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Abstract We present measurements of the electron temperature using gate-defined
quantum dots formed in a GaAs 2D electron gas in both direct transport and charge
sensing mode. Decent agreement with the refrigerator temperature was observed over
a broad range of temperatures down to 10 mK. Upon cooling nuclear demagnetization
stages integrated into the sample wires below 1 mK, the device electron temperature
saturates, remaining close to 10 mK. The extreme sensitivity of the thermometer to its
environment as well as electronic noise complicates temperature measurements but
could potentially provide further insight into the device characteristics. We discuss
thermal coupling mechanisms, address possible reasons for the temperature saturation
and delineate the prospects of further reducing the device electron temperature.

Keywords Quantum transport · Thermometry · Quantum dots · Charge sensing ·
Charge noise · Nuclear demagnetization

1 Introduction

Two-dimensional electron gases (2DEGs) are a versatile, widely-used experimental
platform in low temperature solid state physics because of their nearly ideal two-
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dimensional nature and the possibility to confine electrons to almost arbitrary shapes
using gate voltages. Groundbreaking experiments have been realized in these systems,
including artificial atoms [1–3], the integer and fractional quantum Hall effect [4,5]
and spin qubits [6,7]. In many experiments, the temperature of the 2DEG is much
higher than the temperature TMC of the dilution refrigerator mixing chamber due to
various reasons, including poor thermal coupling and insufficient filtering. However,
a wide range of phenomena contain small energy scales and are only accessible at
very low temperatures. These include novel nuclear spin quantum phases in 2D [8,9]
and in interacting 1D conductors [10,11] and multiple impurity [12] or multiple chan-
nel [13,14] Kondo physics. Further, studies of fragile fractional quantum Hall states,
including candidates for non-Abelian physics such as the ν = 5/2 state [15], would
benefit from low temperatures, possibly opening the doors for topological quantum
computation [16].

To our knowledge, the lowest reliable temperature reported in a 2DEG is
4 mK [17,18] in a fractional quantum Hall experiment, with sintered silver heat
exchangers attached to the sample wires in a 3He cell. In Ref. [17], a PrNi5 demag-
netization stage at 0.5 mK was used to cool the liquid 3He, well below the 4 mK
of the 2DEG sample. For quantum Hall samples loaded into a chip holder in vac-
uum, slightly higher temperatures 9 . . . 13 mK were reported [19–21]. Interestingly,
in Ref. [20] (supplementary), the refrigerator base temperature was below 6 mK and
the temperature measured with a Coulomb blockaded quantum dot was 16 ± 3 mK.
The lowest GaAs quantum dot temperature measurement reported is 12 mK [22,23],
as far as we know.

We note that apart from noise measurements [19], electron temperature mea-
surements in the (fractional) quantum Hall regime are of rather qualitative nature,
usually lacking a well-known temperature dependent effect to extract temperature
from. Instead, some temperature dependent feature, typically a longitudinal resistance
peak [17,18,20], is used, assuming a specific temperature dependence (e.g. linear)—
resulting in estimates of temperature, rather than absolute temperature values. A quan-
tum dot thermometer, on the other hand, is in principle a primary thermometer capable
of reading absolute temperatures [1]. However, compared to quantum Hall samples,
a quantum dot device operates at significantly larger resistance (typically �1 M�).
Thus, essentially the entire voltage drops over the dot, presumably making it more
susceptible to electronic noise.

For any device electron thermometer, it is very instructive to compare the electron
temperature with a suitable calibrated refrigerator thermometer over a broad tempera-
ture range. Ideally, both thermometers should agree very well, demonstrating effective
operation of the device thermometer—in a much more convincing way than agreement
at any single, isolated temperature. In addition, at the lowest refrigerator temperatures,
often a saturation of the device temperature becomes apparent, either due to improper
thermometer operation or insufficient device thermalization (or both). The functional
form of the deviation of the device temperature from the refrigerator temperature in
principle contains important information about the device cooling mechanism [24], if
the thermometry is accurate enough and functioning properly. Previous reports have
shown quantum dot thermometers to agree well with the refrigerator thermometer over

123



786 J Low Temp Phys (2014) 175:784–798

a broad range of rather high temperatures T �100 mK [25–27], with the best reaching
down to about 50 mK [23,28–31]—but not to lower temperatures.

These examples indicate that cooling of a 2DEG embedded in a semiconductor
such as e.g. GaAs is a difficult task. The main reason is the weakening of the electron–
phonon interaction in the 2DEG ∝ T 5 [17,32,33] at low temperatures. Therefore, at
very low temperature, the system benefits from cooling through the conduction elec-
trons (Wiedemann–Franz mechanism, ∝ T 2 [34,35]), where heat transfer is mediated
through the electrical contact to the sample. For typical semiconductor devices with
large contact resistances, this comparably weak coupling makes the sample vulnerable
to heat leaks, e.g. high frequency radiation or dissipative heating. Additionally, the
weakening of the electron-phonon interaction significantly complicates the thermal
coupling of the insulated sample wires to the coldest part of the refrigerator.

Recently, we have proposed a way to overcome these limitations by integrating a
copper nuclear refrigerator into each of the electrical sample wires connected to an
electronic transport sample, providing efficient thermal contact to a bath at low mK
or microkelvin temperature [36]. For efficient precooling of the nuclear refrigerators
as well as for regular dilution refrigerator operation, every sample wire is connected
to a sintered silver heat exchanger located in the plastic mixing chamber (facilitating
superfluid leak-tight feedthroughs) of the dilution refrigerator with a base temperature
of 9 mK. Further, to minimize the effect of high-frequency radiation, all electrical
lines are filtered extensively using thermocoax cables, cryogenic Ag-epoxy microwave
filters [37] and double-stage RC filters of bandwidth 30 kHz. The measurement setup is
described in detail in reference [24]. In semiconductor samples such as GaAs 2DEGs,
the ohmic contacts will probably present the largest electrical and thermal impedance
in this cooling scheme.

2 Quantum Dot Thermometry

Gate defined GaAs quantum dots in deep Coulomb blockade are used as a thermometer
directly probing the electron temperature T in the surrounding 2DEG by measuring
the thermal smearing of the Fermi edge [1]. As shown in Fig. 1a, the quantum dot
is coupled to two electron reservoirs via left and right tunnel barriers with tunnel
rates ΓL and ΓR . In the symmetric case ΓL = ΓR = Γ , the direct current through
the quantum dot is approximated by IDC = eΓ/2 assuming sequential tunneling,
with e the electron charge. In the temperature broadened Coulomb blockade regime
(hΓ � kB T , with Boltzmann constant kB and Planck constant h), the narrow dot
level with broadening ∼ Γ acts as a variable energy spectrometer which can resolve
and directly map the Fermi–Dirac (FD) distribution in the current through the dot. The
energy of the spectrometer can be tuned by capacitively shifting the dot energy level
with a gate, e.g. the plunger gate at voltage VP . With a sufficiently large DC source–
drain bias VSD � kB T/e, the chemical potential of source and drain reservoirs can
be individually resolved, separately giving the distribution functions of each reservoir
when sweeping the plunger gate voltage VP through both source and drain chemical
potentials.
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Fig. 1 a Schematic for a temperature measurement using a single quantum dot. Low tunnel rates to the
left and right reservoir, ΓL and ΓR respectively, result in an energetically sharp quantum dot level which
can be tuned with the plunger gate VP . By sweeping the dot level through the source–drain window
eVSD, given by the difference in chemical potentials μL − μR , the temperature of each reservoir can
be extracted individually; the thermally smeared Fermi–Dirac distributions (∝ kB T , here TR > TL ) are
mapped with the measured current IDC. b Working principle for the charge sensing measurement: the dot
level can be swept through the Fermi level at chemical potential μ using the topgate voltage wl. The average
occupation probability, which again reflects the Fermi–Dirac distribution (i.e. temperature TS ) in the double
dot reservoir, is probed by the conductance gs through a charge sensing quantum dot capacitively coupled
to the dot (Color figure online)

To stay in the single level transport regime, the bias VSD has to be small com-
pared to the excited state energy Δ. To obtain the temperature from each distribution
function, the gate lever arm α is required for the conversion from gate voltage to
energy. The separation ΔVP in gate voltage between the inflection points of the two
FD distributions can be taken from the plunger gate sweep IDC(VP ) at a fixed, known
bias VSD. This measurement gives the lever arm α = eVSD/ΔVP without additional
measurements and delivers the temperatures TL and TR of the left and right reservoir,
respectively, from a single IDC(VP ) sweep. This allows a temperature measurement
without calibration by another thermometer, thus constituting a primary thermometer.
As an alternative, the differential conductance through the dot can be measured using
a small AC voltage, resulting in the derivative of the FD function [1].

We note that here, the device is operated in a highly non-linear regime where the dot
current IDC depends only on the tunneling rate Γ but is—to lowest order—independent
of the applied bias kB T � VSD � Δ once the dot level is well within the transport
window spanned by source and drain chemical potentials. However, the electrons
traversing the dot are injected at a high energy VSD � kB T into the reservoir with
the lower chemical potential. These hot electrons will relax their energy and thereby
cause heating in the 2DEG reservoir. The currents and biases used here are rather
small, typically giving heating powers ∼ IDCVSD below 1 fW. Nevertheless, this heat
will need to be removed, e.g. through the ohmic contacts or the phonon degree of
freedom. We experimentally choose the bias VSD small enough to avoid measurable
heating.

For ultra-low temperatures, one critical aspect of the quantum dot thermometer is
the requirement to have a dot level much sharper than the FD distribution to be probed
and resolved. The broadening of the dot level is given by lifetime broadening: the
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finite time an electron spends on the dot, defined by its escape rate ∼ Γ , introduces an
uncertainty on its energy through the time-energy Heisenberg uncertainty principle.
In gate defined dots, the tunneling rate Γ can be tuned widely over many orders of
magnitude with gate voltages, affording broad flexibility. While Γ can easily be made
sufficiently small to satisfy hΓ � kB T even at the lowest temperatures, reduced Γ

also suppresses the dot current IDC ∼ eΓ/2. Taking 2hΓ = kB T , an upper bound on
the dot current of I ∼ 1 pA ·ϑ results, where ϑ is the temperature in mK. Thus, to be
clearly in the temperature broadened regime, currents far below these upper bounds
are required, setting a practical limit of order of 10 mK as the lowest temperature that
can be measured with the current setup.

An integrated charge sensor directly adjacent to the quantum dot [38,39] makes it
possible to overcome this limitation: a measurement of the average dot charge occu-
pation while sweeping the dot level through a charge transition [40] reflects the FD
distribution under similar conditions as described before. However, the dot-reservoir
tunneling rate Γ can now be made essentially arbitrarily small, ensuring hΓ � kB T
even for temperatures well below 1 mK. This is possible because the size of the charge
sensor signal is nearly independent of Γ and the charge sensor remains operational for
arbitrarily small Γ . The distribution function is conveniently measured when the dot
tunneling is fast compared to the data acquisition rate, avoiding complications due to
real time detection of single electron tunneling. The current through the charge sensor
still gives rise to phonon or photon emission [41] and generally causes heating, anal-
ogous to a current flowing directly through the dot as discussed above. However, the
sensor and its reservoirs can be electrically isolated and spatially separated somewhat
from the dot, reducing heat leaks and coupling strength [42] and improving the situ-
ation compared to a direct current through the quantum dot. Nevertheless, the sensor
biasing will need to be experimentally chosen to minimize such heating effects.

Similar thermometry can also be performed in a double quantum dot configuration,
where charge transitions involving a reservoir can be used to measure the FD distri-
bution and the corresponding temperature, see Fig. 1b. The relevant double dot lever
arm can be extracted again from finite bias measurements [43] or can be calibrated at
elevated temperatures where it is safe to assume TMC = TL ,R with the temperature of
the left and right reservoir TL ,R , respectively. It is worth noting that in a double dot,
the thermal smearing of the reservoirs can be essentially eliminated when studying
internal transitions such as inter-dot tunneling, allowing measurements with a resolu-
tion much better than the reservoir temperature [43]. Nevertheless, internal double dot
transitions can also be used for reservoir thermometry depending on the dot config-
uration [40]. Similarly, in optically active semiconductor quantum dots, the reservoir
temperature can be irrelevant, and the optical line width is limited by the lifetime
and/or other noise sources such as semiconductor charge instabilities or nuclear spin
noise [44].

Interestingly, the energy levels of the double dot can easily be configured (e.g. suf-
ficiently far away from the triple points or bias triangles) so that no net current can
flow through the double dot even at some finite bias (here always assuming sequential
tunneling only), avoiding dissipative heating originating from the double dot alto-
gether. Despite the absence of current flow, the system can still easily be probed with
a charge sensor, and the reservoir temperature can be extracted as described above. A
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similar situation can also be exploited in a single dot with one barrier tuned to be very
opaque [45]. The biasing of the charge sensor nevertheless still dissipates energy, as
already described.

3 Thermometry with Direct Transport

The quantum dots were fabricated with standard UV and ebeam lithography and
evaporation of Ti/Au depletion gates. The single quantum dot (SQD) layout, see inset
of Fig. 2(b), was adapted from Ref. [46], giving access to the few electron regime in
transport measurements. The 2DEG is formed at a single AlGaAs/GaAs interface,
located 110 nm below the surface, with charge carrier density n = 2.8 ·1011 cm−2 and
mobility μ= 280,000 cm2/(Vs). This wafer was chosen because of excellent charge
stability. The devices were cooled down without positive voltage bias on the gates. The
ohmic contacts are non-magnetic, made from AuGe/Pt, and optimized for minimal
contact resistances, typically �100�. The direct current IDC through the dot was
measured with a 3 Hz low-pass filter.

We now show how the reservoir temperatures TL and TR can be extracted from a
measurement of the current IDC through the dot at finite applied bias VSD as a function
of the plunger gate voltage VP , as shown in Fig. 2a. The plunger gate VP allows us
to shift the energy of the dot level through both source and drain chemical potentials
without significantly changing the reservoir tunneling rates for a small change of VP :
more negative VP capacitively shifts the dot level to higher energy. A finite current
flows through the dot when the dot energy level is located within the transport window,
see Fig. 1a. Otherwise, no current can flow, either due to a lack of filled electron states
when the dot energy is above the higher chemical potential reservoir, or due to a lack
of empty states the dot electron can tunnel into when the dot energy is below the lower
chemical potential reservoir. The transitions between zero and finite current IDC each
reflect the distribution function of the respective reservoir, and can be fit by a FD
function of the form

IF D(VP ) = I1

[
exp

(
α(VP − VP0)

kB TL ,R

)
+ 1

]−1

+ I0, (1)

with step height I1, offset current I0 and plunger gate offset VP0. For a given step
height I1 and lever arm α, the temperature is essentially given by the slope of the
transition, where lower temperature corresponds to a steeper, sharper curve. A rising
(falling) step is obtained by the choice of the relative sign of I0 and I1. We note that
this fit function will only apply in a rather narrow window of energy (i.e. plunger gate
voltage) around the transition, since other effects not captured by the FD function
alone can also play a role, such as local density of states variations due to the finite
size lead reservoirs. The FD function gives high quality fits to the data within the
measurement noise, see Fig. 2a, and delivers separate temperatures TL ,R for the left
and right reservoirs, respectively. The right reservoir was connected to the current
preamplifier and gives slightly higher temperatures TR > TL , see Fig. 2a. Swapping
the current preamplifier to the other reservoir inverts the situation. Upon increasing
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Fig. 2 a DC current IDC through the single quantum dot as a function of plunger gate voltage VP at
refrigerator temperature TMC = 9 mK, showing a high current region (dot level between source and drain
chemical potential) and a low current region (dot level outside source–drain window). These regions are
separated by the Fermi–Dirac distributions in each reservoir, separately giving TL and TR from Fermi–Dirac
fits (solid curves). The error bars shown here are the uncertainties from the FD fits only. An additional
uncertainty of �10 % arises from the error on the lever arm. The right reservoir is connected to the current
preamplifier and slightly warmer than the left reservoir. b Average temperature 〈TL 〉 obtained over several
repeated TL measurements, as a function of refrigerator temperature TMC. The dot configuration was not
changed during this temperature sweep. The error bars shown are the statistical errors from repetition of the
TL measurement. An additional uncertainty of �10 % on 〈TL 〉 needs to be added to the error bars shown,
arising from the uncertainty of the lever arm. Inset: SEM picture of a device similar to the one measured
(P plunger gate, scale bar 200 nm) (Color figure online)

TMC, we have observed better agreement with TL than with TR , thus we will focus
on TL . The weak dependence of dot current on VP in the high current state can arise
e.g. due to variations in the local density of states in the leads, but is not part of the
transition region fit by the FD function. The DC bias voltage was reduced until no
effects on the extracted temperatures were observed, typically VSD <100µV at the
lowest temperatures—still allowing to clearly separate the two flanks.

Despite significant noise on the IDC data, the error-bars on the temperatures
extracted from the individual FD fits are rather small �10 %, see Fig. 2a, plus �10 %
error from uncertainty of the lever arm α. A further uncertainty (typically about �20 %)
becomes apparent when the fits are performed over a large number (of order 10) of
repeated current traces under nominally identical conditions, see Fig. 2b. This uncer-
tainty is due to charge instabilities and resulting random telegraph noise—occasionally
directly identifiable in the data as a discrete switch—as well as slow drifts in the
2DEG material and quantum dots, or external influences. Semiconductor charge noise
is known for a long time and has been studied extensively, see e.g. Refs. [44,47,48]
and references therein. We note that the sensitivity to such disturbances becomes
more pronounced at lower temperature, already requiring an energy jitter of much
less than ∼1µeV at 10 mK—a quite remarkable charge stability [44]. The severity of
such charge noise depends sensitively on the detailed dot gate voltage configuration
as well as the wafer material and fabrication procedure, and can become negligible
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at elevated temperatures due to increased thermal broadening. Current traces with
obviously apparent switching events are not included in the ensemble of traces used
to extract temperature. Nevertheless, charge switching is not always directly identifi-
able, and the fluctuating temperatures extracted from the FD fits upon repeating the
measurement are predominantly due to charge noise. A switch occurring during the
scan at the transition is the only obvious source we are aware of that could lead to both
a narrowing or a broadening of the FD distribution, resulting in artificially fluctuating
temperatures extracted from the FD fits, as seen in the experiment.

Due to the sizable charge noise, we cannot use an individual temperature mea-
surement as in Fig. 2a, but rather have to gather statistics in order to obtain a more
reliable measure of temperature. In Fig. 2b, we extract the average temperature of the
left reservoir 〈TL〉 measured with the quantum dot at fixed configuration for several
refrigerator mixing chamber temperatures TMC, measured with a cerium–magnesium–
nitrate (CMN) thermometer. The CMN thermometer was calibrated using a standard
fixed point device with 6 superconducting transitions between 1.2 K and 96 mK, giv-
ing excellent agreement between fixed point device and CMN. A calibrated RuO2
resistor (also in very good agreement with the fixed points) was used to extend the
CMN calibration range to lower temperatures, giving excellent agreement with the
CMN to below 20 mK. Almost identical CMN temperatures are obtained in the range
from 10 to 200 mK, regardless of whether a Curie law or a Curie–Weiss law is used
to calibrate the CMN thermometer [34].

The standard deviation resulting from the repeated current traces is used to give
the error bars on 〈TL〉 in Fig. 2b. The lever arm uncertainty �10 % is in addition to
the error bars shown. As seen in Fig. 2b, we find decent agreement between 〈TL〉
and TMC within the error bars over the temperature range from ∼20 to ∼130 mK.
At the lowest temperatures, however, 〈TL〉 appears to saturate at ∼20 mK for the
particular gate configuration used for this temperature sweep. When the measurement
is further optimized and the tunnel rates are decreased a bit more (trading off current
signal amplitude), the lowest temperature we extract in direct current through the dot is
〈TL〉 = 11±3 mK (including all errors) averaged over several traces similar to the data
shown in Fig. 2a. This is within the error bars of the base temperature TMC = 9 mK.
Given agreement between 〈TL〉 and TMC over a wide temperature range, we can be
confident that the sample is well thermalized and the dot thermometer is properly
working, reading a reliable temperature despite charge noise.

4 Thermometry with Charge Sensing

We now turn to thermometry with a charge sensor adjacent to a double quantum dot
device. The design of the device was adapted from Ref. [49], see inset of Fig. 3a,
employing quantum dots as very sensitive charge detectors, directly adjacent on either
side of the double dot. Here, we focus on data from one of the sensors since the other
sensor gave very similar results. A GaAs 2DEG material very similar to the wafer used
for the single dots was used, again experimentally tested to exhibit excellent charge
stability. The differential conductance gs = d I/dV of the charge sensing quantum dot
was measured with standard analog lock-in technique with an AC bias voltage ≤2µV.
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Fig. 3 a Change in differential conductance δgs of the sensor on the right side measured as a function of
the voltage on the left wall wl and right wall wr of the double dot. The average of each vertical trace was
subtracted to improve visibility. The charge stability diagram shows the honeycomb structure typical of a
double dot. The absolute electron occupation (n, m) is labeled, indicating the charge state in the left and
right dot, respectively. Inset SEM picture of a device similar to the one measured (d/s drain/source, scale
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positions but not the actual sizes of the quantum dots. b Sensor differential conductance gs as a function of
wl and VSD around the (0,0)–(0,1) transition, allowing extraction of the lever arm α (Color figure online)

The sensor bias voltage was carefully experimentally restricted to avoid excess heating.
The voltage and current noise of the measurement setup was carefully monitored and
minimized, with optimal rms values of 0.5 µV and 50 fA, respectively.

The sensitivity of the charge sensor can be defined as 2|g1 − g2|/(g1 + g2) =
|Δg|/gavg with the conductance values g1 and g2 corresponding to the charge states
before and after the transition and gavg = (g1 +g2)/2. The charge sensor was operated
in the lifetime broadened regime, tuned on a steep slope of a Coulomb blockade peak,
giving excellent sensitivities of up to 100 %. This is clearly superior to typical quantum
point contact charge sensors, as previously reported [49]. Even better sensitivities
could be achieved when tuning the sensor dot into the temperature broadened regime,
where much narrower, sharp peaks result. However, staying on such a sharp peak
becomes experimentally difficult due to parasitic capacitive coupling between double
dot gates and the sensor dot. Once the sensor is shifted to a region where the slope is
very small (e.g. a Coulomb blockade valley with nearly vanishing conductance), the
charge sensitivity is lost. Already in the lifetime broadened sensor regime used here,
changes on the double dot gate voltages needed to be carefully compensated on the
plunger gate of the sensor dot in order to maintain charge sensitivity.

The double dot charge stability diagram, as measured with the charge sensor, is
shown in Fig. 3a as a function of gate voltage on the left wall wl and right wall wr
of the double dot, as labeled in the inset. The typical honeycomb pattern as expected
for a double dot [43] is observed. Each dot can be emptied of all electrons (bottom
left), as evidenced by the absence of further charge transition lines in the diagram at
more negative gate voltages. This allows us to label the double dot charge state (n, m),
indicating the absolute electron occupation in the left and right dot, respectively. A
couple of additional weak charge transitions are also appearing with slopes deviating
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from those occurring in the honeycomb of the double dot, presumably due to some
nearby charge traps in the semiconductor. These are also related to the charge noise
as seen in the temperature measurements.

The reservoir temperature can again be extracted, here from the charge sensor signal
with analogous FD fits to any of the charge transitions in the honeycomb involving
one of the reservoirs. The data are fitted using Eq. (1) by replacing currents I with
sensor conductances gs as well as VP and VP0 with wl and wl0, respectively. As
before, the corresponding lever arm is required for the conversion from gate voltage
to energy, and is extracted from measurements at high enough temperatures where
double dot reservoir temperature TS measured with the sensor is equal to TMC. Bias
triangles were not accessible in the regime the double dot was operated here due to
tunnel rate asymmetries. We note that the inter-dot tunnel rate was tuned to be very
small for the temperature measurements, with the double dot operated in a gate voltage
configuration different from the one shown in Fig. 3a.

Alternatively, the same charge transition can be followed for various double dot
source–drain voltages VSD applied to the reservoir involved in the transition, as shown
in Fig. 3b. Due to a finite capacitance of this reservoir to the dot, this gives an upper
bound for the lever arm and the extracted temperature. However, the lever arm extracted
at high temperature turns out to be the same as the upper bound (within the error bars
of 10 %), thus indicating that the reservoir-dot capacitance is small compared to the
total dot capacitance for the configurations used in our device—at least at the very
low tunnel rates utilized here. Hence, the slope of the charge transition line in the
wl–VSD plot gives the inverse of the lever arm. The lever arm error of �10 % needs
to be added to all temperatures appearing in this section (unless noted otherwise) as
a systematic rather than fluctuating error, i.e. affecting all temperatures in the same
way. All temperature measurements shown here were carried out at the transition from
(0,0) to (0,1), although similar results were obtained for other transitions.

Figure 4a shows a charge sensor measurement through the (0,0)–(0,1) transition
and a FD fit at TMC = 9 mK, resulting in TS = 10.8 ± 1.2 mK. While the sensor
measurements give very good agreement with the FD fits at elevated temperatures (see
Fig. 4a inset, giving TS = 132.6 ± 7.0 mK at TMC = 132 mK) over a broad temperature
range, the charge sensor temperature measurement again becomes more difficult at
the lowest temperatures. The inset of Fig. 4b shows the sensor signal for the same
charge transition repeated a few times under identical conditions. Both the position
and width of the transition is seen to fluctuate as a function of time, resulting in
fluctuating temperatures TS extracted with the FD fit, see Fig. 4b, similar as described
for temperature measurements via current through the dot. The error bars shown here
(and also in Fig. 4d) are from the FD fit only. In addition, the configuration of the sensor
can also affect the extracted temperatures, typically resulting in elevated temperatures
for stronger sensor–double dot coupling. Thus, at lower temperature, smaller sensor
step heights are required, making fitting more difficult. As before, curves displaying
obvious switching events are not considered for determining temperature.

We can also use the double dot source–drain voltage VSD instead of gate voltage to
drive the charge transition and directly obtain a temperature value without needing a
lever arm, since the reservoir–dot capacitance is small here, as previously discussed.
In this way, we obtain an upper bound on the reservoir temperature which here is close
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Fig. 4 a Sensor differential conductance gs (sensor dot on the right side) as a function of gate voltage
wl at TMC = 9 mK, showing the transition from the (0,0) to (0,1) charge state. The reservoir temperature
TS is extracted from a FD fit (black curve) to sensor data, as indicated. Inset similar measurement with
corresponding fit at TMC = 132 mK showing 132.6 ± 7.0 mK. b Series of repeated TS measurements in
the same dot configuration with an average temperature 〈TS〉 = 10.3 ± 4.4 mK (dashed line average,
gray shaded area standard deviation). Inset corresponding sensor conductance gs as a function of gate
voltage Vwl versus trace number. c Sensor conductance gs of the right charge sensor as a function of
VSD at the transition from (0,0) to (0,1), with FD fit (black curve) and extracted temperature as labeled. d
Reservoir temperature TS extracted with the sensor from several repeated wl sweeps (see inset) versus trace
number, showing an abrupt change of the electronic dot configuration after three sweeps, which increases
the temperature reading from 18 to 52 mK. The systematic lever arm error of �8 % is to be added to all
error bars here in a–d (Color figure online)

(within 10 %) to the actual temperature. Such a VSD charge transition measurement
is illustrated in Fig. 4c, again for the (0,0)–(0,1) transition, and gives a very similar
temperature as obtained from the gate sweep. The undershoot before and the overshoot
after the rising edge has been observed in several measurement curves at the lowest
temperatures, both by sweeping VSD or a gate, though it is not seen in some other traces,
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e.g. Fig. 4a. These features are only seen for certain gate voltage configurations, and
their origin is not currently understood.

The extreme sensitivity of the charge transition to the electrostatic environment
is demonstrated in Fig. 4d. While scanning the same transition 30 times, an abrupt
change in the charge configuration during the fourth scan has altered the charge sensor
conductance considerably, even inverting the sign of the sensor response to the dot
charge transition. This switching event caused the apparent FD fit temperature to
change from 18 to 52 mK. While the sensor conductance and double dot configuration
can be strongly altered by a local charge rearrangement, the temperature of the large
reservoirs was most certainly not affected by this single switching event. Thus, the
lower temperature 18 mK reflects the reservoir temperature both before and after the
switching event, while the higher temperature is artificially elevated due to improper
dot/sensor configuration. Scanning charge transitions different from (0,0) to (0,1)
revealed similar temperatures but also suffered from the same problems with charge
instabilities.

5 Discussion

After considerable experimental efforts due to the pronounced sensitivity to electronic
noise and device charge instabilities, we approach mixing chamber base temperature
with both methods, direct transport and charge sensing. By using the nuclear refrigera-
tor (TNR < 1 mK [24]), no further reduction of the electron temperature was observed,
in contrast to measurements with other thermometers mounted in the same refrigera-
tor in subsequent cool downs. In the direct transport measurements, we might suspect
lifetime broadening of the quantum dot level as a limiting factor. But the tempera-
tures obtained with the charge sensor are not evidently lower than the temperatures
measured in direct transport, despite much lower dot tunneling rates.

In direct transport, dissipative heating from the voltage drop over the dot will even-
tually become significant at sufficiently low T. Estimates of the electron temperature T
assuming dominant Wiedemann-Franz cooling, an ohmic contact resistance of 100�,
VSD = 100µV and a current of 8 pA (Γ/2 = 50 MHz) indicate that the temperature
is only increased by ΔT = 0.3 mK above the bath temperature at TMC = 10 mK. At a
much lower temperature TNR = 1 mK, however, the electron temperature is estimated
to rise to T = 2.8 mK due to poor thermal contact. This strong increase is due to the
ohmic contact resistance, which could potentially be further reduced with improved
fabrication. In addition, the voltage bias VSD can also still be made much smaller, since
a temperature of TNR = 1 mK corresponds to a broadening of the FD distribution of
only ∼0.1µV, thus still leaving room to fulfill eVSD � kB T .

Our experiments indicate that the electronic noise and external disturbances in the
measurements setup play a very important role: excess voltage noise clearly increases
the temperatures extracted. Filtering and shielding can be further improved, though
already in the present experiment, a significant amount of work was invested [24].
We obtain noise levels as low as several hundred nanovolts across the dot measured
at room temperature, but significantly less at the cold device due to filtering. The
electron temperature here becomes independent of the noise power at the lowest noise
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levels, indicating that electronic noise is not the only or not the dominating limitation.
The role of the charge sensor as a noise source and possible effects of coupling, back
action [42] or sensor heating require further investigation.

The devices used here have outstanding charge stability, with noise on the dot energy
level well below 1µeV [30,44,47,48], making possible temperature measurements as
low as ∼10 mK presented here. Still, device charge instabilities present a serious
obstacle if much lower temperatures are to be reached, already severely impeding the
measurements here. The temperature measurement would benefit from faster mea-
surements, thus cutting off the noise spectrum at the lowest frequencies and reducing
the effect of random telegraph noise. The obvious trade-off is increased signal noise
at faster measurement speeds. We emphasize that the charge switching noise exceeds
other setup noise such as the voltage sources on the gates, preamplifiers and Johnson
noise of the sample wires.

Besides semiconductor charge instabilities, the GaAs nuclear spins can also act as
a noise source, giving rise to a fluctuating Zeeman splitting and thus broadening of the
single electron energy level (though the energy of a spin singlet would be immune to
this noise). With GaAs hyperfine coupling constant A = 90µeV [50] and number of
nuclear spins N ∼ 105–106 enclosed in the electron wave function [51], the resulting
energy fluctuations are of order A/

√
N ∼ 0.1 µeV, and become a limiting factor for

T � 1 mK. Finally, heat release from sample holder or other components can also be
a limiting factor, resulting in temperatures decaying slowly over a timescale of days.
This is difficult to quantify in the present experiment due to the rather large error bars
on the extracted temperatures.

In conclusion, we have measured the reservoir electron temperature T with a GaAs
quantum dot in both direct transport and charge sensing. We find decent agreement
with a CMN thermometer over a broad temperature range down to 10 ± 3 mK. Cur-
rently, the main limitations are charge switching noise in the GaAs device, external
electronic noise, heating effects due to the charge sensor as well as potential heat
release at the lowest temperatures. Even lower temperatures might be achievable by
further improving the setup and device, e.g. by better shielding and filtering, choos-
ing materials with lower heat release and possibly optimizing the wafer material and
device fabrication.
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