
B The Author(s), 2012. This article is published with open access at Springerlink.com
Published Online: 10 April 2012 DOI: 10.1007/s11307-012-0555-1

Mol Imaging Biol (2012) 14:708Y717

RESEARCH ARTICLE

Intraoperative Fluorescence Imaging
of Peripheral and Central Nerves
Through a Myelin-Selective Contrast Agent
Victoria E. Cotero, Tiberiu Siclovan, Rong Zhang, Randall L. Carter, Anshika Bajaj,
Nicole E. LaPlante, Evgenia Kim, Daniel Gray, V. Paul Staudinger, Siavash Yazdanfar,
Cristina A. Tan Hehir
GE Global Research, One Research Circle, Niskayuna, NY, 12309, USA

Abstract
Purpose: Patients suffer from complications as a result of unintentional nerve damage during
surgery. We focus on improving intraoperative visualization of nerves through the use of a
targeted fluorophore and optical imaging instrumentation.
Procedure: A myelin-targeting fluorophore, GE3111, was synthesized, characterized for its
optical and myelin-binding properties using purified myelin basic protein, and evaluated in mice.
Additionally, a compact instrument was adapted to visualize nerves.
Results: GE3111 was synthesized using a versatile methodology. Its optical properties were
sensitive to the local environment both in vitro and in vivo. Following intravenous injection,
central and peripheral nerves were visualized, with the kinetics of nerve uptake modifiable
depending on the formulation. Fluorescence polarization showed specific and strong binding to
purified myelin basic protein. Nerves were visualized in vivo using a dedicated compact imaging
device requiring less than 2.5 mW/cm2 of illumination at 405 nm.
Conclusions: Fluorescence imaging of nerves through myelin showed a potential for use in
image-guided surgery. Intraoperative nerve imaging is an example where contrast agent and
instrument development come together as a result of clinical need.
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Introduction

Iatrogenic damage to peripheral nerves is a major cause of
morbidity associated with many surgical procedures,

including prostatectomy [1–4], coronary artery bypass graft
[5–7], thyroidectomy [8, 9], rhytidectomy [10], and breast
cancer surgery [11–13]. Symptoms associated with nerve

damage are dependent upon the location, type of nerve, and
the severity of the damage, and may result in loss of
function, weakness, muscle atrophy, fasciculation, paralysis,
cardiac irregularities, allodynia, and chronic neuropathy
[14]. The cause of nerve damage during open and
laparoscopic surgical procedures is variable but is often the
result of inadvertent surgical damage due to poor visibility
of the nerve as compared to surrounding tissues or an
unfortunate necessity due to close proximity of the nerve to
target structures [15]. Currently, most surgical procedures
are performed without image guidance, as available tech-
nologies lack the specificity needed to provide nerve-
selective imaging [16]. Applied nerve-sparing procedures
generally rely on anatomical landmark identification and are

Electronic supplementary material The online version of this article
(doi:10.1007/s11307-012-0555-1) contains supplementary material, which
is available to authorized users.

Correspondence to: Cristina Tan Hehir; e-mail: tanhehir@research.ge.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191826609?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s11307-012-0555-1


highly dependent on the surgeon's skill and experience. In
addition to visual identification, intraoperative electrical
stimulation devices are often employed to verify continued
stimulation, via nerve, of the muscle or organ in question
[17, 18]. However, there are inherent limitations to relying
on these methods alone. Visual identification of nerves can
be inconsistent due to the intricacy and size of the individual
nerves, and overall variation in the anatomic location across
patient populations [19]. Furthermore, intraoperative electri-
cal stimulation fails to prevent nerve damage; rather, it
identifies damage that has already occurred. Thus, optical
imaging could provide a valuable clinical tool for image-
guided surgery by allowing direct and real-time visualization
of nerves.

We have previously reported the generation of a nerve-
specific fluorophore, 4-[(1E)-2-[4-[(1E)-2-[4-aminophenyl]
ethenyl]-3-methoxyphenyl] ethenyl]-benzonitrile (GE3082),
that crosses the blood–nerve and blood–brain barriers,
producing significant fluorescence in myelinated nerves
after a single systemic injection [20]. Because of its
lipophilic nature, GE3082 requires a specialized intrave-
nous formulation consisting of 65 % serum, 20 % HEPES,
10 % dimethyl sulfoxide (DMSO), and 5 % Cremophor EL
to maintain aqueous solubility, and thus, it is non-ideal for
clinical intravenous use due to the potential negative
physiologic and pharmacologic effects arising from this
formulation [21, 22].

The goal of our study is to advance the current
understanding of myelin-targeting fluorophores and to
demonstrate in vivo imaging of nerves during surgery. We
describe here the in vitro and in vivo characterization of a
newly synthesized fluorophore, 1-methylsulfonyl-4-[(1E)-2-
[4-[(1E)-2-[4-aminophenyl] ethenyl]-3-methoxyphenyl]
ethenyl]-benzene (GE3111). GE3111 was made using a
more versatile synthetic methodology with reduced number
of steps and more amenable to creating chemical libraries by
parallel synthesis. GE3111 had improved aqueous solubility
as well as reduced lipophilicity compared with GE3082,
allowing for the development of more clinically relevant
formulations for intravenous injection. We also describe
advancements in the understanding of the myelin-targeting
binding interaction, pharmacodynamics, pharmacokinetics,
and environmental influences on the optical properties of
this fluorophore.

Materials and Methods
Synthesis of GE3111

GE3111 was synthesized in a stepwise procedure as shown in Fig. 1.
Heck coupling [23] of 4-bromo-3-methoxybenzaldehyde [24] with
Boc-protected 4-amino styrene in the presence of the water-soluble
TPPTS catalyst proceeded in 70 % yield after purification, to give
stylbene aldehyde 2. Subsequent olefination [25] with the phosphonate
3 proceeded in 65 % yield after purification to give the bis-stylbene 4,
exclusively in the trans–trans configuration [26]. Deprotection with

trifluoroacetic acid (TFA) in amylene-containing dichloromethane,
gave the desired dye 5 in essentially quantitative yield and better than
95 % purity by nuclear magnetic resonance (NMR) spectroscopy.
Removal of traces of fluorescent impurities was achieved through a
final purification by reverse phase chromatography, eluting with
water–acetonitrile gradient containing 0.1 % v/v TFA. The dye was
found to be more stable upon storage as its TFA salt; whenever free
base dye was needed, a simple aqueous workup (NaHCO3/dichloro-
methane) supplied the required dye as 999.9 % purity. Details of the
synthetic methodology can be found in the Supplementary Material.

Physical and Optical Properties of GE3111

A 10 mM stock solution of GE3111 was prepared in anhydrous
dimethylsulfoxide (DMSO) to ensure complete dissolution of the
fluorophore. Subsequent aliquots of the stock solution were taken
to prepare 10 μM solutions of GE3111 in the following solvents:
toluene, olive oil, DMSO, water, and a selected intravenous (IV)
formulation (58.5 % distilled water, 30 % 2-hydroxypropyl-β-
cyclodextrin, 10 % propylene glycol, 1 % PEG-300, and 0.5 %
DMSO). Absorbance spectra were taken using a Lambda 20 UV/
Vis spectrometer (Perkin Elmer, Waltham, MA). The wavelength
of maximum absorbance was then used as the excitation wave-
length for the collection of the fluorescence emission spectra on a
steady-state fluorimeter (Photon Technology International, Bir-
mingham, NJ). The molar extinction coefficient (ε) for GE3111
was calculated at the maximum excitation wavelength respective to
each solvent, using Beer–Lambert's law. The quantum yield (QY)
values of GE3111 in each solvent were measured in comparison to
the fluorescence emission of a known standard, coumarin-6 (QY=
78 % [27]), using the single-point method [28].

The logD values of GE3082 and GE3111 at pH 7.4 were
calculated using Accelrys Discovery Studio software (San Diego,
CA). Maximum solubility was estimated by dissolution of an
excess of either GE3111 or GE3082 in formulation (58.5 %
distilled water, 30 % 2-hydroxypropyl-β-cyclodextrin, 10 % pro-
pylene glycol, 1 % PEG-300, and 0.5 % DMSO), followed by
centrifugation (10 min, 10,000×g). The supernatant was diluted at
least 1,000-fold in DMSO, and its absorption spectrum was taken.
Concentration was calculated using Beer–Lambert's equation, with
ε equal to 72,820 and 41,800 M-1 cm-1 for GE3111 and GE3082,
respectively. Dynamic light scattering (DLS) spectroscopy was
used to estimate the dispersity of the formulated fluorophores,
detailed of which are in the Supplementary Material.

Myelin Basic Protein Binding Assay

Purified native myelin basic protein (MBP) was obtained from Prof.
Paolo Riccio, University of Bari, and was isolated from bovine
brain using a published protocol [29]. Details of the fluorescence
polarization binding assay will be published elsewhere (Bajaj et al.,
manuscript in preparation). Briefly, the binding assay reaction was
prepared by incubating increasing amounts of native MBP with
100 nM of GE3111 in a 96-well plate. Protein and fluorophore
dilutions were made with 0.25 % CHAPS in 20 mM Tris, pH 7.2,
which also served as the binding buffer. The reagents were allowed
to incubate at room temperature for 10 min; after which, the raw
fluorescence intensities parallel (P) and perpendicular (S) to the
excitation plane were measured using the fluorescence polarization
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mode of a Spectra Max M5 plate reader (Molecular Devices,
Sunnyvale, CA) at 400 nm excitation and 540 nm emission.

Anisotropy was calculated using the equation=[(P−S)/(P+2S)].
Data fitting was performed via non-linear regression using
SigmaPlot software (Version 11.2) to obtain the Kd value.

In Vivo Fluorescence Imaging

Instrumentation In vivo imaging consisted of detailed fluores-
cence emission characterization and surgical imaging using either a
Zeiss Lumar imaging system (Carl Zeiss Inc. Thornwood, NY) with
coupled multispectral imaging camera (Nuance camera; CRI,
Woburn, MA) or a custom compact surgical imaging instrument.

The Zeiss Lumar imaging instrument was used in both the dosing
and kinetics studies. A filter centered at 406 nm with a 15-nm
bandwidth was used for excitation of the fluorophore. Fluorescence
emission data were then recorded at wavelengths ranging from 420 to
720 nm at 10 nm steps using the attached multispectral camera.
Fluorescence images were collected using exposure times of 5 s in
both control and fluorophore injected animals for normalization.
Numerical data presented herein represent the area under the curve for
wavelengths ranging from 550 to 720 nm, which mimics our previous
study using a 550 longpass filter [20]. This range also included the
fluorescence emission maxima for nerve, muscle, and adipose tissue.

Intraoperative imaging was achieved with a custom compact
fluorescence imaging instrument modified from the previously
developed imaging-guided surgical system [30]. The instrument
uses consumer grade cameras and fiber delivery of light to reduce
cost and size relative to previous fluorescence instrumentation for
open surgical guidance. Various hardware modifications were
implemented to accommodate the spectroscopic properties of the
fluorophore. The excitation light source was a 500 mW 405 nm
laser (Shanghai Laser & Optics Century Co., Ltd., Shanghai,
China) coupled into multimode fiber. A longpass filter (BLP01-
405, Semrock, Rochester, NY) was used to reject backreflected
laser light. The emission filter was a longpass filter with a cutoff at
~560 nm (BLP01-561R, Semrock). Real-time (30 frames per
second) video was recorded using custom image acquisition
software. Given that the fluorescence emission covered roughly

half of the visible spectrum, white light video of the surgical field
was not recorded during intraoperative imaging.

Animals All procedures were approved by the Institutional Animal
Care and Use Committee (IACUC) at GE Global Research. Male CD-
1 mice ranging in body weight from 25–30 g were purchased from
Charles River Laboratories (Wilmington,MA) and housed at 22–23 °C
on a 12 h light/dark cycle. Mice were maintained on Prolab RMH 3500
mouse chow (LabDiet Framingham,MA) and water ad libitum. On the
day of the experiment, mice were anesthetized using 2–4% isofluorane
and given a single tail vein injection of either GE3111 in formulation or
formulation excipients alone. The mice were then returned to the home
cage until the designated time-point for imaging.

Formulation of GE3111 for Intravenous AdministrationGE3111
was prepared for intravenous (IV) administration by dissolving in a
buffer containing 0–0.5 % DMSO (Sigma D8418), 10–35 % propylene
glycol (Fisher P355-1), 1–35 % polyethylene glycol (PEG-300; Sigma
202371), 0–30 % 2-hydroxypropyl-β-cyclodextrin (2-HPβCD, Sigma
H5784), and 29.5–58.5 % sterile water (Sigma W3500). The IV
formulation was brought to a final pH of 4.5 using 1M HCl. No
preservative system was used as formulated doses were injected on the
same day. Complete solubility of the agent in the formulation mixture
was verified using (1) visual observation for particulates, (2) centrifu-
gation (5 min, 10,000×g) followed by observation, (3) dissolution in a
physiologically relevant buffer (e.g., Sorenson's phosphate buffer)
followed by visual observation and UV/Vis analysis, and (4) assessment
of sedimentation and particle size using DLS.

Dosing and Kinetics The dose–response and kinetics for GE3111
was determined in adult male CD-1 mice. In the dose–response
study, each animal received a single dose of GE3111 4 h prior to
imaging of key nerves. Doses of GE3111 in this study ranged from
0.46 to 16.67 mg/kg. Control mice were given a single injection of
the IV formulation (vehicle only) and measured to determine
background fluorescence. Post-processing of imaging data included
line profile analysis to determine the fluorescence maxima of nerves
and adjacent muscle and adipose tissue sample. The fluorescence

Fig. 1. Schematic chemical synthesis of GE3111, a myelin-targeting fluorophore.
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maxima were measured in two regions of each nerve and
surrounding tissue to display the average nerve-to-muscle ratio
(N:M). Three mice at each dose were evaluated.

For the kinetics study, each mouse received a single injection of
3.77 mg/kg GE3111 and was euthanized at 1, 2, 3, 4, 12, and 24 h
post-injection. Key nerves were then dissected and imaged. Control
mice used were given a single injection of IV formulation only.
Three mice at each time-point were evaluated.

Results

Synthesis and In Vitro Properties of GE3111

GE3111 was synthesized using a more direct and versatile
methodology compared to what was previously described for
BMB, GE3081, and GE3082 [20, 31]. This method consisted
of a tandem Heck coupling followed by a Horner–Wittig
olefination using commercially available bromoaldehyde for
the middle ring and readily available building blocks for the
terminal rings (Fig. 1).

GE3111 has a molecular weight of 405 g/mole and a
logD value at pH 7.4 of 4.5, which is half a log unit lower
than that of GE3082 (Table 1). The maximum solubility in
the IV formulation buffer, consisting of 58.5 % distilled
water, 30 % 2-HPβCD, 10 % propylene glycol, 1 % PEG-

300, and 0.5 % DMSO, was estimated using UV/Vis
spectroscopy. Under the same conditions, the maximum
solubility of GE3111 was about six times more than GE3082
(Table 1).

To investigate how local environment affects optical
properties, we recorded the spectroscopic properties in a series
of solvents varying in polarity. In general, GE3111 showed a
bathochromic shift in fluorescence emission spectra with
increasing solvent polarity, similar to GE3082 (Table 2,
Fig. 2a, b). Moreover, a significant increase in quantum yield
was observed with decreasing solvent polarity. For example,
the more polar solvent DMSO exhibited a ~100 nm red-shift in
fluorescence emission and a five-fold decrease in quantum
yield compared to the least polar solvent, toluene.

Specificity of GE3111 for Purified Myelin Basic
Protein

Although myelin has been suggested as the binding target for
GE3082 [20], little is known as to the exact specificity of these
fluorophores for MBP, a major protein component of myelin.
The affinity of GE3111 to native MBP was determined using a
fluorescence polarization-based binding assay that measured the
anisotropy of a fixed concentration of GE3111 (100 nM) either in
the absence or presence of increasing concentrations of purified

Table 1. Physical characterization of GE3111 and GE3082

aMaximum solubility when formulated in 58.5 % distilled water, 30 % 2-HPβCD, 10 % propylene glycol, 1 % PEG-300, and 0.5 % DMSO

Table 2. Solvent dependence of the optical properties of GE3111

Solvent (D.C.)a ε (M-1 cm-1) Ex max (nm) Em max (nm) QY (%)

Water (80) 19,680 362 590 0.1
DMSO (46.7) 72,820 412 629 1.0
Olive oil (3.1) 17,700 382 521 4.8
Toluene (2.4) 17,680 402 527 5.3
IV formulationb (not determined) 60,840 396 594 1.5

ε molar extinction coefficient, Ex max excitation maximum wavelength, Em max emission maximum wavelength, QY quantum yield
aDielectric constant, values from http://macro.lsu.edu/ and http://orioninstruments.com/html/tools/dielectric.aspx
bContained 58.5 % distilled water, 30 % 2-HPβCD, 10 % propylene glycol, 1 % PEG-300, and 0.5 % DMSO
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nativeMBP. UnboundGE3111 in buffer had an anisotropy value
of 0.250. Incubation of GE3111 with increasing concentrations
ofMBP caused a corresponding increase in the anisotropy values
that saturate out at 0.321 (Fig. 2c), suggesting slower rotation of
GE3111 due to a binding interaction betweenGE3111 andMBP.
The anisotropy data were mathematically fitted, resulting in a
dissociation constant (Kd) of 15±10 nM, indicating a strong
affinity of the fluorophore for MBP. Details of the binding assay
will be published elsewhere (Bajaj et al., manuscript in
preparation).

In Vivo Fluorescence Imaging

Initial nerve in vivo imaging was performed using a CRI-
Nuance multispectral camera to assess the overall spectral
differences among tissue types. Following in vivo character-
ization of GE3111 in mice, the overall feasibility of real-
time nerve visualization in an intraoperative setting was
demonstrated by recording live video during a surgical
dissection of a GE3111-labeled mouse nerve using a
compact instrument built in-house.

GE3111 fluorescence was observed in mouse nerves
containing myelin such as brachial plexus, trigeminal, optic,
sciatic, facial, femoral, vagus, phrenic, median, radial,
supracapular, and laryngeal nerves as well as the brain and
spinal column. Fluorescence was also observed in adipose
tissue. Representative images collected from sciatic nerves,
trigeminal, and optic nerves labeled in vivo with either
formulation buffer-only (control) or GE3111 are shown in
Fig. 3a–c. Cross-sectional analysis of the control and
GE3111-labeled sciatic nerve is shown in Fig. 3d, e. Specific
labeling of the myelin sheath surrounding the nerve and not
the surrounding connective tissue was observed with
GE3111. Multispectral imaging showed that while the
fluorescence intensity in adipose tissue was high, the
emission wavelength of GE3111 in adipose tissue was
blue-shifted (emission maximum at 550 nm, Fig. 3f)
compared to that in peripheral and central nervous tissue
(emission maximum at 590–600 nm). Visually, the nerves
appeared red-orange, while the adipose tissue appeared
yellow-green. The surrounding muscle tissue was dark.

Dose and Kinetics of GE3111 The dose–response and
kinetics for GE3111 were evaluated in mice. In the dose–
response study, mice received a single injection of GE3111 in
concentrations ranging from 0.46 to 16.67 mg/kg formulated in
58.5% distilled water, 30% 2-HPβCD, 10% propylene glycol,
1 % PEG-300, and 0.5 % DMSO. Control mice were given a
single injection of IV formulation buffer only to assess
background fluorescence. Four hours after injection, mice were
euthanized, and the sciatic nerves were exposed by removal of
biceps femoris. Example images of sciatic nerves with different
doses of GE3111 are shown in Fig. 4a–c. Post-processing of
images using line profile analysis was performed to determine
fluorescence maxima in the sciatic nerve and adjacent muscle

and adipose. Fluorescence emission intensity increased in the
sciatic nerve up to a concentration of 6.67mg/kg. There was no
significant change in fluorescence intensity in concentrations
greater than 6.67 mg/kg, suggesting a saturation of binding to
MBP at these concentrations. However, fluorescence emission
in adipose tissue showed no indications of saturation consistent
with lack of specific binding target (Fig. 4d). Minimal
fluorescence was seen in adjacent muscle tissue. Finally, all

Fig. 2. In vitro properties of GE3111. The absorbance (a)
and fluorescence emission spectra (b) are shown in DMSO,
water, toluene, IV formulation (58.5 % distilled water, 30 % 2-
hydroxypropyl-β-cyclodextrin, 10 % propylene glycol, 1 %
PEG-300, and 0.5 % DMSO), and olive oil. (c) Binding of
GE3111 to purified native myelin basic protein is measured
by fluorescence polarization. Unbound GE3111 has an
average anisotropy of 0.250. Incubation of 100 nM GE3111
with an increasing concentration of MBP resulted in an
increase in anisotropy saturating at 0.321. The calculated
binding affinity (Kd) is about 15 nM.
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concentrations measured in the dose–response relationship
exhibited a nerve-to-muscle ratio (N:M) greater than the
control (Fig. 4e).

Based on the dose–response study, a theoretical half
maximal dose of GE3111 was calculated to be 3.77 mg/kg.
This dose was then used to assess the kinetics of GE3111 in
vivo by measuring the fluorescence in nerve at the following
time-points: 1, 2, 3, 4, 12, and 24 h post-IV injection.
Control mice received a single injection of formulation
buffer only. Maximum muscle fluorescence was observed at
1 h post-IV injection, resulting in a nerve to muscle ratio of
0.95±0.12 (Fig. 5a, b). The overall fluorescence in muscle
decreased consecutively following the 1-h time-point. As
muscle fluorescence decreased, the overall fluorescence in
nerve and adipose increased, reaching a maximum at 4 h
post-IV injection (N:M=3.1±0.10; Fig. 5a, b). No fluorescence
was seen in control mice (data not shown). After 4 h,
fluorescence emission decreased dramatically in all tissues.
At 12 h post-IV injection, no visible fluorescence was present
in nerve and adjacent muscle. However, minimal fluorescence
was still visible in adipose tissue. This could be due to the
presence of higher fluorescence intensity in adipose
tissue to begin with or slower clearance from adipose

tissue due to its poorly perfused nature as compared to
other peripheral tissues [32]. No animals were used for
more than one time-point to prevent aberrant data
resulting from anesthesia and/or surgically induced
changes in pharmacokinetics and pharmacodynamics.

GE3111 reached a maximum fluorescence in nervous
tissue at 4 h post-IV injection as shown previously (Fig. 5a,
b). However, modifications in formulating the buffer
components can be utilized to either increase or decrease
the overall kinetics in vivo. In these experiments, 3.77 mg/kg
of GE3111 was administered in varied formulation proto-
cols. These formulation protocols included usage of concen-
trations of 2-HPβCD ranging from 0 % to 30 % and
increasing concentrations of propylene glycol and PEG-300,
used to compensate for decreases in solubility. No animal
was used for measurements deriving from more than a single
formulation at any set time-point. At 1 h post-IV injection,
fluorescence emission was highest in the 0 % and 2 % 2-
HPβCD formulation compared with values obtained using
10 % and 30 % 2-HPβCD (Fig. 5c). GE3111 formulated in
30 % 2-HPβCD had maximal N:M at 4 h post-IV injection,
but had a maximal N:M at 1 h post-IV injection when
formulated at 0 % 2-HPβCD (Fig. 5d). These results suggest

Fig. 3. Multispectral imaging of GE3111 in vivo. Images were recorded 4 h post-IV administration of a 16.67 mg/kg dose.
Representative fluorescence images of a mouse sciatic nerve (a) and optic and trigeminal nerves (b) are shown. Nerve location
in each image is indicated by an arrow (light white for sciatic nerve, heavy white for trigeminal nerves, yellow for optic nerves),
and adjacent tissue structures such as adipose (A) and brain (Br) are annotated. Mice receiving only a single injection of
formulation excipients only (no GE3111) were included as control (c). A cross-sectional fluorescence microscopy image of the
sciatic nerve depicts binding of GE3111 to the myelin sheath (examples are indicated by yellow arrows) surrounding the nerve
axon (d). A cross-sectional image of a sciatic nerve of a control animal is completely dark (e). Normalized spectra of nerve,
muscle, and adipose are shown to illustrate spectral separations between tissue types (f).
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that following IV injection, the inclusion complex formed
between GE3111 and 2-HPβCD could limit the initial
efficacy of the drug. Furthermore, the effects of inclusion
complex appear to saturate at approximately 10 % 2-HPβCD
as indicated by the lack of further effects in concentrations
above 10 %.

Image-Guided SurgeryUsing the Compact Instrument Follow-
ing in vivo characterization of GE3111 in mice using the
commercial, small animal imaging instrumentation, we tested
the feasibility of our modified compact instrument [30] for use
during open surgical procedures. A dose of 3.33 mg/kg was
administered to adult male CD-1 mice. The imaging system was
positioned immediately above themouse, allowing for live image
capture, while an adjacent monitor displayed real-time video
during the procedure. Using less than 2.5 mW/cm2 excitation
power of laser illumination at 405 nm laser, high brightness
images of the emitted fluorescence were captured. Without
administration of GE3111, no fluorescence was visible in
nervous tissue. Figure 6 shows still images of control and
GE3111-labeled tissue.

Discussion
Nerve trauma is a major cause of morbidity associated with
several surgical procedures and can lead to post-surgical
complications that could have deleterious effect on the
patient's quality of life [1, 3, 7, 33–35]. A method to better
visualize nerves prior to injury could improve patient
outcome by reducing the risk of nerve damage.

Fluorescently conjugated nerve contrast agents have been
described, including a protein fragment for labeling retrograde
transport in the nerves following intramuscular administration
[36], as well as peptides that target the connective tissue in the
epineurium and endoneurium [39]. GE3111 and the analogs
that we reported on previously [20] are small molecule
distyrylbenzene dyes, which are capable of crossing the
blood–brain barrier (BBB) and blood–nerve barrier (BNB)
effectively. In general, small molecules are less costly to
produce and may be engineered by chemical modifications to
confer more appropriate characteristics such as improved
pharmacokinetics, lipophilicity, and target affinity. Thus, they
constitute a working base for the development of promising
candidates for use in image-guided surgery.

Fig. 4. Dose and tissue specific fluorescence in mice following IV administration of GE3111 formulated with 58.5 % distilled
water, 30 % 2-HPβCD, 10 % propylene glycol, 1 % PEG-300, and 0.5 % DMSO at the following concentrations (mg/kg): 16.67,
11.67, 6.67, 3.33, 1.05, 0.52, 0.46, and control/formulation excipients only. Sample images of mouse sciatic nerves collected
4 h following a dose of 11.67 mg/kg (a), 3.33 mg/kg (b), or formulation excipient only (c) are shown. The area under the curve for
the fluorescence spectrum acquired in sciatic nerve, adjacent muscle, and adipose is calculated and reported as fluorescence
(d); n=3 mice per group. The nerve-to-muscle ratio (mean ± SD) was calculated using the total fluorescence in the sciatic nerve
as compared to that of adjacent muscle tissue (e).
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A number of key traits must be met for the
optimization of contrast agents for in vivo imaging of
nerves through myelin. The fluorophore has to selectively
target a component of myelin and must be capable of
penetrating the BNB, which is similar in both feature
and function to the BBB. Most molecules that do cross
the BBB have high lipid solubility as measured by their
logD's, with values between 1 and 4 as ideal [38].
Because of this, some degree of non-specific partitioning
to adipose tissue could be expected. Additionally, the
molecular weight should be less than 600–700 g/mole,
with 400 g/mole as ideal [39]. Therefore, the myelin-
targeting moiety has to be inherently fluorescent because
conjugating it to a dye could significantly increase its
molecular weight beyond the desirable range.

GE3111 has a molecular weight of 405 g/mole and binds to
a major component of myelin, MBP. Its optical properties in
vitro support previous findings which suggested that optical
properties of molecules which contain both electron donating
and withdrawing groups in the same molecule can be sensitive
to the local environment [20]. Its logD of 4.5 is not yet ideal,
but is better than that of GE3082. The improvement in aqueous
solubility resulted in easier formulation using more clinically
relevant excipients and less disperse solution once formulated.

GE3111 crossed the BNB and BBB after a single IV
injection and localized to central and peripheral nerves. Its
kinetics of maximal uptake in the nerve was adjustable,
depending on the amount of 2-HPβCD in the formulation
buffer. The maximal N:M was achieved 4 h post-injection
and 1 h post-injection when formulated in 30 % and 0 % 2-
HPβCD, respectively. It is possible that the formation of

Fig. 5. The kinetics and overall effect of formulation on tissue-specific fluorescence. A single injection of 3.77 mg/kg GE3111
formulated in 58.5 % distilled water, 30 % 2-HPβCD, 10 % propylene glycol, 1 % PEG-300, and 0.5 % DMSO was given 1, 2,
3, 4, 12, and 24 h prior to imaging. (a) The area under the curve for the fluorescence spectrum acquired in sciatic nerve,
adjacent muscle, and adipose is calculated and reported as fluorescence (n=3 mice per group). (b) The nerve-to-muscle ratio
was then calculated using the total fluorescence reported in (a) as compared to adjacent muscle tissue. In a separate
experiment, mice were given a dose of 3.77 mg/kg GE3111 in formulations varying in 2-HPβCD concentration (e.g., 0 %, 2 %,
10 %, or 30 %), and the images were collected 1 h post-IV administration of GE3111 (c). Tissue specific fluorescence in the
sciatic nerve, adjacent muscle, and adipose (n=3 mice per group) is shown. In (d), nerve-to-muscle ratios of 3.77 mg/kg
GE3111 formulated in either 0 % or 30 % 2-HPβCD and given at 1, 2, 3, and 4 h post-injection are shown (n=3 mice per group).

Fig. 6. Individual frames extracted from real-time video
recorded during an open surgery using a compact instru-
mentation built in-house. A dose of 3.33 mg/kg GE3111 was
administered to adult male CD-1 mice. The compact
instrumentation was positioned immediately above the
mouse. Sciatic nerve fluorescence images were acquired
4 h post-IV administration of the fluorophore (a) and
compared with images from a naïve mouse receiving a
control/formulation excipient only (b).
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inclusion complexes between GE3111 and the internal pore
of 2-HPβCD, a cyclic oligosaccharide, can slow the kinetics
of the drug distribution in vivo by reducing the free-to-bound
drug ratio post-IV injection [40].

Under multispectral imaging, the nerve fluorescence
appeared in a different color than the adipose tissue
fluorescence, which also exhibited higher fluorescence
intensity. One explanation for the increase in adipose tissue
fluorescence intensity is the dependence of agent optical
properties with local environment. Adipose tissue is highly
non-polar, with the majority of fatty acid content comprising
of oleic, palmitic, and linoleic acid [41], similar to olive oil.
The effect of solvent polarity (Table 2) on quantum yield
and fluorescence emission could help explain the observed
effect of GE3111 in adipose tissue.

The dosing and kinetics studies were performed using a
commercial, small animal imaging instrument. Once the in
vivo spectroscopic properties were determined, a compact,
intraoperative imaging instrument was adapted accordingly
for real-time imaging of GE3111-labeled nerves. The
modifications on the compact device were focused on
optimization for usage with GE3111. Through the use of
consumer grade cameras and fiber optic delivery of laser
light, we have reduced the size (~2 kg) and cost (~$10,000)
of imaging instrumentation, as compared to previous clinical
optical instrumentation on the order of $100,000.

Several recent works have presented the merits of fluores-
cence imaging in the near infrared (NIR), namely, clear
spectral separation of the fluorescence and the color channels,
reduction of autofluorescence, and increased penetration depth
relative to excitation in the ultraviolet/visible [42, 43]. These
benefits, coupled with the development of NIR fluorophores,
have resulted in successful deployment of NIR instrumenta-
tion for preclinical and clinical surgical imaging. In this paper,
we have described another viable approach for fluorescence
imaging using visible dyes. Although illuminating the tissue at
405 nm excites autofluorescence, the relatively large Stokes
shift of GE3111 allows for efficient spectral separation of the
dye fluorescence from background. Additionally, the peak
emission wavelength is in the green, corresponding to the peak
responsivity of conventional silicon detectors, and thus higher
sensitivity detection, as much as 2–3 times higher than NIR
wavelengths. A potential disadvantage of visible fluorescence
is that it impedes the concomitant detection of color video
using white light. One way to address this is to alternate
between the white light and fluorescence channels, creating a
dual-mode instrument through time multiplexing. The excita-
tion wavelength at 405 nm can then readily be removed from
the optical path with minimal impact on the color video
channel [44].

Conclusions

Selective contrast agents for nerve imaging, coupled with a
practical implementation of instrumentation, represent a step

towards clinical translation of fluorescence image-guided
surgery for prevention of nerve damage. Future initiatives
will focus on expanding the understanding of pharmacologic
activity of GE3111, such as determining its concentration in
key tissue targets through quantitative in vivo biodistribu-
tion, identifying potential metabolites, and assessing its
toxicology profile using cell culture. We will also advance
the imaging instrumentation towards dual-mode imaging and
minimally invasive surgical procedures.
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