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Abstract In a manufacturing industry, machining process
is to shape the metal parts by removing unwanted material.
During the machining process of any part given quality spec-
ifications such as surface finish, accuracy with minimum
production cost or machining time are to be considered.
Economy of machining operation plays a key role in compet-
itiveness in the market. This paper presents a multi-objective
optimization technique, based on genetic algorithms, to opti-
mize the cutting parameters in turning processes: cutting
depth, feed and speed. Optimization of cutting parameters is
one of the most important elements in any process planning of
metal parts. In this paper the three objective functions, mini-
mum operating time and minimum production cost and min-
imum tool wear are simultaneously optimized. The proposed
model uses a genetic algorithm in order to obtain the non-
dominated sorting genetic algorithm (NSGA-II) and build
the Pareto front graph. An application sample is developed
and its results are analyzed for several different production
conditions. This paper also remarks the advantages of multi-
objective optimization approach over the single-objective
one.
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1 Introduction

Nowadays CNC machines are commonly used in industry.
The operation of this machine is expensive because it has
many parameters to consider. Optimization of cutting param-
eters is usually a difficult work where the following aspects
are required: knowledge of machining; empirical equations
relating the forces, power, surface finish, and dimensional
accuracy etc. It has long been recognized that conditions
during cutting, such as feed rate, cutting speed and depth
of cut, should be selected to optimize the economics of
machining operations, as assessed by productivity, and total
manufacturing cost per component. The optimum machining
conditions using Nelder-Mead simplex method was devel-
oped by Agapiou [1]. An objecting function incorporating
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a combination of minimum production cost and minimum
production time and production cost is prioritized through
their weight coefficients. A constant multiplier is used to nor-
malize the objective function. Physical constraints regarding
the cutting parameters are also considered. The superiority
of the combined objective function over the single criterion
objective functions using the production cost, or production
time, or maximum profit rate is also illustrated. He also out-
lined the use of two techniques (Dynamic Programming and
Nelder-Mead simplex method) to determine the optimum
cutting conditions for the multipass operations. The opti-
mum number of machining passes is obtained through the
dynamic programming technique and the optimum machin-
ing conditions for each pass are then determined based on
the combined objective function of total production cost and
the total production time. This approach can be very effec-
tively applied to the multistage machining since the optimum
arrangement of the different operations can be determined by
the dynamic programming method while the optimum cut-
ting conditions for the operation in each machining stage
are obtained using the method for single pass (Nelder-Mead
simplex method) while incorporating the objective function.

Abburi and Dixit [2] proposed a methodology for the
multi-objective optimization of multipass turning process.
A real parameter genetic algorithm is used for minimizing
the production time, which provides a nearly optimum solu-
tion. Kolahan and Abachizadeh [3] proposed the multipass
turnings with seven different constraints are considered in
a non-linear model where the goal is to achieve minimum
total cost. Calculation of machining parameters in turning
operation using machining theory was carried out by Meng
et al. [4]. The objective criteria used in this work is min-
imum cost. Onwubolu et al. [5] have used a genetic algo-
rithm for optimizing multipass turning operations. Saravanan
et al. [6] considered the machining parameters optimization
for turning cylindrical stock into a continuous finished pro-
file using genetic algorithm (GA). Lee and Tarng [7] stated
cutting-parameter selection for maximizing production rate
or minimizing production cost in multistage turning opera-
tions. Sardinas et al. [8] expressed genetic algorithm-based
multi-objective optimization of cutting parameters in turning
processes to optimize the tool life and production rate. Gupta
et al. [9] considered multipass turning optimization with opti-
mal subdivision of depth of cut.

Bouzid [10] described for calculating the optimum cutting
conditions in turning and the objective is to minimize the pro-
duction time. The method uses empirical models for tool life,
roughness and cutting forces. Arezoo et al. [11] stated a selec-
tion of cutting tools and conditions of machining operation to
minimize production time. Ozel et al. [12] employed experi-
mental observation and neural network modeling to evaluate
the influences of cutting parameters on surface roughness
of work piece machined. Chou and Song [13] determined

the relation between tool nose radius and surface finish from
experimental measurement. Chen [14] investigated the influ-
ence of cutting speed, tool wear and plastic behaviors of work
piece material on surface finish. Decreasing tool nose radius
and clearance angle can simultaneously decrease dimen-
sional error and it is clear that the production of dimen-
sional error in turning is possible. Choudhury and Srinivas
[15] determined flank wear in turning operation. Huang and
Liang [16] developed a model for tool flank wear in finish
hard turning.

On the contrary, studies on evolutionary algorithms have
shown that these methods can be efficiently used to elimi-
nate most of the above-mentioned difficulties of the classical
method. The proposed model uses a genetic algorithm in
order to obtain the non-dominated sorting genetic algorithm
(NSGA II) and build the Pareto front graph. NSGA II is
widely used in defense and robotics field nowadays. For best
movement of robot, the GA concept was used. By analyzing
the best results in each movement by NSGA II concept, the
robot feels the best value to move any direction. By keeping
that value (non-dominated solutions) which was preserved
by NSGA II, it will move at next time. In defense field, it
will be used to attack the enemies with minimum time by
giving the optimized speed and velocity value to the missile.

Most of the researchers used traditional optimization tech-
niques for solving machining problems. The traditional meth-
ods of optimization are not efficient when the practical
search space is too large. Traditional techniques such as geo-
metric programming, dynamic programming find it hard to
solve these problems, and they are inclined to obtain a local
optimal solution. Considering the drawbacks of traditional
optimization techniques, few researchers considered the
non-traditional optimization techniques for the same prob-
lem domain.

Recently Karpet and Ozel [17] proposed multi-objective
optimization for turning processes using neural network
modeling and dynamic neighborhood particle swarm optimi-
zation and the objective function considered are minimum
surface roughness and maximize productivity. The con-
straints considered are feed rate, cutting speed, depth of cut
and tool geometry. Bharathi Raja and Baskar [18] discussed
the optimization techniques for machining operations a retro-
spective research based on various mathematical models and
testing with three different algorithms. The constrains con-
sidered are cutting speed, temperature, cutting force, power,
feed and depth of cut. Yang and Natarajan [19] considered the
multi-objective optimization of cutting parameters on turn-
ing process using differential evaluation and non-dominated
sorting genetic algorithm approach to minimize the tool wear
and maximize the metal removal rate and the constraints con-
sidered are temperature and surface finish.

Last year Datta and Majumder [20] suggested the optimi-
zation of turning process parameters using multi-objective
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evolutionary algorithm and the objective functions considered
are tool life and operation time. The constraints considered
are cutting force, surface roughness and power.

It is proposed to obtain the optimal parameters in turn-
ing processes to minimize the production cost, minimize the
operation time and minimum tool wear simultaneously. In
NSGA II the maintenance of an elitist population is a com-
mon technique to preserve the individuals. At the end of
each evolutionary period, the non-dominated individuals are
selected from the dynamic population and added to the elitist
one. After the addition of new individuals, the elitist popu-
lations should be filtered in order to eliminate dominated
individuals.

2 Problem Formulation

In CNC machine tools, the finished component is obtained
by a number of rough passes and finish pass. To carry the
rough and finishing operation it takes different speed, feed
and depth of cut in our problem. By giving the optimized
value of speed, feed and depth of cut, the production rate will
increase with the minimum time, minimum cost and mini-
mum tool wear. To obtain this objective we carried our prob-
lem by using NSGA II algorithm and produce the best results.

2.1 Model for Machining Performance

The first objective function is to minimize the production cost
which includes machining cost, machine idle cost, the tool
replacement cost and the tool cost. The formula for calculat-
ing the above cost is as given by Chen and Su [21]. Finally, by
using the above mathematical processes, the unit production
cost UC (Rs./piece) can be obtained as

UC = CM + CI + CR + CT

= koTM + koT 1 + ko‖toTm/tl) + Kt Tm/te

where
CM = cutting cost (Rs./piece)
CI = machine idling cost (Rs./piece)
CR = tool replacement cost (Rs./piece)
CT = tool cost (Rs./piece)
ko = sum of direct labour cost and overhead (Rs./min)
TM = actual cutting time
TI = machine idle time (min)
tl = tool life (min)
te = time required to exchange a tool (min)
kt = cutting edge cost (Rs./edge)
The second objective function is to minimize the opera-

tion time, to measured as the entire time required to carry out
the workpiece

tp = Tm + te(Tm/tl) + [Ti ]
= (L j + 3/ f ∗n) + te((L j + 3/ f ∗n)/ f ∗d∗n) + [Ti ]

where
tp = Unit time per work piece (min)
Tm = Cutting/(machining time) time
te = Time required to exchange a tool (min)
tl = Tool life (min)
Ti = Machine idle time
L j = Length of the travel
f = feed
n = speed
d = depth of cut
The third objective function is to minimize the tool wear,

The tool will be giving unsatisfactory performance during
machining process due to wear and the tool is subjected
to three important factors such as forces, temperature and
sliding action which cause loss in dimensional accuracy,
and increased surface roughness. This will result in loss of
production and cost of replacing. To minimize the tool wear
the empirical relation between tool wear and the machining
variables is given by

Tw = 0.33349V 0.14804 f 0.49116d0.28979

2.2 Machining Constraints

The practical constraints imposed during the roughing and
finishing operations are described below.

2.2.1 Parameter Bounds

Bounds on cutting speed:

Vr L ≤ Vr ≤ VrU

where Vr L and VrU are the lower and upper bounds of cutting
speed in roughing, respectively.

Bounds on feed: fr L < fr < frU where fr L and frU are
the lower and upper bounds of feed in roughing, respectively.
Bounds on depth of cut: dr L < dr < drU where dr L and drU

are the lower and upper bounds of depth of cut respectively.

2.2.2 Cutting Force

The expression for the cutting force constraint is given by

Fr = k f f r

μ∫

r

d

v∫

r

� ≤ FU

where Fr is the cutting force during rough machining, k f , μ
and v are the constants pertaining to a specific tool-workpiece
combination, and FU is the maximum allowable cutting force
(kgf).
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2.2.3 Power Constraint

The power constraint is given by

Pr = k f
∫ μ

r d
∫ v

r V r

6120η
≤ PU

where Pr is the cutting power during rough machining (kW),
η is the power efficiency, and PU is the maximum allowable
cutting power (kW).

2.2.4 Dimensional Accuracy Constraint

The regressional relation for calculating the dimensional
accuracy is given below:

δ = 100.66. f 0.9709 d0.4905 V 0.2848

where δ is the dimensional accuracy, f is the feed rate per
revolution, d is the depth of cut, and V is the cutting speed.

2.2.5 Surface Finish Constraint

The maximum allowable surface roughness is calculated as
given below. Surface roughness is influenced by the feed and
the nose radius of the tool:

f s2

8r
≤ Rmax

where r is the nose radius of cutting tool (mm), Rmax is max-
imum allowable surface roughness (μm) and fs is the feed.

3 Solution Methodology

Since traditional methods are not optimal to solve these prob-
lem. Hence, Genetic algorithms (GA) are a best population
search based technique, GA are different from traditional
optimizations in the following ways.

1. GA goes through solution space starting from a group of
points and not from a single point.

2. GA search from a population of points and not a single
point.

3. GA use information of a fitness function, not derivatives
or other auxiliary knowledge.

4. GA use probabilistic transitions rules, not deterministic
rules.

5. It is very likely that the expected GA solution will be a
global solution.

The cutting conditions are encoded as genes by binary
encoding to apply GA in optimization of machining param-
eters. A set of genes is combined together to form chro-
mosomes, used to perform the basic mechanisms in GA,

such as crossover and mutation. GA optimization methodol-
ogy is based on machining performance predictions models
developed from a comprehensive system of theoretical anal-
ysis, experimental database and numerical methods. The GA
parameters along with relevant objective functions and set
of machining performance constraints are imposed on GA
optimization methodology to provide optimum cutting con-
ditions.

3.1 Genetic Algorithm Methodology

Genetic algorithms are computerized search and optimiza-
tion algorithms based on the mechanics of natural genetics
and natural selection. Optimization can be done by the gen-
eration of the population.

3.2 Steps in the Genetic Algorithm Optimization

1. Choose a coding to represent problem parameters, a
selection operator, a crossover operator, and a mutation
operator. Choose population size n, crossover probability
pc, and mutation probability pm. Initialize a random pop-
ulation of strings of size l. Choose a maximum allowable
generation number tmax. Set t = 0.

2. Evaluate each string in the population.
3. If t tmax or other termination criteria are satisfied, termi-

nate.
4. Perform reproduction on the population.
5. Perform crossover on pair of strings with probability pc.
6. Perform mutation on strings with probability pm.
7. Evaluate strings in the new population. Set * = t + 1 and

go to Step 3.

3.3 Genetic Algorithm Parameters

Population size: 32
Length of Chromosome: 6
Selection operator: Rank order
Crossover operator: Single point operator
Crossover probability: 0.75
Mutation probability: 0.1
Fitness parameter: Production cost, operation time and tool
wear.

3.4 Implementation of GA with Numerical Illustration

Implementation plays an vital role in the genetic algorithm.
A problem can be solved once it can be represented in the
form of a solution string (chromosomes). The bits (genes)
in the chromosome could be binary, real integer numbers.
In this work, the cutting speed, feed rate and depth of cut
are considered to be the primary parameters for the turning
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Table 1 GA implemented in unit cost, time and tool wear

Speed (rpm) Feed (mm/rev) Depth of cut (mm) Op time (min) Unit cost (Rs) Tool wear (μ) Rank

1254.762 0.375 0.51 3.135 1.569 0.487 1

1035.714 0.375 1.081 3.163 1.582 0.589 1

980.952 0.177 0.357 3.371 1.7 0.293 1

1254.762 0.128 1.119 3.397 1.704 0.36 1

2842.857 0.029 1.119 3.788 1.916 0.195 1

542.857 0.177 0.586 3.673 1.865 0.31 1

2076.19 0.326 1.367 3.093 1.547 0.652 1

1473.81 0.375 1.1 3.114 1.558 0.624 1

2788.095 0.375 1.119 3.06 1.53 0.689 1

2788.095 0.375 0.51 3.06 1.53 0.549 1

1528.571 0.369 0.91 3.112 1.557 0.589 1

1035.714 0.375 1.119 3.163 1.582 0.595 1

3007.143 0.375 0.548 3.056 1.528 0.566 1

1090.476 0.326 0.776 3.178 1.591 0.503 1

3226.19 0.375 1.119 3.052 1.526 0.704 1

2842.857 0.016 0.852 4.421 2.298 0.136 1

1035.714 0.375 1.195 3.163 1.582 0.606 1

1254.762 0.177 1.081 3.285 1.646 0.419 1

operation. Each of these primary variables is represented in
a binary string format. The total length of the string is 18
in which first 6 bits are used for speed representation and
next 6 bits represent the feed variable and the remaining 6
bits are used as depth of cut parameter. The speed, feed and
depth of cut are represented as substrings in the chromosome.
The strings (000000 000000 000000) and (111111, 111111,
111111) represent the lower and upper limits of speed, feed
and depth of cut.

3.4.1 Initialization

During initialization, a solution space of a “population size”
solution string is generated randomly between the limits of
the speed, feed and depth of cut. In this work the solution
space size (population size) is considered as 18 as shown in
Table 1. Columns 1, Column 2 and 3 show the initial random
binary population. Column 4, 5, 6 show the objective func-
tion output (Optimized output). Column 7 denotes the Rank
value. Here the binary format population can be decoded by
using the below formula.

xi = xi
(L) + xi(U ) − xi(L)

2n − 1
(decoded decimal value)

where xi is the decoded speed or feed or depth of cut, x(L)i
is the lower limit of speed or feed or depth of cut, x(U )i is
the upper limit of speed or feed or depth of cut, and n is the
substring length (=6) (Fig. 1).

3.4.2 Evolution

In a GA, a fitness function value is computed for each string
in the population, and the objective is to find a string with the
maximum fitness function value. It is often necessary to map
the underlying natural objective function to a fitness function
form through one or more mappings. Since, we use a mini-
mization objective function, the following transformation is
used

f (x) = 1

1 + g(x)

where g(x) is the objective function (operation time) and
f (x) is the fitness function. In the minimization problem
the string which has the higher fitness value will be the best
string.

3.4.3 Selection and Reproduction

Reproduction selects good strings in a population and forms
a mating pool. The reproduction operator is also called a
selection operator. In this work rank order selection is used.
In Table 1 Column 4 shows the output generated using this
method. Column 5 is the corresponding rank of the string. A
lower ranked string will have a lower fitness value or a higher
objective function and vice versa.

The higher cumulative probability value in the range is
chosen as one of the parents. In Table 1 for the first string the
generated random number is 0.237122. The string number
(rank) 1, which has a cumulative probability of 0.2485000,
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Fig. 1 Block diagram of the
proposed genetic algorithm
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is selected as the parent, and this process is repeated for the
entire population.

3.4.4 Crossover

Crossover is a mechanism for diversification. The strings to
be crossed and the crossing points are selected randomly and
crossover is done with a crossover probability. A single-point
crossover is used in this work. The crossover probability is
0.75. The concept of crossover is explained below.

Before crossover:

1. 110010 – 00 | 0111
2. 110100 – 01 | 0010

After crossover: 1&2→9 means crossover takes place
between 1st and 2nd string at (9+1)th cross site and after the
(9+1)th bit all the information is exchanged between strings.
The cross site number starts from zero. Hence cross site num-
ber 9 represents the 10th site.

1. 110010 – 01 | 0111
2. 110100 – 00 | 0010

3.4.5 Mutation

Mutation is a random modification of a randomly selected
string. Mutation is done with a mutation probability of 0.1.
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Fig. 2 Operation time (min) versus unit cost (Rs.)

Before mutation:
1. 11001001_0_111
After mutation: 1 → 9 means that mutation takes place at

the 1st string at the 9th site. The mutation will invert from 0
to 1 or 1 to 0 at the particular site.

1. 11001001_1_111
The output after the first iteration is given in Table 1. The

best string in the list is the chromosome rank 1 which has
minimum unit production cost. This completes one iteration
of the GA and the best value is stored. All the strings available
at the end of first iteration will be treated as parents for the
second iteration. This procedure is repeated for the number
of iterations as given by the user.

GA will give the best optimized results and time complex-
ity of this algorithm is very less. It is a one of the algorithm,
is mainly used as continuous process for the dynamic popu-
lation.

3.4.6 GA Implemented in Minimum Unit Cost and
Production Time and Tool Wear

In this example,

x (L)
i = 50 for speed x (U )

i = 3500 for speed

x (L)
i = 0.01 for feed xi (U ) = 0.4 for feed

x (L)
i = 0.3 for depth of cut x (U )

i = 1.5 for depth of cut

Figure 2 indicates the Pareto front curve for operation time
and production cost. It is evident that the cost is gradually
decreasing up to 18th iteration and then the cost is constant
for further iteration. Graph shows the minimum operation
time for 4.421 min and the production cost is 1.526. The
curve also indicates the several different situations may be
considered, facilitating the choice of right parameters for any
condition.

Figure 3 indicates the Pareto front curve for unit cost and
tool wear. It is evident that the cost is decreasing gradu-
ally and reaches the optimum value. The graph shows the

Fig. 3 Tool wear (μ) versus unit cost (Rs.)

Fig. 4 Tool wear (μ) versus operation time (min)

optimum value of cost 1.569 and optimum tool wear 0.487.
It also indicates the several different combinations.

Figure 4 shows the Pareto front curve for operation time
and tool wear. Fig shows clearly that the tool wear is
decreased gradually in the initial iteration and then constant
in further iteration. Graph shows the optimized minimum
operation time 3.135 min and tool wear 0.487 μ. The curve
also indicates and facilitating the choice of right parameter
for any condition.

Figure 5 indicates clearly about the multi-objective
optimization with minimum tool wear of 0.487, operation
time of 3.135 and production cost 1.569. The graph shows
the clear information about the optimization for different
situation.

Figure 6 shows the optimum cutting parameters for opti-
mum tool wear, operation time and cost. The curve facilitat-
ing the choice of right parameter for any condition.

4 Test Example

For testing the proposed methodology, the component shown
in Fig. 7 is considered. The component is to be machined with
optimal speed and feed using a SUPER JOBBER LM CNC
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Fig. 5 Optimization result of
unit cost (Rs.), operation time
(min) and tool wear (μ)

Fig. 6 Optimization cutting
condition

Fig. 7 Test component
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turning centre in the industry. The work piece material is
EN 8 and the tool tip material is CNMG which is mostly
used in rough turning and 0◦ relief angle, provide longer life.
The proposed model is run on an FANUC OI TD computer
using the C++ language. Tables and graphs summarize the
computational results.

5 Results and Discussion

The results obtained from GA discussed here. By means of
Pareto frontier graph several different situations may be con-
sidered in Fig. 2 shows the Pareto to obtain the optimal value
and graph shows from point 1 to 7 decreases gradually and
8 to 18 only small variations. The Figs. 3 and 4 shows the
optimal value between unit cost and tool wear, operation time
and tool wear respectively and facilitating the choice of right
parameters for any condition. Table 1 shows the optimal cut-
ting parameters such as speed, feed and depth of cut obtained
from GA for the minimum Operation time and minimum
production cost and minimum tool wear. Figure 5 shows the
fitness obtained in each iteration of the GA and shows the
optimal time of 3.135 min and minimum cost of 1.569 and
minimum tool wear of 0.487. Figure 6 shows the optimum
speed of 1254.762 rpm and feed 0.375 mm/rev and depth of
cut 0.51 mm. The above graphs shows that the GA produces
smooth fitness at the initial iteration and varying fitness in
the subsequent iterations. Using C++ language the optimal
solution can be obtained.

6 Conclusion

All types of CNC machines have been used to produce
continuous finished profiles. A continuous finished profile
has many types of operations such as facing, taper turning
and circular turning. To model the machining process, sev-
eral important operational constraints have been considered.
These constraints were taken to account in order to make the
model more realistic. The multi-objective optimization offers
greatest amount of information in order to make a decision on
selecting cutting parameters in turning. By means of Pareto
graph several different situations may be considered, facili-
tating the choice of right parameters for any condition. The
three dimension graph shows the additional information and
the above said method can be improved further with addi-
tional constraints.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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