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1. Introduction

The En non-critical strings are ubiquitous in the formulation of non-perturbative

string theory, and understanding these highly non-trivial fixed points is becoming of in-

creasing importance. Even though there are many ways of characterizing such strings

[1,2,3], there is, as yet, no explicit action or intrinsic formulation. Descriptions of such

non-critical strings are either based upon classical solutions of low energy effective actions,

or involve interpolating between branes, or wrapping branes around vanishing cycles. We

will consider the string in its incarnation in the type IIA theory (or M -theory) compacti-

fied to four (or five) dimensions on an elliptically fibered Calabi-Yau manifold that is also

a K3 fibration. This corresponds to the (six-dimensional) non-critical string compactified

to four (five) dimensions on a torus (circle). The non-critical string emerges, i.e. has

excitations of low mass, when a 4-cycle in the Calabi-Yau manifold becomes extremely

small [2,4]. The magnetic non-critical string is obtained by wrapping a five-brane around

the collapsing 4-cycle, while the dual electric states of the non-critical string are obtained

by wrapping the membrane around 2-cycles within the 4-cycle. If the collapsing 4-cycle is

a Bn del Pezzo surface then the string is endowed with an En symmetry: the del Pezzo

surface has (n + 1) 2-cycles, n of which are acted upon naturally by the Weyl group of

En. The remaining 2-cycle is the canonical divisor of the del Pezzo, whose Kähler mod-

ulus, kD, determines the scale of the del Pezzo, and hence determines the string tension.

Associated with the non-critical string is the anti-self-dual tensor multiplet, which in four

(five) dimensions gives rise to a vector multiplet. The vanishing canonical 2-cycle in the

del Pezzo provides the harmonic 2-form need to make the U(1) gauge field strength.

This compactification of the string has two natural phases that are separated by a flop

transition, and are referred to as phases I and II in [5]. They are defined as follows: In

addition to the Kähler modulus kD, there is the Kähler modulus, kE , of the elliptic fiber

of the Calabi-Yau manifold. At kD = 0 only a 2-cycle collapses. In order to collapse the

4-cycle one has to pass to kD < 0 and go to the point where kD + kE = 0 [4]. Phase I is

the region with kD ≥ 0, and this phase connects directly to the weakly coupled heterotic

theory. Phase II is the region for which −kE ≤ kD ≤ 0. Common to both phases is the

strong coupling singularity where kD = 0, which corresponds to an SU(2) gauge theory.

In phase I, one can view the low mass sector as this gauge theory coupled to Nf = 8

hypermultiplets associated with the other 2-cycles of the del Pezzo surface. There is a

Coulomb modulus and an effective coupling, and the latter is independent of the former.

From the point of view of the five dimensional SU(2) gauge theory, phase II is the

regime where one of the hypermultiplet masses is taken to be large compared to the
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expectation value of the scalar in the vector multiplet. For most of this paper, we will

assume that this hypermultiplet mass is infinite, leaving an effective SU(2) gauge theory

with Nf < 8 fundamental matter. The various En theories then correspond to Nf = n−1.

There is an extra mass parameter that appears because of the existence of a soliton with

SU(2) gauge charges for the five dimensional theory and this mass parameter combines

with the bare mass parameters for the fundamental matter to fill out the full En global

symmetry.

For the Calabi-Yau compactification of the IIA theory, the five dimensional gauge

theories are compactified to four dimensions on a circle of radius R5. Since these are

N = 2 theories with a one-dimensional coulomb branch, there should exist Seiberg-Witten

elliptic curves whose modulus is the effective coupling for the theory. In this paper we

will construct the explicit curves for all values of Nf < 8. These curves have an R5

dependence which generalizes the results in [6]. Varying R5 from small radius to large

radius interpolates between the four dimensional superconformal theories in [6] and the

five dimensional SU(2) gauge theories discussed in [7].

In the underlying string theory, phase II is rather more exotic than phase I, and

was the focus of [5]. In particular, it is the phase in which one can directly access the

perturbative non-critical string. One can view kD and kE as different combinations of the

tension of the string and the compactification radii. In particular, if a membrane wraps the

elliptic fiber with degree dE , and the canonical divisor with degree dD, then these integers

represent the winding number and momentum, respectively, of the compactification of the

non-critical string on a circle. The remaining Kähler moduli of the del Pezzo 2-cycles can

then be interpreted as Wilson line parameters on the circle of compactification. For dE > 0

one finds that the only BPS membranes have dE ≥ dD. The states with dE = dD = d

are those that become massless when the 4-cycle collapses when kD + kE = 0. This

is an infinite tower of states, indexed by d, and they should represent a fundamental

“electric” representation of the non-critical string. It is this infinite tower that we will

study extensively here.

To study these very stringy BPS states, one can use the mirror map as in [4], and

obtain the degeneracies of the states. So far only the lowest level of the excitations (dE = 1)

has been adequately understood [4]. The problem is that it is very hard to extract detailed

information about the En structure from a mere count of the number of BPS states at

a given level. One of the purposes of this paper is to describe and utilize a technique

that provides much more precise and detailed information about the En structure of the

spectrum. We will also extract some apparently universal data about the degeneracies.
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One could, in priniciple accomplish this by introducing the Kähler moduli corresponding

to the Wilson lines, and then performing the mirror map. However, we will describe a

much simpler approach that involves passing first to a form of consistent truncation of the

type II compactification down to the essential sector of the non-critical string [5].

The basic idea of [5] was to isolate the non-critical string as a closed monodromy

subsector of the type II compactification. That is, one takes the view that one can consis-

tently truncate a theory to a subsector if one isolates a set of BPS states and moduli so

that monodromies over that moduli space have a closed representation on the selected BPS

states. In [5] it was proposed that one could exactly capture and model the non-critical En

strings by using some very particular non-compact Calabi-Yau manifolds to “compactify”

the IIB theory. The approach is directly parallel to the manner in which IIB compactifi-

cation on ALE fibrations over IP1 captures the exact quantum effective action of N = 2

supersymmetric gauge theories (completely decoupled from the rest of the original type II

string theory) [8]. The claim is that by using the proper non-compact manifolds, one can

study in isolation the non-critical strings decoupled from the “superfluous” excitations of

the original and larger string theory in which the non-critical string appeared. Such a IIB

compactification gives rise to an “effective action” for the non-critical string. The natural

expectation for such an effective action is that it will describe the Coulomb branch of the

gauge theory and indeed, such field theory actions were constructed in [6,9,7]. However,

getting the effective action via a IIB compactification leads to a much deeper stringy in-

sight as in [8]: The BPS states appear as 3-branes wrapping 3-cycles, but one can “see”

the string by first wrapping the 3-branes over 2-cycles. The effective action is constructed

from the period integrals of the holomorphic (3, 0)-form on 3-cycles. For the non-compact

Calabi-Yau manifolds of [5], these integrals can be reduced to integrals of a meromorphic

(1, 0)-form, or generalized Seiberg-Witten differential, on a torus. This torus can then

be thought of as a compactifying space of the string, and the Seiberg-Witten differential

represents a local string tension. Apart from satisfying some of the basic properties of

their their gauge theory counterparts, this formulation of the quantum effective actions

of the non-critical strings also has some fundamentally new features: For example, the

differential (local string tension) vanishes indentically at one value of the modulus (the

tensionless string point) and the asymptotic expansion of these actions yields a generating

function for the counting of BPS states.

It is important to remember that this formulation of the non-critical string is not

strictly derived from other formulations: it was proposed for rather general reasons, and

this proposal has been checked against the results from the mirror map. One of the
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purposes of this paper is to perform extensive further verification of this proposal by

including Wilson lines for the compactified non-critical string. In the effective action these

parameters become masses for the hypermultiplets for the SU(2) gauge theory. We are

thus able use the techniques introduced in [10] and developed in [6]. We find that these

masses enter the counting of BPS states in precisely the same manner as multiple Kähler

moduli appear when one uses mirror symmetry to count rational curves. Thus at one level

we have found an extremely efficient method of computing the mirror map (with up to

nine parameters) by working on a torus. This not only enables the counting of curves in

terms of En characters, but also enables us to study the flow of the effective action as one

moves from En to En−1. The fact that the asymptotic forms of effective actions flows in

exactly the proper manner provides strong confirmation of our results and of the proposal

of [5].

In section 2 we briefly review the results of [5], focussing on how the effective action

of the non-critical string is computed and reduced to period integrals on a torus. We also

generalize this effective action to include two or three mass parameters. In section 3 we

compute the instanton expansion from the effective action, and show how this expansion

is refined into characters of En. In section 4 we focus on the E8 theory, and reverse the

previous philosophy by using the E8 structure of the instanton expansion to determine the

exact form of the torus for the complete set of eight mass parameters. In section 5 we make

a much more extensive study of the characters that appear in the instanton expansion,

determining degeneracies of En Weyl orbits up to curves of degree 5 for n = 8, degree 6 for

n = 6, 7 and degree 10 for n = 5. We also show how one can flow from the E8 theory down

to any En, and that the instanton expansion behaves appropriately under this flow. We

then extract some universal (En independent) information about degeneracies from this

data. In section 6 we show how our methods should generalize to yield an effective action

that includes another modulus, and this should enable the computation of the full set of

excitations of the non-critical string given in [4]. Section 7 contains some brief concluding

remarks. There are two appendices: The first contains details of how the tori and Seiberg-

Witten differentials for the massive theories were computed. The second contains the

explicit formulae for the tori for En, 0 < n ≤ 8.
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2. The Effective action of the Non-Critical String

2.1. The massless theory

To compute the effective action of the non-critical, En string it was argued in [5]

that one should compute the classical pre-potential of a IIB compactification on particular

non-compact Calabi-Yau 3-folds that depends upon the choice of En. Here we will restrict

our attention to E8, but the calculation for other En proceeds similarly.

The appropriate 3-fold is given by the following polynomial in weighted projective

space:

w2 = z31 + z62 + z63 − 1

z64
− ψwz1z2z3z4 . (2.1)

As was described in [5], the Seiberg-Witten differential for the underlying SU(2) gauge

theory can then be computed by (partially) integrating the holomorphic 3-form, Ω(3), of

this surface over suitably chosen 3-cycles. One can then express the result as

λSW =

( ∫ ψ dζ√
1 + x3 + 1

4ζ
2x2

)
dx

=
1

2
log




√
1 + x3 + 1

4ψ
2x2 + 1

2ψx√
1 + x3 + 1

4ψ
2x2 − 1

2ψx


 dx

x
.

(2.2)

One should interpret λSW as a differential on the curve y2 = 1 + x3 + 1
4ψ

2x2.

One can easily make a direct connection between this and the approach of [6], which

is based on the more standard description of the E8 torus. Make the change of variables:

x → 28 ψ−10 x , y → 212 ψ−15 y , u ≡ − 1
32 ψ

6 . (2.3)

One then obtains the curve

y2 = x3 − 2 u5 + u2x2 , (2.4)

while the differential that is being integrated in (2.2) becomes

Ω(2) =
dx du√

x3 − 2u5 + u2x2
. (2.5)

This is very close to the starting point of [6] where the Seiberg-Witten differential is

constructed by writing such a 2-form as the exterior derivative of a 1-form. Here we see
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that the corresponding 2-form naturally appears in the partial integration of the Calabi-

Yau holomorphic 3-form. There are however some fundamental differences: the curve

(2.4) contains an extra term compared to that of [6]. Upon shifting x → x − 1
3u

2 one

obtains a u6 term, that is more characteristic of the elliptic singularity, rather than of

the E8 singularity. This, combined with the fixed normalization of Ω(2), also leads to a

Seiberg-Witten differential that has irremovable logarithmic branch cuts (2.2) [5].

The Calabi-Yau manifold and the torus described above only depend upon one com-

plex modulus. As was described in [5], this modulus corresponds to the Kähler modulus

tS = i(kD + kE) of the IIA compactification. The simplest closed sub-monodromy prob-

lem is the truncation to the study of this single modulus in phase II. It is also precisely

this modulus that one needs to characterize and count the fundamental massless tower of

electric states with dE = dD = d. We will discuss in section 6 how to restore the second

modulus to the foregoing model.

This brings us to an important technical point: We have specialized to a one parameter

closed sub-monodromy problem based upon a single complex structure modulus, ψ. As

was described in [5], such a single parameter truncation only exists in phase II. On the

other hand we are ultimately going to look at the large complex structure limit and this

corresponds taking the string tension to infinity. If one is in phase II and one takes this

limit, then one necessarily crosses the boundary into phase I, unless one is at a point in

moduli space where this boundary has been shifted infinitely far away. This means that the

foregoing Calabi-Yau manifold and torus must describe a rather singular limit of the IIA

compactification: one in which kE has been shifted off to infinity. In terms of the toroidal

compactification of the non-critical string, the ratio R5/R6 has been taken to infinity in

such a manner that φR5R6 remains finite, where φ is the non-critical string tension 1. One

can view this limit as degenerating the six-dimensional theory to five dimensions, and then

compactifying the theory to four dimensions on a circle of radius R5. Thus there is only

one scale left in the theory, namely 1/R5.

It is important to highlight the unusual but crucial form of (2.2). As was emphasized

in [5], for ψ = 0, the differential λSW vanishes identically over the entire Riemann surface.

This is essential since the BPS states become massless when the 4-cycle collapses. More-

over, if one were to obtain the Seiberg-Witten differential by integrating the holomorphic

differentials, then apart from normalization issues, the boundary condition that λSW must

vanish at ψ = 0 provides a constant of integration that is crucial to the proper instanton

1 In terms of the torus of [9], we have specialized to the point in moduli space with σ = i∞.
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expansion at ψ = ∞. The unusual feature in (2.2) is the presence of the logarithm, and

the logarithmic branch cuts, which imply that it is multi-valued on the torus. Given the

geodesic description of BPS states [8] the multi-valuedness, at first sight, seems extremely

surprising. However, one should recall the rather singular limit that one has implicitly

taken, and use the fact that the only mass scale in the problem is 1/R5. This scale must

multiply (2.2). The multi-valuedness of the logarithm then implies that on the N th sheet

the differential, λSW, has a simple pole of residue 2πiN/R5. Following the rules of [10] this

means that there must be an infinite tower of hypermultiplet states of masses 2πiN/R5.

These are simply the Kaluza-Klein modes of the string on the compactified R5. If the six-

dimensional theory were compactified on a non-degenerate torus then the Seiberg-Witten

differential must involve the inverse of a doubly periodic function, that is an inverse elliptic

function whose τ -parameter is that of the torus upon which the compactification is made

(see section 6).

The logarithmic branch cuts also play an important role in the Seiberg-Witten dif-

ferential for the model with Wilson lines: The differential must have residues that are

linear in the masses, or Wilson line parameters, mi, while the parametrization of the rele-

vant algebraic surface must respect the periodicity of the Wilson line parameter space, i.e.

mi → mi+2π. This means that the coefficient functions in the Seiberg-Witten differential

must involve inverse trigonometric functions (or inverse elliptic functions for the toroidal

compactification). This is exactly what one finds in (2.2).

2.2. Incorporating masses: first iteration

Following [10,6] one builds the model with non-zero masses by making deformations

of (2.4), and seeking the lines in the surface defined by (y, x, u). The Seiberg-Witten

differential is determined by finding λSW such that Ω(2) = dλSW on this surface with the

lines excised. There is still some ambiguity in this process, but this is resolved by requiring

that λSW has the proper (Weyl invariant) residues.

If one introduces p mass parameters, the E8 symmetry is broken to SO(16− 2p), and

this means that the discriminant of the curve must behave as ∼ u10−p as u → 0. For

three or fewer masses, the general form of the curve is not very complicated. Consider

the limit R5 = 0. The curves in this limit were constructed in [6] and will henceforth

be referred to as the polynomial curves because of their polynomial dependence on the

masses. Correspondingly, we will refer to the curves that we are about to construct as the

trigonometric curves. One can make an Ansatz that all coefficients of u and x that are

absent in the polynomial case remain so for the trigonometric curves, with the exception of
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the coefficient of the u2x2 term, which is set to 1. The non-zero terms need to be modified,

but this is done such that a Seiberg-Witten differential can be constructed whose residues

are linear in the mass parameters mi. Details of these constructions for up to two non-zero

masses, along with the corresponding Seiberg-Witten differential are given in appendix A.

The two mass curve has a particularly simple form and is given by

y2 = x3 + u2x2 − 2u(u2 + sin2(m+)x)(u
2 + sin2(m−)x), (2.6)

where m± = (m1 ±m2)/2. This can be compared with the E8 polynomial curve

y2 = x3 − 2u(u2 +m2
+x)(u

2 +m2
−x), (2.7)

For three non-zero masses we find that the curve still has the simple form

y2 = x3 + u2x2 − u
(
2u4 + T2 u

2 x + 2T̃4 x
2
)

− T6 u
4 , (2.8)

where

T2 ≡
4∑

i=1

sin2(pi) , T̃4 ≡
4∏

i=1

sin(pi) , T6 ≡
3∏

i=1

sin2(mi) ;

p1 ≡ 1
2(m1 −m2 −m3) , p2 ≡ 1

2 (−m1 +m2 −m3) ,

p3 ≡ 1
2(−m1 −m2 +m3) , p4 ≡ 1

2 (m1 +m2 +m3) .

(2.9)

The Seiberg-Witten differential for the two-mass curve can be found in Appendix A. Its

form is rather complicated, and indeed we will not need it directly – we will only need the

asymptotic form of (2.2).

3. The instanton expansion

One of the interesting things about the effective action defined in [5] is its behaviour

at large u. Following [10] one defines

φ(u) =

∫

γa

λSW =

∫ (∫

γa

ω
)
du + δ

φD(u) =

∫

γb

λSW =

∫ (∫

γb

ω
)
du + δD ,

(3.1)

where ω = dx/y is the holomorphic differential on the torus (2.4), and δ, δD are integration

constants. The constants of integration are crucial to the asymptotic expansion at infinity,
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and can be determined by a careful asymptotic expansion of the period integrals of (2.2)2,

or equivalently by analytically continuing and imposing the requirement that φ and φD

vanish at ψ = 0.

In [5] it was shown that the Yukawa coupling, Cφφφ = ∂3φF , was exactly the one

obtained in [4]:

−1 + 252
13q1

1− q1
− 9252

23q2

1− q2
+ 848628

33q3

1− q3
− 114265008

43q4

1− q4
+ . . . . (3.2)

The corresponding pre-potential, F , was also shown to be:

F = =
1

6
φ3 +

1

4
φ2 − 5

12
φ +

1

4π2

∞∑

k=1

nrk Li3(e
2πik φ) , (3.3)

where the instanton coefficients nrk = {252,−9252, ..}. The fact that the torus (2.4) and

the differential (2.2) replicate the counting of BPS states of the non-critical string provided

confirmation that the foregoing does indeed provide a model of the non-critical string.

We now describe in a little more detail how to compute the instanton expansion from

the torus, but this time we include the two or three non-zero mass parameters by using

the torus (2.6) or (2.8). The first step is to recast the torus in canonical form:

y2 = 4x3 − g2(σ) x − g3(σ) ,

g2(σ) = 60 ω−4
2 G4(σ) , g3(σ) = 140 ω−6

2 G6(σ) ,

G2k(σ) ≡ 2(2πi)2k

(2k − 1)!

[
σ2k−1(n) q

n
]
,

(3.4)

where G2k are the canonically normalized Eisenstein functions, ω2 is one of the torus

periods and q = e2πiσ. The other torus period is thus ω1 = σω2. This gives one expressions

for g2 and g3 in terms of u and the mi, and substituting these into:

j(σ) =
1728 g32
g32 − 27g23

=
1

q
∏∞
n=1 (1− qn)24

[
1 + 240

∞∑

n=1

σ2k−1(n) q
n
]3
,

(3.5)

2 The key observation to getting the asymptotic expansion correct is that the log branch

cuts must run through the square-root branch cuts thereby connecting the log branch points on

different y-sheets. The curve γa must not cross the log cut. All this is required to have the proper

ψ → 0 limit, and in the ψ → ∞ limit it gives φ a log(ψ) divergence.
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yields a relation between σ, u and the mi. One can then expand this in a series for large

u, or σ → i∞, and invert it to get an expansion for σ in terms of u and the mi. Using this

in G4 in (3.4) yields an expansion for ω2, and hence ω1 in terms of u and the mi. To get

φ(u) of (3.1) one integrates ω2 with respect to ψ, or u, (using the constant of integration

of [5]). Inverting this one can finally determine σ, and hence Cφφφ as a function of φ and

mi.

The result is a series like (3.2) but with the integer coefficients replaced by polynomials

in sin(mi) or sin(pi). These polynomials are then easily recognized in terms of characters of

E8, or more precisely of characters of the SO(2k) subgroup of E8 defined by the non-zero

mi, i = 1, . . . , k. This information is more than adequate to reconstruct the complete E8

characters of the first few terms of the expansion – indeed it is a highly overdetermined

system providing quite a number of consistency checks.

The first few terms become

−1 + 13
[
12 χ0,1(q;mi) + χ2,240(q;mi)

]

− 23
[
132 χ0,1(q

2;mi) + 20 χ2,240(q
2;mi) + 2 χ4,2160(q

2;mi)
]

+ 33
[
4068 χ0,1(q

3;mi) + 927 χ2,240(q
3;mi) + 180 χ4,2160(q

3;mi)+

27 χ6,6720(q
3;mi) + 3 χ8,17280(q

3;mi)
]
+ . . . ,

(3.6)

where

χp,k(q;mi) ≡
∑

~v∈Op,k

q e2i~v·~m

1 − q e2i~v·~m
. (3.7)

In this expression, ~v is summed over the set Op,k, consisting of vectors with length-squared

p, that lie in a single Weyl orbit of order k on the root lattice of E8.

One of the interesting features of (3.6) is the form of the terms that subtract of the

multiply wrapped rational curves of lower degree. In (3.2) this subtraction was performed

by the denominators (1− qn), whereas in (3.6) these denominators have been replaced by

(1−qne2i~v·~m) for a particular ~v in a Weyl orbit. Expanding this denominator leads to Weyl

orbit characters that are evaluated at ℓmi, where ℓ is the multiplicity of the wrapping of the

fundamental rational curve. Thus the character parameter properly reflects the multiple

wrapping. Indeed, the form of (3.7) is precisely the proper form for effective potential

obtained from a mirror map in which σ and the mi are Kähler moduli.

Thus far we have only needed the curve with three non-zero Wilson lines. To get

the complete curve we now reverse the foregoing procedure and determine the curve by

requiring that the higher terms in the instanton expansion have the proper E8 structure
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4. Deriving the curves from the instanton expansion

In the last section we saw that, in principle, the Seiberg-Witten curves can be derived

by looking for the holomorphic lines. In practice, this can be carried out for a small number

of masses, but becomes exceedingly difficult beyond three masses.

We could in principle also derive the curves by solving the linear equations in [9]

and then taking the appropriate limit to reduce everything to the five-dimensional theory.

Unfortunately, this too cannot be easily carried out.

We propose another way to compute the curves, which takes advantage of the instanton

expansion. This turns out to be an efficient method. We find that the curves are much

simpler than one would expect for the full six-dimensional theory, and in fact are not much

more complicated than the curves found in [6] for the polynomial mass cases.

Our strategy is to compute the instanton expansion for a curve with unknown coeffi-

cients, assuming that the curve has the correct polynomial limit. We then assume that the

instanton expansion will lead to an expansion in characters for the appropriate En group.

As we saw in the previous section, the character expansion is consistent up to two or three

masses. It will turn out that we will only need to impose some rather simple constraints

arising from general En character requirement.

We will do the calculation for the En theories with n ≤ 8. One could derive each

curve individually, or one could start with the E8 curve and reduce to the lower cases by

taking the masses to a certain limit. Doing the calculation both ways provides some useful

consistency checks.

To compute the E8 curve, there is a useful trick that we can employ. Once a curve

has been obtained, it is a straightforward procedure to derive its instanton expansion. For

the lower En, we can compute the instanton expansion directly from its curve, or we can

derive it from the E8 instanton expansion 3. Since the lower En instanton expansions

can be computed directly from the E8 expansion, all coefficients in front of characters

also appear in the E8 expansion (although the reverse is not true). This means that some

(although not all) of the E8 coefficients can be determined from the lower En. This is useful

since the E8 instanton computation is much more intensive than the lower expansions.

We will also find that there is a duality in the character expansions, which is somehow

related to the T -duality of the original 2-torus. This will be described further in section 5.

3 The E6 del Pezzo is of particular interest since it is equivalent to the space of cubics in CIP3,

so the instanton expansion is giving us information about the holomorphic curves on this surface.
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4.1. The curve for E8

The E8 polynomial curve was derived in [6] and is given in Appendix B. The coefficients

of the curve are written in terms of SO(16) invariants Tn, where

T2n =

8∑

i1<i2..in

m2
i1
..m2

in

and the mi are some bare mass parameters. As we saw for the curve with a only a few

non-zero masses, the curve away from the polynomial limit has the coefficients replaced

with polynomials of trigonometric functions of the bare masses. A convenient basis for

these functions are the set of T2n defined by taking

t8 =
8∏

i=1

sinmi, T16 = (t8)
2 , T2n = G2n − T2n+2 1 < n < 8 ,

where G2n =
∑

i1<..in

sin2mi1 ... sin
2min .

(4.1)

One then finds

T2 = 2− 2

8∏

i=1

cosmi .

We also define the parameter

T̃4 =
1

4
T 2
2 − T4 = T2 −G2 . (4.2)

The instanton expansion is computed as in the previous section, but now instead of

showing that a curve gives a character expansion, we assume that the character expansion

exists and use this Ansatz to determine the curve for 8 arbitrary masses. Of course, the

character expansions for E8 become large and unwieldy, even for the smaller representa-

tions, so it is not practical to explicitly check the instanton coefficients term by term to

see if they fit into characters.

However, an important fact is that the maximal subgroup of E8 is actually Spin(16).

This means that only the representations that are in the same conjugacy class as the

adjoint or one of the spinor representations of SO(16) appear in the instanton expansion.

The terms in the character expansions have the form exp(2i~m · ~Λ) where ~Λ is a point

on the weight lattice. The absence of vector representations and one of the spinor reps,

along with their conjugacy classes, simply means that the instanton expansion is invariant

12



under the Z2 transformation mi → mi + π/2. In terms of the expressions in (4.1), the Z2

transformation is

G2n →
n∑

m=0

(
8−m
8− n

)
(−1)mG2m

t8 → 1− T2/2 T2 → 2− 2t8.

(4.3)

Surprisingly, insuring that the instanton expansion is invariant under this transfor-

mation is sufficient to determine the complete E8 curve. Furthermore, not many extra

terms appear away from the polynomial limit. The extra piece that should be added to

the conformal curve in the appendix is

x2(u2 + 2t8T̃4) + x
(
2T2t8u

2 + (2t8T8 + t8T̃
2
4 /2

+ 4t28 − T12T̃4)u+ 4t28T6 − 2t8T10T̃4 + 4t28T2T̃4 + T14T̃
2
4

)

− 8T8u
4 − (4t8T6 + 8T14)u

3 − (4T14T6 + 8t8T12 − 2t8T̃4T8 + 8t28T̃4 − t28T
2
2 )u

2

+
(
4t38T2 − t28(8T10 − 2T2T8 + 2T6T̃4 − (T2T̃

2
4 )/2)− t8(4T12T6 + 4T14T̃4 + T12T2T̃4 + T10T̃

2
4 )

+ 2T14T8T̃4
)
u

+ 4t48 + t38(4T2T6 − 4T8 + 2T 2
2 T̃4 − T̃ 2

4 )− t28(4T10T6 − T 2
8 + 2T12T̃4 + 2T10T2T̃4

− (T8T̃
2
4 )/2− T̃ 4

4 /16) + t8(T12T8T̃4 + T14T2T̃
2
4 + (T12T̃

3
4 )/4) + (T 2

12T̃
2
4 )/4− T10T14T̃

2
4

(4.4)

In fact this term reduces to x2u2 if at least three of the masses are zero. In order to fully

determine (4.4) it was necessary to compute the fifth instanton in the expansion. We will

discuss instanton expansions in more detail in the next section. In the conformal limit,

the variables have dimensions [x] = 10, [u] = 6 and [Tn] = n, so that all terms in (B.1)

have dimension 30. Using these conformal dimensions, we see that all terms in (4.4) have

dimension 32. This of course does not mean that all possible dimension 32 terms appear,

in fact the majority of them do not.

4.2. The curves for the other En

With the full E8 curve one can derive the curves for the smaller En. To compute the E7

curve, take m7 = iΛ+µ and m8 = −iΛ+µ and take the limit Λ → ∞ (which corresponds

to a large mass for the five dimensional gauge theory). In this limit sinm7 ≈ ieΛ−iµ/2 and

sinm8 ≈ −ieΛ+iµ/2. The Tn parameters scale as

T2 = (e2Λ/4)(T2,6 − 2) T̃4 = (e2Λ/4)(T2,6 − 4 sin2 µ)

T6 = (e4Λ/16)(T2,6 − T 2
2,6/4) t8 = (e2Λ/4)t6

T2n = (e4Λ/16)T2n−4,6 4 ≤ n ≤ 7,

(4.5)
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where Tn,6 are the Tn variables for the remaining six masses. Rescaling the u and x

variables

u→ 1

4
e2Λu x→ 1

16
e4Λ(x+ t6T2) (4.6)

and keeping only the leading terms in eΛ one finds the E7 curve given in Appendix B.

The E6 curve can be derived by scaling three masses, with m6 = iΛ1 + 2λ/3, m7 =

iΛ2 + 2λ/3, and m8 = −i(Λ1 +Λ2) + 2λ/3. Taking the limit Λi → ∞ the Tn scale as

T2 = (e2(Λ1+Λ2)/8)(T2,5 − 2) T̃4 = (e2(Λ1+Λ2)/8)(T2,5 − 2 + 2e−2iλ)

T6 = −(e4(Λ1+Λ2)/64)(1− T2,5 + T 2
2,5/4) T8 = (e4(Λ1+Λ2)/64)(−T2,5 + T 2

2,5/4)

t8 = i(e2(Λ1+Λ2)/8)t5 T2n = −(e4(Λ1+Λ2)/64)T2n−6,6 5 ≤ n ≤ 7

(4.7)

After rescaling u and x as

u→ ie2(Λ1+Λ2)e−iλu/8 , x→ −e4(Λ1+Λ2)

(
e−2iλx+

i

2
T2ue

−iλ + 2it5 − iT2t5

)
/64,

(4.8)

the E8 curve reduces to the E6 curve in the appendix. Note that even for the massless E6

case, there are imaginary coefficients for the curve. One consequence of this is that the E6

character expansion will be not be symmetric under complex conjugation.

The smaller En can be derived in a similar fashion. The masses satisfy

mi = iΛi +
2

9− n
λ n ≤ i < 8, m8 = −i

7∑

i=n

Λi +
2

9− n
λ. (4.9)

The u and x variables are then scaled as

u→
(
i

2

)9−n
e2i
∑

Λie−iλu x→
(
i

2

)18−2n

e4i
∑

Λie−2iλx (4.10)

It is also convenient to shift the x variable in order to have a more compact expression.

The particular shift depends on which En theory is being considered. The curves along

with the scaling details for these smaller En are given in the appendix.
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5. Character Expansions and Holomorphic Curves

5.1. Rational curves in Bn

The contributions of the characters of the form (3.7) to the instanton expansion are

given in tables 1, 2 and 3 for the En groups. We have expressed the characters in terms of

the Weyl orbits instead of the En representations. As was shown in [11], this is a natural

way to classify the holomorphic curves on the various del Pezzo surfaces.

The Bn del Pezzo surfaces are constructed by blowing up n points on CIP2. The

anti-canonical divisor is given as

K = 3l −
n∑

i=1

ei (5.1)

where l is the anti-canonical divisor on CIP2, in other words, it is a generic line, and the ei

are the n exceptional divisors of the blow-up points. The intersection matrix is generated

by l2 = 1, e2i = −1 and ei · ej = 0 if i 6= j. A curve in the homology class a0l −
∑
aiei

then has degree

d = a · µ = 3a0 −
∑

ai, µ = (3, 1, 1, 1, 1, 1, 1, 1, 1). (5.2)

The arithmetic genus of this curve is given by

ga =
1

2
(a0 − 1)(a0 − 2)− 1

2

∑
ai(ai − 1), (5.3)

which counts the number of double points on CIP2 that are not on the blow-up points.

The holomorphic curves can then be grouped into U(n) Weyl orbits and for n = 6, 7, 8,

these multiplets can be further combined into E6, E7 and E8 multiplets. The weight length

squared for a given curve is

L2 = −a20 +
∑

i

a2i +
d2

9− n
(5.4)

or in terms of the degree and the arithmetic genus is

L2 =
1

9− n
d2 + 2(1− ga). (5.5)

The ai are non-negative integers and a0 is positive, except when the curve is one of the

exceptional divisors. In the latter circumstance one has a0 = aj = 0, j 6= i and ai = −1

for the ei divisor.
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Finally, not all combinations of a0 and ai are allowed. Obviously, we cannot have a

curve with arithmetic genus less than zero. We also cannot have curves where a0 < ai+aj

for any i and j. Otherwise, it would be possible to have a line intersecting a curve of degree

a0 in CIP2 more than a0 times, which violates Bezout’s theorem. Other constraints are

2a0 ≥ a1 + a2 + a3 + a4 + a5,

3a0 ≥ 2a1 + a2 + a3 + a4 + a5 + a6 + a7

4a0 ≥ 2a1 + 2a2 + 2a3 + a4 + a5 + a6 + a7 + a8

5a0 ≥ 2a1 + 2a2 + 2a3 + 2a4 + 2a5 + 2a6 + a7 + a8

6a0 ≥ 3a1 + 2a2 + 2a3 + 2a4 + 2a5 + 2a6 + 2a7 + 2a8.

(5.6)

One consequence of these constraints is that ai ≤ d for B6 and B7 and ai ≤ 2d, |ai−aj | ≤ d

for B8.

d 1 2 3 4 5

L2 dim

0 1 12 −132 4068 −224688 17720400

2 240 1 −20 927 −66912 6381850

4 2160 −2 180 −18496 2207400

6 6720 27 −4656 729000

8 17280 3 −1056 228890

8 240 −976 226100

10 30240 −200 67325

12 60480 −32 18540

14 69120 −4 4725

14 13440 4325

16 138240 1025

16 2160 1100

18 181440 205

18 240

20 241920 35

20 30240

22 181440

22 138240 5

Total 252 −9252 848628 −114265008 18958064400

Table 1: Coefficients for E8 Weyl orbits in instanton expansion. The bottom line is the coefficient

when all mi = 0.
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d 1 2 3 4 5 6

L2 dim

0 1 −20 −976 −179028

3/2 56 1 27 4325

2 126 −2 −200 −54894

7/2 576 3 1025

4 756 −32 −15624

11/2 1512 205

6 2016 −4 −4140

6 56 −3780

15/2 4032 35

8 4032 −936

8 126 −1020

19/2 4032 5

19/2 1500

10 7560 −198

12 10080 −36

12 1312

14 4032 −6

14 12096

14 576 −6

Total 56 −272 3240 −58432 1303840 −33255216

Table 2: Coefficients for E7 Weyl orbits in instanton expansion.
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d 1 2 3 4 5 6

L2 dim

0 1 27 −3780

4/3 27 1 −32

4/3 27 −2 205

2 72 3 −936

10/3 216 −4

10/3 216 35

4 270 −198

16/3 432

16/3 432 5

6 720 −36

8 432 −6

8 72 −6

Total 27 −54 243 −1728 15255 −153576

Table 3: Coefficients for E6 Weyl orbits in instanton expansion. The bottom line is the coefficient

when all mi = 0.

For instanton number d, one finds that characters with weight lengths squared up to
1

9−nd
2 − d + 2 contribute to the pre-potential. These maximal weight characters corre-

spond to the holomorphic curves of degree d and arithmetic genus 0. The shorter lengths

correspond to curves with non-zero arithmetic genus.

5.2. Flowing from E8 to En

The data given in Tables 1–4 was generated by working with the individual curves for

En, 5 ≤ n ≤ 8. Upon inspection one notices many smiliarities in the orbit degeneracies:

namely for a given degree, any number that appears in the E6 or E7 table, also appears in

the E8 table (although the reverse is not true). In retrospect, this should not have been a

surpise given that we obtained instanton expansions like (3.6) in terms of functions of the

form (3.7).

One of the beautiful features of the functional form of (3.7) is that one can easily use

it to study the flows down the chain of En del Pezzo surfaces. If one thinks of (a purely

imaginary) mi as representing the scale of a del Pezzo 2-cycle, or as representing a mass

of a hypermultiplet, then by taking mi → i∞ one decouples the corresponding states from

the non-critical string, and decouples the corresponding hypermultiplets from the field
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theory. Thus the scaling procedure given in the last section for getting the En curves from

the E8 curve should produce the proper instanton expansions for the En theory. This is

indeed what we find.

To be more specific, to get the En curves, not only were 9 − n of the masses given

large imaginary values, iΛi, but u was rescaled as well. Recall that to leading order,

u = exp(−2πiφ), so the rescaling in u corresponds to a shift in φ, and hence a rescaling

of q. Indeed, for the scaling in (4.10) one finds q → e−2
∑

Λiq. The mass shifts generate

a scaling in e2i~v·~m → e
∑

i
viΛie2i~v·~m. Thus, depending upon which of these scalings wins

out, there are three possibilities for the function qde2i~v·~m/(1 − qde2i~v·~m) in (3.7): (i) it

vanishes, (ii) it is independent of the Λi, or (iii) it goes to −1. If the last possibility is

realized then it generates a contribution to the constant term at the front of the instanton

expansion. To be consistent with the anomaly computation in the five-dimensional field

theory [7], this constant must change from −1 in the E8 theory to (n−9) in the En theory.

To find out what happens to the contributions of the various vectors, ~v, under the

rescaling, it is most convenient to work in the basis described in section (5.1). The inner

product between any two vectors a1 and a2 that correspond to rational curves is

(a1, a2) = −(a1 − d1µ) · (a2 − d2µ) = d1d2 − a1 · a2, (5.7)

where d1 and d2 are the degrees for a1 and a2 respectively. In this basis, it is clear that

the mass shift vector can be chosen to be

iΛ =
8−n∑

i=1

Λien+i (5.8)

Hence, the inner product of a vector a with iΛ is

(a, iΛ) = d
8−n∑

i

Λi −
8−n∑

i

Λian+i (5.9)

Assuming that Λi > 0, we see that (a, iΛ) > d
∑
i Λi only if some of the ai are negative.

But this is possible only for the ei divisors, with i ≥ n. Hence, the contribution of these

vectors to the rescaled instanton sum is n− 8, exactly as required. For all other a, the ai

components are non-negative, so the inner product is an equality only if ai = 0 for i ≥ n.

Hence, the characters from these vectors will flow to En characters and the coefficients

in front of the characters remain the same. If any of these ai are positive, then the

corresponding contribution to the E8 character flows to zero.
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We can also flow to the B0 surface, which is CIP2, with the mass shift iΛ =
∑8
i=1 Λiei.

In the SO(16) basis e1 = 1
2
(1, 1, 1, 1, 1, 1, 1, 1, 1). In this case, one finds that the instanton

expansion only has contributions when d = 0 mod 3. Presumably, this instanton expansion

is giving us information about rational curves on CIP2.

The fact that this works so simply, and is completely consistent with the results coming

from the Calabi-Yau compactifications [4], and from the field theory [7], gives even more

support to the contention that the effective action is faithfully capturing the structure of

the non-critical string.

5.3. Reducing E8 with real values of mi

We have jsut seen that by tuning m7 and m8 to large imaginary values, we could flow

from the E8 curve to the En curve. These values of the masses correspond to Wilson lines

along the sixth dimension. By T duality, we would expect a similar result for Wilson lines

along the fifth dimension.

In particular, consider what happens to the instanton expansion when m7 = m8 =

π/2, with all other mi = 0. A straightforward calculation gives for the Yukawa coupling

∂2φφD = −1 + 28
q

1− q
− 136

8q2

1− q2
+ 1620

27q3

1− q3
− 29216

64q4

1− q4
+ ... (5.10)

This is the massless E7 instanton expansion, up to a factor of two. If m7 = m8 = π, then

we get back the original massless E8 expansion.

Likewise, when m6 = m7 = m8 = π/3 and all other mi = 0, then the E8 characters

lead to the expansion

∂2φφD = −1 + 9
q

1− q
− 18

8q2

1− q2
+ 81

27q3

1− q3
− 5085

64q4

1− q4
+ ... (5.11)

which is the E6 expansion, up to a factor of three.
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5.4. General Structure of the Instanton Expansion

Rational curves of degree d in Bn are not isolated for d ≥ 2: they have moduli spaces

of dimension d−1. In [12,11] the curve counting was stablized by requiring that the curves

pass through d − 1 points in general position. If the curve has arithmetic genus equal

to zero, then according to [11] this imposes an additional d − 1 linear constraints. This

suggests that the moduli space of curves of arithmetic genus zero is CIPd−1. For the curves

of small degree one can easily check this explicitly. For instance, consider conics going

through p of the blow-up points on CIP2. The degree of such a curve is 6 − p. A general

conic on CIP2 has the form

0 = a1X
2 + a2Y

2 + a3Z
2 + a4XY + a5XZ + a6Y Z . (5.12)

Since conics are automatically rational, there are no constraints on the ai. Hence the

moduli space for conics on CIP2 is CIP5. Requiring that the conic pass through p points

leads to p linear constraints on the ai and reduces the moduli space to CIP5−p.

The usual expectation from using mirror symmetry to count rational curves is that

if there is a non-trivial space of moduli, then the the “number” of such curves is the

Euler characteristic of the moduli space. On a more physical level the Euler characteristic

should be thought of as a “net number” after some deformation has broken the continuous

degeneracy of the space of rational curves. At any rate, since the Euler characteristic

of CIPd−1 is d, and the degeneracy of rational curves of arithmetic genus zero is indeed

d(−1)d+1 (where the sign is due to the embedding of the holomorphic curve), we seem to

have some agreement with what one expects from mirror symmetry. However, this only

“explains” the counting of curves of arithmetic genus zero.

The computation of the character expansions within the instanton expansion gives

us the ability to a take a family of curves of a given degree and separate out curves of

different arithmetic genus: for a given degree, the length-squared of the vector on the root

lattice decreases with the arithmetic genus. Moreover, it is possible to have more than one

Weyl orbit of vectors of a particular length, and starting at arithmetic genus three, these

different orbits can come with different non-zero coefficients in the instanton expansion.

As a result we should be able to make a finer distinction between the various parts of the

moduli spaces that contribute to the entire moduli space of curves, and somehow see this

reflected in the computation of the Euler characteristic. It has been suggested that what

we are seing is the Euler characteristic of different “stratifications of the moduli space”

[13].
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In order to try to get some control over the large amount of data that we have gathered,

we now try to extract some universal information. As we have seen, the longest weights

at a given degree d have degeneracy d. We also note that the second longest weights also

fit into a pattern. Except for the d = 1 case, this coefficient appears to be 12d− d2. These
are the characters that correspond to the curves with arithmetic genus 1.

We have also found patterns for the curves with ga ≤ 4, and indeed have found

polynomials that fit the Weyl orbit degeneracies. In order to find these polynomials, it is

necessary to compute the instanton expansions at least up to order 10. This is impractical

for E6 and higher but is possible for E5 = SO(10). The SO(10) case will not contain all

of the coefficients, but it contains enough to at least study the curves for ga ≤ 4. Table

4 contains the SO(10) coefficients for degrees 7 through 10. Using these numbers and the

lower numbers obtained from the E8, E7 and E6 curves, we can construct Table 5.

As with ga = 1, the the first number in each row actually violates the polynomial

rule. Given this, the reader might be surprised to note that we were able to derive the

second fifth order polynomial for the ga = 4 case with just two data points (the first point

is assumed to violate the rule). However, we actually have more information, since we

assumed that the unknown coefficients were positive integers for d < 15. If we also use

the Ansatz that the polynomial contains the product of two quadratic polynomials, then

there is a unique result.

An interesting fact about the instanton expansion is that not all Weyl orbits appear

in the expansion at a given instanton number d, even if other orbits of equal or greater

length appear. For instance, for d = 3 in the E8 case, the 240 of L2 = 8 does not appear.

As it so happens these holomorphic curves do not exist, since they violate the constraints

in (5.6). Another interesting observation about these holomorphic curves is that curves

with arithmetic genus zero appear at all degrees, but seem to have an upper degree limit

for ga 6= 0. For instance, for ga = 1, there are no curves with d > 9. The ga = 1 curves

have the coefficients 12d− d2, hence this number never changes sign. We expect a similar

result for higher values of ga.
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d 7 8 9 10

L2 dim

0 1 −9604

5/4 16 25758

1 10 −181550

5/4 16 812

2 40 −2752

13/4 80 7992

3 80 −61700

13/4 80 182

4 10 −768

4 80 −672

5 16 −17770

5 16 −20000

5 80 −20750

21/4 160 2106

21/4 160 35

6 240 −160

7 320 −5700

29/4 80 630

29/4 160 531

29/4 80 7

8 40 −32

9 10 −2250

9 240 −1550

37/4 320 135

10 80 −8

11 240 −500

11 160 −400

45/4 16 27

13 80 −110

13 80 −110

53/4 80 9

17 80 −10

Table 4: Coefficients for SO(10) Weyl orbits in the instanton expansion. We have only included

those Weyl orbits that contribute up to d = 10.
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d 1 2 3 4 5 6 7 8 9 10 Polynomial

ga

0 1 2 3 4 5 6 7 8 9 10 d/0!

1 12 20 27 32 35 36 35 32 27 (12− d)d/1!

2 132 180 200 205 198 182 160 135 110 (d2 − 27d+ 192)d/2!

3 927 1056 1025 936 812 672 531 400 (d2 − 30d+ 248)(15− d)d/3!

3 976 1100 1020 ? 768 630 500 (d2 − 29d+ 240)(16− d)d/3!

4 4656 4725 4140 ? 2752 2106 1550 (d2 − 31d+ 270)(d2 − 35d+ 312)d/4!

4 4325 3780 ? ? ? 2250 (d2 − 19d+ 198)(15− d)(20− d)d/4!

Table 5: Coefficients for a given degree and arithmetic genus. The question marks indicate values

that are non-zero but which we did not determine. The Polynomial gives the d dependence for

the coefficients. For non-zero ga, the first term in each row violates the polynomial rule.

We should stress that except for the d = 1 or ga = 0 curves, the coefficients in Table

5 are not the Euler numbers for the moduli spaces of the relevant curves. For instance the

coefficient for the d = 2, ga = 1 curves is −20, but the Euler number for the moduli space

of these curves is −4. One can derive this as follows. Let F (x, y, z) = λ1f1 + λ2f2 + λ3f3

be a pencil of cubics that intersects seven points on CIP2. To reduce this pencil to the

space of rational cubics, there must be a double point, in other words a point where

∂xF = ∂yF = ∂zF = 0. This has a solution for a set {λ1, λ2, λ3} if the determinant

∆ = |∂ifj| is zero for some point on CIP2. The determimant ∆ is a sixth order polynomial

on CIP2, which naively is a genus 10 Riemann surface. However, ∆ has a double point at

each of the original seven points, hence the genus is 3 and the Euler number is −4.

Even though the instanton coefficients are not the Euler numbers, we believe that the

polynomials in Table 5 contain information about the topological structure of the spaces

of moduli of the curves. For example, the coefficients for the terms linear in d are very

interesting numbers: they appear in the work of [12,11], and for a given ga represent the

number of rational curves of degree d through d− 1 specified points in general position in

CIP2 or IP1 × IP1. The leading term in the polynomial seems to have the universal form

dga+1/(ga)! and presumably reflects some combinatorial factor. It is amusing to conjecture

that the dp coefficients of the polynomials are related to the Euler characteristic of the

p− 1 dimensional space of rational curves of degree d passing through d− p points.

As regards the “errors” for ga = 1 in the polynomials in table 5, it is tempting to try

to associate this with the fact that we are looking at a degenerated torus compactification
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of the non-critical string. For example, there are actually 12 curves with d = 1, ga = 1,

rather than the 11 predicted by the polynomial formula. These rational curves can be

found explictly and correspond to the singular fibers on the 2-fold in (x, y, u) defined by

(2.4). One of these fibers is at infinity in the u plane, leaving 11 at finite u.

While the mathematical interpretation of these degeneracies is as yet unclear, it seems

very likely that one will ultimately be able to find the proper interpretation. However, we

feel that this is not the right way to understand the issue. There should be a simple

physical characterization of these degeneracies, and the mathematical interpretation will

then amount to a magical property of this partition function of the non-critical string.

From the physics perspective, the most important fact about the polynomials in Table

5. are that they are universal: that is, they represent degeneracies for the En string for

any n. One should recall that in terms of the compactified string, the degree d represents a

winding number and momentum state of a string on a circle. The belief is that the d-wound

state is, in fact, a bound state, and so these degeneracy polynomials are fundamental, group

theory independent, properties of the bound states spectrum.

5.5. Counting states via BPS geodesics

Our approach to the En string has been based upon a IIB compactification on a

Calabi-Yau manifold in which one has integrated out two dimensions to obtain a torus.

As mentioned earlier, this should enable us to see the string rather explicitly, and as in

[8,14,15,16,17], count BPS states by counting indecomposable geodesics on the torus with

metric ds2 = |λSW|2. The existence of BPS geodesics can be rather subtle in that the

curves of minimal length with a given set of winding numbers could be decomposable

into concatenations closed geodesics of other winding numbers. In such circumstances,

the corresponding BPS state will be either marginally stable or unstable. Thus, at strong

coupling, some purely electric states can become unstable (like the W -boson in N = 2

supersymmetric gauge theory). However, if one is interested in the purely electric bound

states of the En string, one might hope that if the string tension is high enough, then

all such states would be stable against decay into magnetically charged states. Thus all

the fundamental electrically charged excitations of the En non-critical strings should be

counted by looking at all the homotopy classes of strings on the torus with winding numbers

(1, 0) about the (A,B)-cycles. We will therefore see to what extent this approach replicates

the state counting that we have already done.

To count the geodesics properly, one must of course, keep track of the hypermultiplet

charges, and this is done by turning on all of the mass parameters and keeping track of the
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winding numbers around the simple poles of λSW whose residues are linear combinations

of the mi. We will refer to such poles as relevant poles. We will ignore both the

multi-sheeting of the torus induced by the logarithm, and the (irrelevant) poles of residue

2πiN/R5, since as we discussed before, this structure is related to Kaluza-Klein momenta.

The obvious hypothesis for the set of stable, fundamental electric BPS states is the set of

curves that pass once around the A-cycle of the torus, passing between relevant poles of

λSW. The number of such states is equal to the number of relevant poles of λSW.

So far in this paper we have not needed λSW for the massive theory in order to do the

BPS state counting. Now we need it, and we need to exploit an ambiguity in its definition.

As discussed in [10,6], the Seiberg-Witten differential is defined by finding λSW so that

Ω(2) ≡ ω ∧ du = dλSW, where ω is the holomorphic differential on the torus. The problem

is that Ω(2) is not exact – it has non-trivial integrals over the 2-cycles in the surface that

is defined by (x, y, u). To define λSW one must first excise these 2-cycles, and for λSW

to be meromorphic, once must excise these curves holomorphically. One also wants to

preserve the proper discrete symmetries, so one must make excisions in an appropriately

Weyl invariant manner. Thus one is to excise Weyl orbits of rational curves: but there

is the choice of the degree of these curves. One usually excises lines, but this is for the

sake of simplicity and convenience: As was evident in [6] one could equally well excise

quadratics or cubics, or even higher degree curves. As described earlier, rational curves

are labelled by weight vectors, and the length of the weight vector increases with degree.

By Bezout’s theorem, such a curve generically intersects the Seiberg-Witten torus (defined

by u = constant) d times. Thus excising such a curve introduces in λSW, d simple poles

each with the residue ~v · ~m, where ~v is the weight label, and the components of ~m are the

mass parameters.

Thus excising a Weyl orbit of rational curves of degree d gives rise to d poles for each

vector in the orbit, and hence the indecomposable BPS states come with an additional

degeneracy factor of d. Thus we have another understanding of the degeneracy of the

curves of arithmetic genus 0 – the multiplicity comes from the intersections of each curve

with the Seiberg-Witten torus.

One can also begin to see how the degeneracies might work for curves of non-zero

arithmetic genus. As we stressed in the previous section, the degeneracies are not simply

the Euler number for the moduli space of rational curves, but probably some combination

of Euler numbers of various pieces of the moduli space. Here we propose a slightly more

precise physical description: the degeneracy is computed by counting intersections of curves

of degree d with the planes u = u0, where u0 is a constant (i.e. intersections with the
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Seiberg-Witten torus). As described above, each such curve intersects the torus d-times,

and so each degeneracy polynomial must have a factor of d. For higher arithmetic genus

the necessary refinement is that the presence of double points may require that we look

at tori at specific values of u0, and then sum over choices of u0. For example, one of the

points in the moduli space of the curves with arithmetic genus 1 is the torus itself, i.e.

the curve u = u0. For this curve to be rational, it must have a double point, and so the

discriminant must vanish at u = u0. For E8 the number of such zeroes is 12, and for En

it is n + 3. For En, curves of arithmetic genus 1 first appear at degree d = 9 − n, and

since the number of moduli is d−1, the degeneracy for E8 is simply 12 (there is a singular

fiber at u = ∞). For En, n < 8 each singular torus belongs to a family of rational curves

of the same degree. A generic member of this family intersects u = u0 at d points. Thus,

counting the self-intersections of the singular Seiberg-Witten tori gives us d(12− d) which

is the correct degeneracy for ga = 1 rational curves. We also see more clearly that the

“error” for d = 1 is associated with the singular fiber at u = ∞.

The foregoing discussion of curves is far from rigorous, but very suggestive. It would

thus be very interesting to revisit the IIB string compactifications that lead to these models

and see how the choice of the degree of the excised curves arises in the construction, and

how the BPS geodesic methods are to be modified so as to properly incorporate the curves

of higher arithmetic genus. This might lead to a simple physical understanding of the

degeneracy polynomials and their relationship to the topology of moduli spaces.

6. Toroidal compactification of the non-critical string

Thus far we have considered the non-critical string compactified on a degenerate torus

with R5/R6 = ∞. We now briefly consider the corresponding story with R5/R6 finite.

From the form of the trigometric tori in the appendices and in section 2, it is fairly

obvious how to restore the lost modulus of the torus, and the corresponding double peri-

odicity of the complexified Wilson line parameters. For the curves with up to two non-zero

masses one simply replaces the sine functions by the corresponding Jacobi elliptic functions,

sn(u, k), where k = ϑ42(0|τ)/ϑ43(0|τ) is the elliptic modulus, and τ is the usual Teichmuller

parameter of the torus. The surface (2.6) becomes

y2 = x3 + (1 + k2)u2x2 + k2 u4 x

− 2u (u2 + sn2(m+)x) (u
2 + sn2(m−)x) .

(6.1)
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It is shown in Appendix A that this is indeed the proper form for the curve. For the curves

with more than two non-zero masses the situation becomes considerably more complicated

(essentially because there are many natural elliptic functions that reduce to unity in the

trigonometric limit). However, the curves can be obtained using the approach of [9].

In appendix A we also construct the Seiberg-Witten differential associated with this

surface, and even for two masses the explicit expressions are extremely complicated. The

important point for the discussion here is that the logarithms in (2.2) are replaced by

inverse elliptic functions:

∫ sn(m)

0

dt

(1− t2)(1− k2t2)
= m . (6.2)

This is necessary to make the residues of the Seiberg-Witten differential linear in the

masses, while having the curve itself doubly periodic in its dependence on the masses.

Moreover, the non-critical string compactified on a torus must have Kaluza-Klein exci-

tations of mass 2πi(N1/R5 + N2/R6), for all integers N1 and N2. One sees that this is

properly encoded in the differential if it has a prefactor of 1/R5 as in section 2, but is now

the inverse of an elliptic function with Im(τ) = R5/R6.

We can now push the construction of [5] backwards so as to reconstruct a non-compact

Calabi-Yau manifold with two moduli that are the complexified versions of kD + kE and

kE . To resolve an ambiguity in how to do this we need a slightly more explicit form of

the Seiberg-Witten differential. The construction in Appendix A generically involves the

following indefinite integral:

∫ 1

0

dv√
x3 + (1 + k2)u2v2x2 + k2u4v4x+ f(x, u;mi)

, (6.3)

where

f(x, u;mi) ≡ y2 − (x3 + (1 + k2)u2x2 + k2u4x) (6.4)

represents the perturbation of the curve away from the massless point. In particular, note

that f is independent of the integration variable, v. Reversing the calculation of [5] this

suggests that we should interpret v as one of the Calabi-Yau coordinates, and the point

v = 1 should correspond to a limit of integration that is set (as in [5]) by the integration over
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the third Calabi-Yau coordinate. Thus, one can easily arrive at the following expression

for the non-compact Calabi-Yau manifold (without mass parameters 4):

w2 = z31 + z62 + z63 − 1

z64
+ ψ2(1 + k2)(z1z2z3z4)

2 + k2ψ4z1(z2z3z4)
4 . (6.5)

Given the identification of the new parameter in terms of the torus compactification

of the non-critical string, one can use the work of [4] and [5] to relate it to modulus of

the Calabi-Yau in the IIA compactification. Indeed it is the complexification, tE , of the

Kähler modulus kE .

Thus we propose that this non-compact Calabi-Yau manifold (or the corresponding

torus) captures the sector of the non-critical string that is defined by the closed sub-

monodromy problem described in [5] that associated with the two parameters tS and tE .

In practical terms, this means that we should be able to pass between phase I (tS < tE) and

phase II (tS > tE), perhaps seeing the phase transition or some curve of marginal stability.

We should also be able to generate the full instanton counting of [4], with independent dE

and dD independent. Work is continuing along these lines, and preliminary calculations

indicate that one should be able to find expressions for the degeneracies explicitly in terms

of modular functions of τ . The precise computation is rather complicated as one needs

to carefully evaluate the “constants of integration,” in φ, and these “constants” can, in

principle, be very complicated functions of τ .

7. Conclusions

We have shown that the effective action of a non-critical string does indeed capture

much of the information about the BPS structure of the theory. We have shown how

the formulation of the massive effective action is closely parallel to the corresponding

object in field theory, and yet it contains information that is appropriate to the string

compactification. In particular we used this effective action to count BPS states replete

with the full set of En character parameters. The fact that this computation works and

provides answers that are consistent with results from field theory and from Calabi-Yau

manifolds already represents a remarkable number of consistency checks on the overall

approach. Combined with the internal self-consistency of the character expansions, and

4 The construction of the Calabi-Yau manifold with mass parameters cannot be done by such

a simple procedure: if one tries the naive approach one obtains a Calabi-Yau manifold with too

few independent moduli.
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the proper behaviour of the flows from E8 to En, we feel that we have made a compelling

case, not only for the correctness but also for the utility of the approach.

We have focussed on a particular sub-sector of the non-critical string: One that corre-

sponds to the string wrapped d times around a circle and in a phase where all such states

are becoming massless. The general belief is that such multiply wrapped strings should

be bound states. By extracting the degeneracy polynomials in Table 5, we have obtained

the first predictions for the universal (En independent) degeneracies of such bound states.

As we remarked in section 5, there is almost certainly a beautiful mathematical character-

ization of these degeneracies. However, we believe that there should also be some simple

physical description of the degeneracies.

Based upon the picture of non-critical strings in terms of membranes stretching be-

tween a 9-brane and a 5-brane, a natural suggestion for the spectrum is a represenation

of E8 current algebra at level one (inherited from the 9-brane) multiplied by some eta-

functions (associated with the 5-brane). This is indeed what one finds [4] for the lowest

level of the non-critical string (dE = 1). The most natural first guess for the compacti-

fied and multiply wound string is the same current algebra representation, but with more

complicated structure, perhaps through level matching, coming from the 5-brane degrees

of freedom. This possibility is ruled out by our data: The level one representations gen-

erally have every Weyl orbit occurring once. One might be able to get around this by

multiplying by some eta-functions, or other modular functions and then doing some ex-

otic level matching, but our data shows that distinct Weyl orbits of vectors of the same

length usually come with different degeneracies. This cannot be realized by a simple level

matching of level one En characters with other modular functions. A less naive suggestion

is that the bound states may involve En current algebras at level d for the string wrapped

d times. Preliminary calculations for d = 2 indicate that this does not appear to work

either. Thus, in spite of all this data, a simple physical characterization of the spectrum

of the En string still eludes us.

Another potentially useful physical application of our degeneracy polynomials is in

entropy calculations where one need to estimate of the growth of the number of BPS

states [18]. For example, the degeneracy polynomials strongly suggest that the number

of En Weyl orbits corresponding to curves of degree d and arithmetic genus ga grows as

dga+1/ga!. Summing over ga for a given d one sees that the number of Weyl orbits must

grow as ed ∼ eL, where L is the length of the vectors in the corresponding Weyl orbit.

Since the number of weight vectors of En of a given length grows as Ln, and so this does
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not modify the exponential growth. A similar result has been obtained from a numerical

fit using the mirror map on the Calabi-Yau manifold [19].

Finally, we believe that the ideas described in section 6 will lead to far more complete

characters for the states of the En non-critical strings. In particular, we expect to obtain

explicit modular functions for some of the non-critical string degenaracies. This should

not only shed some light on the modular structure of the spectrum, but should also enable

some sharp estimates of the growth of the number of BPS states.
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Appendix A. Derivation of the E8 curve with up to two Wilson lines.

A.1. Introducing one mass

To construct the curves with the mass parameters, we follow the methods developed

in [6]. Before starting it is convenient to make the shift x→ x− 1
4u

2 in (2.4), and rescale

to obtain the curve

y2 = x3 − 1

48
u4x+

1

864
u6 + u5. (A.1)

We now add one mass parameter, which breaks the E8 symmetry down to SO(14). The

general form of the curve consistent with SO(14) symmetry has the form

y2 = x3 − (
1

48
u4 + bu3 + 3λu2) x + (

1

864
u6 + βu5γu4 + 2λu3) . (A.2)

Here b, β, γ and λ are constants that we will determine bellow. The discriminant of (A.2)

is given by

∆ = 4 (
1

48
u4 + bu3 + 3λu2)3 − 27 (

1

864
u6 + βu5γu4 + 2λu3)2. (A.3)

Since the global symmetry of the pertubed curve is SO(14) the discriminant has to be of

order u9 as u→ 0. This fixes: γ = bλ and β = b2/12λ. The rest of the constants can be

fixed by finding the appropriate lines. We will assume that the lines have the same form

as the ones in the polynomial curve of [6]. Therefore we look for lines of the form

x = µ2u2 + νu . (A.4)

With ν = −λ we have the spinor line. The adjoint line is obtained by setting ν = 2λ.

First consider the spinor line. If we set µ = t2 − 1
6 it is easy to verify that the line (A.4)

gives rise to a perfect square, and one obtains

y = iu3(t2 − 1
4)t . (A.5)

For our later analysis it is convenient to shift back x → x + 1
12u

2 − λu. The curve with

one mass now has the form

y2 = x3 + ( 14u
2 − λu)x2 + 6λ(t2 − 1

4)u
3x − 3λ(t2 − 1

4 )
2u5. (A.6)

Now it is also easy to verify that adjoint line is

x = −(t− 1

4t
)2u2 − 3λu (A.7)
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with

y = − i
(

1
8
(t− 1

4t
)2(t+

1

4t
)2u3 − 9

2
λ2 u(t− 1

12t
)
)
. (A.8)

Note here we have written the adjoint line for the curve (A.6).

One can easily recover to the polynomial limit of this curve as λ→ 0. From (A.6) we

see that t has to diverge in order to have a finite u5 term. With t ≈ Λ/m and λ = −1
3Λ

2m4

it is easy to see that when m→ 0 we reduce to the polynomial limit.

Next we construct the Seiberg-Witten differential λSW for the foregoing curve. By

definition one must have
dλSW
du

=
dx

y
+

d

dx
(. . .) . (A.9)

One starts by considering the following differential:

log

(
y + 1

2
ux

y − 1
2ux

)
dx

x
, (A.10)

where

y2 = x3 + ( 14u
2 − 3λ)x2 + 6λξu3x− 3λξ (A.11)

and ξ = (t2 − 1/4). The derivative of (A.10) with respect to u gives

d

du
log

(
y + 1

2ux

y − 1
2ux

)
dx

x
=

x3 − 3
2λux

2 − 3λξu3x+ 9
2λξ

2u5

y2 − 1
4u

2x2
dx

y
. (A.12)

This shows that (A.10) will not do the job and we need additional terms. First consider

differential
1

u

d

dx
log

(
y + 1

2
ux

y − 1
2ux

)
dx =

−1
2
x3 + 3λξu3x− 3λξ2u5

y2 − 1
4u

2x2
dx

y
. (A.13)

It is clear from (A.13) that (A.12) is not enough to cancel off the dominator. To this end

consider

log

(
y + 1

2
u x

y − 1
2u x

)
dx

ls
, (A.14)

where ls = x − ξu2 is the spinor line. With this definition we can rewrite our curve in

the form
y2 = ls q + r2 , rs = u3tξ

q = x2 + (t2u2 − 3λu)x+ u2ξ(u2t2 + 3λu) .
(A.15)

The derivatives of (A.14) are given by

( d
du

− d

dx

dl

du

)
log

(
y + 1

2
ux

y − 1
2ux

)
dx

l
=

−1
2{l, q}u x+ xq − uq dldq − 2r2

y2 − 1
4
u2x2

dx

y
, (A.16)
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where {l, q} = dl
dx

dq
du − dl

du
dq
dx . Combining equations (A.12), (A.13) and (A.16) we can

construct a Seiberg-Witten differential

λ
(s)
SW = log

(
y + 1

2
ux

y − 1
2ux

)
dx

x
− 2

3 log

(
y + 1

2
ux

y − 1
2ux

)
dx

x− ξu2
(A.17)

that satisfies

d

du
λ
(s)
SW = 1

6

dx

y
− 1

3

d

dx

(
log

(
y + 1

2ux

y − 1
2
ux

)
dx

u

)
− d

dx
2ξu log

(
y + 1

2ux

y − 1
2
ux

)
dx

x− ξu2
.

(A.18)

In the this construction we have only used the spinor line, but the full Seiberg-Witten

differential should also contain a contribution from the adjoint line

la = x− (t− 1

4t
)2u2 − 3λu ra = 1

8 (t−
1

4t
)2(t+

1

4t
)u3 − 9

2λ
2 u(t− 1

12t
) . (A.19)

In order to include the adjoint line la we have to proceed in a slightly different fashion.

Note the argument of log

(
y+

1
2 (uls + αsrs)

y−1
2 (uls + αsrs)

)
is different from log

(
y+

1
2 (ula + αsra)

y−1
2(ula + αsra)

)
.

This means if one takes derivatives of these functions with respect to u the dominators

will generically be different, and so these terms cannot combine to form a Seiberg-Witten

differential. However if we choose αs and αa so that

−xsu+ αsrs = −xau+ αara (A.20)

then the dominators will be the same and we can construct a Seiberg-Witten differential.

We can solve equation (A.20) for αs and αs by comparing the terms of order u2 and u3.

After simple algebra we have

αs = −αa =
2

3(t− 1
12t

)
. (A.21)

It is easy to see that the Seiberg-Witten differential with the adjoint line will be of the

form

λ
(a)
SW = log

(
y + 1

2 (ula + αara)

y − 1
2
(ula + αara)

)( dx

la + α rau
+ b1

dx

la
+ b2

dx

ls

)
, (A.22)

where the constants b1 and b2 are determined by demanding that λ
(a)
SW satisfies the following

condition
d

du
λ
(a)
SW +

d

dx
(· · ·) = k

dx

y
. (A.23)
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A simple substitution allows as to solve for the unknown coefficients to obtain b1 =

−1
2 , b2 = −1 and k = 0. Surprisingly, we find k = 0, and so we have a null contribution

to the Seiberg-Witten differential. It is clear that the full Seiberg-Witten will be a linear

combination of λ(s) and λ(a)

λSW = C1λ
(s)
SW + C2λ

(a)
SW . (A.24)

We fix the coefficients C1 and C2 by comparing this with the superconformal or polynomial

limit. We described above how to make this limit for the curve, and applying the same

procedure to the Seiberg-Witten differential, we find that the leading term is given by

(
C1

3
− C2

2
)u
dx

y
− ( 2

3
C1 +

2
3
)
rs
t

dx

yls
+ 1

3
C2
ra
t

dx

y la
. (A.25)

The Seiberg-Witten differential in the polynomial limit with one mass is given by

1

2
√
2π

(60u
dx

y
− 64i

m
2 rs

x− xs

dx

y
− 14i

mra
x− xa

dx

y
+ 42u

dx

y
) . (A.26)

They are consistent if we set C1 = 180
2
√
2π

and C2 = −84
2
√
2π

and then we have

d

du
(C1λ

(s)
SW + C2λ

(a)
SW ) =

30

2
√
2π

dx

y
(A.27)

Where the coefficient, 30, is the E8 dual Coexeter number, as it should be.

To obtain a physical interpretation of the parameter t one calculates the residue both

for the spinor and adjoint line. The residue of the spinor line is log
t+

1
2

t− 1
2

and the residue

of the adjoint is 2 log
t+

1
2

t−1
2

. Since the adjoint has a residue that is twice the residue of the

spinor we can identify the residue with the mass term

log
t+ 1

2

t− 1
2

= m . (A.28)

Before generalizing this result to two masses it is useful to summarize the final form of our

curve with one mass. We have found that curve with one mass is given by

y2 = x3 +
u2

4
x2 − 2Λ6u(4 sin2

m

4Λ
x+ u2)2 . (A.29)

Here we have set λ = 32
3 Λ6 sin4 m

4Λ .
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A.2. The curve and differential with two masses

We start the case of two masses by first studying the polynomial limit

y2 = x3 − (T2u
3 +

T̃ 2
4 u

2

12
)x− (2u5 + u4

T2T̃4
6

+
T̃ 3
4

108
) , (A.30)

where T̃4 = 1
4T

2
2 − T4 and T2 = m2

1 +m2
2, T4 = m2

1m
2
2. After shifting x → x − 1

6 T̃4u

the curve becomes

y2 = x3 − 2 ux2(
m1 +m2

2
)2(

m1 −m2

2
)2 − 2u3x((

m1 +m2

2
)2 + (

m1 −m2

2
)2)− 2 u5

(A.31)

In the shifted form the spinor line has a very simple form

x =
4

(m1 ±m2)2
u2 (A.32)

with

y =
8i

(m1 ±m2)2
u3 (A.33)

The adjoint lines, l±, have the form

x = − 1

(m+ ±m−)2
u2 + 2m2

+m
2
− , (A.34)

with

y = i(
u3

(m+ ±m−)3
± 2 m+m−
m+ ±m−

(m2
+ ±m+m− +m2

−) u
2) . (A.35)

Here we have also introduced the notation m± = m1±m2

2 .

To construct the trigonometric curve we make the Ansatz

y2 = x3 + 1
4
u2x2 + 1

2
T ′
4ux

2 − 2 u(u2 + 1
4
T ′
2x) . (A.36)

Recall that with one mass the curve was obtained by replacing m2 with 16 sin2 m4 . This

suggest then that the curve with two masses is obtained in a very similar fashion, namely

replacing m± with 4 sin2 m±

4 . This then leads us to the curve

y2 = x3 + 1
4u

2 x2 − 2u(4x sin2
m+

2 + u2)(4x sin2
m−

2 + u2) . (A.37)

Again we look for lines, starting with the spinor line. The generalization of equation (A.32)

is straightforward and we have

x = − u2

4 sin2 m±

2

, (A.38)
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with

y = i
cos m±/2

8 sin3m±
. (A.39)

Next we consider the adjoint line that has the form

x = − u2

4 sin2 m++m−

2

+ 32 sin2
m+

2
sin2

m−
2

u , (A.40)

with

y =
i u3 cos m++m−

2

8 sin3 m++m−

2

± 16 i u2 sin m+

2 sin m−

2

sin m++m−

2

·

(sin2
m+

2
+ sin2

m+

2
− sin2

m+

2
sin2

m−
2

± sin
m+

2
sin

m−
2

cos
m+

2
cos

m−
2

) .

(A.41)

As before, in order to construct the Seiberg-Witten differential we start with the spinor

residue and rewrite our curve using the spinor line ls in the form y2 = ls q + r2s where

ls = x+
u2

4 sin m±

2

, r2s = − cos2 m±

2

64 sin6 m±

2

u6

q = x2 − cos
m±

2 x

4 sin2
m±

2

u2 +
cos2

m±

2

16 sin4
m±

2

u4 − 8usin2m±

2 (u2 + 4 sin2 m±

2 x) .

(A.42)

Consider the differential

log

(
y + 1

2 (ul + αr)

y + 1
2 (ul + αr)

)
dx

l
. (A.43)

If we set α = α± =
2i sin

m±

2

cos
m±

2

it is easy to see that the residue im±. Proceeding in the same

fashion as in the one mass case one can construct a Seiberg-Witten differential using the

spinor line:

d

du

(
log

(
y + 1

2ux

y − 1
2ux

)(dx
x

− 1
3

dx

l+
− 1

3

dx

l−

))
= 1

6

dx

y
+

d

dx
(. . .) . (A.44)

With only one mass we saw that the full Seiberg-Witten differential requires the existence

of a null differential. It is not surprising that this will also be also for two masses. Again

before solving for these null differentials it is instructive to study the polynomial limit. For

two masses we have are six different poles: m+, m−, m+ +m−, m+ −m−, ma+ = 2m+

and ma− = 2m−. As we have seen, the spinor lines correspond to residues m± and the

adjoint lines corresponds to the residue m+ ± m−. The residues 2m± can be identified

with a second set of adjoint lines la±

x =
−u2
4m2

±
+ u(3m2

± −m2
∓)m

2
± −m6

±(m
2
+ −m2

−)
2 , (A.45)
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with

y2 = −(
u3

8m3
±
+6u2(5m6

±−m4
±m

2
∓)−4um8

±(9m
2
±−5m2

∓)(m
2
±−m2

∓)+8m12
± (m2

±−m2
∓)

3)2 .

(A.46)

It turns out that one can make a consistent Seiberg-Witten differential out of any two lines

la and lb. The following Ansatz leads to a Seiberg-Witten differential:

d

du
imara

dx

lay
− dla
du

d

dx
imara

dx

lay
+ Ab

( d
du

− dlb
du

d

dx

)
imbrb

dx

lby
+

d

du
α(U + T )

dx

y

+ β
d

dx
(x+ S)

dx

y
= k

dx

y
.

(A.47)

For example if we choose the lines l+ and l− we find that the unknown coefficients are

given by A = −1, k = −1
2 , T = 0, β = 1 and S = 2u2(m2

+ +m2
−)/m

2
+m

2
−

We can now use this this result find the final set of adjoint lines. The missing lines are

the generalization of the adjoint lines la± of the polynomial curve. From our experience

with the one mass case one should be able to construct a null Seiberg-Witten differential

using the lines l+ and la± . If this is the case then we have to satisfy the following condition

log
y + 1

2 (ul+ + α+r+ + l+C)

y − 1
2
(ul+ + α+r+ + l+C)

= log
y + 1

2 (ula+ + αa+ra+ + la+C)

y − 1
2
(ula+ + αa+ra+ + la+C)

. (A.48)

For l+ = x+ u2/4 sin2 m+

2 , r+ = iu3/8 sin3 m+

2 and for la+ = x+ 1
4

u2

sin m+

2

− b1u− λ2 and

ra+ = i cosm+

8 sin3m+
u3 + a2u

2a1uλ
3. Substituting these into (A.48), and demanding the l+ is

line on our curve, gives, after some algebra:

λ = −32i
sin3 m+

2

cos m+

2

(sin2 m+

2
− sin2 m−

2
)

b1 =
16 sin2 m+

2

cos2 m+

2

(
1
2 sin

2m+ sin2 m+

2 − sin2 m−

2

)

a1 =
−256i sin5 m+

2

cos3 m+

2

(sin2
m+

2 − sin2
m−

2 )
(
3(sin2

m+

2 − sin2
m−

2 ) + 2 cos2
m+

2 (3 sin2
m+

2 − sin2
m−

2 )
)

a2 = 8i(cos m+ + 2)
sin3 m+

2

cos m+

2

+ 6i
sin m+

2

cos3 m+

2

(sin2 m+

2 − sin2 m−

2 )

C = −128
sin4

m+

2

cos m+ + 2
(sin2 m+

2 − sin2 m−

2 ) .

(A.49)
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Having found the second adjoint line we are now ready write down the null Seiberg-Witten

differentials. After some algebra we find the following null-differentials:

λ
(n)
1 = log

(y + 1
2(ul1 + α1r1)

y − 1
2
(ul1 + α1r1)

)( dx

l1 + α1r1/u
− 1

2

dx

l1
− 1

2

dx

l+
− 1

2

dx

l−

)

λ
(n)
2 = log

(y + 1
2(ul2 + α2r2)

y − 1
2
(ul2 + α2r2)

)( dx

l2 + α2r2/u
− 1

2

dx

l2
− 1

2

dx

l+
− 1

2

dx

l−

)

λ
(n)
+ = log

(y + 1
2(ula+ + αa+ra+ + la+C+)

y − 1
2(ula+ + αa+ra+ + la+C+)

)( dx

la+ + αa+ra+/u
− 1

2

dx

la+
− 1

2

dx

la+
− 1

2

dx

l+

)

λ
(n)
− = log

(y + 1
2
(ula− + αa−ra− + la−C−)

y − 1
2(ula− + αa−ra− + la−C−)

)( dx

la− + αa−ra−/u
− 1

2

dx

la−
− 1

2

dx

la−
− 1

2

dx

l−

)
.

(A.50)

The full Seiberg-Witten differential is a linear combination of the spinor Seiberg-Witten

differential and the null Seiberg-Witten differentials constructed above:

Csλs + C1λ
(n)
1 + C2λ

(n)
2 + Ca+λ

(n)
a+

+ Ca−λ
(n)
a−

, (A.51)

where Cs = − 180
2
√
2π

. This is the same constant that appeared in the one mass case. There

are 12 l1 and 12 l2 lines, each have a residue m+ +m− and m+ −m− and

C1 =
−24(m+ +m−)i

2π
√
2 log

( 1+α1/2
1−α1/2

) , C2 =
−24(m+ −m−)i

2π
√
2 log

( 1+α2/2
1−α2/2

) . (A.52)

There is only one la+ line and one la− line with residues 2m+ and 2m−

Ca+ =
−2m+i

2π
√
2 log

( 1+αa+
/2

1−αa+
/2

) , Ca− =
−2m+i

2π
√
2 log

( 1+αa−
/2

1−αa−
/2

) . (A.53)

The total residue of the lines l± is 32m±, as expected since there are 32 such lines on top

of each other.

A.3. The curve with elliptic parameters

Next we want to generalize the curve to the elliptic case. We will start with two

masses and take as our Ansatz

y2 = x3 + γx2u2 − 2uµ(u2 + sn2m+x)(u
2 + sn2m−x) + βxu2 , (A.54)
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where γ, µ and β are constants to be determined. Here we have chosen to write the curve

in terms of the Jacobi elliptic functions

sn(u) =
ϑ3(0)

ϑ2(0)

ϑ1(u)

ϑ4(u)
, cn(u) =

ϑ4(0)

ϑ2(0)

ϑ2(u)

ϑ4(u)
, dn(u) =

ϑ4(0)

ϑ3(0)

ϑ3(u)

ϑ4(u)
, (A.55)

with

k =
ϑ22(0)

ϑ23(0)
. (A.56)

The reason for using the Jacobi functions, rather than Weierstrass or theta functions, is

that some of our results above can be easily generalized by just replacing the trigonometric

functions with Jacobi elliptic functions. We would like to draw the readers attention to the

new term xu4 in (A.54) since this will give rise to elliptic functions in the Seiberg-Witten

differential. It is easy to verify that he trigonometric curve is obtained in the limit of

k → 0. To fix the unknown coefficients we look for lines. As before we start with the

spinor line, which is given by

x =
−u2
sn2m±

. (A.57)

If we set γ = 1 + k2 and β = k2 it is easy to see that equation (A.57) gives rise to a

perfect square

y =
−iu3cn(m±)dn(m±)

sn3(m±)
. (A.58)

Next we consider the adjoint line of the form

x =
−1

sn2m+ ±m−
u2 + bu , (A.59)

where b is a constant that we determine by substituting the line into our curve and de-

manding that y is a perfect square. Upon substitution, the lowest power of u in y2 is u3,

which cannot be part of a perfect square, and so setting this to zero gives:

b = −2µsn2(m+) sn
2(m−) . (A.60)

With the adjoint line we can fix the remaining constant in the curve. After a rather lengthy

but straightforward calculation we find that if µ = 1, y is a perfect square given by

y =
icn(m+ ±m−)dn(m+ ±m−)

cn3(m+ ±m−)
u3 . (A.61)

So far we have found the spinor line ls and the adjoint line l±. From our previous

analysis we know that we have a second adjoint line la± . To find this line we use the same

trick as we used in the trigonometric case, namely set

ul+ + Cl+α+ + r+ = ula+ + Cla+ + αa+ra+ , (A.62)
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where

l+ = x +
u

snm+
, r+ =

iu3cnm+dnm+

sn3m+
. (A.63)

We look for a solution that has the form

la± = x− (b2u
2 + b1u+ λ2) , r = a3u

3 + a2u
2 + a1u+ λ3 . (A.64)

Matching the coefficient of different powers of u in equation (A.62) we find after some

algebra

a1 = 3sn2(m+)(sn
2(m+)−

sn2(m−)

3
+
sn2(m+)− sn2(m−)

cn(2m+)dn(m+)
− i

sn3(m+)(sn
2(m+)− sn2(m−))

cn2(m+)dn2(m+)

a2 = i
cn(2m+) dn(2m+)

sn3(2m+)

a3 =
i∆(cn2(m+)− sn2(m+)dn

2(m+))(dn
2(m+)− k2sn2(m+)cn

2(m+))

sn3(m+)cn2(m+)dn2(m+)

b1 = 2sn2(m+)
(
sn2(m+) +

sn2(m+)− sn2(m−)

cn(2m+) dn(2m+)

)

b2 = − ∆2

4sn2(m+)cn2(m+)dn2(m+)

λ = −isn
3(m+)(sn

2(m+)− sn2(m−)

cn(m+) dn(m+)

∆ = 1− k2sn4(m+) .

(A.65)

A.4. Seiberg-Witten differential for the elliptic case

Having found all the lines we are ready to construct the Seiberg-Witten differential.

However, it is first instructive to reconsider the trigonometric problem. Recall that the

Seiberg-Witten differential has a piece that is of the form

1
2 log

(
y + ul + αr

y − (ul + αr)

)
u dx

ul + αr
(A.66)

The generalization to the elliptic case relies on the integral representation of the log-

function ∫ 1

0

u dt

(y2 − (ul + αr)2 + (ul + αr)2t2)
1
2

(A.67)
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Similarly the differential log y+ul+αr
y−ul−αr has the following integral representation

∫ 1

0

ul + αr

l

dt

(y2 − (ul + αr)2 + (ul + αr)2t2)
1
2

. (A.68)

The generalization of (A.68) to elliptic case is now straightforward

∫ 1

0

ul + αr

l

dt

(y2 − γ(ul + αr)2 + γ(ul + αr)2t2 + k2u3(ul + αr) + k2u3(ul + αr)t4)
1
2

.

(A.69)

First we can check that that residue at line l = x + u2/sn2(m) with r(u) =

iu3sn(m)dn(m)/sn3(m) and α = isn(m)/sn(m)dn(m) is indeed m. From (A.69) it

follows that the residue at the pole is proportional to

αr

∫ sn(m)

0

dt

u3(1− γt2 + k2t4)
1
2

= −im . (A.70)

The last equality follows from the definition of the inverse of the elliptic function. To

construct the Seiberg-Witten differential we will use the same combination of derivatives

that lead to the Seiberg-Witten differential in the trigonometric case. Here we want to be

left a rational function after performing the integral. This will restrict the allowed form of

the integrand. It is easy to see that the integral
∫ 1

0

dt

(a0 + a2t2 + a4t4)
1
2

(A.71)

is not rational, but the following integral is:
∫ 1

0

dt(a0 − a4t
4)

(a0 + a2t2 + a4t4)
1
2

. (A.72)

We can use this since for us a0 = y2 − γ(ul + αr) − k2u3(ul + αr), a2 = γ(ul + αr)2,

a4 = k2u3(ul + αr), so that a0 + a2 + a4 = y2. This means that if we can arrange that

the numerators is proportional to y2 − γ(ul+αr)− k2u3(ul+αr)− k2u3(ul+αrt4), then

after integrating (A.72) we get the holomorphic differential.

As before act with the d
du

− dl
du

d
dx

on the integral (A.69) to give

L1 = (
d

du
− dl

du

d

dx
)

∫ 1

0

ul + αr

l

dt

(y2 − (ul + αr)2 + γ(ul+ αr)2t2 + k2u3(ul + αr)t4)
1
2

=

∫ 1

0

dt
x3 + 4u5 + 2u3 + snm2

− + u3xsnm2
+ − snm2

+snm
2
−ux

2)− t4k2u4x

(y2 − (ul + αr)2 + γ(ul + αr)2t2 + k2u3(ul + αr)t4)
3
2

.

(A.73)
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Above we have used the fact that for a spinor line u drdu = 3r. Next consider

Lu =
d

du
(u

∫ 1

0

dt
1

(y2 − (ul + αr)2 + γ(ul + αr)2t2 + k2u3(ul + αr)t4)
1
2

)

∫ 1

0

x3 + 3u5 + u3x(snm2
+ + snm−)− ux2snm2

+snm− − k2t4u4x

(y2 − (ul + αr)2 + γ(ul + αr)2t2 + k2u3(ul + αr)t4)
3
2

,

(A.74)

and similarly

Lx =
d

dx
(x

∫ 1

0

dt
1

(y2 − (ul + αr)2 + γ(ul + αr)2t2 + k2u3(ul + αr)t4)
1
2

)

∫ 1

0

−1
2x

3 − 2u5 − u3x(snm2
+ + snm−) +

1
2ux

2snm2
+snm− − k2t4u4x

(y2 − (ul + αr)2 + γ(ul + αr)2t2 + k2u3(ul + αr)t4)
3
2

.

(A.75)

Consider the following combination

L1 + L2 − 3Lu − Lx = −1
2

∫ 1

0

dt(
y2 − γ(ul + αr)2t2 + k2u3(ul + αr)t4 − t4k2u4x

(y2 − (ul + αr)2 + γ(ul+ αr)2t2 + k2u3(ul + αr)t4)
3
2

= −1
2

∣∣∣∣∣

1

0

t

(y2 − (ul + αr)2 + γ(ul + αr)2t2 + k2u3(ul + αr)t4)
1
2

= −1
2
y .

(A.76)

Hence this combination leads a Seiberg-Witten differential. The construction of the null

differential is very similar to the trigonometric case. Recall that we had

( d
du

− d

dx

dls
du

)
log

(
y + (ul + αr)

y − (ul + αr)

)
dx

ls
+ 1

2

( d
du

− d

dx

dla
du

)
log

(
y + (ul + αr)

y − (ul + αr)

)
dx

la

−
( d
du
u− d

dx

dula + αr

du

)
log

(
y + (ul + αr)

y − (ul + αr)

)
dx = 0 .

(A.77)

This can now easily generalized to the elliptic case. All we have to do is to replace the log

terms with the appropriate integrals. The full Seiberg-Witten differential is again given

by a linear combination of null-differentials and the one constructed out of the spinor line.
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Appendix B. General En curves

The polynomial E8 curve is given as

y2 =x3 − x2
(
uT̃4/2 + T10 − t8T2

)

− x
(
T2u

3 + (14t8 + T8)u
2 + u(8T14 − T12T2 + 8t8T6 − T10T̃4 + 4t8T2T̃4) + 2t8T12

+ 4T14T6 − T12T8 + 2t28T̃4 + 2T14T2T̃4 − t8T8T̃4 + (T12T̃
2
4 )/4 + (t8T̃

3
4 )/4

)

− 2u5 − T6u
4 + u3(4T12 − 2t8T

2
2 − 5t8T̃4 + (T8T̃4)/2)

+ u2
(
16t8T10 − 8t28T2 − T14T

2
2 + 2T12T6 − 4t8T2T8 − 4T14T̃4 + (T12T2T̃4)/2

− 2t8T6T̃4 − (T10T̃
2
4 )/4− (t8T2T̃

2
4 )/4

)

+ u
(
−8t38 − 2T 2

12 + 8T10T14 − 4t8T14T2 + 8t8T10T6 − 8t28T2T6 + 8t28T8 − 2T14T2T8

− 2t8T
2
8 − 3t8T12T̃4 + 4t8T10T2T̃4 − 4t28T

2
2 T̃4 − 2T14T6T̃4 − (T12T8T̃4)/2− 3t28T̃

2
4

− (T14T2T̃
2
4 )/2 + (t8T8T̃

2
4 )/2 + (T12T̃

3
4 )/8

)

− 4t28T14 − T 2
12T6 + 4T10T14T6 − 4t8T14T2T6 + 4t8T14T8 − T14T

2
8 − (T 2

12T2T̃4)/2

+ 2T10T14T2T̃4 − 2t8T14T
2
2 T̃4 − 2t8T12T6T̃4 − t8T14T̃

2
4 − t8T12T2T̃

2
4 − t28T6T̃

2
4

+ (T14T8T̃
2
4 )/2− (t28T2T̃

3
4 )/2− (T14T̃

4
4 )/16

(B.1)

For the polynomial limit the T2n satisfy

T2n =
8∑

ii<i2..<in

m2
i1
...m2

in
, t8 =

8∏

i

mi, T̃4 = T 2
2 /4− T4.

The expression differs slightly from the curve in [6] since we have shifted the x variable.

The lower En curves are derived using the scaling described in the text. The E7 curve,
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in terms of SO(12)× SU(2) variables is given by

y2 = x3 +
(
u2 − (uT̃2)/2− 2t6 − 2t6T2 − T6 + 2t6T̃2

)
x2

+
(
u3(2− T2)− u2(4t6 + T4) + u

(
2t6T4 − 8t6T2 + 2t6T

2
2 − 2T8 + T2T8 + 8t6T̃2

− 3t6T2T̃2 + T6T̃2 − T8T̃2 + t6T̃
2
2 /2

)

+ 8t26T2 − 4T10T2 + T10T
2
2 + 2t6T2T6 + T4T8 − 8t26T̃2

+ 4T10T̃2 − 2T10T2T̃2 + t6T4T̃2 − 2t6T6T̃2 + T10T̃
2
2 − (T8T̃

2
2 )/4− t6T̃

3
2 /4− 8t6T̃2

− 3t6T2T̃2 + T6T̃2 − T8T̃2 + t6T̃
2
2 /2

)
x

+ u4(T 2
2 /4− T2) + u3(2t6T2 − 8t6 + T4T̃2/2) + u2

(
4t26 − 4T10 + 8t6T4 − 3t6T2T4

+ 2T2T8 − T 2
2 T8/2− 2t6T2T̃2 + t6T

2
2 T̃2/2 + 2t6T4T̃2 − T8T̃2

+ (T2T8T̃2)/2 + t6T̃
2
2 /2− t6T2T̃

2
2 /4− (T6T̃

2
2 )/4

)

+ u
(
16t26T2 − 4t26T

2
2 − 4t26T4 + 4T10T4 − 2T10T2T4 − 2t6T

2
4 + 8t6T2T6 − 2t6T

2
2 T6 − 2t6T2T8

− 16t26T̃2 + 6t26T2T̃2 − 2T10T2T̃2 + T10T
2
2 T̃2/2 + 2T10T4T̃2 − 8t6T6T̃2 + 3t6T2T6T̃2

+ 2t6T8T̃2 − T4T8T̃2/2− t26T̃
2
2 + T10T̃

2
2 − T10T2T̃

2
2 /2 + t6T4T̃

2
2 /2− t6T6T̃

2
2 + (T8T̃

3
2 )/8

)

− 8t36T2 + 8t6T10T2 − 2t6T10T
2
2 + t26T

2
4 − T10T

2
4 − 4t26T2T6 + 4T10T2T6 − T10T

2
2 T6

− t6T2T4T8 − T2T
2
8 + T 2

2 T
2
8 /4 + 8t36T̃2 − 8t6T10T̃2 + 4t6T10T2T̃2

− t26T2T4T̃2 + 4t26T6T̃2 − 4T10T6T̃2 + 2T10T2T6T̃2 − 2t6T2T8T̃2 + t6T
2
2 T8T̃2/2

+ t6T4T8T̃2 + T 2
8 T̃2 − T2T

2
8 T̃2/2− 2t6T10T̃

2
2 − t26T2T̃

2
2 + t26T

2
2 T̃

2
2 /4 + t26T4T̃

2
2 /2

+ T10T4T̃
2
2 /2− T10T6T̃

2
2 + 2t6T8T̃

2
2 − 3t6T2T8T̃

2
2 /4 + T 2

8 T̃
2
2 /4 + t26T̃

3
2 − t26T2T̃

3
2 /4

+ t6T8T̃
3
2 /4 + t26T̃

4
2 /16− T10T̃

4
2 /16

(B.2)

The Tn variables have the same form as in the E8 case, with T2n = −T2n+2 + G2n for

n > 1 and where

G2n =

6∑

i1<..in

sin2mi1 ...sin
2min

We also have that

T2 = 2

(
1−

6∏

i=1

cosmi

)
t6 =

6∏

i=1

sinmi

and

T̃2 = T2 − 4 sin2(µ/2).
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In deriving this curve, x was shifted by t6T2. In terms of the E7 dimensions, where [x] = 6,

[u] = 4 and [Tn] = n, we see that all terms in the E7 curve are either dimension 18 or 20.

The dimension 18 terms are what remain in the Kodaira limit.

The E6 curve is

y2 =x3 +
(
u2 + u(2 sinλ− iT2e

iλ) + 4it5 − T4e
2iλ
)
x2

− eiλ
(
2iu3 + u2

(
2i sinλT2 + T2e

iλ
)
+ u
(
4 sinλT4e

iλ − 8t5 − 2iT6 + 4i sin 2λt5
)

+ 16 sin3 λt5 − 6 sinλT2t5 + 2 sinλT2t5e
2iλ + 4 sinλ2T6e

iλ − T2T6e
iλ

+ 4T8e
−iλ − it5(T

2
2 − 4T4)e

iλ
)
x

− e2iλ
(
u4 + 2 sinλT2u

3 − u2
(
2T6 − 4 sin2 λT4 − 4 sin 2λt5

)

− u
(
8 sinλT8 − 8 sin3 λT6 + 2 sinλT2T6 − 4 sin 2λ sinλT2t5 + 2 cosλt5(T

2
2 − 4T4)

)

+ 4 sin2 2λt25 + 4 sin 2λt5T6 + T8(T
2
2 − 4T4) + T 2

6 + 16 sin4 λT8 − 8 sin2 λT2T8

)
.

(B.3)

with

t5 =

5∏

i

sinmi

The shift used on x is −it5(2− T2)e
2iλ + iT2ue

iλ/2.

The E5 = SO(10) curve is

y2 =x3 +
(
u2 + u(T2e

iλ − 4 cosλ)− T2e
2iλ − 8t4 + T 2

2 e
2iλ/4

)
x2

+
(
u2(4− 2T2) + u(4T2e

iλ − 8t4e
−iλ − T 2

2 e
iλ − 4T4e

iλ)

+ 8iT4 sinλe
iλ + 16it4 sinλ(e

iλ − 2e−iλ) + 12t4T2 + 16T6 − 2T2T4e
2iλ)x

+ u2(T 2
2 − 4T2) + u(32it4 sinλ+ 8t4T2e

−iλ − 16iT4 sinλ+ 4T2T4e
iλ)

− 16t4T4 − 16T2T6 + 16t24e
−2iλ + 64T6 sin

2 λ+ 4T 2
4 e

2iλ

(B.4)

In deriving this curve we shifted x by (T2 − 2)(ueiλ/2 + t4e
2iλ). If we set Tn = t4 = λ = 0

then the curve in (B.4) reduces to

y2 = x3 + (u2 − 4u)x2 + 4u2x

The discriminant of this curve is 128u7−16u8, which describes an SO(10) singularity. We

could have also derived a curve where the SO(10) symmetry is manifest by taking the

curve in (B.3) and sending λ to i∞ and then rescaling.

46



The E4 = SU(5) curve is

y2 =x3 +
(
u2 + u(iT2e

iλ − 2i(eiλ + 2e−iλ))− (1− T2/2)
2e2iλ − 6T2 − 16it3 + 12

)
x2

+
(
u(16iT2 + 32t3 − 32i− 8ie2iλ)e−iλ − 64T4 + 16iT2t3 + 8T 2

2 − 32it3

+ 4T2(e
2iλ − 8) + 8(6− e2iλ)

)
− 64iue−iλ − 256t23e

−2iλ + 256iT2t3e
−2iλ − 256T4e

−2iλ + 128it3 − 32T2 + 16(4− e2iλ)

(B.5)

The shift in x is (T2 − 2)(it3e
2iλ − 2 + iueiλ/2). In the massless case, (B.5) reduces to

y2 = x3 + (u2 − 6iu+ 11)x2 + (40− 40iu)x+ 48− 64iu

and the discriminant is −256iu5(u2 − iu+ 1) which describes an SU(5) singularity.

The E3 = SU(3)× SU(2)× U(1) curve is

y2 =x3 +
(
u2 + 2u(eiλ + 4e−iλ − T2e

iλ) + 12T2 + 32t2 − 24 + T̃4e
2iλ
)
x2

64
(
u(T2 − 2t2 − 2)e−iλ − 16t2e

−2iλ − 2T̃4 + 2t2T2 − 2t2 + 4
)

+ 4096(t22 − T2t2 + T̃4 + 2t2 − 1)e−2iλ

(B.6)

where T̃4 = (1− T2/2)
2. The shift in x is (T2 − 2)(−t2e2iλ + 1− ueiλ/2). In the massless

case, the curve reduces to

x3 + (u2 + 10u− 23)x2 + 128(1− u)x

and the discriminant is −16384(1+u)3(1−u)2(17+u). Hence this has an SU(3)×SU(2)×
U(1) singularity structure.

The E2 = SU(2)× U(1) curve is

y2 =x3 +
(
u2 + iu(16e−iλ + 2eiλ + t21e

iλ)− T̃4e
2iλ − 24t21 + 64it1 + 48

)

+ 256
(
u(2i+ 2t1 − t21)e

−iλ − 2T̃4 + 2it1(1 + 16e−2iλ)− it31
)
x

+ 65536(t21 − T̃4 − it31 + 2it1)e
−2iλ

(B.7)

where t1 = sinm1 and T̃4 = (1−sin2m1/2)
2. The shift in x is (t21−2)(−it1e2iλ−iueiλ/2−8).

The massless curve is

x3 + (u2 + 18iu+ 47)x2 + 512(iu− 1)x− 65536

and its discriminant is 4194394(5i+ u)2(−iu3 + 23u2 − 117iu− 565).

The E1 = SU(2) curve is

y2 = x3 +
(
u2 − 2u(eiλ + 16e−iλ) + e2iλ − 224

)
x2 − 65536e−2iλx (B.8)

The shift in x is −2e2iλ − ueiλ − 32. In the massless case, the discriminant is up to a

numerical factor (u− 17)2(15 + u)(u− 49).

The Ẽ1 = U(1) curve is found by letting m8 = +i
∑

Λi − 2λ/8, that is it has the

opposite sign as in the E1 case. This curve is given by

y2 = x3+
(
u2−2u(eiλ+16e−iλ)+32+e2iλ

)
x2+4096

(
ue−iλ−16e−2iλ−1

)
x+4194304e−2iλ

(B.9)
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