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As a fundamental theory of heat transfer, Fourier’s law is valid for most traditional conditions. Research interest in non-Fourier 
heat conditions is mainly focused on heat wave phenomena in non-steady states. Recently, the thermomass theory posited that, for 
steady states, non-Fourier heat conduction behavior could also be observed under ultra-high heat flux conditions at low ambient 
temperatures. Significantly, this is due to thermomass inertia. We report on heat conduction in metallic nanofilms from large cur-
rents at low temperatures; heat fluxes of more than 1×1010 W m2 were used. The measured average temperature of the nanofilm 
is larger than that based on Fourier’s law, with temperature differences increasing as heat flux increased and ambient temperature 
decreased. Experimental results for different film samples at different ambient temperatures reveal that non-Fourier behavior ex-
ists in metallic nanofilms in agreement with predictions from thermomass theory. 
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Early in 1822, the French mathematical physicist, Joseph 
Fourier studied many experimental results on heat conduc-
tion summarized in his famous Fourier’s law, advancing a 
linear relationship between heat flux and temperature gra-
dient [1]. Subsequently, Fourier’s law has been proved valid 
in numerous engineering application fields. Because the 
governing equation of Fourier’s law is parabolic, it leads to 
infinite propagation speeds for thermal disturbances, which 
opposes basic physical principles. To resolve this problem, 
many researchers developed some modification of Fourier’s 
law. Cattaneo [2], Vernotte [3], and Morse and Feshbach [4] 

subsequently developed a thermal wave model by introduc-
ing a relaxation time for heat flux: 
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where τ0, λ, and α are relaxation time, thermal conductivity, 
and thermal diffusivity, respectively. The model is com-
monly called the C-V model. From eq. (1), heat is seen to 
propagate with finite speed, quite distinct from Fourier’s 
law. Such behavior is referred to as non-Fourier heat con-
duction. Later, Tzou [5] proposed a dual phase model in-
volving two kinds of relaxation times: heat flux and tem-
perature. The dual phase model and governing equation are 
expressed as follows: 
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where τq and τT are the respective heat flux and temperature 
relaxation times. Eq. (4) describes different heat conduction 
behaviors from heat diffusion, electron- phonon coupling to 
thermal waves by applying the appropriate τq and τT. 

The non-Fourier models mentioned above have one thing 
in common; namely each reduces to Fourier’s law for 
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steady states. In another words, it is known so far that 
non-Fourier heat conduction occurs only in non-steady 
states. Recently, Guo and co-workers [6–8] proposed the 
notion of thermomass based on Einstein’s mass-energy rela-
tion; thermomass is defined as the equivalent mass of ther-
mal energy. Heat conduction is understood as the flow of 
thermomass and Newtonian mechanics can be used to ana-
lyze its motion: 
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where τh , ρ, C, q, λI and γh are the respective characteristic 
time, material density, specific heat, heat flux, intrinsic 
thermal conductivity, and Grüneisen parameter. Eq. (5) is 
the momentum conservation equation of thermomass and eq. 
(6) is the general heat conduction equation based on eq. (5). 
Eq. (6) is a hyperbolic equation which can be used to de-
scribe thermal wave phenomena. If one ignores thermomass 
inertia, eq. (6) reduces to Fourier’s law. Furthermore, here 
reported for the first time, the thermomass theory predicts 
the existence of non-Fourier heat conduction in steady states. 
The steady expression of eq. (6) in one dimension is: 
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where λA is the apparent thermal conductivity connected 
with λI. Eq. (7) states that heat conduction processes will 
differ from Fourier’s law under high heat flux and low 
temperature conditions. As heat flux increases and temper-
ature decreases, differences between eq. (7) and Fourier’s 
law widens.  

The available experimental studies of non-Fourier heat 

conduction have only focused on thermal wave phenomena 
at very low temperatures [9,10] or under ultra-short 
pulsed-laser heating conditions [11]. For example, Chester 
[12] and Narayana et al. [13] measured the propagation 
speed of solid thermal waves, initially referred to as se-
cond-sound in liquid helium. Brorson et al. [14] measured 
the propagation speed of thermal disturbances in metallic 
nanofilms using a femtosecond laser thermo-reflectance 
technique and found speeds close to electron Fermi veloci-
ties. For this paper, we studied heat conduction in metallic 
nanofilms heated by large currents at low temperatures. The 
steady non-Fourier heat conduction predicted by eq. (7) was 
confirmed. 

1  Experimental setup 

According to eq. (7), the steady non-Fourier heat conduc-
tion occurs only under ultra-low temperature, ultra-high 
heat flux conditions. A liquid helium cooling system was 
used to provide a minimum ambient temperature of 2.8 K. 
Metallic nanofilms can sustain large heating currents with 
maximum heat fluxes of more than 1010 W m2. Co-workers 
in Kyushu university of Japan prepared high-qualified Au 
nanofilms using electron-beam physical vapor deposition. 
The SEM pictures of Au nanofilms are shown in Figure 1. 
The geometric parameters of prepared Au nanofilms are 
listed in Table 1. 

To avoid heat loss into the substrate, nanofilms are sus-
pended from the Si substrate, as seen in Figure 1. A 
two-stage vacuum pumping system is used to maintain the 
air pressure below 104 Pa around the nanofilms, and thus 
eliminate heat convection. A thermal radiation shield is 

Table 1  Geometric parameters of Au nanofilms 

Film No. Thickness (nm) Width (nm) Length (μm) 

A 76 302 10.10 

B 76 308 9.59 

 

 

Figure 1  SEM pictures of suspended Au nanofilms. (a) Image from side view; (b) image from top view. 
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fashioned to isolate the device from ambient radiation. An 
ITC503 temperature controller from Oxford Instruments 
guarantees temperature monitoring to within a 0.1 K resolu-
tion. Two high-precision digital voltmeters (Keitheley 2002) 
and a DC power supply (Advantest R6243) are used to 
measure the resistance of Au nanofilm using a four-probe 
method. 

2  Direct current heating method 

2.1  One dimensional heat conduction model 

Figure 2 is a schematic of one-dimensional heat conduction 
used to describe direct current heating. Each Au nanofilm is 
suspended between two heat sinks used as electrodes. A 
parabolic temperature distribution forms along the Au nan-
ofilm from the DC current heating. The temperature pre-
dicted by thermomass theory is slightly higher than that 
predicted by Fourier’s law; the significant difference is seen 
to arise from a steady non-Fourier heat conduction source 
caused by the spatial thermomass inertia. Measurements of 
local temperature in nanofilms are extremely difficult. Here, 
we measure the average temperature of the nanofilm using 
the linear relationship between resistance and temperature of 
metals, the Au nanofilm being treated here as both electric 
heater and thermometer. Under large current heating condi-
tions, the average temperature of the Au nanofilm is meas-
ured and compared with the temperature predicted by Fouri-
er’s law to verify the existence of a non-Fourier component. 

Although eq. (7) is actually derived for dielectrics, in 
metals, electrons are the main energy carriers and the state 
equation of the thermomass of electrons is different from 
that of phonons. While their thermomass state equations 
differ, the existence of non-Fourier heat conduction under 
ultra-high heat flux conditions remains unchanged; this will 
be proved later in section 3. 

2.2  Measurement of electronic and thermal conductiv-
ities of Au nanofilms 

To estimate the temperature distribution of Au nanofilm 
accurately, the electronic and thermal conductivities need to 
be measured first. The conductivities are greatly reduced 
from the bulk values due to significant size effects in  

 

 

Figure 2  Schematic diagram of direct current heating method. 

nanofilms. Here, the direct-current heating method is used 
to measure the electrical and thermal conductivities simul-
taneously. The heating power during the measurement is 
only several microwatts to ensure the maximum tempera-
ture rise is below 10 K. The thermomass inertia is then neg-
ligible and Fourier’s law holds valid. The parabolic temper-
ature distribution of one-dimensional heat conduction can 
be expressed as [15,16]: 
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where x = 0 refers to the left end of the nanofilm; U and I 
are the voltage and current; l, w and δ are the respective 
length, width, and thickness of the nanofilm; and λf is the 
nanofilm thermal conductivity. The average temperature of 
the nanofilm can be derived from eq. (9): 
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The resistance-temperature linear relationship of metals 
is [17]: 
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where Rf is the film resistance, R0 and Rr are the respective 
resistances at ambient temperature T0 and reference temper-
ature Tr, and βf  is the temperature coefficient of resistance, 
which is given as 
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Thus, for the thermal conductivity of nanofilm, we have 
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where b is the coefficient of proportionality between re-
sistance and heating power. Meanwhile, the electrical con-
ductivity σf is 
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The uncertainty in the measured thermal conductivity is 
estimated as 
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  (15) 
Here, the voltage uncertainty is ∆U/U = ∆I/I ≤ 0.01%; 

the temperature uncertainty ∆T0/T0 ≤ 0.01%; the uncer-
tainty in geometric measurements ∆l/l = ∆w/w ≤ 1%; the 
uncertainty in film thickness ∆δ/δ ≤ 0.1%; and the uncer-
tainty from linear fitting ∆b/b ≤ 0.1%. Consequently, the 
overall uncertainty in estimating the thermal conductivity is 
∆λ/λ ≤ 2%, and the corresponding temperature uncertain-
ty is below ± 3 K. 

The uncertainty in the temperature coefficient of re-
sistance is: 
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In considering all parameters involved, we obtain ∆βf/βf 
≤0.11%. 

2.3  Measurement by large current heating 

During the experiment, the two film samples A and B are 
measured continuously over a range of ambient tempera-
tures and heating powers. The measured temperatures are 
then compared with predictions from Fourier’s law. Based 
on the thermomass theory, the thermomass inertia is negli-
gible under low heating power conditions and Fourier’s law 
holds. As heating power increases, the heat flux in the nan-
ofilm increases and thermomass inertia will be more sub-
stantial. The measured temperature should be higher than 
that predicted by Fourier’s law, which would demonstrate 
the existence of a non-Fourier heat conduction component. 

3  Experimental results 

The measured electrical and thermal conductivities of nano-
film samples A and B are shown in Figure 3. 

The measured conductivities of samples A and B show 
great consistency, demonstrating the high accuracy and re-
peatability of the experiment. We remark that each film 
sample had been vacuum annealed before measurement 
taking. Annealing reduces the lattice defects of the film and 
conductivities will rise correspondingly. 

The experimental results for large current heating are 
plotted in Figures 4 and 5. 

Figures 4 and 5 graph average temperature vs. heating 
power curves for samples A and B at different ambient 
temperatures; circles represent the measured temperature, 
squares represent the temperature predicted by Fourier’s 
law, w is the film width and T0 is the ambient temperature. 
The insets of Figures 4 and 5 are enlargements at maximum 
temperatures. With the maximum heat flux of Au nanofilm 

at more than 1010 W m2, we note non-negligible tempera-
ture rises at both ends of the film. Using the measured 
thermal conductivity as a given parameter, the temperature 
rise at these ends can be accurately calculated by a 3D heat 
conduction model that has already been accounted for in 
Fourier’s law. For a detailed analysis, the experimental pa-
rameters and measured results are listed in Table 2. 

In Table 2, T0, Wmax, qmax, Tmax-E, Tmax-F, and ∆Tmax are the 
respective ambient temperature, max-heating power, max- 
heat flux, max-measured temperature, max-temperature 
predicted by Fourier’s law, and max-temperature difference. 
Based on the measured results, it is concluded that: 

(1) When the heating power is low, thermomass inertia is 
negligible and Fourier’s law holds. As heat flux increases, 
thermomass inertia becomes substantial, leading to a signif-
icant non-Fourier heat conduction component. 

(2) Repeated measurements on samples A and B demon-
strate that non-Fourier heat conduction could be seen under 
low temperature, high heat flux conditions. ∆Tmax, marked 
with asterisks in Table 2, are the measured values at the 
same heat flux level. It is noted that ∆Tmax increases as 
temperature decreases. This trend accords well with ther-
momass theory. 

 

 

Figure 3  Measured electrical and thermal conductivities of samples A 
and B. (a) Thermal conductivity; (b) electrical conductivity. 

 

Figure 4  Experimental results for sample A at different ambient temperatures. (a) Ambient temperature 3 K; (b) ambient temperature 30 K. 
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Figure 5  Experimental results for sample B at different ambient temperatures. (a) Ambient temperature 5 K; (b) ambient temperature 20 K. 

Table 2  Experimental results under maximum current heating conditions 

No. T0 (K) Wmax (μW) qmax (Wm2) Tmax-E (K) Tmax-F (K) ∆Tmax (K) 

A 
3.0 839.457 1.83  1010 251.098 228.399 22.699 
3.0 722.412 1.57  1010 223.097 208.758 14.339* 

A 30.0 728.758 1.59  1010 232.222 221.803 10.419* 

B 
5.0 980.864 2.10  1010 269.830 251.255 18.575 
5.0 829.274 1.77  1010 236.224 221.971 14.253* 

B 20.0 786.732 1.68  1010 230.525 220.042 10.483* 
* Measured values at the same heat flux level. 

 
4  Concluding remarks 

(1) Past non-Fourier heat conduction studies focused on 
transient thermal wave phenomena. The thermomass theory 
based on Einstein’s mass-energy relation posits that steady 
non-Fourier heat conduction exists under low temperature, 
high heat flux conditions. 

(2) The electrical and thermal conductivities of Au nano-
films have been measured simultaneously using a direct 
current heating method. The measured results of the differ-
ent film samples show great consistency. 

(3) The measurement by large current heating at low 
temperatures has been repeated in two different nanofilms. 
The measured average temperature is higher than that pre-
dicted by Fourier’s law, indicating the existence of steady 
non-Fourier heat conduction. Increases in ∆Tmax as heat flux 
increases and temperature decreases were shown to agree 
with the prediction of thermomass theory. 
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