54]. Gene silencing of p66SHC

blunts persistent endothelial dysfunction and

oxidative stress in the vasculature of diabetic

mice [55]. Elsewhere, hyperglycemia has been

demonstrated to trigger epigenetic changes.

Deacetylation of the SIRT-1 gene and tumor

suppressor p53 occurs [56]. These have both been

demonstrated to control p66SHC transcription

[57, 58]. Thus, the epigenetic changes in the

SIRT-1 and p53 genes may perpetuate the

original hyperglycemic effects. Interestingly

metformin has been demonstrated to reverse

the effects of SIRT-1 [59], in keeping with the

observed benefit in UKPDS whereby metformin

was substantially superior to sulphonylurea and

insulin-based therapy [60]. If the failure of

benefit in the existing trials is attributable to

this, the vildagliptin efficacy in combination

with metformin for early treatment of type 2

diabetes (VERIFY, ClinicalTrials.gov identifier,

NCT01528254),which is takingnewlydiagnosed

people with diabetes and randomizing them to

receive either immediate DPP-4 combination

with metformin or metformin alone, may

demonstrate a benefit. Unfortunately, the

primary endpoint of this study; time to initial

treatment failure rate and rate of loss in glycemic

control over time, may result in the study being

terminated before being able to demonstrate a

cardiovascular benefit.

Finally, these complex multi-morbid

patients are characterized by polypharmacy,

whereas regulatory trials are usually performed

with as few concomitant prescriptions as

possible. It is known that glibenclamide, and

to a lesser extent glimepiride, attenuates the

vascular benefit of GLP-1 [31]. This is most

likely mediated through effects on

mitochondrial ATP-sensitive potassium

(KATPase) channels. These KATPase channels are

also responsible for myocardial ischaemic

Diabetes Ther (2016) 7:175–185 181



preconditioning, and their inhibition by

sulphonylurea use has been attributed, at least

in part, to the historic poorer prognosis after

myocardial infarction of those with diabetes

[61]. This interaction between sulphonylurea

and GLP-1 is well established, however, is not

accounted for in any of the existing studies with

the exception of CAROLINA, comparing DPP-4

inhibitor to sulphonylurea [51]. The possibility

of other interactions in clinical practice

attenuating the endothelial benefits of GLP-1

is possible, if not probable given the multiple

mechanisms of action on the endothelium of

many cardioprotective drugs used

post-myocardial infarction.

CONCLUSION

Incretin-based therapies have demonstrated

endothelial benefit in people with diabetes. To

date, these have failed to translate into

cardiovascular benefit in outcome trials.

Potentially this may be due to the short

duration of trials, the complex multi-morbid

patients participating in these trails, a failure to

tackle diabetes prior to an epigenetic bad

glycemic legacy, or potential interactions with

concomitant medications. This not

withstanding, the profile of incretin-based

drugs providing good glycemic control, with

low risk of hypoglycemia and weight neutrality

or benefit render them a suitable option after

metformin, compared to alternatives associated

with higher rates of hypoglycemia and weight

gain, both of which have been demonstrated to

adversely impact cardiovascular outcomes.

Future work, exploring cardiovascular

outcomes over longer time frames, such as the

LEADER trial, earlier in diabetes such as VERIFY,

or in the absence of potential interacting

therapies such as CAROLINA may demonstrate

benefits and help elucidate the ideal candidate

for incretin-based intervention.
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