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Abstract Experiments have found that the growth rate and

certain other macroscopic properties of bacterial cells in

steady-state cultures depend upon the medium in a surpris-

ingly simple manner; these dependencies are referred to as

‘growth laws’. Here we construct a dynamical model of

interacting intracellular populations to understand some of the

growth laws. The model has only three population variables:

an amino acid pool, a pool of enzymes that transport an

external nutrient and produce the amino acids, and ribosomes

that catalyze their own and the enzymes’ production from the

amino acids. We assume that the cell allocates its resources

between the enzyme sector and the ribosomal sector to max-

imize its growth rate. We show that the empirical growth laws

follow from this assumption and derive analytic expressions

for the phenomenological parameters in terms of the more

basic model parameters. Interestingly, the maximization of the

growth rate of the cell as a whole implies that the cell allocates

resources to the enzyme and ribosomal sectors in inverse

proportion to their respective ‘efficiencies’. The work intro-

duces a mathematical scheme in which the cellular growth rate

can be explicitly determined and shows that two large

parameters, the number of amino acid residues per enzyme

and per ribosome, are useful for making approximations.

Keywords Bacterial growth laws � Growth rate

optimization � Cellular economy � Chemical dynamics �
Mathematical modeling

Introduction

Bacterial cells contain thousands of molecular species and

are exceedingly complex, yet they exhibit certain remark-

able regularities at the system level which have been

quantified experimentally. The regularities of concern in

this paper are a subset of the so-called ‘bacterial growth

laws’ (Monod 1949; Schaechter et al. 1958; Maaloe and

Kjeldgaard 1966; Maaløe 1979; Bremer and Dennis 1996;

Scott et al. 2010) which highlight the relationships between

macroscopically measured quantities such as cell compo-

sition, size, growth rate and the environment or medium in

which the cell grows. The empirical relationships are

summarized in terms of phenomenological equations. In

this paper we attempt to deduce these phenomenological

relationships from a mathematical model of a cell con-

taining a few interacting (pools of) molecular species. The

population dynamics of these molecular species based on

standard chemical kinetics, together with an optimization

principle, gives rise to the growth laws.

When genetically identical bacterial cells drawn from an

overnight culture are introduced into a vessel containing a

medium with a certain concentration of nutrients, temper-

ature, etc., they exhibit several phases of growth (Monod

1949). These include, in sequence, a lag phase where there

is very little growth in the number of cells, an acceleration

phase where growth picks up, an exponential phase in

which the population of cells grows exponentially with

time (at a constant growth rate), a deceleration phase with

declining growth rate that sets in when the food begins to
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run out and a stationary phase where the population is

constant, followed by an eventual population decline.

Regularities are most apparent in the exponential phase

which is often referred to as a steady state. In this phase the

averages and distributions (across the population of cells)

of cell doubling time, cell size at birth, intracellular con-

centration of ribosome, total protein and metabolites

become constant in time (for as long as the exponential

phase lasts). These constant average values depend upon

the strain of bacteria and on the medium (its concentration

of nutrients, temperature, etc.). Repeated experiments with

the same strain and medium but with different initial

conditions (corresponding to different overnight cultures)

yield the same growth rate in the steady state and the same

values of these averages. The growth laws are statements of

how the growth rate and these averages depend upon the

environment and cellular parameters. The first of these, due

to Monod (1949), is the hyperbolic dependence of the

steady-state growth rate l upon the concentration [F] of a

growth-limiting nutrient (or food molecule) in the medium:

l ¼ l1
½F�

C1 þ ½F�: ð1Þ

l1 is the maximum value of the growth rate possible in the

medium and C1 the value of [F] at which the growth rate is

half its maximum value.

In the cell, the ribosome which assembles amino acids to

produce proteins from a messenger RNA template is an

important catalyst of cell growth. The amount of cellular

investment in ribosomes is found to depend upon the growth

rate in a characteristic manner. In particular, the ratio of

ribosomal protein in the cell to total protein in the cell (by

weight), referred to as the ‘ribosomal fraction’ UR, is found

to be a linear increasing function of l when l is increased by

improving the nutritional quality of the medium (Schaechter

et al. 1958; Maaløe 1979; Bremer and Dennis 1996):

UR ¼ Umin
R þ l

jt

; ð2Þ

where Umin
R and jt are constants. However, when l is altered

by changing the catalytic efficiency of ribosomes (e.g., by

producing mutants with different catalytic efficiencies or by

adding antibiotics in the medium that particularly affect the

catalytic efficiency) keeping the nutritional quality of the

medium the same, then UR is found to be a linear decreasing

function of l (Scott et al. 2010):

UR ¼ Umax
R � l

jn

; ð3Þ

where Umax
R and jn are constants. The above three equations

can be considered to be phenomenological equations

describing bacterial growth steady states, with the six con-

stants l1;C1;U
min
R ;Umax

R ; jt; jn as phenomenological

constants (Scott et al. 2010). The simplicity and universality

of these phenomenological laws are surprising given the

complexity and diversity of bacteria. In addition to the above

growth laws, the size of bacterial cells also exhibits

remarkable properties which are not the subject of this paper.

There have been several recent works which have

attempted to understand the growth laws theoretically,

through mathematical modeling (Molenaar et al. 2009;

Scott et al. 2010, 2014; Maitra and Dill 2015; Weiße et al.

2015; Bosdriesz et al. 2015). Scott et al. (2010, 2014) have

related the phenomenological constants to molecular

parameters of the cell. Taking forward an idea due to Maaløe

(1979), they have argued that the growth laws reflect regu-

latory mechanisms in the cell that optimize its growth rate in

any given medium. They and other authors (Maitra and Dill

2015; Weiße et al. 2015; Bosdriesz et al. 2015) have con-

structed models for the molecular regulatory mechanisms

inside the cell that can produce the above growth laws.

In this paper we adopt a different approach that is closer

in spirit to the work of Molenaar et al. (2009). Molenaar

et al. considered a nonlinear dynamical model of a cell with

a few classes of metabolites and enzymes as well as ribo-

somes and showed through computer simulations that

maximization of the cellular growth rate qualitatively

reproduced some of the growth laws and other observed

properties of cells. Here we consider a simpler nonlinear

dynamical model of the cell containing only three molec-

ular populations: one metabolite pool, one enzyme pool and

ribosomes. We are able to obtain an explicit formula for the

growth rate of the cell as a function of cellular and medium

parameters, which has so far been lacking in existing

models. Maximizing the growth rate with respect to one of

the parameters, the fraction of ribosomes making ribo-

somes, we derive all the three growth laws analytically. The

method produces analytic expressions for the phenomeno-

logical parameters in terms of the molecular parameters in

the model. These expressions are generalizations of the

ones obtained by Scott et al. and reduce to their results when

certain processes are ignored. We show that the optimiza-

tion of growth rate leads to a simple principle of cellular

economy. The work provides a direct connection between

growth rate optimization and the growth laws.

At a methodological level we identify natural large

parameters in the cell that are useful in making approxi-

mations. This might prove useful in more complex cellular

models and in modeling other cellular phenomena as well.

Precursor-Transporter-Ribosome (PTR) cell:
a coarse grained model

Consider a simple mathematical model of a growing cell

consisting of three types of molecules; precursors, trans-

porters and ribosomes. We refer to this model as the
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Precursor-Transporter-Ribosome (PTR) model. The system

has the following three reactions (Fig. 1):

1. F �!T
P

, where external food molecules (F) are trans-

ported into the cell by the action of transporter proteins

(T) and converted into precursor molecules (P) repre-

senting amino acids;

2. P�!R
T

, where P molecules are converted into T by the

catalytic action of ribosomes (R), and

3. P�!R
R

, where R catalyses the production of itself using

P.

All the molecules are produced in the interior of the cell.

The membrane consists solely of transporter molecules,

which are assumed to migrate immediately upon formation

to the cell boundary. The interior of the cell consists of

precursor molecules and ribosomes. The model is descri-

bed by the following set of differential equations:

dP

dt
¼ KPT � k

RP

V
; ð4aÞ

dT

dt
¼ KT

RP

V
� dT T ; ð4bÞ

dR

dt
¼ KR

RP

V
� dRR; ð4cÞ

where P represents the number of precursor molecules in

the cell (amino acid pool), T the number of all metabolic

protein molecules that transport food into the cell and

convert it into precursor and R is number of ribosomes in

the cell. The rate constant KP represents the efficiency of

metabolism in making P from external food. It is an

increasing function of the external food concentration [F]

(explicit forms to be discussed later) and can also encap-

sulate the quality of the food source (e.g., the number of P

molecules produced per food molecule transported in). The

other production rate constants are parametrized as follows:

KT ¼ fT k

mT

; KR ¼ fRk

mR

; fT þ fR ¼ 1; ð5Þ

where k represents ribosomal catalytic efficiency and is the

rate at which a single ribosome consumes P molecules, per

unit concentration of P, for the production of proteins. This

accounts for the term kRP/V in the _P equation, the total rate

of consumption of P. A fraction fT of the ribosomes makes

the T proteins and the remaining fraction fR the ribosomal

proteins. Thus, of the P consumption flux a part fT kRP=V

goes to produce T and the remaining part fRkRP=V goes to

produce R. Each T molecule (ribosome) contains mT (mR)

amino acid residues; hence the rate of production of T is

fTkRP=VmT and that of R is fRkRP=VmR. This explains the

assumed forms of KT and KR. dT and dR are the degradation

rates of T and R, respectively, into a waste product; we

assume a negligible degradation rate for P.

V is the instantaneous volume of the interior of the cell

and we assume that it is a linear function of the molecular

populations. Since molecular populations in the bulk are

P and R, we can take it to be proportional to P þ R. Our

results do not depend upon this particular choice and for

generality we assume

V ¼ vPP þ vTT þ vRR; ð6Þ

where vP; vT ; vR are constants. Note that Eqs. (4a)–(4c) do

not contain a term proportional to _V=V on the right-hand

side because they refer to populations instead of

concentrations.

Steady-state solution of the PTR cell

The steady state of a bacterial culture corresponds to cells

growing exponentially with a constant rate. We look for an

exponential solution for the chemical populations:

PðtÞ ¼ P0elt; TðtÞ ¼ T0elt;RðtÞ ¼ R0elt, where l, a con-

stant, is the growth rate of the PTR cell. Substituting this

ansatz into Eq. (4), we get

lP0 ¼ KPT0 � k
R0P0

V0

; ð7aÞ

ðlþ dTÞT0 ¼ KT

R0P0

V0

; ð7bÞ

ðlþ dRÞR0 ¼ KR

R0P0

V0

; ð7cÞ

where V0 ¼ vPP0 þ vT T0 þ vRR0. Henceforth we drop the

subscript 0 as the equations are valid for the time-depen-

dent quantities P(t), T(t), R(t) as well. The last of these

equations immediately gives

P=V ¼ ðlþ dRÞ=KR: ð8Þ

Fig. 1 The PTR cell. Precursor molecules (P) are produced by the

catalytic action of the metabolic proteins (T) on the external food

molecules (F). Metabolic proteins and ribosomal proteins (R) are

synthesized from the P molecules in reactions catalysed by R
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Substituting (8) in (7b) gives the ratio T/R:

T

R
¼ mR

mT

fT

fR

ðlþ dRÞ
ðlþ dTÞ

; ð9Þ

and substituting (8) and (9) in (7a) gives the ratio P/R:

P

R
¼ mR

fR

ðlþ dRÞ
l

KPfT

mTðlþ dTÞ
� 1

� �
: ð10Þ

Thus the ratios of the populations and the concentrations of

the three chemicals at steady state can be expressed in

terms of l and the parameters of the model. In order to

solve the problem fully, we need to find l in terms of the

parameters.

Growth rate The Eq. (8) gives l ¼ KRP=V � dR. Note

that V can be written as V ¼ vPPð1 þ vT

vP

T
P
þ vR

vP

R
P
Þ ¼

vPPð1 þ ½vT

vP

T
R
þ vR

vP
� R

P
Þ. Thus P/V is completely expressed in

terms of the ratios T/R and P/R which are known as

functions of l and the parameters [Eqs. (9) and (10)].

Therefore, the equation l ¼ KRP=V � dR becomes an

equation that contains only l and the parameters. Simpli-

fying it, we get a quadratic equation in l with coefficients

depending on the parameters:

al2 � blþ c ¼ 0 ð11Þ

with

a ¼ 1 � �1; b ¼ a þ b þ �2; c ¼ ab; ð12aÞ

a ¼ mfT � dT ; b ¼ qfR � dR; ð12bÞ

m ¼ KP=mT ¼ ‘nutritional efficiency0; ð12cÞ

q ¼ k=ðmRvPÞ ¼ ‘ribosomal efficiency0; ð12dÞ

�1 ¼ 1

mT

vT

vP

fT þ 1

mR

vR

vP

fR; ð12eÞ

�2 ¼ 1

mT

vT

vP

fT dR þ 1

mR

vR

vP

fRdT : ð12fÞ

Equation (11) has two solutions:

l� ¼ b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
2a

: ð13Þ

The l� solution is the physically relevant one, in which the

square-root is always taken with the negative sign. There

are several ways to see this:

1. The Eqs. (4a)–(4c) can be simulated numerically for a

fixed set of parameter values and initial conditions.

This was done for several parameter sets and initial

conditions. We found that at large times P, T and

R always grew exponentially with time and their rate

of exponential growth was given by l� and not lþ.

Further, the observed asymptotic ratios were given by

Eqs. (9), (10) with l ¼ l�. (Parameter values had to

be chosen such that l� [ 0. When parameter values

were such that l�\0, an exponential decline of

populations was observed instead of growth.)

2. One can examine the two limits fR ! 0 and fR ! 1.

When dT ¼ dR ¼ 0, in both these limits l must go to

zero. Physically, when fR ! 0, then KR ! 0 and

Eq. (4c) implies that ribosomes are not produced;

hence R is a constant, or l ¼ 0. When fR ! 1, then

KT ! 0, and T is not produced; hence again l ¼ 0. It

is easy to see that l� goes to zero in both these limits

and not lþ.

3. We have verified analytically from Eq. (7) that when

dT ¼ dR ¼ 0 and mT ¼ mR � 1, lþ gives rise to

negative populations while l� gives rise to positive

populations.

We remark here that it has been possible to obtain an

explicit solution for l because we have expressed the cell

volume as a function of the populations and further

assumed that it is a linear function of the populations, (6).

This assumption (a) makes the exponential ansatz a solu-

tion of (4), and (b) causes the absolute populations to be

eliminated from (8), leaving an equation connecting l and

the parameters. In our view the volume assumption is a

crucial one that has been missing from previous models.

Ribosomal fraction (UR) The ratio of ribosomal protein

to total protein (by weight) is given by UR ¼ mRR

mT T þ mRR
.

Using Eq. (9) UR becomes

UR ¼ 1

1 þ fT

fR

ðlþ dRÞ
ðlþ dTÞ

¼ fR þ fT fRðdT � dRÞ
lþ fT dR þ fRdT

: ð14Þ

Notice that this expression for UR is a nonlinear function of

l if dT 6¼ dR and a constant independent of l if dT ¼ dR.

This is quite different from the observed linear growth laws

(2) and (3). Thus the PTR model does not reproduce the

observed growth laws. The model as it stands is missing an

important ingredient—regulation—that we now turn to.

The PTR model with ‘regulation’ and bacterial
growth laws

Upto now we have treated fT and fR, the fraction of ribo-

somes catalysing the production of transporters and ribo-

somal protein, respectively, as constant parameters of the

model. However, it is a well-known fact that regulatory

mechanisms exist in bacteria that regulate how much

ribosome is engaged in producing ribosomal protein and

how much in producing metabolic protein. In the context of

the PTR model these mechanisms would modulate the

value of the fR parameter (and hence fT ¼ 1 � fR). The

124 Theory Biosci. (2016) 135:121–130
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absence of this mechanism in the PTR model as described

above is the reason that it does not reproduce the observed

growth laws.

Trade-off between metabolic and ribosomal protein

production Since l is a function of the cellular and

medium parameters [Eq. (13)], we first ask how it varies as

fR is increased keeping the medium and all other cellular

parameters fixed. Numerical analysis of the steady-state of

the PTR model shows that when all other parameters are

fixed, l is a non-monotonic function of fR as shown in

Fig. 2a. This reflects a trade-off between production of

metabolic proteins and ribosomal proteins in the model.

There is a distinct value of fR (fmax) where l is a maximum

(lmax). fmax, lmax depend upon the other parameters and in

particular, fmax increases as KP is increased (keeping the

others constant). For convenience we here write KP ¼ qkp

where q equals the number of P molecules produced per

food molecule consumed (quality of the medium), and kP

depends upon external food concentration. We observe in

Fig. 2a that as the quality of medium is increased, fmax

increases. These two properties, namely non-monotonicity

of l with respect to fR and the increase of fmax with medium

quality have also been noted in Scott et al. (2014) using a

different approach.

Incorporating the effect of regulatory mechanisms

through an optimization assumption In order to bring in

regulatory mechanisms we can make the rate constants

dependent on molecular concentrations reflecting feedback

mechanisms or introduce other molecular species (the

regulators) into the model (Scott et al. 2014; Maitra and

Dill 2015; Weiße et al. 2015; Bosdriesz et al. 2015).

However, in the interest of mathematical simplicity we

take an alternative approach involving optimization,

employed earlier by Molenaar et al. (2009) for a different

model. We assume that for any fixed medium and other

cellular parameters additional regulatory mechanisms

existing in the cell act to modify fR (e.g., by changing the

proportion of messenger RNA molecules corresponding to

R and T) such that the cellular growth rate is optimized,

i.e., for a given medium and other cellular parameters, the

regulation adjusts fR to fmax. This is in spirit similar to the

optimality assumption made in flux balance analysis of

metabolic networks (Orth et al. 2010). In other words, we

assume that the steady state reached when these other

(unspecified) regulatory dynamics are included is approx-

imated by the steady state of the PTR model with

fR ¼ fmax; ð15Þ

where fmax is the value of fR that maximizes l� [Eq. (13)]

keeping all other parameters fixed. We call this steady state

(when fR is set equal to fmax) as the optimized steady-state.

A change in medium, in general, leads to a different fmax

since l is a function of all the medium-dependent param-

eters parameters and fR.

Optimized steady state of the PTR cell reproduces

qualitative features of observed growth laws Figure 2b, c

shows that the optimized steady state of the PTR cell

qualitatively satisfies the growth laws summarized in

Eqs. (1)–(3). In Fig. 2b to increase the growth rate for the

PTR cell we only increase the medium quality q (keeping

kP; k;mT ;mR; dT ; dR; vP; vT ; vR constant). For each medium

quality q we numerically obtain fmaxðqÞ using Eq. (13), i.e.,

a c

b

Fig. 2 The PTR model in the optimized steady state qualitatively

reproduces the observed growth laws. a Trade-off between production

of ribosomal and metabolic proteins: l as a function of fR for different

values of q (KP ¼ qkP, kP ¼ 250 hr�1, k ¼ 5 � 10�4 hr�1 lm3, dT ¼
0:1 hr�1, dR ¼ 0 hr�1, mR ¼ 104, mT ¼ 5 � 102, vP ¼ vT ¼ vR ¼
10�8 lm3). b lmax as a function of q. Other parameters same as in (a).

c UR versus lmax for different values of q and k (other parameters

same as before). The coloured lines (positive slope) correspond to

Eq. (2) (changing medium quality at fixed translational efficiency).

The grey lines (negative slope) correspond to (3) (changing transla-

tional efficiency at fixed medium quality)
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the value of fR that gives the largest l for the given q. We

denote this optimized l as lmaxðqÞ since it depends on q.

We plot the dependence of lmax on q and find the quali-

tative behaviour similar to the Monod curve (1).

Next we show the dependence of ribosome fraction UR

on lmax in the optimized steady state when lmax is

increased by increasing q. For each medium quality q, we

already have fmaxðqÞ and lmaxðqÞ. To obtain UR we use the

relation Eq. (14) with fR ¼ fmax and l ¼ lmax. Figure 2c

shows the plot of UR versus lmax as the quality of the

medium is increased. The lines with positive slope in

Fig. 2c correspond to this variation. Notice the linear

behaviour of the curves as has been observed in experi-

ments, Eq. (2).

For a smaller value of k (smaller ribosomal efficiency),

the UR versus lmax curve remains linear but with a larger

slope (coloured lines in 2c) as has been observed in

experiments (Scott et al. 2010). Figure 2c qualitatively

reproduces the observed behaviour of UR [Eqs. (2), (3)]

when the growth rate is varied, both by increasing medium

quality and by decreasing ribosomal efficiency.

Analytic derivation of the growth laws for the PTR

model—the large mT ;mR approximation The above results

obtained numerically and illustrated in Fig. 2 can be

derived analytically. The expressions turn out to be very

simple when mT and mR are much greater than unity, which

we assume in the following (mT being the number of amino

acid molecules needed to make an enzyme is � 300, and

mR, the number of amino acids in all ribosomal protein per

ribosome is � 7000 Bremer and Dennis 1996). We also

need to assume that the parameters m and q defined in (12)

are independent of mT and mR; in other words, KP, the rate

of P production per unit T molecule in the cell, and k=vP,

the rate at which a ribosome adds amino acids to a protein,

are sufficiently large, in fact, respectively, of order mT ;mR.

m and q will turn out to be the two natural time scales that

determine the system level properties of the cell. The time

scales dT ; dR, and the volume vP will also be assumed to be

independent of mT ;mR. vT ; vR may be independent or only

weakly dependent on mT ;mR, respectively (sublinear

dependence). With these assumptions, �1 	 1 and

�2 	 a þ b.

Then, as shown in the ‘‘Appendix’’,

fmax ¼ mþdR�dT

mþq ;
ð16Þ

and the optimized steady-state growth rate of the PTR cell

is given by

l ¼ lmax ¼ qðm�dT Þ�mdR

mþq :
ð17Þ

This leads to the Monod curve as will be discussed later.

Substituting fR ¼ fmax and l ¼ lmax in Eqs. (9) and (14)

gives

T

R
¼ mR

mT

q
m
; ð18Þ

UR ¼ m
mþq : ð19Þ

This expresses the ribosomal fraction at the optimized

steady state of the PTR cell in terms of medium and cel-

lular parameters. The growth laws in the standard form

(2), (3) follow from (19) and (17). For example, to

understand the dependence of UR on l when the medium

quality is varied, one can eliminate m in favour of l in

Eq. (17) and substitute that in Eq. (19). This yields (2) with

Umin
R ¼ dT

qþ dT � dR

; jt ¼ qþ dT � dR: ð20Þ

Similarly, one can eliminate q in favour of l from Eq. (17)

and substitute in Eq. (19) to get Eq. (3), with

Umax
R ¼ m� dT

m� dT þ dR

; jn ¼ m� dT þ dR: ð21Þ

This reproduces the equations of the growth laws and

expresses the constants appearing in those equations in

terms of the medium and cellular parameters. Equation (2)

with parameters given by (20) describes the positive slope

lines in Fig. 2c and Eq. (3) with parameters given in (21)

describes the negative slope lines.

Discussion

Nutritional and ribosomal efficiency We now discuss the

meaning of the formulae obtained. The formulae are

expressed in terms of two quantities m and q and it is useful

to interpret these quantities first. We follow Scott et al.

(2014) in calling m the ‘nutritional efficiency’ of the PTR

cell in the given medium. Note that the production term in _P

is KPT ¼ mmT T . Since mT T is the total number P molecules

locked up in T, m is the number of amino acid molecules

produced in the cell per unit time per amino acid residue

locked up in the metabolic enzymes. m, being the rate of P

production per unit P invested in metabolic enzymes, is

appropriately the ‘metabolic efficiency’ or ‘nutritional

efficiency’ of the cell in the given environment. In order to

see the meaning of q it is convenient to consider the situ-

ation where the concentration of P is high enough so that its

availability is no longer a limiting factor for ribosomal

activity. In the model the largest value of P/V is 1=vP, which

arises when the contribution of P to the volume dominates

over the contribution from T and R, i.e., V � vPP. Then (4c)

becomes _R ¼ ðqfR � dRÞR. Then R by itself forms an

126 Theory Biosci. (2016) 135:121–130
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autocatalytic set (ACS) with growth rate qfR � dR. q is the

maximal growth rate of this ACS (when dR ¼ 0 and fR ¼ 1),

or the rate at which R can make copies of itself if it was

solely focused on doing that (that is, if fR ¼ 1). q, being the

maximal rate of R production per unit R present, will be

referred to as the ‘ribosomal efficiency’ of the cell. The

factor k=vP in q ¼ k=ðvPmRÞ is the rate at which a ribosome

can add an amino acid to a protein when there is no limi-

tation of P and the factor of mR accounts for the number of P

required to make a ribosome. In Scott et al. (2014) q is

referred to as the ‘translational efficiency’ of the cell.

Optimization as a principle of cellular economy As

mentioned earlier, the growth laws (2) and (3) follow from

(19). The latter is a more basic equation as it expresses UR

directly in terms of the parameters without reference to the

growth rate, and it encapsulates the consequence of growth

rate maximization when mT ;mR � 1. (19) or equivalently

(18) can be recast as

ðmT TÞm ¼ ðmRRÞq: ð22Þ

We can interpret mT T as the allocation or investment of the

cell in the metabolic sector (measured in units of P) and

mRR as the investment in the ribosome sector. We define

the ‘output’ of each sector as the ‘investment’ times ‘effi-

ciency’ of the sector. Then the investment strategy of the

cell, namely (22), can be stated as

‘Output’ of metabolic sector¼ ‘Output’ of ribosomal sector:

ð23Þ

Equivalently, (22) can be stated as the following principle

of cellular economy: the resources allocated to the enzyme

and ribosomal sectors are inversely proportional to their

respective efficiencies. In other words, the PTR cell follows

the dictum: From each sector according to its ability, to each

sector according to its need. Here ‘ability’ of a sector is the

same as its ‘efficiency’, defined earlier, and ‘need’ is the

allocation or investment in the sector that would make its

‘output’ equal to that of the other sector. This principle

follows from the optimization of the growth rate of the PTR

cell as a whole in the large mT ;mR approximation. Note that

efficiency is hardwired into the cellular and medium

parameters while the allocation, in the context of the present

model, is a matter of cellular ‘choice’ (though, of course, in

practice, even that is hardwired into the regulatory mecha-

nisms that dynamically implement the ‘choice’.)

We remark that (22) is not a requirement for the system

to have a steady state. Indeed, steady states are achieved in

the model even when fR is not at its optimal value given by

(16), as discussed earlier. When fR 6¼ fmax, we can still have

a steady state with constant concentrations satisfying the

Eqs. (8)–(14), but (22) does not hold. (22) is the condition

that the steady state has the maximal possible value of l
given that all parameters other than fR are fixed.

The Monod curve We turn to a discussion of the

analytic expression for l, Eq. (17). First we discuss the

situation when dT ¼ dR ¼ 0. Then from (20), (21), jt ¼ q
and jn ¼ m, and our results for l and all the other quantities

reproduce exactly the results of Scott et al. (2010, 2014).

The growth rate reduces to

l ¼ qm
qþ m

: ð24Þ

This is the same as the expression l ¼ ðUmax
R �

Umin
R Þqm=ðqþ mÞ derived in Scott et al. (2010, 2014), when

(20) and (21) are used to set Umin
R ¼ 0;Umax

R ¼ 1. To make

contact with the Monod equation (1), one has to say how m
depends upon the concentration [F] of the external nutrient.

As mentioned below (4) KP and hence m is an increasing

function of [F]. If one substitutes the simplest function

m ¼ k1½F�, where k1 is a constant, into (24), one obtains (1)

with l1 ¼ q and C1 ¼ q=k1. Alternatively, if the transport

limited Michelis-Menten form of food uptake

m ¼ m0½F�=ðK þ ½F�Þ, where m0 and K are constants, is

substituted in (24), one gets (1) with l1 ¼ qm0=ðqþ m0Þ
and C1 ¼ K=½1 þ ðm0=qÞ� (Scott et al. 2014).

The difference between our derivation of (24) and that

of Scott et al. is that the latter uses the growth laws (2), (3)

as the starting point and obtains the above mentioned

expression for l. It does not require any further assumption

of growth rate optimality in deriving that expression as

(2), (3) already incorporate optimality. On the other hand,

our derivation starts with equations (4) describing the

dynamics of the three pools, obtains l in the steady state

before optimization and then uses the optimality assump-

tion to derive (2), (3) as well as the optimized l. This

crisply establishes the relationship between optimality and

the growth laws.

It may be helpful to make a few remarks about (24). The

right-hand side is a symmetric function of m and q, which

define the two natural time scales in the problem. (1) For

fixed q as a function of m, it saturates at a maximum value

l ¼ q. The saturation is not a consequence of a Michelis-

Menten type saturation kinetics assumed in the model

[Eq. (4) has no Michelis-Menten or Hill type terms], but is

a consequence of the existence of these two time scales in

cellular dynamics. When m � q, fR in (16) approaches 1;

thus the core autocatalytic set that drives the PTR cell—

ribosome producing more ribosome—is focused largely on

producing itself. Even then, we know that the maximal rate

of R self-reproduction production can only be q, which

explains the saturation. (2) Interestingly, not only is the

saturation value of l equal to q, the value of m at which l is

half its maximum value is also q. This has a simple

explanation. If, to achieve the maximum growth rate, the

ribosome pool is focused solely on making ribosome, then

at half the maximal rate only half the pool is focused on
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making ribosome. The other half is then focused on making

T, and this equal investment in both sectors means

mTT ¼ mRR. But from the principle of cellular economy

the two sectorial outputs are equal; therefore, m must be

equal to q. An alternative way of saying this is to observe

from (16) that fR ¼ 1=2 at m ¼ q. (3) The symmetry

between m and q implies that if m is held fixed and q is

increased, l will saturate at a value m, and the value of q at

half-saturation is also m.

Dissipation terms Equation (17) is a generalization of

(24) when dT ; dR are nonzero. Note that even with the

additional terms there is a symmetry between the two

sectors: l is unchanged under the simultaneous interchange

m $ q, dT $ dR. When dR ¼ 0; dT [ 0, the factor m�
dT / KP � mTdT in the numerator reflects that the meta-

bolic efficiency has to be [ dT to sustain a nonzero growth

rate. This is because for every KP molecules of P produced

by each molecule of T per unit time, a number mT dT is lost

through the �dT T term. Similarly, when dT ¼ 0, dR [ 0,

the factor q� dR in the numerator means that the riboso-

mal efficiency has to be greater than dR for the ribosomal

ACS to get off the ground. A nonzero dR requires a greater

fraction of ribosomes to be making ribosomes, and a

nonzero dT requires a greater fraction to be making T [see

Eq. (16)]. However, the relative investment by the cell in

the two sectors as measured by T/R or UR is independent of

dT ; dR [see Eqs. (18), (19)]. The equality of fR and UR has

been commented upon by Scott et al. (2010). They have

considered models in which the degradation terms are zero.

In the present model also fR ¼ UR when dT ¼ dR. But when

dT 6¼ dR, the two are not equal.

We note that in the model the phenomenological

parameter Umin
R is zero if dT ¼ 0, and the Umax

R ¼ 1 if dR ¼
0 [Eqs. (20), (21)]. In bacterial cells dT may be of the order

of 0.1 h�1 (Dressaire et al. 2009; Maitra and Dill 2015),

while dR may be much lower (Zundel et al. 2009). This

predicts a value of Umin
R about 2–3 times smaller than the

observed value given in Scott et al. (2010). Equation (20)

predicts that when dT [ dR, jt as a function of q is linear

with a positive intercept. This feature is seen in the data

(Scott et al. 2010). However, again the value of the inter-

cept predicted by (20) is smaller than the value from the

data. This suggests that other contributions to Umin
R and jt,

not described by the present model, are significant.

The ‘constant fraction’ sector Scott et al. (2010) intro-

duced another sector of proteins Q in addition to T and R

which takes up a fixed fraction of the protein mass UQ, to

account for the fact that Umax
R was observed in experiments

to be less than unity. In the present model this sector can be

added as follows (we consider the case dT ¼ dR ¼ 0): to (4),

add another equation _Q ¼ KQRP=V , where KQ ¼ fQk=mQ.

The other changes are in (5), where we now have

fT þ fR þ fQ ¼ 1, and in (6), where a term vQQ is added to

the definition of V. UR is now defined by

mRR=ðmT T þ mRR þ mQQÞ. In the optimization, fQ is

treated as a fixed number; fR can range between 0 and 1 � fQ

and is chosen to maximize the growth rate. Doing the

analysis as for the PTR model, one reproduces the growth

laws (2) and (3) in which Umin
R ; jt are the same as for the

PTR model, and Umax
R ¼ 1 � fQ, jn ¼ mð1 � fQÞ. Further,

fR ¼ mð1 � fQÞ=ðmþ qÞ, and, as before, l ¼ qfR, UR ¼ fR.

A simpler derivation of the results—from a linear

model Above, we have presented a detailed derivation of

fR, l and UR from the PTR model assuming mT ;mR � 1. It

is worth mentioning that the same results follow from a

much simpler heuristic argument. Supposing we assume

that the dominant contribution to V is vPP, i.e., we ignore

the contribution of T and R to V. (This does not mean that

the contribution of T and R to the mass of the cell is much

smaller than that of P. If mT ;mR � 1, the contribution of T

and R to the mass of the cell could be large, even larger

than the contribution of P, while their contribution to the

volume is much smaller than that of P, as long as vT ; vR are

independent of (or sufficiently weakly dependent on)

mT ;mR). Then (4) reduces to a set of linear equations _X ¼
AX with

X ¼
P

T

R

0
B@

1
CA; A ¼

0 KP � k=vP

0 � dT KT=vP

0 0 b

0
B@

1
CA: ð25Þ

The largest eigenvalue of A is b; hence the growth rate of

the cell is l ¼ b. The eigenvector corresponding to b has

T ¼ KT R=½vPðb þ dTÞ�, P ¼ ½k=ðvpbÞ�½mfT=ðb þ dTÞ � 1�R.

Since P
 0 we have mfT=ðb þ dTÞ � 1
 0 or a
 b. We

now ask the following: what is the largest value of l
possible, and for what value of fR does that occur? Since

l ¼ b ¼ qfR � dR, one may naively think that the largest

possible value of fR, namely fR ¼ 1 will give the largest l.

However, we also have the inequality b� a; therefore, the

largest value of l occurs when b ¼ a. This is the same

conclusion as reached in the ‘‘Appendix’’ for the full PTR

model under the large mT ;mR approximation. The condi-

tion a ¼ b immediately yields fR ¼ fmax with fmax given by

(16), and l ¼ lmax given by (17). Further the above

eigenvector also reproduces (18) for T/R. In the linearized

equation _P ¼ lP ¼ KPT � ðk=vPÞR ¼ ðmTTÞm� ðmRRÞq,

we can recognize the two terms as the outputs of the

metabolic and ribosomal sectors.

The above approximation is reasonable for fR\fmax. It is

meaningless for fR [ fmax because P turns negative in that

regime under this approximation, though the full model has

a perfectly reasonable behaviour even for fR [ fmax. As

seen earlier, this approximation is also good for deducing

fmax; lmax and T/R as these tend to finite limits when fR
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approaches fmax from below. It is not useful for estimating

P/R near fR ¼ fmax which approaches zero in this approxi-

mation. One can see from the full model that P/R receives

corrections in a small range of fR of size � 1=mR around

fmax, in which range it goes from a value �1 to a smaller

value. In the full model P/R does not go to zero at

fR ¼ fmax.

Conclusion

In this paper we have constructed a simple dynamical

system describing a cell in terms of its three coarse-grained

molecular pools and shown that the optimization of the

steady-state growth rate of the cell with respect to a

parameter that can be tuned by intracellular regulation

leads to the growth laws (1), (2) and (3). We have repro-

duced and extended existing formulae for the growth rate

and other physiological parameters. This deepens our

understanding of the macroscopic physiological variables

in terms of microscopic parameters. We expect that this

kind of model can be extended to include other molecular

sectors in the cell (Hui et al. 2015).

At a methodological level we have introduced a

scheme that allows an explicit computation of the steady-

state growth rate of the cell in terms of the cellular and

medium parameters. In this scheme a key assumption is

that the volume of the cell is determined by its molecular

populations. We have also put to use two natural large

parameters in the cell, mT and mR, to set the scale of certain

other parameters and to make approximations. This has

allowed us to get analytic results for the nonlinear system

level dynamics.

Our model uses an optimization principle to fix an

internal parameter, fR, the fraction of ribosomes making

ribosomes. The model is silent on the dynamical mecha-

nisms inside the cell that implement this optimization.

These mechanisms have been the subject of several recent

works (Scott et al. 2014; Maitra and Dill 2015; Weiße

et al. 2015; Bosdriesz et al. 2015). We hope that combin-

ing some of the methods introduced here with the mecha-

nisms discussed in these works will produce models that

are more satisfactory than the present one.
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Appendix

Under the large mT ;mR assumptions described in the main

text, we ignore �1 compared to 1 and �2 compared to a þ b

in (12). Thus

a � 1; b � a þ b; c ¼ ab; ð26Þ

It follows that b2 � 4ac is a perfect square;

b2 � 4ac ¼ ða þ bÞ2 � 4ab ¼ ða � bÞ2: ð27Þ

From Eq. (13) we have

l ¼ b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
2a

¼ 1

2
½ða þ bÞ � ja � bj�;

¼ b if a
 b;

¼ a if a� b:

ð28Þ

In the equation above �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
has been replaced by

�ja � bj, because, as discussed earlier, it is this solution

Fig. 3 l vs fR in the PTR model. The figure is illustrated for

dR ¼ 0; dT ¼ d. The two solid lines show l as an increasing and then

decreasing function of fR, with a maximum lmax at fR ¼ fmax. The

solid line of slope �m is shown for a generic value of m. The other

three dotted lines with specific values of m represent what this solid

line would have been for those values of m. As m increases from d to

qþ 2d to 1, lmax increases from 0 to q=2 to q
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that has the correct physical behaviour. The point a ¼ b

corresponds to mfT � dT ¼ qfR � dR, or

fR ¼ mþ dR � dT

mþ q
¼ f0: ð29Þ

The region a[ b corresponds to fR\f0 and a\b to

fR [ f0. Thus we have

l ¼ qfR � dR for fR � f0;

¼ m� dT � fRm for fR 
 f0:
ð30Þ

Thus l as a function of fR is given by the two straight

lines of slope q and �m as shown in Fig. 3 (the solid lines).

It is evident that the maximum value of l is obtained where

the two lines meet, which is at fR ¼ f0. Using (29) this

proves (16) in the main text. Further, from the first of

Eqs. (30) it follows that lmax ¼ qfmax � dR ¼ ½qðm� dTÞ�
mdR�=ðmþ qÞ. This proves (17).
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