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Abstract

We present a large class of parallelogram tilings that have two important features
in common with the Ammann-Beenker tiling: they can be constructed by canonical
projection from Z* C R* to a plane, and they admit substitution rules.
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1 Introduction

In 1981 De Bruijn [14] discovered that the beautiful aperiodic substitution
tilings of Penrose [16] can be constructed from the projection of a slice of a five
dimensional lattice. This led to the development of the canonical projection
and more general projection methods, which have been studied in great detail,
for example see [5]. The projection setting can be used to study a wide variety
of substitution tilings [6-8,31,39].

The method of De Bruijn was used by Beenker [11] and Socolar [41] to con-
struct aperiodic tilings with eight- and twelve-fold rotational symmetry, which
later turned out to have been discovered independently by Ammann. Like the
Penrose tilings, these tilings can be obtained by canonical projection, but also
admit a substitution rule. This leads us to pose the following general question:

[Q] What substitution rules do canonical projection tilings admit?
Interestingly, despite the elementary nature of the question, and the amount

of research the Penrose, Ammann and Socolar examples have generated, this
particular question has received relatively little attention.
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Fig. 1. Section of an Ammann-Beenker tiling (grey tiles) and a locally isomorphic
expansion tiling (black lines). The edges and vertices of this picture are obtained by
canonical projection. The window for the tiling with grey tiles is the projection of
the hypercube with it center at the origin onto the window space. The window for
the expansion tiling with black lines is the subwindow at the center of this window.
This is shown in Figure 3. The central vertex of this figure is the origin.

A partial answer to [Q] was formulated in the setting of 2 to 1 canonical
projection tilings by Lamb [28], combining results of [43] and [40], detailing
all 2-letter substitutions. We will present a general answer to [Q] in the 2 to
1 setting in a forthcoming publication [20].

The current paper contains the first step of a program to answer [Q] and thus
classify canonical substitution tilings and the canonical substitution rules that
they admit. Here we present a class of planar canonical substitution tilings,
where the canonical projection is from Z* C R* to a plane. In fact, the class of
canonical projection tilings we present is precisely the set of all 4 to 2 canonical
projection tilings that admit substitution rules, but a proof is beyond the scope
of this paper. We address this issue elsewhere [19].

Our main result is Theorem 1.12. Before stating and discussing this theorem
in Section 1.4, we first describe our setting in Sections 1.1, 1.2 and 1.3 .

The rest of the paper is organised as follows. In Section 2 we illustrate our
method of constructing substitution rules for canonical projection tilings with
the Ammann-Beenker tilings. Our treatment provides an alternative proof to



that of Beenker. Thereafter, in Section 3 we prove our main result: Theo-
rem 1.12. This constructs general 4 to 2 canonical projection tilings, including
the Ammann-Beenker tiling. Finally, to illustrate our general result, in Sec-
tion 4 we present some new examples of canonical substitution tilings.

1.1 Parallelogram tilings

We consider planar parallelogram tilings. Although the idea may be intuitively
clear, we provide some definitions following the settings of [17] and [36] (cf.
also [18]). After that we provide the more important details of our notions of
substitution tilings and canonical projection tilings.

As usual, we let the sum P + () of two subsets P, () C R", denote the set of
points

P+Q={p+qlpePgecQ} CR" (1)
We also let E? denote R? with the Euclidean metric.

We consider tiles that are parallelograms: a parallelogram is the set of points
lying within the polygonal region with vertices 0,a,a + b,b, where a and b
are vectors in E?. For such a parallelogram S, we define its vertices to be
vert(S) = {0,a,b,a + b}. As we are interested in tilings that are constructed
from a finite set of tiles, we introduce the notion of the set of proto-tiles for a
tiling.

Definition 1.1 (Proto-tiles) Let P be a finite set of parallelograms which
are pairwise non-equivalent up to translation. For each S € P let Lg be a finite
set of labels for the parallelogram S. Then, the collection

r={(S,))|S € P,leLs} 2)

is a set of proto-tiles. The pairs (S,1) provide the labelling of the set of proto-
tiles.

For any proto-tile T'= (S,1) € 7, we denote its support supp(T) = supp(S),
its label label(T) = (S,1) and its vertices vert(T) = vert(S).

With tiles from a given set of proto-tiles, one may (try to) construct a tiling
of the plane. A patch is a part of such a tiling.

Definition 1.2 (Tilings and patches) Given a set of proto-tiles 7. A tile,
R, is the translation of a proto-tile T = (S,l) € 7. That is. R =T + r, where
supp(R) = supp(S) + r, label(R) = (S,1) and vert(R) = vert(S) +r.

A tiling is a set of tiles T that do not intersect except on their edges and that
cover the plane:



(1) For distinct Ry, Ry € T, interior(Ry) Ninterior(Ry) = ().
(2) Urer supp(R) = E*.

The vertices of the tiling are denoted vert(T) = Ugrer vert(R).

Let Z be a bounded subset of E?. Then the patch of the tiling T covering Z is

P} ={ReT|ZNR#0} (3)

Note that we consider here only tilings with tiles that are translations of a
finite set of proto-tiles. We thus exclude certain examples, such as the pin-
wheel tiling [38], that have an infinite set of translation classes of tiles, but
only a finite set of proto-tiles if one considers an equivalence relation that not
only considers translations but also rotations.

1.2 Substitution tilings

We now define what we mean by a substitution rule. A substitution rule
consists of two steps. First, we stretch a tiling by some uniform constant
factor and then replace each inflated tile by a patch of tiles from the set of
proto-tiles.

Definition 1.3 (Substitution rule) Consider a set of proto-tiles T, and a
real number A > 1. A substitution rule o associates a tile (translation of a
proto-tile from 7) to a patch of tiles. We first consider the action of o on a
single proto-tile (S,1). The substitution rule consists of two parts. First, we
uniformly inflate the tile by the factor X. Then we replace the inflated tile by
a patch of tiles from the original (non-inflated) set of proto-tiles. The substi-
tution rule naturally extends to all tiles R = (S +r,1) as o(R) = o((S,1)) + .
Analogously, the action of o can be defined for patches of tiles, by first in-
flating the patch and then replacing each tile from the patch according to the
substitution rule for single tiles.

We call o a substitution rule if for all proto-tiles T € T and all n € N the
following conditions hold:

(1) The substitution patch o™(T') covers the inflated tile: supp(A"T) C supp(c™(T)).
(2) The substitution patch o™(T) is minimal: for all tiles R € o™(T) we have
supp(R) N supp(A\"T) # (.
(3) The substitution patches are consistent. Consider a tile R in o™(T). This
tile R is contained in o(R') for every tile R' of A" '(T) that intersects
R.



Note that in our definition of a substitution rule, we explicitly allow (in point
3.) for the patches replacing tiles to overlap, as long as individual tiles in these
patches match (either have no intersection of their interior or overlap entirely).
For some examples, see Figure 2.

A substitution rule is called primitive if for all T" € 7 there is an n € N such
that o™(T) contains instances of translations of every proto-tile in 7.

Before we define what we mean by a substitution tiling, we first recall the
concept of a local isomorphism class of a tiling, which contains all tilings that
are locally indistinguishable from a given one.

Definition 1.4 (Local isomorphism class) Two tilings T and T' are lo-
cally isomorphic if for any patch Pz of T there exists a vector t such that
Py +t is in T' and vice versa. The local isomorphism class of a tiling T is
the set of all tilings that are locally isomorphic to T .

A substitution tiling is a tiling whose patches are defined by iteration of a
substitution rule.

Definition 1.5 (Substitution tiling) A tiling T, with proto-set T is a sub-
stitution tiling with substitution rule o if for every patch P}, there are T € T,
n € N and t € E? such that:

P} c o™(T)+t (4)

If vert(AT) C wert(cT) then the tiling is called vertex hierarchic. If o is
primitive then (4) holds for all 7', and the set of substitution tilings for o
forms a local isomorphism class.

Two of the best known substitution tilings are those by Penrose and Ammann-
Beenker.

Example 1.6 (Ammann-Beenker and Penrose substitution rules) The
Ammann-Beenker and Penrose substitution rules, shown in Figure 2, are as-
sociated to two of the simplest and most beautiful non-trivial tilings on the
plane. Figure 1 shows a patch of the tiling associated to the Ammann substi-
tution rule.

Finally, in this section, we discuss the concept of a vertex hierarchic expansion
tiling. As will be shown in this paper, the existence of expansion tilings is
necessary for the existence of substitution rules.

Definition 1.7 (Vertex hierarchic expansion tiling) Let T be a tiling with
labelled set of proto-tiles T. Let T be a tiling with set of proto-tilesT = {\T|T €

T}



Ammann substitution rule Penrose substitution rule

Patch of the

=

enrose tiling

Fig. 2. The substitution rules which generate the Ammann-Beenker and Penrose
tilings. The curved lines break the symmetry of the tiles. The other proto-tiles
will be rotations of the ones shown. In the Penrose substitution each tile has 5
rotated versions, each in two orientations as given by the pattern, so there are 20
proto-tiles. In the Ammann-Beenker substitution the rhomb has 4 rotated versions
and the square 8 so there are 12 proto-tiles.

(1) T is an expansion tiling of T if \"*T is locally isomorphic to T.
(2) T is a vertex hierarchic ezpansion tiling, if moreover

vert(T) C vert(T) (5)

In this paper, whenever we refer to expansion tilings, we in fact refer to vertex
hierarchic expansion tilings .

1.3  Quadratic expansion matrices and associated canonical projection tilings

We now introduce the concept of canonical projection tilings. To be more
precise, we consider a specific construction of such tilings, using a certain type
of 4 X 4 integer matrices.

Definition 1.8 (4 x 4 Quadratic expansion matrix) A 4 x 4 quadratic



expansion matrix #s a unimodular, 4 X 4 integer matrix which has two pla-
nar eigenspaces V. and W, with Mv = Xv for all v € V and Mw = £\ 1w
for allw e W, with A € R\ > 1.

The eigenspace V' is called the expanding, or tiling eigenspace, the eigenspace
W the contracting, or window eigenspace.

We now define our version of the canonical projection method, in relation to
quadratic expansion matrices. We first use it to define a point set. We then
add an additional condition to the matrix requiring that the point set can be
considered as the set off vertices of a parallelogram tiling.

Definition 1.9 (Canonical projection point set) Consider R* containing
the lattice L = Z* and a 4 x 4 quadratic expansion matriz M. Let a; be the
standard generators of L. Let V and W denote the expanding and contracting
two-dimensional eigenspaces of M.

We equip R* with the inner product:
<a,b>:av'bv+aw'bw (6)

where a = ay + ay,b = by + by, ay,by € V,aw,by € W and - denotes the
standard (Euclidean) inner product on V- and W.

Let T14 denote orthogonal projection to A C R*, with respect to the inner
product < -, >.

Let Qg = {(a,b,c,d)|a,b,c,d € [0,1]} denote a unit hypercube in L, and £y =
Qo+t be its translation by a vector t € R with vertices vert(Qy) = vert(Qp)+t.

We now consider the cylinder V 4-€), and the intersection of this cylinder with
the lattice L. The canonical projection point set is defined as the projection
of this set to V:

Iy (LN (V +)) (7)

We refer to the set Iy () as the window for the canonical projection point
set.

A canonical projection point set is called singular if My (t) € Iy (L), and
non-singular otherwise.

The intersection of the lattice £ and the cylinder V' 4-£2; in the above definition,
forms a set of vertices of a discrete plane, or staircase.

Definition 1.10 (Canonical projection staircase) Let line(a,b) denote the
line segment joining a point a to a point b, and facet(r,c,d) = line(r,r +c) +
line(r,r 4+ d) be the parallelogram plane segment with vertices at r,r + ¢,r +



d,r+c+d. Then, the canonical projection staircase is the set of facets in the
cylinder:

S; = {facet(r,p,q) | r,p,g € (LN(V+Q), [r—q|=|r—pl=1, p#q} (8)

We note that the notion of staircase is not restricted to that given in this
definition. In fact, we use other staircases later in this paper.

The aim is to obtain a tiling from projecting &; to V', with the facets of S;
projecting to tiles of this tiling.

Definition 1.11 (Tiling property) A 4 x 4 quadratic expansion matriz M
has the tiling property, if the projection to V' of the canonical projection stair-
cases associated to M are all tilings, whose tiles are the projections of the
facets constituting the staircase.

We note that in order to check if a matrix has the tiling property, it is sufficient
to check the projection of only finite sets of two-dimensional facets of the
hypercube meeting at one point of the Z* lattice.

The specific class of canonical projection tilings we deal with in this paper
are canonical projection tilings associated to 4 X 4 quadratic expansion matri-
ces with the tiling property which are the projections to V' of the canonical
projection staircases associated to such matrices.

1.4 Statement and discussion of the main result

The main result of this paper is summarized in the following theorem.

Theorem 1.12 The canonical projection tiling of a 4 X 4 quadratic expansion
matriz M with the tiling property is a substitution tiling.

In fact, we establish the existence of a countable infinity of different vertex
hierarchic substitution rules for each such canonical projection tiling, see The-
orem 3.15.

We refer to the tilings described in Theorem 1.12 as canonical substitution
tilings. Our result is constructive in the sense that we provide an algorithm
that constructs substitution rules for any such canonical projection tiling.

In the literature substitution rules are frequently used to define a tiling or a
set, of tilings; in fact it has been shown that many substitution tilings can be
realised as projection tilings by lifting the tiling to a higher dimensional space



and then constructing a suitable window, see for instance [31,39,6,8,7]. How-
ever, in the theoretical construction of the window it has proven difficult to
control its properties. For example, it is not easy to determine from the sub-
stitution rule whether the associated window will be connected, or whether
the window is in fact the projection of a hyper-cube, such as in the canonical
projection method. In this paper we approach the study of the connection
between the substitution and projection properties from the opposite direc-
tion: starting with canonical projection tilings (and thus imposing a window
structure) and then establishing the existence of substitution rules.

In related work, Pleasants [35] has studied projection point sets, establishing,
under certain conditions, the mutual local derivability (MLD) property. If the
canonical projection point sets is interpreted as the set of vertices of a canonical
projection tiling, then MLD implies the existence of a substitution rule as
shown in [9]. The substitution rules we consider in this paper all have the MLD
property. However, it is not true that all possible substitution rules admit the
MLD property [19]. In contrast to Pleasant’s work, we obtain an algorithm to
explicitly construct a countable infinity of non-equivalent substitution rules,
rather than establishing the existence of (at least) one substitution rule.

Another property of interest is that of matching rules. These are local dec-
orations on the tiles that enforce aperiodicity of the tiling. It is known that
the canonical projection tilings with quadratic slope admit matching rules
[29]. In this paper we begin to answer a question of Goodman-Strauss in [17],
which asked whether these were also the canonical projection tilings admit-
ting a substitution rule. The canonical substitution tilings in this paper all
have quadratic slope. In fact, our class of tilings consists of all 4 to 2 canon-
ical projection tilings that admit a substitution rule. As there exist planes
with quadratic slope that are not fixed by a quadratic expansion matrix with
the tiling property, the set of canonical projection tilings with matching rules
is therefore strictly larger than the set of canonical projection tilings with
substitution rules.

In this paper we develop a method for constructing substitution rules, that uses
a set of parallel lines on the plane. These lines appear superficially similar to
lines Ammann used to construct the Ammann tiling. Such lines are nowadays
refered to as Ammann lines, and have been used to help understand individual
examples in [41] and [18, Chapter 10]. They are considered in greater generality
in [32]. The lines have primarily been used to find tilings with a high degree
of symmetry, for example tilings with eight-, ten- and twelve-fold rotational
symmetries have been constructed in [23,22,21]. More general examples have
been considered in [10, and references therein].

It is important to stress that the lines we use are different to the Ammann
lines. The lines that we use are such that intersections of four of them them



correspond to vertices of our tiling. The Ammann lines create the edges of a
planar tiling that is dual to the Ammann tiling (with each of the tiles generated
by the lines corresponding to a tile of the Ammann tiling and vice-versa).

Some examples from the class of tilings we describe in this paper have been
discussed before in the literature. Apart from the Ammann-Beenker tiling, we
mention in particular the work of Katz et al. [25] and Baake et al. [3,4,2].

While studying matching rules, Katz [25] considered the set of tilings with
the edge, but not vertex, matching rules of the Ammann tiling. Some of the
non-periodic tilings that he considered in fact turn out to be topologically
equivalent to canonical projection tilings for 4 x4 quadratic expansion matrices
with the tiling property. For more details see section 4.

In [3,4,2], Baake et al. consider the effects of Schur rotations on the planes
V and W, in order to try to explain the formation of quasicrystals. These
tilings are the projection from Z* onto the plane V. The planes V and W
are rotations of the spaces for the Ammann tiling. A similar set of canonical
substitution tilings are also considered in [42].

Our insistence on the quadratic nature of the expansion matrices is motivated
by the well established fact that canonical substitution rules require quadratic
scaling, see for example [35,15]. As a byproduct of quadratic scaling, our work
on canonical projection tilings is firmly rooted on the theory of canonical pro-
jection tilings from Z2 C R? to a line. The canonical projection tilings in this
setting are the geometric representation of Sturmian words that are studied
in combinatorics [30,37] and their 2-letter substitution properties are by now
well understood. Substitution properties of other 2 to 1 interval projection
tilings can be found in [34] and [20].

It is worth noting that the matrices used to contruct canonical substitution
tilings in this paper, induce hyperbolic automorphisms on the lattice Z* in
R?*. As this hyperbolic structure arises in combination the Euclidean nature of
V', this observation might be explored further in the context of multi-metrical
crystallography, in the spirit of Janner [24]. In particular, it is precisely the
hyperbolic structure that gives rise to the existence of substitution rules.

As mentioned above the results of this paper are the first step in a larger
program. Two important examples that are beyond the scope of the present
paper are the Penrose tiling, which can be obtained by canonical projection
from Z° C R® to a plane, and the icosahedral tiling in three dimensions [27,26]
which can be obtained by canonical projection from Z® C R® to a three-
dimensional subspace. We aim to consider these and other examples in the
future as we work towards answering [Q].
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As an extension of our result, one may consider the substitution properties of
canonical projection tilings associated to matrices without the tiling property.
In this case, one can derive a (in general non-parallelogram) tiling from the
canonical projection point set and we expect that substitution rules can be
constructed for these tilings. Alternatively, one may project the canonical
projection staircase in such a way to V that one obtains a parallelogram
tiling. In that case, one may find substitution rules with a nonuniform (tile-
dependent) inflation factor.

Finally, we expect that the geometric techniques used in this paper can be
adapted to study more general settings for substitution, as discussed for ex-
ample in [1,12].

2 Example: The Ammann-Beenker tiling

In this section we illustrate our method for obtaining substitution rules for
canonical projection tilings in the case of the Ammann-Beenker tiling. In the
process we give a new proof, alternative to that given by Beenker [11], of the
fact that the Ammann-Beenker tiling is a canonical projection tiling.

We consider the 4 x 4 quadratic expansion matrix

1 10-1
1 110

M= ) (9)
0111

—-101 1

and construct a substitution rule for the associated canonical projection tiling.
It is readily verified that M has determinant 1 and doubly degenerate eigen-
values A = 1 +v2 and —A~!' =2 — 1. Let V and W be the corresponding
expanding and contracting eigenspaces.

We now consider the set {vert(T;) | t € R'} of canonical projection point
sets associated to this matrix M. Recall that the window used for canonical
projection is Iy, (£2;) where €, is a translation by ¢ of the 4-dimensional unit
hypercube 2y. A patch of such a point set is the set of vertices of the tiling
with grey tiles in Figure 1.

From this figure it is clear that the matrix has the tiling property and thus
fits the context of Theorem 1.12. We consider the canonical projection tilings
T; associated to M.

11



Fig. 3. The window for the Ammann-Beenker tiling and the subwindow correspond-
ing to the Ammann-Beenker substitution. The projection of the hypercube €2; to
W, which gives the window, is shown in light grey. The dark grey lines are the pro-
jection of the edges of the hypercube. The projection of My + t — ay + a3, which
gives the subwindow, is shown in dark grey. The black lines are the projection of
the edges of M Qg +t — as + as.

We now detail the construction of a substitution rule for this example in several
steps. Later, in Section 3, we show that this construction can be generalised
to give the result of Theorem 1.12.

2.1 Finding expansion tilings

The first step in our search for substitution rules concerns the finding of a
suitable vertex hierarchic expansion tiling. We consider the hypercube 2; and
its image under a transformation by M and a subsequent translation

Qt’s:MQ[]—i_t—i_S

with s = a3 — ag. The associated windows for objects are ITy (€2;) and the
subwindow are shown in Figure 3. As M fixes the lattice Z2, the projection
tiling associated to the subwindow is a uniform inflation of the tiling with
window Qo+M ! (t+s5). We denote this tiling 7. It turns out (see Proposition
3.1) that this tiling is in fact also an expansion tiling of 7;: the tiling T, lies

12



A HW (03)

A Hv(ag)
[Ty (a4)

HV(G2)

»
>

HW(CM)

T_[V ay
( ) HW(G2) HW(CM)

Fig. 4. Projections of the lattice generators onto V and W.

on top of T; such that vert(T,,) C T;. In Figure 1, the expansion tiling is
depicted with black edges.

2.2  The plane Ay and its geometry

The generators {ay,...,as} of L project to V and W as shown in Figure 4.
One observes that a; projects parallel to the projection of ay — a4 in both V'
and W. We now define the plane A; orthogonal to IIy (a;) and Il (aq). Note
that this is precisely the plane [Ty (a3), [Ty (a3)]r- Let 114, denote orthogonal
projection to A; with respect to the inner product < -,- >, which in this
case is actually identical to the standard (Euclidean) inner product on R*. An
illustration of this projection is given in Figure 5.

We now observe the following:
Claim 2.1
(1) 14, (V) is a line Vi = [TIy(a3)]r-

(2) 114, (W) is a line Wy = [Ty (a3)]r.
(3) T, (L) is a lattice Ly of rank 2 (L1 ~ 72).

(4) Mle, =
PROOF. The first two points hold as Iy (a;) and Iy (a;) are orthogonal to

Aj;. For the third, consider ay —a4. This is orthogonal to A; as Iy (as —ay) and
[Ty (az — a4) are parallel to Ily(a;) and IIy(a;). Thus there are two integer

13



A, (+V) —

gﬁf((gf)) S I, (V)

HAl (6‘63)

™~ HAI ([’)

HAl (Qt)

Fig. 5. The plane A; for the Ammann-Beenker substitution. The projection
T4, (2 + V) is colored light grey. The projected lattice points in £; are linked
by a staircase S}, which is indicated in black.

relations on the Z-module II4, (£) and the projection is therefore a lattice
of rank 2. For the final claim, note that M induces an automorphism of the
lattice £, and thus also induces an automorphism of the projected lattice L;.
By considering M and noting that Iy (a;) = 0 and Il (a;) = 0 one easily
verifies the form precise of M|,. O

The vertices of the canonical projection staircase project to A; are the set of
points S} = £, N (Vi +114,(€%)). These points can be joined up in a staircase
with two steps; a vertical step, which we shall call p, and a diagonal step d, as
shown in Figure 5. Note that this staircase is not the projection of the canonical
projection staircase. We aim to find a substitution rule on the projection to
Vi of the staircase with vertices at S

Consider the expansion tiling. The vertices of this tiling project to A; as
the set of points £ N (Vi + 4, (M — as + a3)). The projection of €; and
My — as + a3, along with the regions that they generate when added to Vi,
are shown in Figure 6. This is also a two-step staircase, the steps of which
are the images of the steps d and p under the action induced by M|., on A;.

14



HAI((MQt — a9 +\CL3) + V)

HA1 (Qt)\

|
A, (2 + V)
HAI(MQt — a9 + 0,3)

Fig. 6. The projection of the hypercube 2y and M), — as + a3 onto the A; plane
of the Ammann-Beenker tiling, and the associated cylinders

The image, d, of d is a now a vertical step, the image, P, of p is the transverse
diagonal. We shall denote the vertices of this staircase 3;3. The two staircases
are shown in Figure 7.

2.8  The substitution rule on A,

To find the substitution rule, we consider the window Iy, (€2;). As the pro-
jections of the lattice £; to the window space W, is totally irrational, every
point in S} projects to a unique point in the window. We aim to partition
the window into intervals, so that vertices of the staircase projecting to the
same interval are similar (in some sense). In particular, we would like to use
such intervals of the window to label corresponding vertices and steps of the
staircase (and hence taking projection into account, tiles). In this context we

15



SY

\

Fig. 7. The staircase, the expansion staircase and their steps for the projection of
the Ammann-Beenker staircase to A;. The steps p and d make up the staircase for
the original tiling and the steps p = M|;,p and d = M|, d make up the staircase
for the expansion tiling.

will refer to such a window interval partition as labelling intervals.

To divide up the window into labelling intervals, we consider the lattice M =
L1411, (t). The set I14, () is singular with respect to this lattice. As a result,
the boundary points of the window coincide with the projections of lattice
points in M. We choose a rectangle R C Vi + I14,(£2;), take the intersection
with M and project to W;. This induces a partition of Ty, (€2;) into intervals.
Our choice of the rectangle is depicted in Figure 8(a), as well as the induced
partition on Iy, (€;).

We now construct an alternative partition of the window into two intervals by
grouping together the lowest three intervals in the previously defined partition
(see fig 8(a)). The second partition has the following property: let [ € S},
[Ty, (1) lies in the top interval if and only if there is a line segment d to the
right side of / in the staircase with vertices S}. Analogously, projection to the
lower interval indicates that a line segment p lies to the right side of [ in the
staircase with vertices S}.

Now observe (Figure 8(b)) that our first partition restricts nicely to a partition
of Iy, (€25), into two intervals. This partition has a property similar to the

second partition of Ty, (€;): let [ € gis, [Ty, (1) lies in the lower interval if
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Fig. 8. This figure demonstrates the substitution rule on the plane A; for the Am-
mann tiling. A section of the cylinder for the original and expansion tilings are
shown in (a). The edges of this region are parallel to V and W. At the bottom left
of (a) we consider the window in W. The lower left partition shows the intervals
corresponding to the two tiles. The higher partition shows the intervals for the tiles
of the expansion tiles in the full window. The intervals for the expansion tiles are
shown on their own in (b). Parts (¢) to (d) show the construction of the replacement
rule for the tile p. Note that at each step the corresponding particular region of the
window (shown in black in the window division) lies within precisely one of the two
tile intervals. In the bottom right of each figure is the step p in grey, and the steps
of the original tiling in black. In (f) we show that d is replaced by p.

and only if there is a line segment d to the right side of [ in the staircase
with vertices gi’s. Analogously, projection to the top interval indicates a line

segment p lies to the right side of [ in the staircase with vertices 3;3.

Our partitions of the window have the important property that for [ € S},
[Ty, (1) always lies inside an interval and never on the edge of an interval. This
is due to the fact that ; is non-singular with respect to £, whereas T4, (€2;)
is singular with respect to M.

We can now construct the substitution rule. We start by considering a step of
. . . . .ol .

type P in the expansion staircase with vertices S, ;. Such a step is shown on

the bottom left of Figure 8(c). The vertex at the left of this step is the point
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[ € L£,. We shall now show that [ can be joined to [+ p with a unique segment
of the staircase St. In order to see this, we recall that such Ily, (1) will lie in
the region shown in Figure 8(c) if and only if [ is the left-most point of a B
step. From the second partition of ITyy, (€2;) we now see that the staircase with
vertices S! has a p step to the right of /.

We can, therefore, consider [ + p. As Iy, (I + p) always lies in the top interval
(Figure 8(d)) of the second partition we conclude that in the staircase with
vertices ST, there is a step d to the right of [ + p.

Finally, as [ + p + d always lies in the lowest interval of the second partition,
this point is followed by a p step (Figure 8(e)). As the staircase segment pdp
connects [ to P substitutes to pdp. By a similar argument we can obtain that
d substitutes to p (Figure 8(f)).

We have therefore obtained a substitution rule that takes the points gi’s to
the points St. On the intervals between the points we have the substitution

rule (p,d) — (pdp, p).
2.4 The relationship between the A; planes and the tiling

In this section we show how the plane A; defined above, and similar planes for
the other lattice directions, can be put together to provide information about
the full tiling.

We have the substitution rule (p,d) — (pdp, p) rule acting on intervals of the
line V;. These intervals can be extended to strips of V', with edges parallel to
Iy (a1). Every point in the tiling projects to a point on Ay, so every point lies
on one of these lines.

In analogy to the definition of A;, we define the planes A; as the planes
orthogonal to Iy (a;) and Iy (a;). As the window and the subwindow we are
using are symmetric under a rotation of order 8 the same substitution rule may
be used for the projections to planes Ay, Az and A,. We thus find substitution
rules in these four directions. The labellings of these substitution rules can be
extended to strips of V' in the manner analogous to that used for a;.

We call the lines corresponding to the tiling 7; thin lines. The call the subset
of these lines, which concern the expansion tiling 7, thick lines. Note that
every thick line lies on top of a thin line as the substitution rules found above
are vertex hierarchic.

Importantly, every vertex of 7; corresponds exactly to the intersection point
of four thin lines. This is proven in Lemma 3.14.
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“Thick’ lines
“Thin’ lines

/f Labelling

Q Vertices of expansion tiling
‘ Vertices of tiling

() (d)

Fig. 9. The substitution rule for tiles in the Ammann-Beenker tiling. The thick grey
lines show the a; strips before substitution, the thin grey lines show the strips after
substitution by the rules derived on the A; plane. The points of the tiling after
substitution are the points where grey lines from all four directions intersect. These
are joined by edges of the tiling, shown in black.

2.5  Finding the substitution rule

We can now construct the actual substitution rule for the tiling. The idea is to
consider the strips, and the thick lines between them lying over an expansion
tile. The substitution rule is applied to those strips, producing the set of thin
lines. This information can then be used to derive the section of the tiling
lying over that expansion tile.

Consider a rhomb tile in the expansion tiling 7. Due to the symmetry we
need only to consider one tile. Let us consider the tile with edges parallel
to Iy (a;) and Iy (az). In the directions of these vectors the tile lies over a p
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strip, in the other two directions it lies over the strips pdp. This determines the
position of thick lines as shown in Figure 9(a). The situation for the other three
rhombs is the same apart from a rotation. The application the substitution
rule on the strips yields the thin lines as shown in the figure. In the figure, the
vertices of the expansion tiling and the vertices of the tiling are now found as
the intersection points of respectively four thick lines or four thin lines. The
vertices can then be connected by projections of the lattice generators to yield
the tiles, as shown in Figure 9(c).

Now consider a square with edges parallel to Iy (a;) and Iy (a3) in the ex-
pansion tiling. In the directions ITy (ay) and Ty (a4), this is covered by the
strips pp. In the other two directions things are not defined by the vertices.
There are two options for the strips, pd and dp for each of the two directions.
Inspection of Figure 1 shows that all four options can occur. Each of the two
squares, therefore has four possible orientations. One of these orientations is
shown in Figure 9(b), the other seven possibilities are rotations of this tile.
The figure shows the thick lines, together with the thin lines generated by
the substitution rule. Once again the vertices are determined by the points
where four thin lines cross. The crossings of four thick lines and four thin lines
are shown. Figure 9(d) shows how the crossings of four thin lines are linked
together.

This construction produces the vertices inside the expansion tiles. To finish
we wish to find all the tiles that intersect the expansion tile. Observe that the
pattern of thin lines over the edge of the expansion tiles in Figure 9(a) and (b)
is only compatible with one orientation of the square tile. Alternatively, one
can consider the line pattern just outside the exapnsion tiles. Observe that,
using the coding of the strips as introduced before, the first and last symbol
of the images of the substitution on p and d, must be equal to p. Every thick
line, therefore lies between two strips of type p in the original tiling. This adds
extra thin lines outside the expansion tiles. These lines intersect with lines
from the other directions at the position of the missing vertices for the square.
We have thus retrieved the Ammann substitution rule, shown in Figure 2.

3 Proof of Theorem 1.12

In this section we prove our main theorem. The proof is essentially algorithmic,
constructing substitution rules from a suitable matrix. Our start point is a
matrix M and an associated canonical projection tiling 7;.

In subsection 3.1 we find a set of expansion tilings for 7;. For a tiling 7;, these

are tilings with window My + s + ¢ such that ITy (MQy + s + ¢) C Iy ().
We require in addition that s +¢ ¢ Iy (L), as we require that the two tilings
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be locally isomorphic up to expansion.

Then in subsection 3.2 we consider the A; planes. It turns out that we can
define substitution rules on the lines V; which are the projections of V' to these
planes.

In subsection 3.3 we show how the tiling on V' can be reconstructed from the
tilings on the lines V.

Finally in subsection 3.4 we show how the substitution rules on the lines V;
can be combined to find the substitution rules on the plane V.

3.1  Vertex Hierarchic Expansion tilings

In this section we describe a set of vertex hierarchic expansion tilings for 7;.

Proposition 3.1 Let T, be a canonical projection tiling for a 4 X 4 quadratic
expansion matriz M with non-singular window Ty (). Any tiling with non-
singular window Iy (MQy + s +1t) C Hw(Qy) is a vertex hierarchic expansion
tiling for T;.

In order to prove Proposition 3.1, we first formulate some Lemmas. The first
Lemma asserts that application of the matrix to R* expands the tiling and
contracts the window.

Lemma 3.2 The set of points Iy (L N (M) + V') is the set of vertices of
the tiling \T;.

PROOF. Consider a point r € vert(S;) so that Iy (r) € vert(T;) and Iy (r) €
[Ty (€2). The matrix M acts as an expansion by A on V' so that Iy (Mr) =
ATy (r), and as a contraction by £A7" on W so that Iy (Mr) = £X" Tl (7).
Therefore Iy (Mr) € vert(AT;) and Ily (Mr) € Iy (MS;). As M is an auto-
morphism of the lattice, the image under M contains all lattice points that
project to Iy (MQ;) + V, concluding the proof. O

Lemma 3.3 The tilings T; and T, are locally isomorphic for non-singular t
and r.

PROOF. Consider some vertex v € vert(T;), where v = Ily(p) for p € L,
and some ball B,(v) C V about v. The set of points vert(7;) N B.(v) are the
projection of some set of points in the lattice L C L, say. We therefore have
some set of points in the lattice which project to the vertices of some region of
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the tiling. These points project to the set ITy, (L) in Iy, (€2;). This set Iy (L)
is a finite subset of ITyy (€2;). Recall that we are assuming the non-singular case
so we can assume that Ty (€;) is an open set. We can, therefore, place open
balls of radius s about each of the points.

Every point in £ which projects to the open ball about Iy (p), Bs(Ily (p))
has the same local region up to a radius of r. This is because the same lattice
generator steps will project to the balls about the other points in Iy (L). In
other words the points in the ball B, (IIy (p)) correspond to the points at the
center of a translation of 7; N B,(v). Now consider B,(Ily (p)) +r —t C Q,.
As it is an open ball and the lattice projects densely to W, there will be the
projection of lattice points in this ball. Each of these will have the same local
region as part of 7;.

Thus any region of 7; will occur in 7,. O

PROOF. [Proof of Proposition 3.1] Consider the projection tiling with a
window obtained by projecting the transformed hypercube Mo+ s+t to W.
By Lemma 3.2, this is an expansion of the tiling Qy + M~ (¢ +s). The window
for this tiling is the projection to W of a translation of €2,. By assumption,
Qo + M~'(t + s) is non-singular. Hence, by Lemma 3.3, the tiling is locally
isomorphic to 7. If MQq+ s+t C €y, using that fact that M fixes the lattice,
we find that the vertices of the tiling with transformed hypercube MQy+ s+t
is a subset of the vertices of 7;. O

For a substitution rule we need to have a unique relationship between a tiling
and its predecessor. We fix a relative location of the subwindow with respect to
the original window. For the window ITy (€2;) let the subwindow be Iy, (M Qo+
s+t), with s chosen so that the entire subwindow fits within the window. Let
T s denote the corresponding expansion tiling with vertices Ty (£ N (MQq +
t + 5) + V) and subwindow hypercube Q; , = MQg +t + s.

We aim to show that if IIyy (s) € Iy (L) show that there is a substitution rule
relating the expansion to the original tiling. Note that if [Ty (s) € Iy (L) we
may choose without loss of generality that s € L.

3.2 The planes A; and their geometry

In this section we define the A; planes. These planes are positioned in such a
way that the 4 to 2 canonical projection structure projects to the structure of
a 2 to 1 projection tiling. This latter situation is well studied and relatively
easy to work with. In this section we generalise the results of Sections 2.2 and
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2.3. In the generalisation of Section 2.2 we need to take care of that fact that
in contrast to the Ammann example, where the projected staircase has two
types of steps, in the more general setting the staircase may have three types
of steps. This is the contents of Lemma 3.9. From there we then continue to
generalise the result of Section 2.3, demonstrating that all tilings oobtained
from such staircases admit substitution rules.

Definition 3.4 For each lattice direction a;, let A; be the plane orthogonal to
[y (a;), Ow(a;)|r. Let T4, be the orthogonal projection to A; with respect to
the inner product < -,- >.

We first show that these planes have some useful properties.

Lemma 3.5 The projection to A; of the 2 to 4 projection structure contains
the following:

(1) The tiling space: I 4,(V') is a line V;.

(2) The window space: 11 4,(W) is a line W;.

(3) T14,(L) is a lattice L; of rank 2.

(4) The matriz M fizes A; setwise. We denote M; = M|a,. The action of
M; on L; induces an action as that of a unimodular integer matriz, with
leading eigenvalue \ > 1.

(5) The hypercube: T14.() = QL.

(6) The subwindow translation: T4, (s) = s; € L;.

(7) The transformed hypercube: From definitions T, (Qos) = a, (MQy +

(8) The vertices of the tiling’s staircase: (V; + Q) N L = St

(9) The vertices of the expansion tiling’s staircase: (V; + Qis) NL= ?;,s.

PROOF. For points 1 and 2, note that I14, (ITy (a;)) = 0 and 14, (Tl (a;)) =
0, so the projection is at most one-dimensional. The projection cannot be a
point as neither V' nor W is orthogonal to A;.

For point 3, recall that the matrix acts on the planes V' and W by uniform ex-
pansion and contraction. Thus MTIy (a;) is parallel to Iy (a;) for i € {1,...,4}.
Now we note that the orthogonal projection with respect to the inner prod-
uct < -,- > commutes with M. Hence, Il (Ma;) is parallel to Iy (a;). By
an analogous argument, Iy (Ma;) is parallel to Il (a;) and consequently
Ma,; € [IIy(a;), Iy (a;)]r- There are thus two integer relations in the Z-module
14, (L), which is therefore a lattice of rank two. As Z-module is relatively dense
in A;, the rank cannot be less than two.

For point 4, consider the eigenvalues of M, which are A and £\"!. In addition,
A is a quadratic algebraic integer as M is an integer matrix. The matrix M
acts a multiplication on V and W. On L, M acts as an automorphism.
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For point 4, consider the matrix M. The action of M on A; is linear as M A; =
A;, because M acts as multiplication on V' and W. M therefore acts as a
matrix M; on A;. As M acts as an automorphism on £, the matrix M; is an
unimodular integer matrix. The eigen-values of M; will be A and +\~!, the
eigenvalues of M. O

Having observed the 2 to 1 projection structure on the A; planes, we now ad-
dress the question of the existence of substitution rules on the A; planes. Our
result that follows is related to the results of [28] and [34]. Our approach is
close to that of [34]. However, in contrast to the treatment in [?], we approach
the problem from a geometric rather than a number theoretic viewpoint. In
addition, we construct the substitution rules for a large class of sub-windows,
whereas Masakova et al. focus on the existence of only one particular substi-
tution rule. Our geometric technique is related to that of [31].

The remainder of this section is devoted to the proof of the following propo-
sition:

Proposition 3.6 The interval projection tiling with vertices Iy, (V+Q,)NL)
admits a countable set of substitution rules. For each s € L, so that Ty, (Q;) D
Iy, (Qus), there is a substitution rule so that the associated expansion prede-
cessor is the projection tiling whose vertices are Ily,(V + Q5) N L).

This proposition provides a countable infinity of substitution rules for the
interval projection tiling. These substitution rules are inequivalent in the sense
that they have different predecessors and consequently different substitution
rules. It is interesting to note, however, that all the predecessors considered
here are equivalent up to translation.

In order to prepare the proof of this proposition, we first discuss some inter-
mediate results.

We choose a point z € £; such that 0 € interior(Ily, (). It is readily verified
that one can always find such a point. In line with the above discussion, we
consider a transformation of this hypercube in the following manner: M;Q! +
(s; + z — M;z). To simplify notation, we define s; by s = s; + z — M;z. Note
that s. is a lattice vector.

Lemma 3.7 There exists an n € N such that

[Ty, (Mi(Q + 7)) U TIy; (=M s})] € Ty, (M), (10)

PROQOF. The linear subspace V is the expanding eigenspace of M. In addi-
tion, we have 0 € interior(Ily,(QY)). Thus lim, . Ily; (MPQL) = V. As the
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set of points TTy; (M;(€2 + s!)) U Ty, (— M, 's!) is bounded, it will therefore be
a subset of Ty, (M) for some n € N. O

Lemma 3.8 Let M be a unimodular, integer 2 x 2 matriz with quadratic real
eigenvalue X > 1. Then, either A = (1 ++/5)/2, or A > 2.

PROOF. Let M have determinant D = +1 and trace T, we have:

_ T+VT?-4D
- 2

A

Consider 1 < A < 2, this implies:

T++T?2—-4D
< + 5 <2

1

s02—T <T?—4D <4 —T. As Xisreal, VT? — 4D > 0. Thus T? — 4D <

16 — 8T + T2 As D < 1,1 < 4 — 2T, we therefore conclude that T < 1. As

T<1,2—T >0, thus 4 —4T +T? < T? — 4D. This gives T > 0, so we have

T =1,as T is an integer. If T =1, A = (1 ++/5)/2, as if D = 1, \ is not real.
(I

We now show that the set of points S; can be considered as the vertices of a
staircase, with at most three types of steps. This result is well known, see for
example [33]. We include a proof for completeness.

Lemma 3.9 Let P C W; be an interval such that |P| = |y, (2)| for some
z € L; Then the set of points (P+V)NL; are the vertices of a staircase S with
three types of steps. These steps can be taken to be a,b and a+b. Furthermore,
P can be divided into three subintervals, whose lengths are |y, (2)| for some
A El

Consider a vertex point v € S. Then the step in the staircase from that point
in the positive direction can be deduced from considering to which of the three
subintervals My, (v) lies.

PROOF. Consider the leftmost point e; of the interval P. Consider a trans-
lation f of the £; such that e; € £; + f. Since |P| = Iy, (z) for some z € L;,
there is a point e; € £; + f such that Iy, (e2) is the other end point of P.
Now consider the set of points (P + V;) N (L£; + f) \ {e2}, and its projection
Oy (P + V)N ((L; + f) \ {e2}). Since P is bounded, the projection will be a
discrete set of point in V.
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eq Window for b

Window for a Iy, (e2)
>

HWi (a’)

Fig. 10. The division of the window for a staircase with three steps. The arrows
show the projection of steps of type a and b to the window. The central window is
the window for a + b.

Consider now the two points in £; + f that project to either side of Iy (e1) in
V;. Let us denote these points e; + a and e; — b. The vectors a and b therefore
are among the steps of the staircase. Indeed, the lattice is periodic and e; is
in £; + f. If there were a closer point in the projection to V; then there would
be a translation of that point closer to e;.

The windows for the steps @ and b in P are points p € P such that p +
[y, (a) € P or Iy, (b) + p € P, respectively. These windows are precisely
the intervals [e;, [Ty, (e2 — a)] for a and [Ty, (e; — b), [Ty, (e2)] for b. Hence, if
[y, (e2 — a) = My, (e; — b), then for every vertex in the staircase the step in
the positive direction is either a or b, and we have a staircase with two types
of steps.

If this is not the case, the situation is as in Figure 10. For any vertex ¢ of
the staircase whose projection lies in the central window interval Iy, (q) €
[Ty, (ea — a), Iy, (e; — b)], consider the point ¢ + a + b. The projection of
¢+ a+ b lies in the interval [Ty, (es + b), Iy, (e; + a)], which by the definition
of a and b lies within P. We now claim that ¢ + a + b is the nearest point
in the positive direction for the point ¢ the central window interval. If there
are vertices of the staircase whose projection to V' lies between IIy,(¢) and
Iy, (¢ + a + b), then there must be a piece of the staircase connecting ¢ and
q + a + b consisting of at least two steps. Suppose there are two steps, then
by the earlier argument one of them must project to a line segemnt of V; of
length greater than or equal to Ily;(a) and one to a line segment of length
greater than or equal to Ily; (b). Hence, the two steps must be equal to a and
b, which we ruled out before by the definition of q. If there are more steps, it
is immediately clear that at least one of them would need to project to a line
segement of length smaller than ITy.(a) or Iy, (b), while at the same time it
should be longer.

The boundary points for the intervals of the window are ey, Iy, (ea—a), Iy, (e —

b) and Iy, (e2). These are all projections of points in £; + f, thus the lengths
of the three intervals will be in Ty, (£;). O
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We now further develop our geometric approach towards finding substitution
rules.

The projection IT4,(€;) is a convex polygon whose vertices are separated by
elements of £;. Thus the edges of the window in the projection to W; are
separated by the projection of an element of this lattice. The length of the
window in the projection to W; will therefore be |IIy,(2)| for some z € £;. By
Lemma 3.9, the set of points S can be considered as the vertices of a staircase
with three steps. We introduce a labelling for these steps, and show that two
steps with the same label in the expansion staircase will be covered in the
projection to V; by the same patch of labelled steps in the original staircase.
This is the essential ingredient implying the existence of a substitution rule.
In section 2.3, when discussing the Ammann-Beenker tiling, it was sufficient
to simply consider the labelling given by the type of each step. In general,
however, the labelling can be more complicated.

We now discuss the construction of the labelling intervals. As in the Ammann
example, we divide up the window into intervals. The boundary points of
these intervals, which will be used as labelling intervals, are defined in the
same manner as in the Ammann example and in the proof of Lemma 3.9: the
boundaries for the intervals are the projections of a finite set of points in a
translated copy of the lattice. Considering the tiling 7;, we define the lattice

MZ‘:EZ‘—FHAi(t)—FZ (11)

where z is the vector mentioned above Lemma 3.7. !, the projection of the
hypercube €2, is singular with respect to M;, and as M; depends on t, is in
the same position with respect to Q¢ for all ¢. Let M; be the conjugation of
M; by a translation, so that M; fixes the point z 4+t € M,, and consequently
fixes the lattice M, setwise:

M;M; = M,;. (12)

We now construct a set of points which, when projected to W;, define the
labelling intervals in the window. Let R™ be the parallelogram:

R =TIy, (VP95 + Ty, (0) (13)
Note that R**! > R™.

By Lemma 3.7 there exists an N € N such that ((M;Qi+s})U(—M; 's})) € RV.
Thus both Qi and M;Q: + s! lie in RY.

Let the lattice point in M, that projects to the rightmost point of (ITy, (M*Q2))
be denoted max(R™,V;). Consider Iy, ((M;NRY 1) \max(RY*,V;)). Thisis a
set of points in the window ITyy, (€2%). We now use these points as the boundary
points for the labelling intervals in T; for the vertices of the staircase S;. Let
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C; be the set of subintervals of the window in W; that provides the labelling
B;.

It is now useful to consider this labelling in another way. The points of the
lattice M; lying in the region RY*1 N M; can be joined by line segments so
that each labelling interval is the projection of a line segment. By Lemma 3.9,
this construction prodces a staircase with at most three types of steps. It is
important to note that this is a very different staircase than the one discussed
before: the staircase progresses in the W; direction and not in the V; direction,
like before. Also, the staircase we consider here has only a finite number of
steps. In Figure 11 there is an illustration of the situation with the set of
points in RN*! N M; linked up into such a staircase. The partition induced
on the window on W; is also indicated.

In the definition of the points that define the intervals, we have used the
parallelogram RY*!. Later in Claim 3.11, it turns out that in one special case
we actually need to consider RV*2 instead of RV *!. We continue the general
discussion with RN¥*! and point out later when the modification to R™*2
needs to be made.

As the tiling 7; is non-singular every vertex point of S} projects to the interior
of a labelling interval on W;. Thus every vertex point in S! has a unique B;
label. As M;Qi + s, C RV, the Bj-labelling of a point identifies whether it lies
in the subwindow Iy, (M;Q + /). We can, therefore, consider a labelling of
the points in the expanded staircase gz,s, given by the intervals of C; in the
subwindow. We call this labelling L;. Note that this labelling is induced by
the projection to W; of the points of the lattice lying in the region:

Iy, (M) + Ty, (M, + s1) (14)

To show that there is a substitution rule on the set of tiles labelled by L; we
now state two claims. These claims concern tha fact that staircase steps at
vertex points in the staircases Sj and S, ; are determined by their B;-labelling.

Claim 3.10 The step in the positive direction from a vertex point v in St or

S’;s is completely determined by the B;-label of Ty, (v).

PROOF. By Lemma 3.9 the window can be divided into subintervals which
determine the step from a vertex point in the positive direction.

The points of M; that project to the boundaries of these intervals are one stair-
case step from the points of M, that project to the boundaries of the window
on W;. In the projection to M; N (V; + Q%) to V;, these points are precisely
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Ty, (MM Q%) + My, (M + s1)
\

/

< /
" /

Staircase with vertices in

RN N M; \ maz(RNT, V)
RN—|—1

Lines parallel to V;
Labelling Intervals

Fig. 11. The region RN of the lattice M;, showing the staircase linking the points
in the direction of W;. The partition induced on the window, which can be used to
label the vertices of a non-singular staircase in the V; direction, with lattice £;, is
also shown.

neighbours. Note that points in M; N RY*! corresponding to the extremal
points in V; projection are different from the lattice points corresponding to
the extremal points in the W; projection.

We thus assign B; labels to vertices of the staircase S¢, according to which
of the three (or two) W;-window intervals they project to, that determine the
staircase step from a vertice in the positive direction.

The arguments for the expansion staircase are analogous. O
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We now aim to apply the labelling L;, defined on ?t’s, to the staircase S..
Recall that the labelling L; is determined by the projection of the M, lattice
points in:

My, (MY 1) + Ty, (M + s7) (15)
In order to produce the L; labelling we rescale the subwindow so that it fits
over the entire (original) window. The existence of a substitution rule relies on
the L; labelling intervals consisting of unions of entire B; labelling intervals.
To show this property we invoke the inverse of the map taking 2! to Q;’s. This
is translation by —s:, followed by multiplication by the inverse matrix ]\Zfi_l.
This gives the set of points of M, in:

My (M) — M;'s7) + Ty, () (16)

We now show that the obtained L; labelling is in fact determined by the B;
labellinga.

Claim 3.11 The L; labelling of a vertex point in Si is completely determined
by its B; labelling.

PROOF. We need to show that the set TTy (MNQi — M; ts!) + Ty, (QF) is a
subset of RN*!. Tt is sufficient to demonstrate that

My, (MY — M;'sp) © Ty, (M1 )). (17)
We first assume that IIy; (s;) # 0. With this assumption and the fact that
Iy, (M%) © Ty (M) (18)

it is sufficient to show that the leftmost point of IIy, (MNQi — M;'s}) lies
within Iy, (M), Let the leftmost point of ITy,(M}NQ}) be m. As 0 lies
in Iy, (M), the leftmost point of Iy, (M%) is Am (recall that ) is the

expanding eigenvalue of M on V). In addition, we have ~M;'se RN som <

Iy, (—M; 's}). We thus have proven our claim if Adm < m + Iy, (=M; 's}) <

2m, which, recalling that m < 0, requires A > 2. The latter is assured by
Lemma 3.8, with the one exception of the case that A = 1+T\/5

In the latter case, we need to repeat our argument using RV*? instead of
RN*1 and are led to verify that

Iy, (MY — M;'s) € Ty, (MN2Q)). (19)
By similar considerations as set out above, this leads to the requirement that

Nm < dm+ Ty, (=M 's). As A2 = A+ 1 and Iy, (—M ~'s) > m, this require-
ment holds. O
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We are now ready to present the proof of Proposition 3.6. Recall that the M,
lattice points that define the set of intervals C; can be joined together in a
(finite) staircase in the W, direction, as shown in Figure 11. In the following
proof, we denote this staircase S¢..

PROOF. [Proof of Proposition 3.6] In the discussion below we will be con-
sidering three different staircases. The first is the finite staircase S¢;, from
which the labellings are induced. The other two staircases are the staircase S}

. . all
and the expansion staircase .S, .

Consider the set of vertices in the expansion staircase with a certain label
in L;. These points project to a subinterval of the subwindow in W;. This
interval is the projection to W; of a step of the staircase S¢;, that we denote
P. The label determines, by Claim 3.10, the step in the positive direction of
the expansion staircase S,f’s. We aim to show that it also determines the set of
steps in S! that connect the same two points that are connected by the step
of the expansion staircase. By Claim 3.10, the first step in S? is determined.
Suppose the type of the first step in the staircase S is g and the type of the
first step in the expansion staircase with vertices gi’s is g. The window for
the set of points after the first step in the staircase with vertices S! will be
Iy, (P + g), where P + g here denotes the line segment P translated by the
vector g.

If P+g is astep in the staircase S¢; then the following step is again determined.
The aim is to show that this condition is satisfied for a finite sequence of
subsequent steps of the staircase S! (according to the B; label associated to
the Piy, projection of the translated copy of P), so that we start at P and
end at P 4 ¢. In fact, this construction defines a rule replacing all expansion
tiles with label corresponding to P, with a set of tiles that corresponds to the
staircase segment of S! that was followed.

It is readily verified that the end points of the line segment P47 are contained
in R¥*' N M;. Thus the end points of every intermediate step (along the
staircase S¢) of P are also in RN 1N M;. We now recall that the staircase Sc,
contains two or three types of steps. Let us consider first the case where P is
one of the two shorter steps (called a and b in Lemma 3.9). In that case, P+g¢
is a line segment with end points in RV*! N M;, which must be connected
by a part of the S, staircase. This connecting path can be either equal to
a translation of P, or a translation of a number of concatenated steps of the
other shortest type, since we know that the longer step type projects to a
longer interval in W;. As the second option is also impossible, because the two
shorter steps lie in different directions, this step must be a translation of P.

This leaves us to discuss the case where P is a step of the longest type.
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In this case consider the windows along V; for the three steps in S¢,. By
Lemma 3.9 the boundary points for these windows are projectio of points in
the lattice M; to V;. In fact they are points in

Iy, (MN1Q1) + Iy, (M + s}) ¢ RN T

. The boundary points of the one-step labelling intervals in the window for S¢;
for the shorter steps are precisely projections of two points whose projections
to W; are neighbours. This follows from the definitions of the shorter steps and
their windows as before. In fact points lie in Iy, (MN*1Q1) 4 Ty, (M;Q} + s1),
as MZQQ is not a line, so that its extremal points with respect to V; are not
the extremal points with respect to W;.

We now consider the process of construction the sequence of steps in the
staircase S¢, to get from P to P+, where g is the first step in the expansion
staircase ?;’s. Let P be the line segment from p; € M; to p, € M,. In the
expansion tiling in V;, IIy;(p; + ) is the neighbour of IIy,(p;). The point
Iy, (p1) is in the central subwindow for the longest type step (type “a + ")
of the staircase S¢;. As the maximum for this window is the projection of a
M, lattice point in TTy, (MNH1Q) + Ty, (M;Q} + s!) then the most extreme
position of this point is the leftmost point of the line segment P + 7. Thus
every step as we go from P to P + G is of the longest type, which is precisely
what we set out to show.

Note that we are not concerned whether at the end of the walk on the S
staircase, P + g coincides a step of the staircase S¢;. The next step in the
original tiling after an expansion tile may be different for different tiles. O

3.3 The relationship between the A; planes and the tiling

In the previous sections we have identified substitution tilings on each of the
lines V;. In this section we consider how these tilings and their substitutioon
rules can be related to the full projection tiling in V.

Information about the position of the projection of a vertex of the tiling in
V' in one of the planes A; is equivalent to information about the position
of the vertex in the direction orthogonal to Iy (a;). We thus decide to treat
all points along lines parallel to Iy (a;) as being equivalent with respect to
A;. The following definition provides us with a structure that contains this
information.

Definition 3.12 Define the extension of a set of points P C V', in the direc-
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tion v € V, as a set of lines parallel to v as follows:
exty (P,v) := {t + [v]r|t € P} (20)

For a tiling T; on' V' and a vector v € V. Let the extension of T; by v be defined
as:
exty (T;,v) = exty (vert(Ty),v) (21)

We define exty in the analogous manner.

Now consider the extensions exty (IIy (L), Iy (a;)) for all 4. Clearly the projec-
tion of each lattice point in £ to V lies in the intersection of four such lines.
the converse is also holds.

Lemma 3.13 Letv € V be such that for alli, ext(v, Iy (a;)) € ext(Ily (L), Iy (a;)).
Then, v € IIy (L).

PROOF. As IIy (L) is relatively dense in V', there exists a j such that V' =
[IIy (a1), Iy (a;)]r. Now consider the set

D= [Hv(al)]R N el't(Hv([,), Hv(aj)). (22)

This is a Z-module of rank 2, as there are two integrally-independent lattice
points that project parallel to IIy(a;), by Lemma 3.5. In addition this Z-
module contains the points [IIy(a1)]z as these are the projection of lattice
points. We therefore have:

D = [Ty (a1),k]z (23)

where k is a vector in [Ty (a1)]g, that is incommensurate to Ily(a;). The Z-
module D will also contain the projection of a lattice point with 0 component
in the a; direction, again by Lemma 3.5. Some integer multiple of k£ would
be the projection of this point, as k is the generator of D which is not in
[ITy (a;)]z. We may therefore consider k to be the projection of a point in the
space generated by the lattice generators with the exception of a;:

k =Ty ((0, kg, ks, kg)") (24)

Now consider the point v, that lies at the crossing of four extension lines. This
implies that every point in v+IIy (L) lies at the crossing of four extension lines,
as the translation of an extension line by a lattice vector gives an extension
line, thus all of the four lines crossing v can be translated to any point of
v + Iy (£). In particular there is a point v' € [IIy-(a;)|g N v + IIy (L£). By the
definition of D, this point must be in D. Thus v' = ¢;IIy-(a1) + g2k, for some
q1,q2 € Z. We therefore have

v = HV((qla q2k2, q2k3, CI2/€4)T)- (25)
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This means that ¢’ is the projection of a point with integer a; coefficient.
Every point in v 4+ Iy (L) is therefore the projection of a point with integer
a; component. By an analogous argument every point in v + Iy (L) is the
projection of a point with all integer coefficients. Thus:

v+ 10y (L) = Iy (L) (26)

and so v € IIy/ (L) as claimed. O

We are now able to prove the main result of this section, i.e. that the vertices
of the tiling are precisely the points where four extension lines intersect.

Lemma 3.14 For any point v € V, and canonical projection tiling T, v €
vert(Ty) if and only if v € exty (T, Iy (a;) for alli € 1, .., 4.

PROQOF. If four extension lines intersect, then by Lemma 3.13 the intersec-
tion point is the projection of a point in the lattice L. It therefore corresponds
to the intersection of four lines in the window space. Each of these lines passes
through some points in the window, as they are in the extension of the tiling.
We therefore have the intersection of four lines all intersecting the window
[Ty (€2;). Furthermore there is one line parallel to every edge of this window.
Thus the intersection point must lie in the window. The point is therefore in
the tiling. O

3.4 Finding the substitution rule

To complete the proof of the theorem we now wish to show that the substi-
tution rules on the lines V;, given by Proposition 3.6, can be combined into
a substitution rule on the tiling. Some of the general considerations here are
not required in the Ammann example. This is because the labelling on the
squares lying over the edges of the tiles in the Ammann tiling is determined
by the information given within the tile. This is not true in general, however.
We first give a general discussion of the ideas required, then give the proof of
the theorem.

We have the set of lines on the plane V', given by the extension of the tiling 7;
in the four directions. We also have a second set of lines given by the extensions
of the expansion tiling 7_},3. We shall denote the first set the thin lines and the
second set the thick lines. Note that, as the substitution is vertex hierarchic,
every thick line lies on top of a thin line. The substitution rule labels the
intervals between these lines. We shall call this set of labels V; labels.
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Labelling Region for T
Labelling Region for T'

Fig. 12. A tile T, in an expansion tiling is shown with the surrounding patch which
is sufficient to give the labelling region. A similar tile T in the tiling 7; is also shown.
The labelling region of T' covers the labelling region for T'.

We can consider the intervals in each of the four directions as words on the
alphabet defined by the substitution rule. There are only finitely many possible
subwords of any given length. Thus, given a point with some bounded subset
of the plane around it, there will only be finitely many ways of covering the
region so that the point lies at a vertex of the tiling. We now wish to construct
a set of labels for the expansion tiles. This labels are given by the V; labels of a
local neighbourhood of the expansion tiling. We shall call this neighbourhood
the labelling region. We define a labelling region for each tile shape.

We now consider a tile in the expansion tiling T € T, and the labelling region
around it. We can apply the substitution rules on the intervals to this region.
This gives the thin lines and the V;-labelling of the labelling region associated
with the tiling 7;. Now, by lemma 3.14 the vertices of 7; that lie in the region
are the points where four thin lines cross. These points can be joined by the
projections of the lattice generators to V. This gives the tiles that lie within
the labelling region for T, as well as some of the edges of the tiles that lie
over the border. To have a substitution rule we must know the labelling of
every tile of 7; that intersects interior(supp(T)). To determine the labelling
of a tile in 7; we need to know the V;-labels of its labelling region. Thus, if the
labelling region for every tile in 7; that intersects T, is in the labelling region
of T, then we have a substitution rule as the tiles can be labelled consistently.
In Figure 12 we show the tile T and its labelling region. We also show a tile T’
which intersects T. The labelling for 7' determines the labelling for T, as the
labelling region around 7 is a subset of the labelling region around 7.

We now wish to consider how large the region around a tile needs to be. We
therefore consider a tile in the expansion tiling T' € T ;. For the substitution
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Fig. 13. A possible chain of associated tiles. The vertical lines show the increased
region of the tiling that one must consider in order to label the original tile T'

rule, however, we need to know the labelling of every tile in 7; that intersects
T. We can therefore start by considering the region within one step of T.
This gives the shape of every tile that intersects T. We also need to know the
shapes of the tiles that these tiles substitute to, after a second application of
the substitution on the intervals. We must therefore consider a chain of tiles,
each intersecting the previous one. The tiles will get increasingly small as we
apply the substitution rule at each stage without rescaling. A possible chain
of such tiles is shown in Figure 13.

As the diameters of the tiles in the chain decrease in a geometric fashion, all
tiles of the chain will lie within a bounded region. A sufficient labelling region
around a tile is therefore given by expanding the tile by at most two copies of
each of the lattice generators at each scale.

We can now give a formal treatment along the lines discussed above. As dis-
cussed we define the thin lines as Uj_, ext(T, Iy (a;)) and the thick lines as the
set of lines U}, ext(T s, My (a;)). By Proposition 3.6 there is a substitution
rule on the strips between the extension lines in each of the four directions.
This rule induces the V;-labelling on each set of the strips from a finite alpha-

bet Al
We obtain the following theorem, of which Theorem 1.12 is a corollary.

Theorem 3.15 The canonical projection tiling of a 4 X 4 quadratic expansion
matriz M with the tiling property has a primitive substitution rule associated
to every s € L such that Ty (MQo+s+t) C (). As there are a countable
number of distinct subwindows defined by different choices of s, this gives rise
to a countable infinity of different substitution rules.

PROOF. We first construct a labelling region for the tile shape. To do this
we require a ball that contains two edges away from the tile at every scale. As
the edges of T, all have length less than ), and the scaling is by X it suffices
to consider the ball with radius r = % For particular examples one can find
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Extreme positions for
the section of staircase

iSection of staircase

<

Fig. 14. The two extreme positions for a section of staircase, giving the window for
a labelled point p

Window for p

a more efficient labelling region.

We now digress to discuss the labelling of a closed bounded neighbourhood
U C V of a point p, using V;-labels. We require that IIy, lies exactly on
the boundary of two Vj-labelled intervals in V; for all i. Let I; = Iy, (U) be
the bounded interval containing IIy; (p). We decompose I; = I! U IT the two
intervals to either side of Iy; (p) in V;. Let w! be the word representing the set
of Vi-labelled intervals covering It. As such I! is labelled by w!. We define w?
analogously.

We define the label of U as the collection of words {w!, w7 ...w}, w;}. The
possible ways a neighbourhood U may be labelled is bounded in an elementary
way by the slice of the intervals {I!, I7...I},I7}. In fact to each such set of
interval sizes we associate a finite set of possible labels.

Hence to any bounded neighbourhood U of a point p with the required projec-
tion properties we may associate the finite set of possible labels, determined
by the set of interval sizes, {IL(U), IT(U) ..., (U), I} (U)}. Importantly for our
purposes the possible set of labels is independent of the choice of p.

By this discussion we find the set of possible of labels for a ball of radius r,
centered at p. We now wish to refine this set of labels so that we only consider
the labeled balls that occur in the tiling. We can first restrict the labels to
words in the language generated by the substitution rule for each V;. These
choices, however, are not completely independent. We must therefore consider
which collections of labels can occur.
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To do this we consider the window spaces W,. Each label corresponds to a
section of staircase on A;. As the window is an interval, and the projection
of the point in £ to W; gives a dense set, this section of staircase can occur
in various positions in the full staircase. The requirement for these positions
is that every vertex of the section of staircase lies in the window. We may
therefore find a window for the point p and a label. Figure 14 shows the
window for a particular section of staircase.

We can therefore define interval windows for p in each of the four lines W;.
These correspond to strips of the full window space W. A set of labels cor-
responds to a section of the tiling if and only if the intersection of the corre-
sponding four strips is not empty. Note that this intersection will always be
in the window as the window for p will always be a subinterval of the window.

This set of labelled balls can be used to define a proto-set. We first note that
in addition to p, the labelling gives the position of every tiling vertex in the
ball, by lemma 3.14. In particular the vertices of every tile around p is defined,
as the ball contains two edges away from p in each direction. We now choose
a direction d on the plane that is not parallel to any of the projections of the
lattice generators Iy (a;). We may now associate every vertex of the tiling to
the tile in the direction d. Note that this associates a vertex to every tile in a
unique manner.

We have therefore identified a unique tile in each labelled ball, that is the tile
associated to p. We may now apply the substitution rule to the set of strips
in each of the V; directions. We may therefore give a new set of lines covering
the ball (these were described as ’thin’ lines in the example). Again by lemma
3.14 this defines the vertices of the new tiling covering the ball, and thus the
tiles with all four vertices in the ball are also defined. The edges in the new
tiling have length less than 1, thus for every point within two of these new
edges of the tiles vertices, we have defined the ball of radius {. This is the
labeling ball for the new tile. As a result any tile in the new patch of tiling
that intersects the original tile can be identified as one of the proto-tiles.

We can therefore find the set of tiles that cover every proto-tile of the expansion
tiling. As these tiles are all labelled, this gives a substitution rule, and the tiling
is therefore a substitution tiling. Note that we have, in fact, found an infinite
set of (possibly very complex) substitution rules for every such tiling. This is
because we only required that the subwindow translation s lie in some infinite
subset of the lattice. O
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4 Some patches of other examples

In this section we show some of the canonical substitution rules tilings that
can be constructed by our methods. The examples all show a patch of the
tiling about the origin for the tiling with hypercube centered at the origin
(which is non-singular). Each patch shows a section of the tiling (with grey
lines) and a section of an expansion tiling (with black lines) the expansion
tiling has transformed hypercube, and thus window centered at the origin.
The tiling patches are drawn by Mathematica®. For some of the examples the
substitution rules have been constructed. In these cases the substitution rule
is also shown.

4.1 Tilings with the alternating condition

The first two examples are the tilings associated to the matrices:

32 0 2 12 0 2
11 —-10 13 -10
M1: ,MQZ (27)
0-2 3 2 0-2 1 2
10 11 10 13

These tilings are topologically equivalent to tilings considered in [25], as they
satisfy the alternating condition. This means that topologically equivalent
tilings can be constructed using the edge matching rules for the Ammann
tiling. In this setting we show that some such tilings can be associated to a
substitution tiling.

The tilings are shown in Figures 15 and 16. Both these substitutions have
scaling 2 + /5.
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Fig. 15. Patch and substitution rules for the canonical substitution tiling with matrix
M,

4.2 Other tilings with two pairs of orthogonal edges

The second pair of examples are the tilings associated to the matrices:

21 0 2 32 04
1 2 =20 13 =20
Mgz ,M4: (28)
0-2 21 0—-4 3 2
20 1 2 20 13
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Fig. 16. Patch and substitution rules for the canonical substitution tiling with matrix
M,

Like the first two examples, the two examples in this section have two pairs of
orthogonal edges. This means that they are invariant under a rotation of order
4. Unlike the Ammann tiling these tilings are not invariant under a rotation
of order 8.

The tilings are shown in Figures 17 and 18. The substitution associated to M;
has scaling 2+ \/5, and the substitution associated to My has scaling 7+ v/53.
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Fig. 17. Patch of canonical substitution tiling with matrix M3

4.3 Further tilings

The final two examples are the tilings associated to the matrices:

(29)



Fig. 18. Patch of canonical substitution tiling with matrix M,

These tilings have very little symmetry other than the substitution rule. The
only symmetry is a rotation of order 2. All the rhomb tilings discussed in this
paper will have this symmetry, as it is a symmetry of any zonotope on the
plane, the window is therefore invariant under this symmetry.

The tilings are shown in Figures 19 and 20. The substitution associated to Mj;
has scaling 2+ \/3, and the substitution associated to Mg has scaling 3 + 2¢/2.
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