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Abstract One-dimensional traveling wave solutions for imbibition processes into a homo-
geneous porous medium are found within a recent generalized theory of macroscopic capil-
larity. The generalized theory is based on the hydrodynamic differences between percolating
and nonpercolating fluid parts. The traveling wave solutions are obtained using a dynamical
systems approach. An exhaustive study of all smooth traveling wave solutions for primary
and secondary imbibition processes is reported here. It is made possible by introducing
two novel methods of reduced graphical representation. In the first method the integration
constant of the dynamical system is related graphically to the boundary data and the wave
velocity. In the second representation the wave velocity is plotted as a function of the bound-
ary data. Each of these two graphical representations provides an exhaustive overview over
all one-dimensional and smooth solutions of traveling wave type, that can arise in primary
and secondary imbibition. Analogous representations are possible for other systems, solution
classes, and processes.
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1 Introduction

Almost all accepted and applied theories of multiphase flow in porous media are
based on generalized Darcy laws and the concurrent concept of relative permeabilities

O. Hönig · R. Hilfer
ICP, University of Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany
e-mail: hilfer@ica1.uni-stuttgart.de

F. Doster
Department of Civil and Environmental Engineering, E-208 E-Quad,
Princeton University, Princeton, NJ 08544, USA

F. Doster (B)
Department of Mathematics, University of Bergen, P. O. Box 7800,
5020 Bergen, Norway
e-mail: fdoster@princeton.edu

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191806694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


468 O. Hönig et al.

(Wyckoff and Botset 1936). Despite the fact that (Wyckoff and Botset 1936) strongly empha-
sized the variation of hydraulically disconnected fluid regions (Jamin 1860), almost all subse-
quent applications of the relative permeability concept treat the residual nonwetting (or irre-
ducible wetting) saturations as material constants (Bear 1972; Collins 1961; Dullien 1992;
Helmig 1997; Wiest 1969; Scheidegger 1957; Marsily 1986). Modern theories of multiphase
flow in porous media often resort to microscopic models (e.g., network models) (Bear et al.
1987; Bryant and Blunt 1992; Dias and Payatakes 1986; Dijke and Sorbie 2002; Ferer et al.
2004) in an attempt to derive or estimate macroscopic relative permeabilities from pore scale
parameters. It was emphasized in Wyckoff and Botset (1936), however, that the possibility
of determining the overall dynamical behavior of nonhomogeneous fluids from a study of
microscopic details is remote (Wyckoff and Botset 1936, p. 326).

Experimentally, the volume fraction of stationary, locked, trapped, or nonpercolating fluid
phases varies strongly with time and position (Abrams 1975; Avraam and Payatakes 1995;
Taber 1969; Wyckoff and Botset 1936). Dispersed droplets, bubbles, or ganglia of one fluid
phase obstruct the motion of the other fluid phase. Extensive experimental and theoretical
studies of this simple phenomenon exist (Avraam and Payatakes 1999; Jamin 1860). Theo-
retically, the fundamental difference between trapped percolating and mobile nonpercolating
fluid parts was first introduced in Hilfer (1998, 2006a,b,c) and the resulting mathematical
model was partially explored further in Hilfer and Doster (2010), Doster and Hilfer (2011),
Doster (2011), Doster et al. (2010, 2012).

The objective of this paper is twofold: firstly, the paper finds traveling wave solutions for
the model introduced in Hilfer (2006a,b,c). While some approximate analytical and numerical
solutions of the theory have been found in Hilfer (2006a,b,c), Hilfer and Doster (2010), Doster
et al. (2010), Doster (2011), Doster and Hilfer (2011); Doster et al. (2012) the existence of
traveling waves for this system has remained an open question and is analyzed here for the first
time. This paper reports the existence of traveling waves for the generalized theory under the
assumption that the nonpercolating phases are immobile. The second objective of this paper
is to introduce two novel graphical representations of the solution space, that give a complete
and exhaustive overview of all traveling wave solutions, that are infinitely often differentiable.
Both representations are based on transforming the boundary value problem for the nonlinear
partial differential equations to a dynamical system. The first representation is based on the
integration constant of the dynamical system related to the boundary data and the wave veloc-
ity. The second representation is based on the wave velocity as a function of boundary data.

A word on notation: Throughout the paper, variables with a hatˆhave a physical dimension
and all others are dimensionless, e.g. the time t̂ has the dimension of seconds “s”, while t is
dimensionless.

2 Formulation of the Model

In the first part of this section, we give a brief description of the model. For physical details
and motivation of constitutive assumptions we refer to the previously published works Hilfer
(2006a,b,c). In the second part, problem-specific assumptions are given and a dimensionless
fractional flow formulation is derived.

2.1 The Generalized Model

A one-dimensional, horizontal, homogeneous, isotropic, and rigid porous column filled with
two immiscible Newtonian fluids is considered here. The water phase denoted as W with
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Traveling Wave Solutions in a Generalized Theory 469

saturation SW consists of percolating S1 and nonpercolating water S2. The oil phase denoted
as O with saturation SO consists of percolating oil S3 and nonpercolating oil S4. A region
occupied by fluid is called percolating if it is path-connected to the boundary of the sample. For
a more precise definition see Hilfer (2006b). All saturations are functions of one-dimensional
position x̂ and time t̂ ∈ R

+. Throughout the paper we idealize a large but finite system as
infinitely extended so that x̂ ∈ R holds. Variables with a hatˆhave a physical dimension. The
volume fraction of the i-th phase is φi = φi (x̂, t̂) = φ(x̂, t̂)Si (x̂, t̂) and the volume fraction
of the porous medium is φ5 = φ5(x̂, t̂) = 1 − φ(x̂, t̂) where the porosity φ = φ(x̂, t̂) is
defined as the volume fraction of the pore space.

2.1.1 Balance Laws

Volume conservation for incompressible fluids and an incompressible porous medium
requires

S1 + S2 + S3 + S4 = 1, (1a)

φ1 + φ2 + φ3 + φ4 + φ5 = 1. (1b)

The mass balance for phase i ∈ {1, 2, 3, 4} reads in differential form

∂t̂

(
φi �̂i

) + ∂x̂
(
φi �̂i v̂i

) = M̂i , (2)

where �̂i = �̂i (x̂, t̂) and v̂i = v̂i (x̂, t̂) are the density and the velocity of the i-th phase. M̂i

is the mass transfer rate from all other phases into phase i .
The momentum balance for phase i ∈ {1, 2, 3, 4} is written as

φi �̂i D
i
t̂
v̂i − φi∂x̂Σ̂i − φi F̂ = m̂i − v̂i M̂i , (3)

where Σ̂i is the stress tensor in the i th phase, F̂i is the body force per unit volume acting
on the i th phase, m̂i is the momentum transfer into phase i from all the other phases, and
Di

t̂
= Di/Dt̂ = ∂t̂ + v̂i∂x̂ denotes the material derivative for phase i . The inertia can be

neglected

Di
t̂
v̂i = 0 (4)

for sufficient small Reynolds numbers.

2.1.2 Constitutive Assumptions

The porous medium is macroscopically homogeneous

φ(x̂, t̂) = φ (5)

and the fluids are incompressible

�̂1(x̂, t̂) = �̂W, (6a)

�̂2(x̂, t̂) = �̂W, (6b)

�̂3(x̂, t̂) = �̂O, (6c)

�̂4(x̂, t̂) = �̂O. (6d)
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The percolating and the nonpercolating phases are able to exchange mass through breakup
and coalescence of droplets, ganglia and clusters. The mass transfer rates must depend on
rates of saturation change. Here, they are assumed to be

M̂1 = −M̂2 = η2φ�̂W

(
S2 − S∗

2

S∗
W

− SW

)
∂t̂ SW, (7a)

M̂3 = −M̂4 = η4φ�̂O

(
S4 − S∗

4

S∗
O

− SO

)

∂t̂ SO, (7b)

where η2, η4 are constants. The mass exchange has to change sign with the rate of saturation
change (see Hilfer (2006a,b,c) for more details). The quantities S∗

2 , S∗
4 , S∗

W
, S∗

O
are defined

by

S∗
2 = SW dr(1 − Θ(∂t̂ SW)), (8a)

S∗
4 = SO im(1 − Θ(∂t̂ SO)), (8b)

S∗
W

= (1 − SO im)Θ(∂t̂ SW) + SW dr(1 − Θ(∂t̂ SW)), (8c)

S∗
O

= 1 − S∗
W

= SO im(1 − Θ(∂t̂ SO)) + (1 − SW dr)Θ(∂t̂ SO), (8d)

where SW dr, SO im are limiting saturations for S2, S4. The Heaviside unit step function Θ(x)

is introduced as

Θ(x) = 1

2
(sgn(x) + 1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for x < 0,

1

2
for x = 0,

1 for x > 0.

(9)

The stress tensor for the four phases are specified as

Σ̂1 = −P̂1, (10a)

Σ̂2 = −P̂3 + γ P̂∗
2 S2

γ−1, (10b)

Σ̂3 = −P̂3, (10c)

Σ̂4 = −P̂1 + δ P̂∗
4 S4

δ−1, (10d)

where P̂∗
2 , P̂∗

4 , γ, δ are constants and P̂1, P̂3 are the fluid pressures in the percolating phases.
The additional terms account for the energy density stored fluid–fluid interfaces [see Hilfer
(2006a,b,c) for more details]. The body forces are assumed to be given by capillarity. They
are specified as

F̂1 = 0, (11a)

F̂2 = Π̂∗
a ∂x̂ S1

−α, (11b)

F̂3 = 0, (11c)

F̂4 = Π̂∗
b ∂x̂ S3

−β, (11d)

where Π̂∗
a , Π̂∗

b , α, β are constants. The additional terms represent capillary body forces acting
on non-percolating phases [see Hilfer (2006a,b,c) for more details]. Finally, the momentum
transfer terms are assumed to be given by linear viscous drag characterized by constitutive
resistance coefficients R̂i j through the equations
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m̂1 = R̂13(v̂3 − v̂1) + R̂14(v̂4 − v̂1) − R̂15v̂1, (12a)

m̂2 = R̂23(v̂3 − v̂2) + R̂24(v̂4 − v̂2) − R̂25v̂2, (12b)

m̂3 = R̂31(v̂1 − v̂3) + R̂32(v̂2 − v̂3) − R̂35v̂3, (12c)

m̂4 = R̂41(v̂1 − v̂4) + R̂42(v̂2 − v̂4) − R̂45v̂4, (12d)

where R̂12 = R̂34 = 0 was already used because there is no common interface and hence,
no direct viscous interaction between these phase pairs.

2.1.3 Reformulation

The balance laws (1),(2), and (3) are arranged in terms of volume flux densities. Inserting
Eq. (4) into Eq. (3), it becomes linear in the velocities v̂i . Using Eqs. (7), (12) the right hand
side of Eq. (3) can be written as

⎛

⎜
⎜
⎝

m̂1 − M̂1v̂1

m̂2 + M̂1v̂2

m̂3 − M̂3v̂3

m̂4 + M̂3v̂4

⎞

⎟
⎟
⎠ = −R̂

⎛

⎜
⎜
⎝

v̂1

v̂2

v̂3

v̂4

⎞

⎟
⎟
⎠ , (13)

where the components of the generalized resistance matrix R̂ are

R̂(SW, S2, S4, ∂t̂ SW) =

⎛

⎜⎜
⎝

R̂11 0 −R̂13 −R̂14

0 R̂22 −R̂23 −R̂24

−R̂31 −R̂32 R̂33 0
−R̂41 −R̂42 0 R̂44

⎞

⎟⎟
⎠ (14)

and the shorthand notation

R̂11(SW, S2, ∂t̂ SW) = R̂15 + R̂13 + R̂14 + M̂1, (15a)

R̂22(SW, S2, ∂t̂ SW) = R̂25 + R̂23 + R̂24 − M̂1, (15b)

R̂33(SW, S4, ∂t̂ SW) = R̂35 + R̂31 + R̂32 + M̂3, (15c)

R̂44(SW, S4, ∂t̂ SW) = R̂45 + R̂41 + R̂42 − M̂3 (15d)

was used. To obtain expressions for the volume flux densities, Eq. (13) is inserted into
Eq. (1). The resulting set of equations is solved for the velocities and multiplied with the
corresponding phase volume fractions φi . As a result one finds

⎛

⎜⎜
⎝

q̂1

q̂2

q̂3

q̂4

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

φ1v̂1

φ2v̂2

φ3v̂3

φ4v̂4

⎞

⎟⎟
⎠ = Λ̂

⎛

⎜⎜
⎝

∂x̂Σ̂1 + F̂1

∂x̂Σ̂2 + F̂2

∂x̂Σ̂3 + F̂3

∂x̂Σ̂4 + F̂4

⎞

⎟⎟
⎠ , (16)

where the mobility matrix Λ̂ with components

λ̂i j (SW, S2, S4, ∂t̂ SW) = φ2Si S j R̂−1
i j (17)

has been introduced.
The mass balances and the momentum balances are expressed in terms of the primary

variables SW, S2, S4. A linear combination and accounting for the volume conservation yields
for t̂ ∈ R

+ and x̂ ∈ R
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φ
∂

∂ t̂
SW = − ∂

∂ x̂
q̂W, (18a)

φ
∂

∂ t̂
S2 = − M̂1

�̂W

− ∂

∂ x̂
q̂2, (18b)

φ
∂

∂ t̂
S4 = − M̂3

�̂O

− ∂

∂ x̂
q̂4, (18c)

∂

∂ x̂
(q̂W + q̂O) = 0, (18d)

where the total water flux formed by the percolating and the nonpercolating water flux is
denoted by q̂W = q̂1 + q̂2. Similarly the oil flux is denoted by q̂O = q̂3 + q̂4. Initial and
boundary conditions are given below.

2.1.4 Self-Consistence Closure Condition

The system of nonlinear partial differential equations is closed self-consistently. The most
general form of self-consistent closure was given in Hilfer and Doster (2010). Here, a sim-
plification is employed. Guided by the residual decoupling approximation (Hilfer 2006b) the
relation

∂x̂ P̂3 = ∂x̂ P̂1 + 1

2
∂x̂

(
Π̂∗

a S1
−α − Π̂∗

b S3
−β + γ P̂∗

2 S2
γ−1 − δ P̂∗

4 S4
δ−1

)
(19)

suffices to recover the traditional capillary pressure concept for sufficiently slow displacement
processes from the generalized theory. The difference between the phase pressures of the
percolating phases

P̂c := P̂3 − P̂1 (20)
is identified as the macroscopic capillary pressure. Integrating Eq. (19) yields

P̂c(S1, S2, S3, S4) = 1

2

(
Π∗

a S1
−α − Π∗

b S3
−β + γ P∗

2 S2
γ−1 − δP∗

4 S4
δ−1) + P̂∗

0 , (21)

where the integration constant P̂∗
0 is determined experimentally together with the parameters

Π̂∗
a , Π̂∗

b , P̂∗
2 , P̂∗

4 and the exponents α, β, γ, δ.

2.2 Problem-Specific Assumptions

2.2.1 Boundary and Initial Conditions

A time-independent total flux qtot = qW + qO is applied on the left hand side of the porous
medium. The total flux is also independent of position due to the incompressibility of the
fluids. Hence, the total flux is a constant

qtot(x̂, t̂) = qtot = const. (22)

for all x̂ ∈ R and t̂ > 0. The saturations are

Si (−∞, t̂) = Sl
i i ∈ {W, O, 2, 4}, (23a)

Si (∞, t̂) = Sr
i i ∈ {W, O, 2, 4} (23b)
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Traveling Wave Solutions in a Generalized Theory 473

for all times t̂ ≥ 0 where the parameters Sl
i , Sr

i are constants. The initial conditions for
Eq. (18) are

Si (x̂, 0) = S0
i (x̂) i ∈ {W, O, 2, 4}, (24)

where S0
i (x̂) is any continuous profile compatible with the limiting values in Eq. (23).

2.2.2 Viscous Drag Domination and Viscous Decoupling

Comparison with experiments suggests that the viscous coupling coefficients R̂i j are typically
of order 108kgm−3s−1 while the momentum transfer due to the mass exchange is only of
order M̂i ≈ 103kgm−3s−1 (Doster and Hilfer 2011). Therefore it is assumed that the viscous
drag with the wall dominates the momentum transfer

R̂15 � M̂1, (25a)

R̂25 � M̂1, (25b)

R̂35 � M̂3, (25c)

R̂45 � M̂3. (25d)

In addition, it is assumed that the viscous coupling between the phases and the porous medium
is much larger than the viscous coupling between two phases

R̂15 � R̂i j , (26a)

R̂25 � R̂i j , (26b)

R̂35 � R̂i j , (26c)

R̂45 � R̂i j (26d)

for all pairs (i, j) with i ∈ {1, 2, 3, 4} and j ∈ {1, 2, 3, 4, 5} such that and (i, j) �= (2, 5)

and (i, j) �= (4, 5). The assumptions lead to a constant resistance matrix R̂, to immobile
nonpercolating phases and to a mobility matrix Λ̂ that has only λ11 and λ33 as nonzero
components. These assumptions may be justified physically by the observation that the motion
of contact lines on the internal surface requires to overcome capillary forces and this creates
additional resistance that is much higher than the viscous drag.

2.2.3 Model Reduction and Dimensionless Fractional Flow Formulation

With the assumptions given in Eqs. (25), (26) the flow functions on the left hand side of
Eq. (16) become

q̂W = −φ2 (SW − S2)
2

R̂11

∂

∂ x̂
P̂1, (27a)

q̂O = −φ2 (1 − SW − S4)
2

R̂33

∂

∂ x̂
P̂3, (27b)

q̂2 = 0, (27c)

q̂4 = 0. (27d)

These fluxes simplify the system of equations (18) significantly and permit an integration
of the Eqs. (18b) and (18c) similar to Hilfer (2006b) to obtain explicit expressions for the
nonpercolating phases
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Fig. 1 Nonpercolating phases (a) as functions of water saturation from Eq. (28) and capillary pressure (b)

from Eq. (29) with parameters from Tables 1 and 2 and P̂∗
0 = 0. Solid lines show primary imbibition, dashed

lines show secondary imbibition. Both curves have to be read from left to right

S2(SW; S20, SW0) = S∗
2 + (S20 − S∗

2 )

(
S∗

W
− SW

S∗
W

− SW0

)η2

, (28a)

S4(SW; S40, SW0) = S∗
4 + (S40 − S∗

4 )

(
SW − S∗

W

SW0 − S∗
W

)η4

(28b)

in terms of the water saturation and the initial data (S20, S40, SW0). Hence, also the capillary
pressure becomes a function of water saturation and the initial data (S20, S40, SW0)

P̂c(SW; S20, S40, SW0) = 1

2

(
Π∗

a (SW − S2)
−α − Π∗

b (1 − SW − S4)
−β

+γ P∗
2 S2

γ−1 − δP∗
4 S4

δ−1) + P̂∗
0 , (29)

where the arguments of the functions S2(SW; S20, SW0) and S4(SW; S40, SW0) have been
omitted for the sake of readability. Figure 1 shows the nonpercolating phases and the capillary
pressure with respect to the water saturation using the parameters from Tables 1 and 2 and
P̂∗

0 = 0. The figure shows that the nonpercolating phases and the capillary pressure almost
coincide at a high saturation values.

To obtain a dimensionless form of Eq. (18a) we assume for a moment a large but finite
system of length l̂. Position, time, fluxes, and pressures are expressed in terms of the system

Table 1 Parameters for Eqs. (28), (29), (33), (34)

η2 η4 Π∗
a Π∗

b P∗
2 P∗

4 α β γ δ SO im SW dr
R̂11
R̂33

4 3 1.6 0.025 2.5 0.4 0.52 0.9 1.5 3.5 0.19 0.15 2

Table 2 Limiting and initial
saturations for primary and
secondary imbibition

Parameter S∗
2 S∗

4 S∗
W

S20 S40 SW0

Primary 0 SO im 1 − SO im 0 0 0

Secondary 0 SO im 1 − SO im SW dr 0 SW dr
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length l̂, a characteristic macroscopic velocity û and a characteristic pressure P̂b, the break-
through pressure which is defined as the inflection point of the capillary pressure curve. They
are explicitly given by

x̃ = 1

l̂
x̂, (30a)

t̃ = û

l̂φ
t̂, (30b)

qi = 1

φ2û
q̂i , i ∈ {W, O, 2, 4}, (30c)

Pi = 1

P̂b
P̂i , i ∈ {1, 3, c}. (30d)

The dimensionless form of Eq. (18a) reads as

∂

∂ t̃
SW = 1

CaW

∂

∂ x̃

[
(SW − S2(SW))2 ∂

∂ x̃
P1

]
, (31)

where the macroscopic capillary number is defined as

CaW = R̂11ûl̂

φ2 P̂b
. (32)

The capillary number gives the ratio of the macroscopic pressure drop and the macroscopic
capillary pressure. It is identical to the macroscopic capillary number defined in Hilfer and
Oeren (1996) if R̂11 = μ̂W/φ2k̂.

By defining a fractional flow function as in Doster and Hilfer (2011); Doster et al. (2012)

f (SW) = (SW − S2(SW))2

(SW − S2(SW))2 + R̂11

R̂33
(1 − SW − S4(SW))2

(33)

and a capillary function

D(SW) = − R̂11

R̂33

(SW − S2(SW))2 (1 − SW − S4(SW))2

(SW − S2(SW))2 + R̂11

R̂33
(1 − SW − S4(SW))2

∂ Pc(SW)

∂SW

(34)

one gets

∂SW

∂ t̃
+ qtot

CaW

∂ f (SW)

∂SW

∂SW

∂ x̃
− 1

CaW

∂

∂ x̃

[
D(SW)

∂SW

∂ x̃

]
= 0. (35)

Because we wish to have terms of equal magnitude in Eq. (35) we assume that û and l̂ are
such that

qtot = CaW (36)

and position and time is again rescaled as

x = CaW x̃, (37a)

t = CaW t̃ . (37b)

The result reads as

∂SW

∂t
+ ∂ f (SW)

∂SW

∂SW

∂x
− ∂

∂x

[
D(SW)

∂SW

∂x

]
= 0. (38)
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Fig. 2 Fractional flow function f (SW) (a), its derivative f ′(SW) (b) and the capillary function D(SW) (c)
and its derivative D′(SW) (d) for the parameters in Tables 1 and 2. The solid line shows the primary imbibition
and the dashed line shows the secondary imbibition

Equation (38) has the same form as the dimensionless fractional flow formulation of the
traditional model but the fractional flow function and the capillary function differ significantly.

We now return to the idealization that the sample is infinite such that x ∈ R. The initial
conditions defined in Eq. (24) read in dimensionless form as

Si (x̂, 0) = S0
i (x) i ∈ {W, O, 2, 4}, (39)

for all x ∈ R. The boundary conditions of (23) are in dimensionless form

Si (−∞, t) = Sl
i i ∈ {W, O, 2, 4}, (40a)

Si (∞, t) = Sr
i i ∈ {W, O, 2, 4} (40b)

for all times t ≥ 0.
Figure 2 illustrates the fractional flow function f (SW), its derivative f ′(SW) and the capil-

lary function D(SW) and its derivative D′(SW) for the parameters in Tables 1 and 2. The solid
lines show the primary imbibition and the dashed line show the secondary imbibition. The
fractional flow function gives the ratio between the advective water flux and the advective
total flux. Its value is higher for primary processes than for secondary processes. The deriva-
tive of the fractional flow function gives the velocity of the front. Its maximum value is higher
for secondary imbibitions. The capillary functions show a maximum which is significantly

123



Traveling Wave Solutions in a Generalized Theory 477

higher for the secondary processes. The derivatives of the capillary functions diverge in the
limit where the water saturation goes to its maximal or minimal value.

3 Method of Solution

3.1 Traveling Wave Ansatz

In this section we transform the problem given by Eq. (38), the dimensionless boundary data
(40) and the dimensionless initial data (39) into a system of ordinary differential equations.
Following (Brevdo et al. 2001) similarity solutions of the form

SW(x, t) = SW(x − ct) = SW(y) c = const. (41)

are searched for. Inserting Eq. (41) into Eq. (38) results in an ordinary differential equation
[

∂ f (SW)

∂SW

− c

]
S′

W
− [

D(SW)S′
W

]′ = 0, (42)

where the prime ′ denotes d/dy. Integrating (42) from a fixed y0 to a y gives

S′
W

(y) = 1

D(SW(y))
[ f (SW(y)) − cSW(y) + c0] (43)

with the integration constant

c0 = cSW(y0) − f (SW(y0)) + D(SW(y0))S′
W

(y0). (44)

Equation (43) describes a dynamical system with the three parameters c, c0, and y0.
Existence and uniqueness of solutions of Eq. (43) are guaranteed by the Picard–Lindelöf

theorem (Smoller 1983; Perko 1993). Generally, the solutions are normalized (i.e., anchored
translationally) by choosing y0 such that the quantities

− ∞ < y0 < ∞, (45a)

0 < SW(y0) < 1, (45b)

−∞ < S′
W

(y0) < ∞ (45c)

are bounded away from their limiting values.
In Sect. 5 below a very different normalization (anchoring) will be used. To the best of

our knowledge such an anchoring has not been used before and is specified by setting

y0 = ∞, (46a)

SW(∞) = SW
r, (46b)

S′
W

(∞) = 0. (46c)

This normalization effectively eliminates the parameter y0 from the discussion. It permits a
complete and exhaustive discussion for the special class of all smooth solutions with the help
of two reduced graphical representations introduced below in Sect. 5.

3.2 Dynamical System Approach

A qualitative description of the global structure of all solutions of Eq. (43) is obtained by
applying a geometrical dynamical system approach (Brevdo et al. 2001; Smoller 1983).
Equation (42) is transformed into a two-dimensional dynamical system
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X ′ = Y, (47a)

Y ′ = 1

D(X)

[(
∂ f (X)

∂ X
− c

)
Y − ∂D(X)

∂ X
Y 2

]
, (47b)

where we rename

X = SW, (48a)

Y = S′
W

(48b)

to emphasize the mathematical structure. The set of stationary points is

S = {(X, Y ) ∈ [SW0, S∗
W

] × R|SW0 < X < S∗
W

and Y = 0}. (49)

The parameter SW0 was defined in Eq. (28). For imbibition processes, it denotes the saturation
at which the imbibition started and hence is the smallest saturation during a process. The
parameter S∗

W
was defined in Eq. (8c) and denotes the maximally possible value for the water

saturation.

3.3 Linearization and Stability

The stability of system (47) around the stationary points S0 = (X0, 0) ∈ S is given by the
eigenvalues of the linearized system

(
X
Y

)′
=

(
0 1
0 a22(X0)

) (
X − X0

Y

)
(50)

with

a22(X0) = f ′(X0) − c

D(X0)
. (51)

The eigenvalues are 0 and e1(X0) = a22(X0). The capillary function D(X) is a nonnegative
function. The stationary points are classified as

S0 is

{
stable, if S0 ∈ Sr = {(X0, 0) ∈ S| f ′(X0) < c},
unstable, if S0 ∈ S� = {(X0, 0) ∈ S| f ′(X0) > c}. (52)

The sets Sr and S� contain the stable and unstable stationary points. The set of all stationary
points is given by S = Sr ∪ S� ∪ Sz , where

Sz = {(X0, 0) ∈ S| f ′(X0) = c} (53)

are the stationary points with both eigenvalues equal to zero. There are no saddle points
because the dynamical system has only one single nonzero eigenvalue.

3.4 Trajectories and Their Asymptotic Behavior

For fixed velocity c, we use Eq. (43) to define the trajectories in the phase portrait (X, Y )

with parameter c0 by

Yc0(X) = f (X) − cX + c0

D(X)
. (54)

The direction of the trajectories in the phase portrait (X, Y ) is from left to right in the upper
half plane (Y = S′

W
> 0) and from right to left in the lower half plane (Y = S′

W
< 0). In

imbibition processes, only the lower half plane is of interest.
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We now want to analyze the behavior of the trajectories for the limits X ↘ SW0 and
X ↗ S∗

W
. This is necessary because the Y -values of the trajectories go to −∞ or ∞ where

X goes to its maximum S∗
W

or minimum SW0 because the capillary function D(X) vanishes
there.

The behavior of the trajectories at X ↘ SW0 is determined by

lim
X↘SW0

Yc0(X) = lim
X↘SW0

−cX + c0

D(X)
= sgn(c0 − c SW0) ∞. (55)

The trajectory C0(X) = Yc SW0(X) for c0 = c SW0 determines the behavior at X ↘ SW0. It
separates the trajectories whose Y -values tend to ∞ for X ↘ SW0 (c0 > c SW0) from the
ones whose Y -values tend to −∞ for X ↘ SW0 (c0 < c SW0). The trajectory C0 is therefore
called separating curve.

The behavior of the trajectories at X ↗ S∗
W

is determined by

lim
X↗S∗

W

Yc0(X) = lim
X↗S∗

W

1 − c S∗
W

+ c0

D(X)
= sgn(1 − c S∗

W
+ c0) ∞. (56)

The trajectory C1(X) = Yc S∗
W

−1(X) for c0 = c S∗
W

− 1 determines the behavior at X ↗ S∗
W

.
It separates the trajectories whose Y -values tend to ∞ for X ↗ S∗

W
(c0 > c S∗

W
− 1) from

the ones whose Y -values tend to −∞ for X ↗ S∗
W

(c0 < c S∗
W

−1). The trajectory C0 is also
called separating curve.

The two separating curves C0, C1 coincide if c = 1/(S∗
W

− SW0). For smaller velocities
one has C0 > C1 and for higher velocities one has C0 < C1. The behavior of the separating
curves C0, C1 at SW0, S∗

W
is determined by

lim
X↘SW0

C0(X) = 0, (57a)

lim
X↘SW0

C1(X) =
{

+ ∞, if c > 1/(S∗
W

− SW0),

− ∞, if c < 1/(S∗
W

− SW0),
(57b)

lim
X↗S∗

W

C0(X) =
{

+ ∞, if c < 1/(S∗
W

− SW0),

− ∞, if c > 1/(S∗
W

− SW0),
(57c)

lim
X↗S∗

W

C1(X) = 0 (57d)

and differs from their behavior in the traditional theory with Brooks and Corey parameter
functions (Brevdo et al. 2001) where they diverge in each limit.

4 Results

4.1 Phase Portraits

This subsection shows phase portraits and bifurcations for the two main imbibition processes
with parameters from Tables 1 and 2 and highlights the differences between the phase portraits
found in Brevdo et al. (2001). The notations SW, S′

W
instead of X, Y will be used in this

section. Figure 2 shows the parameter functions. A first difference to Brevdo et al. (2001) is
that the real and not the effective saturations are used. This permits to explicitly account for
differences between primary and secondary imbibitions.

Similarly to Brevdo et al. (2001), there are four profile classes which are topologically
different in the phase portrait. A representative example of each class is shown in Fig. 3 as
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Fig. 3 For each profile class, a trajectory (blue lines) in the phase portrait and a saturation profile (inlet figures)
are shown. The green line displays the unstable stationary points. The rest of the line S′

W
= 0 shows the stable

stationary points. For imbibition processes only the lower half plane is of interest

trajectories in the phase portrait with associated saturation profiles. To study the behavior of
the trajectories at points of infinity, we use the Poincaré sphere. The Poincaré sphere is the
2-unit sphere S2 = {(X, Y, Z)|X2 + Y 2 + Z2 = 1} ∈ R

3 where one gnomonically projects
from the (X, Y ) plane tangent to the north pole of the sphere {(X, Y, Z) ∈ R

3|Z = 1} to the
center of this sphere (0,0,0) onto the surface of the upper half sphere {(X, Y, Z) ∈ S2|Z ≥ 0}.
Therefore, the points at infinity on the plane are projected onto the equator of the sphere
{(X, Y, Z) ∈ S2|Z = 0} [see Perko (1993, p. 267)]. In the phase portrait, homoclinic and
heteroclinic orbits can be identified. A homoclinic orbit is a trajectory which connects a
point with itself. A heteroclinic orbit is a trajectory which connects two different stationary
points. Class (a) are homoclinic orbits connecting the point (0,−1, 0) on the Poincaré sphere
with itself. Class (b) are heteroclinic orbits connecting the point (0,−1, 0) on the Poincaré
sphere with a stable stationary point. Class (c) are heteroclinic orbits connecting an unstable
stationary point with the point (0,−1, 0) on the Poincaré sphere. Class (d) are heteroclinic
orbits connecting an unstable stationary point with a stable stationary point.

Figure 4 displays nine phase portraits for velocities c = 1, 1.235, 1.3, 1.37, 1.5, 1.738,

2, 2.69, 3 for the primary imbibition. The blue lines show ordinary trajectories. The red
lines show the separating curves C0, C1. They coincide for c = 1.235. The green dashed lines
show the two trajectories N1, N2. These are defined as the trajectories that cross the stationary
points with zero eigenvalues Sz . These two trajectories separate the trajectories which go
though the unstable stationary points. Their c0 values are denoted as c0(N1) > c0(N2).
The black lines at S′

W
= 0 show the stable stationary points Sr and the green lines show

the unstable stationary points S�. Note that a single trajectory can produce two different
imbibition profiles if and only if c0 ∈ (c0(N2), min{cS∗

W
− f (S∗

W
), c0(N1)}).

There are four bifurcations at c = 1.235, 1.37, 1.738, 2.69. At c = 1.235 both separating
curves cross each other. At c = 1.37 the separating curve C0 crosses the trajectory N2 and at
c = 1.738 the separating curve C1 crosses the trajectory N1. At c = 2.69 the trajectories N1

and N2 coincide and for higher velocities they do not exist.
The phase portraits for secondary imbibition look qualitatively the same. The only differ-

ences are the minimal water saturation which is SW0 = SO im instead of SW0 = 0 and the
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Fig. 4 Phase portraits for velocities c = 1, 1.235, 1.3, 1.37, 1.5, 1.738, 2.69, 3 for primary imbibition with
parameters from Tables 1 and 2. The blue lines show ordinary trajectories and the red lines show the separating
curves. The dashed green lines show trajectories which cross the stationary points with zero eigenvalues Sz . At
S′
W

= 0, the black lines show the stable stationary points Sr and the green lines show the unstable stationary
points S�. At phase portraits with velocity c = 1.235, 1.37, 1.738, 2.69 bifurcations happen

bifurcations happen at velocities c = 1.52, 1.78, 1.84, 2.9 instead of c = 1.235, 1.37, 1.738,

2.69.
In contrast to (Brevdo et al. 2001) smooth profiles of class (d) are found for the right

boundary condition Sr
W

= 0 with limy→∞ SW(y) = 0. These profiles are produced by the
separating curve C0 in the phase portrait. For Brooks and Corey parameterizations, profiles
where the right boundary condition is Sr

W
= 0 and therefore limy→∞ SW(y) = 0 belong

to class (c) and hence are not smooth everywhere. The reason for this difference lies in the
different behavior of the capillary function. The derivative of the capillary function D′(SW)

diverges where for Brooks and Corey it goes to zero as the water saturation reaches its
minimum.

4.2 Saturation Profiles

This subsection shows saturation profiles for primary and secondary imbibition processes
with parameters from Tables 1 and 2 and highlights the differences to the saturation profiles
found in Brevdo et al. (2001).

Figure 5 shows eight profiles. The upper four represent primary imbibition processes and
the lower four secondary imbibition processes. The first column shows profiles of class (a),

123



482 O. Hönig et al.

0 1 2 3
0

0.2
0.4
0.6
0.8

1

y

S
2,S

w
,1

−
S

4
(a)

0 1 2 3
0

0.2
0.4
0.6
0.8

1

y

S
2,S

w
,1

−
S

4

(b)

0 1 2 3 4 5
0

0.2
0.4
0.6
0.8

1

y

S
2,S

w
,1

−
S

4

(c)

0 10 20
0

0.2
0.4
0.6
0.8

1

y

S
2,S

w
,1

−
S

4

(d)

0 1 2 3
0

0.2
0.4
0.6
0.8

1

y

S
2,S

w
,1

−
S

4

(e)

0 1 2 3
0

0.2
0.4
0.6
0.8

1

y

S
2,S

w
,1

−
S

4
(f)

0 1 2 3 4 5
0

0.2
0.4
0.6
0.8

1

y

S
2,S

w
,1

−
S

4

(g)

0 10 20
0

0.2
0.4
0.6
0.8

1

y

S
2,S

w
,1

−
S

4

(h)

Fig. 5 Saturation profiles for primary (a–d) and secondary (e–h) imbibition of all four different profile classes.
The velocity is the same c = 1 in all subfigures, only the c0 value varies

Table 3 Velocities, c0 values, boundary saturations, and profile classes for the Figs. 5 and 6

Figures c c0 S�
W

Sr
W

S�
2 Sr

2 S�
4 Sr

4 Profile
class

5a 1 −0.3 0.81 0 0 0 0.19 0 (a)

5e 1 −0.3 0.81 0.15 0 0.15 0.19 0 (a)

5b 1 −0.25 0.81 0.72 0 0 0.19 0.19 (b)

5f 1 −0.25 0.81 0.72 0 0 0.19 0.19 (b)

5c 1 −0.1 0.53 0 0 0 0.18 0 (c)

5g 1 −0.1 0.54 0.15 0.01 0.15 0.18 0 (c)

5d 1 0.1 0.40 0.11 0 0 0.17 0.07 (d)

5h 1 0.2 0.35 0.21 0.04 0.10 0.12 0.05 (d)

6a 1.37 0 0.66 0 0 0 0.19 0 (d)

6b 1.78 0.26 0.64 0.15 0 0.15 0.19 0 (d)

the second column of class (b), the third column of class (c) and the fourth column of class
(d). All waves have the same velocity c = 1. They differ in their c0 values and therefore in
their boundary conditions (see Table 3).

Figure 5a displays a profile of class (a) for primary imbibition. A water front imbibes a
medium completely filled with percolating oil. The water saturation increases to its maximal
value 1 − SO im and a maximal amount of nonpercolating oil is produced. Fig. 5e shows a
profile of class (a) for secondary imbibition. A water front imbibes a medium which contains
a maximal amount of nonpercolating water but no percolating water. The water saturation
increases to its maximal value 1− SO im, a maximal amount of nonpercolating oil is produced
and all the nonpercolating water becomes percolating.

Figure 5b contains a profile of class (b) for primary imbibition. A water front imbibes a
medium filled with maximal amount of nonpercolating oil and to 72 % with percolating water.
The water saturation increases to its maximal value 1 − SO im and the nonpercolating phases
do not change. Figure 5f contains a profile of class (b) for secondary imbibition. There is
almost no difference between primary and secondary imbibition because the nonpercolating
phases are constant and identical for SW ∈ (0.7, 0.81), see Fig. 1a.
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Fig. 6 Maximal saturation profiles of class (d) for primary (a) and secondary (b) imbibition

Figure 5c contains a profile of class (c) for primary imbibition. A water front imbibes a
medium completely filled with percolating oil. The water saturation increases to 53 % and
nonpercolating oil is produced up to a value of 18 %. Figure 5g contains a profile of class (c)
for secondary imbibition. A water front imbibes a medium filled with maximal percolating oil
and maximal nonpercolating water. The water saturation increases to 54 %, nonpercolating oil
is produced up to a value of 18 % and almost all nonpercolating water becomes percolating.

Figure 5d contains a profile of class (d) for primary imbibition. A water front imbibes a
medium filled with 82 % percolating oil, 7 % nonpercolating oil and 11 % percolating water.
The water saturation increases to 40 % and nonpercolating oil is produced up to a value of
17 %. Figure 5h contains a profile of class (d) for secondary imbibition. A water front imbibes
a medium filled with 74 % percolating oil, 5 % nonpercolating oil, 11 % percolating water
and 10 % nonpercolating water. The water saturation increases to 35 %, nonpercolating oil is
produced up to a value of 12 % and up to 4 % all nonpercolating water becomes percolating.

Figure 6 shows the smooth traveling waves with the largest possible difference between
the left and the right saturation for the primary and secondary imbibition which correspond
to the separating curve C0 in the phase portrait. Figure 6a displays a water front imbibing
a medium completely filled with percolating oil. The water saturation increases to 66 %
and nonpercolating oil is produced to its maximal value 19 %. The velocity is c = 1.37.
Figure 6b contains a water front imbibing a medium filled with 85 % percolating oil and
15 % nonpercolating water. The water saturation increases to 64 %, nonpercolating oil is
produced to its maximal value 19 % and all nonpercolating water becomes percolating. The
velocity is c = 1.78. So the velocity is significantly larger for the secondary than for the
primary imbibition. Furthermore and quite surprisingly the water saturation behind the front
is larger for the primary than for the secondary imbibition although already 15 % of water is
initially present during the secondary imbibition. This elucidates the importance to distinguish
between the primary and secondary imbibition and including percolating and nonpercolating
phases which was not the case in Brevdo et al. (2001).

5 Two Reduced Graphical Representations of all Differentiable Traveling Waves

From here on, the discussion is restricted to traveling waves of class (d). It is the only class
with profiles that are everywhere smooth. Because of this property, many authors Cueto-
Felgueroso and Juanes (2009), Gilding and Kersner (2001), Volpert et al. (1994) limit their
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studies to class (d) beforehand. We follow this practice here. The limitation to smooth solu-
tions allows to effectively eliminate the parameter y0 from the discussion by setting y0 = ∞
and changing the normalization from Eqs. (45) to (46).

This section discusses two reduced representations of all smooth traveling waves. The
reduced representations enable us to plot all global information of smooth traveling waves—
the wave velocity c and the boundary conditions (S�

W
, Sr

W
)—in one single figure. Without this

representation many phase portraits are necessary to illustrate all global information. This
exacerbates a quantitative comparison of the solution space (c, S�

W
, Sr

W
) of traveling waves

for different models or model parameters. With the reduced representations, the difference
between two models can be assessed through the comparison of two figures. Important
information such as the maximal traveling wave height or the maximal velocity can be very
easily read off one of these figures.

In this article, these representations are mainly used to illustrate the differences between
secondary and primary imbibition of one parameter set of the generalized model assuming
immobile nonpercolating phases. But the reduced representations can be applied to other
models with flow functions, even if they are non-monotonic. Moreover, these representations
can be used for the Buckley–Leverett limit and therefore for shock waves because traveling
waves and shock waves are connected through the vanishing viscosity limit (Duijn et al.
2007). The ideas for these representations are partially borrowed from the standard analysis
of shock waves of the Buckley–Leverett limit.

5.1 Representation 1: The Integration Constant c0

The first reduced representation uses the established picture (Welge 1952) that a shock wave
in the Buckley–Leverett limit can be represented as a straight line in the flow function figure.
This line will be called traveling wave line in this article. Its slope represents the wave velocity.
The y intercept is the negative of the integration constant of the traveling wave formulation.
Its intersections with the flow function are the possible boundary values. Segments of the
traveling wave line having higher values than the flow function are imbibition shocks and
segments of the traveling wave line having lower values than the flow function are drainage
shocks. The integration constant can now be written as a function of one possible boundary
condition and the velocity. The sign of the derivative of the integration constant function in
respect to the boundary condition tells us whether the boundary condition is left- or right-
sided. Plotting the integration constant function and using the sign of its derivative, represents
all global information.

5.1.1 Method

Using the normalization (46c) and the fact that for smooth solutions of class (d) S′
W

(−∞) = 0
holds at the left limit one finds

cS�
W

− c0 = f (S�
W

), (58a)

cSr
W

− c0 = f (Sr
W

), (58b)

from Eq. (44). For saturations excluding the bounding saturations the capillary function is
finite and Eq. (44) requires

cSW − c0 = f (SW) ⇔ S′
W

= 0. (59)
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Fig. 7 L(SW) = SW − 0.2
(dashed line), f (SW) (solid line)
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This permits the definition of a function c0 that depends on velocity and the stationary
points

c0(SW, c) = cSW − f (SW). (60)

It couples the boundary saturations S�
W

, Sr
W

and the velocity c. The left-hand side of Eq. (59)
describes a line L(SW) with variable SW, slope c and y intercept −c0. The right-hand side
describes the fractional flow function f (SW). Whenever L(SW) and f (SW) intersect, then
the corresponding SW is a stationary saturation. Its stability is given by

∂

∂SW

c0(SW, c) = c − f ′(SW)

{
< 0 SW is stable,

> 0 SW is unstable.
(61)

This means that the intersection point is a stable stationary point and therefore a possible
Sr

W
if the slope of L is larger than the slope of f , and an unstable stationary point and therefore

a possible S�
W

if the slope of L is smaller than the slope of f . Therefore, the line L has higher
values than the fractional flow function for all saturations between Sr

W
and S�

W
. Figure 7

shows an example for c = 1 and c0 = 0.2. The corresponding saturations are Sr
W

= 0.19
and S�

W
= 0.63.

5.1.2 Results

Figure 8 shows the function c0(SW, c) as a color plot for primary and secondary imbibition.
On the lines E, A, F the derivative ∂c0(SW, c)/∂SW is zero, in between these lines the
derivative is negative, outside it is positive. Therefore, in the region bounded by these lines
possible S�

W
are located, outside possible Sr

W
can be found. There is a particular traveling

wave with global information (c, S�
W

, Sr
W

) if and only if there are two points on a horizontal
line (for a fixed velocity c), one point S�

W
on the region bounded by the lines E, A , F and one

point Sr
W

outside this region, with the same color (the same c0-value). This is only the case
for points in the shaded regions. Hence, the horizontal shaded region displays all possible
S�

W
and the vertical shaded region displays all possible Sr

W
. Points lying between C, F and

the SW−axis could serve as possible S�
W

but their traveling wave lines do not have a second
intersection point of L and f which could give a possible Sr

W
. Points lying outside B, A, F

could serve as possible Sr
W

but their traveling wave lines do not have a second intersection
point of L and f which could give a possible S�

W
.
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Fig. 8 Reduced representations of all differentiable traveling waves. The function c0(SW, c) as a color plot
for primary (a) and secondary (b) imbibition. On the lines E, A, F the derivative ∂c0(SW, c)/∂SW is zero,
in between these lines the derivative is negative, outside it is positive. Therefore, in the region bounded by
these lines possible S�

W
are located, outside possible Sr

W
can be found. There is a particular traveling wave

for (c, S�
W

, Sr
W

) if and only if there are two points on a horizontal line (for a fixed velocity c), one point S�
W

on the region bounded by the lines E, A , F and one point Sr
W

outside this region, with the same color (the
same c0 value). This is only the case for the points in the shaded regions. Hence, the horizontal shaded region
displays all possible S�

W
and the vertical shaded region displays all possible Sr

W

Important information about the solution space of traveling waves, such as the maximal
velocity or maximal saturation, can be easily identified in Fig. 8. The maximal velocity
of a traveling wave is cmax = maxSW∈(0,1) f ′(SW) and its corresponding saturation Sm

W
is

the only inflection point of f (SW). The maximal left-sided boundary saturation is SBL
W

=
{SW|cBL = f (SW)/(SW − SW0)maximal}. The saturation SBL

W
is the left-sided limit of a

maximal Buckley–Leverett shock (Welge 1952). One can see in Fig. 8 that higher velocities
are possible for the secondary imbibition. The saturations Sm

W
for the fastest wave are however

identical. The maximal saturation SBL
W

is 2 % lower for a secondary imbibition although there
is already 15 % initially present.

There are three boundary regimes

(i) Traveling waves connecting C and D with boundary saturations (S�
W

, Sr
W

)

∈ {(S�
W

, 0)|S�
W

∈ (0, SBL
W

)} and velocities c = f ′(S�
W

)/S�
W

. These are the maximal
imbibition waves in a completely dry porous medium.

(ii) Traveling waves connecting A and B with boundary saturations (S�
W

, Sr
W

) ∈
{(S�

W
, Sr

W
)|S�

W
∈ (Sm

W
, SBL

W
) ∪ Sr

W
∈ (0, Sm

W
)} and velocities c = ( f (S�

W
) − f (Sr

W
))/

(S�
W

− Sr
W

). These are imbibition waves with the maximal saturation difference into
a porous medium with an initial saturation Sr

W
. This is the Welge construction (Welge

1952) for given initial saturation Sr
W

.
(iii) Line E represents traveling waves with S�

W
= Sr

W
∈ (0, Sm

W
) and velocities c = f ′(S�

W
).

These are the waves with constant saturations.

Figure 9 shows examples for traveling wave lines representing traveling waves of type (i)
and (ii). In Fig. 9a, the profiles range from the minimal wave S�

W
= Sr

W
= c = 0 up to the

maximal wave S�
W

= SBL
W

, Sr
W

= 0, c = cBL. In Fig. 9b, the profiles span the fastest wave
S�

W
= Sr

W
= Sm

W
, c = cmax and the maximal wave S�

W
= SBL

W
, Sr

W
= 0, c = cBL.
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Fig. 9 Examples for traveling wave lines L(SW) = SW − 0.2 (dashed lines) and their intersections with the
flow function (solid line) at Sr

W
(square) and S�

W
(circle) for traveling waves of type (i) in subfigure (a) and

for type (ii) in subfigure (b)

5.2 Representation 2: The shock speed c

The second representation uses the Rankine–Hugoniot condition to plot the functionality
between the velocity and the two boundary conditions. In addition, the Rankine–Hugoniot
condition can be defined as a function of the nonpercolating boundary saturations because the
nonpercolating phases are bijective functions of the water saturation for fixed (S20, S40, SW0).
This leads to some interesting insights about nonpercolating phases and their influence on
the velocity of a traveling wave.

5.2.1 Method

Another approach uses S′
W

(±∞) = 0 and Eq. (58) to obtain the Rankine–Hugoniot condition

c(S�
W

, Sr
W

) = f (S�
W

) − f (Sr
W

)

S�
W

− Sr
W

(62)

for the velocity of a shock wave. The shock velocity is a function of the nonpercolating
boundary saturations

c(S�
2, Sr

2) = c(S2
−1(S�

2), S2
−1(Sr

2)) = c(S�
W

, Sr
W

), (63a)

c(S�
4, Sr

4) = c(S4
−1(S�

4), S4
−1(Sr

4)) = c(S�
W

, Sr
W

), (63b)

where the S−1
2 and S−1

4 denote inverse functions with respect to the water saturation SW

because the nonpercolating phases are bijective functions of the water saturation for fixed
(S20, S40, SW0).

5.2.2 Results

Figure 10 shows color plots for c(S�
W

, Sr
W

), c(S�
2, Sr

2), c(S�
4, Sr

4) for the primary and sec-
ondary imbibition. Each colored point represents a traveling wave with corresponding veloc-
ity and boundary saturations. The three edges of the colored region stand for the three bound-
ary regimes defined in Sect. 5.1.2. The corners stand for the wave with constant saturation
SW = 0, for the fastest wave with constant saturation Sm

W
and for the imbibition wave into a
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Fig. 10 Color plots for c(S�
W

, Sr
W

) for the primary (a) and secondary (b) imbibition, for c(S�
2, Sr

2) for the

primary (c) and secondary (d) imbibition, and for c(S�
4, Sr

4) for the primary (e) and secondary (f) imbibition.
Each colored point represents a traveling wave with corresponding velocity and boundary saturations. The
three edges of the colored region stand for the three boundary regimes. The corners stand for the wave with
constant saturation SW = 0, for the fastest wave with constant saturation Sm

W
and for the imbibition wave into

a dry porous medium with maximal left-sided saturation SBL
W

dry porous medium with maximal left-sided saturation SBL
W

. Small differences in the satura-
tions and bigger differences in the velocities are visible. These differences cannot be seen in
the traditional model where one uses effective saturations.

Equation (63) allows to study the behavior of the nonpercolating phases. Figure 10c does
not show any color contours because there is no initial nonpercolating water Sr

2 = 0 in a
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primary imbibition process and during an imbibition process nonpercolating water is not
produced S�

2 = 0. For the secondary imbibition in Fig. 10d the velocities increase if the non-
percolating water saturations behind the front are minimal. The velocities increase for given
nonpercolating water saturations behind the front with decreasing initial nonpercolating water
saturations. Consequently, we observe that larger differences in nonpercolating water satura-
tion lead to smaller velocities. Higher ratios between nonpercolating and percolating water
lead to slower velocities. From a physical point of view this is obvious because nonpercolating
phases are assumed to be immobile and these fluid parts can only be mobilized by coales-
cence with the percolating phase. Therefore, the mass exchange reduces the velocity. A small
amount of nonpercolating water, which remains immobile, increases the maximal velocity
because the maximal velocity is 30 % higher for secondary imbibition as compared to primary
imbibition. We assume that this immobile nonpercolating water occupies pore volumes which
have very low conductance leading to a higher overall conductance for the porous medium.

In Fig. 10e, f, the behavior of the nonpercolating oil does not differ qualitatively between
primary and secondary imbibition. It also shows similarities to the behavior of the water
saturation which displays the correlation between water and nonpercolating oil due to the
mass exchange term. An increasing water saturation leads to an increasing nonpercolating
oil saturation due to break up. The velocities increase for given initial nonpercolating oil sat-
urations if the nonpercolating saturations behind the front increase. For given nonpercolating
oil saturations behind the front velocities increase if the initial nonpercolating saturations
increase. A high presence of immobile nonpercolating oil occupying pore volume which has
low conductance leads to a higher overall conductance for the porous medium.

6 Conclusion

This paper has computed traveling wave solutions of a recent generalized theory for macro-
scopic capillarity when it can be assumed that the nonpercolating phases are immobile. Only
primary and secondary imbibition processes were considered here, but drainage processes
can be studied along the same lines. The solutions have been compared to traveling wave solu-
tions of the traditional theory and significant differences were found, because the generalized
theory accounts explicitly for nonpercolating and immobile fluid parts. Breakup and coales-
cence slow down the front, but depending on the parameters a small amount of nonpercolat-
ing immobile fluids can also lead to higher velocity. Methodically, the complete analysis of
smooth solutions was based on two novel graphical representations of the solution space that
may be generalized to other solution classes. The reduced representation combines the wave
speed, the boundary data and the integration constant. It simplifies the comparison between
different models and provides important information, such as the maximal velocity or maxi-
mal saturation at the inlet. It can also be used to discuss shock fronts and the hyperbolic limit.

Acknowledgments The authors gratefully acknowledge financial support from the Deutsche Forschungs-
gemeinschaft (DFG) within the International Research and Training Group on Nonlinearities and Upscaling
in Porous Media (the NUPUS project) and fruitful discussions with Paul Zegeling.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source
are credited.

123



490 O. Hönig et al.

References

Abrams, A.: Influence of fluid viscosity, interfacial-tension, and flow velocity on residual oil saturation feft
by waterflood. Soc. Petroleum Eng. J. 15(5), 437–447 (1975)

Avraam, D., Payatakes, A.: Generalized relative permeability coefficients during steady-state two-phase flow
in porous media, and correlation with the flow mechanisms. Transp. Porous Media 20, 135–168 (1995)

Avraam, D., Payatakes, A.: Flow mechanisms, relative permeabilities, and coupling effects in steady-state
two-phase flow through porous media, the case of strong wettability. Ind. Eng. Chem. Res. 38(3), 778–786
(1999)

Bear, J.: Dynamics of Fluids in Porous Media. Dover Publications, New York (1972)
Bear, J., Braester, C., Menier, P.C.: Effective and relative permeabilities of anisotropic porous media. Transp.

Porous Media 2, 301–316 (1987)
Brevdo, L., Helmig, R., Haragus-Courcelle, M., Kirchgässner, K.: Permanent fronts in two-phase flows in a

porous medium. Transp. Porous Media 44, 507–537 (2001)
Bryant, S.L., Blunt, M.J.: Prediction of relative permeability in simple porous media. Phys. Rev. A 46(4),

2004–2011 (1992)
Collins, R.: Flow of Fluids Through Porous Materials. Reinhold Publishing Corporation, New York (1961)
Cueto-Felgueroso, L., Juanes, R.: Stability analysis of a phase-field model of gravity-driven unsaturated flow

through porous media. Phys. Rev. E (Statistical, Nonlinear, and Soft Matter Physics) 79(3), 036301 (2009)
De Marsily, G.: Quantitative Hydrogeology-Groundwater Hydrology for Engineers. Academic Press, Orlando

(1986)
de Wiest, R.: Flow Through Porous Media. Academic Press, New York (1969)
Dias, M.M., Payatakes, A.C.: Network models for two-phase flow in porous media part 1. Immiscible microdis-

placement of non-wetting fluids. J. Fluid Mech. 164(1), 305–336 (1986)
Doster, F.: Die bedeutung perkolierender und nichtperkolierender phasen bei mehrphasenströmungen in

porösen medien auf laborskala. Ph.D. thesis, Universität Stuttgart, Holzgartenstr. 16, 70174 Stuttgart (2011)
Doster, F., Hilfer, R.: Generalized Buckley–Leverett theory for two phase flow in porous media. New J. Phys.

13, 123,030 (2011)
Doster, F., Hönig, O., Hilfer, R.: Horizontal flow and capillarity-driven redistribution in porous media. Phys.

Rev. E 86(1), 016,317 (2012)
Doster, F., Zegeling, P.A., Hilfer, R.: Numerical solutions of a generalized theory for macroscopic capillarity.

Phys. Rev. E 81(3), 036307 (2010)
Dullien, F.: Porous Media: Fluid Transport and Pore Structure, 2nd edn. Academic Press, San Diego (1992)
Ferer, M., Ji, C., Bromhal, G., Cook, J., Ahmadi, G., Smith, D.: Crossover from capillary fingering to viscous

fingering for immiscible unstable flow: experiment and modeling. Phys. Rev. E 70(1), 16,303 (2004)
Gilding, B., Kersner, R. Travelling waves in nonlinear diffusion–convection-reaction. Memorandum 1585,

Department of Applied Mathematics, University of Twente, Enschede (2001)
Helmig, R.: Multiphase Flow and Transport Processes in the Subsurface. Springer, Berlin (1997)
Hilfer, R.: Macroscopic equations of motion for two-phase flow in porous media. Phys. Rev. A 58, 2090 (1998)
Hilfer, R.: Capillary pressure, hysteresis and residual saturation in porous media. Physica A 359, 119 (2006)
Hilfer, R.: Macroscopic capillarity and hysteresis for flow in porous media. Phys. Rev. E 73, 016,307 (2006)
Hilfer, R.: Macroscopic capillarity without a constitutive capillary pressure function. Physica A 371, 209–225

(2006)
Hilfer, R., Doster, F.: Percolation as a basic concept for macroscopic capillarity. Transp. Porous Media 82(3),

507–519 (2010)
Hilfer, R., Oeren, P.: Dimensional analysis of pore scale and field scale immiscible displacement. Transp.

Porous Media 22, 53–72 (1996)
Jamin, J.: Notes about equilibrium and flow of fluids in porous body. Acad. Sci. 50, 172 (1860)
Perko, L.: Differential Equations and Dynamical Systems. Springer, New York (1993)
Scheidegger, A.E.: The Physics of Flow through Porous Media. University of Toronto Press, Toronto (1957)
Smoller, J.: Shock Waves and Reaction–Diffusion Equations, 2nd edn. Springer, New York (1983)
Taber, J.: Dynamic and static forces required to remove a discontinuous oil phase from porous media containing

both oil and water. Soc. Petroleum Eng. J. 9(1), 3 (1969)
van Duijn, C.J., Peletier, L.A., Pop, I.S.: A new class of entropy solutions of the Buckley–Leverett equation.

SIAM J. Math. Anal. 39(2), 507–536 (2007)
van Dijke, M., Sorbie, K.: Pore-scale network model for three-phase flow in mixed-wet porous media. Phys.

Rev. E 66(4), 46,302 (2002)
Volpert, A.I., Volpert, V.A., Volpert, V.A.: Traveling Wave Solutions of Parabolic Systems. Translations of

Mathematical Monographs, p. 448. American Mathematical Society, Providence (1994)

123



Traveling Wave Solutions in a Generalized Theory 491

Welge, H.J.: A simplified method for computing oil recovery by gas or water drive. AIME Trans. 195, 99–108
(1952)

Wyckoff, R.D., Botset, H.G.: The flow of gas–liquid mixtures through unconsolidated sands. Physics 7(9),
325–345 (1936)

123


	Traveling Wave Solutions in a Generalized Theory  for Macroscopic Capillarity
	Abstract
	1 Introduction
	2 Formulation of the Model
	2.1 The Generalized Model
	2.1.1 Balance Laws
	2.1.2 Constitutive Assumptions
	2.1.3 Reformulation
	2.1.4 Self-Consistence Closure Condition

	2.2 Problem-Specific Assumptions
	2.2.1 Boundary and Initial Conditions
	2.2.2 Viscous Drag Domination and Viscous Decoupling
	2.2.3 Model Reduction and Dimensionless Fractional Flow Formulation


	3 Method of Solution
	3.1 Traveling Wave Ansatz
	3.2 Dynamical System Approach
	3.3 Linearization and Stability
	3.4 Trajectories and Their Asymptotic Behavior

	4 Results
	4.1 Phase Portraits
	4.2 Saturation Profiles

	5 Two Reduced Graphical Representations of all Differentiable Traveling Waves
	5.1 Representation 1: The Integration Constant c0
	5.1.1 Method
	5.1.2 Results

	5.2 Representation 2: The shock speed c
	5.2.1 Method
	5.2.2 Results


	6 Conclusion
	Acknowledgments
	References


