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Received: 26 September 2014 / Accepted: 10 January 2015 / Published online: 29 January 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract We consider a quasi one-dimensional quantum dot composed of two Coulombi-
cally interacting electrons confined in a Gaussian trap. Apart from bound states, the system
exhibits resonances that are related to the autoionization process. Employing the complex-
coordinate rotation method, we determine the resonance widths and energies and discuss
their dependence on the longitudinal confinement potential and the lateral radius of the
quantum dot. The stability properties of the system are discussed.
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1 Introduction

Recently, it has become possible to fabricate few-particle systems that realize simple models
of quantum theory and enable quantitative comparison with the accurate solutions of the
Schrödinger equation. The advantage of the produced nanosystems composed of a few iso-
lated atoms [1] or ions [2], as well as larger systems with a few-particle substructure such
as semiconductor quantum dots [3] is that their parameters can be experimentally con-
trolled. Not only the number of constituents, but also the interactions between them and
the geometry of the system can be modelled at will by applying appropriately designed
electromagnetic fields. Those systems create a versatile platform for testing the effective-
ness of approximation methods used in solving quantum many-body problems. Particularly
fortunate from the point of view of comparison with theoretical considerations are the
quasi-one-dimensional systems for which accurate few-body calculations are possible.

The new experimental possibilities gave an impetus for accurate theoretical studies of
simple two-body systems subjected to external potentials. Many theoretical works have
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Institute of Physics, Jan Kochanowski University, Świȩtokrzyska 15, 25-406 Kielce, Poland
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discussed the properties of bound states of two Coulombically interacting particles con-
fined by a harmonic potential [4–6], much less studies were devoted to systems that show a
resonant behavior. In order to determine the resonance energy and lifetime, various theoret-
ical approaches have been used based on bound-state methods, e.g. the complex coordinate
method [7–10], the box approach [11], the complex absorbing potential [12] and the real
stabilization method [13, 14]. Investigation of autoionizing resonant states in two-particle
systems has been performed for 3D atomic systems, helium and helium-like ions [10, 14],
and spherically symmetric quantum dots [7–9]. The presence of autoionizing states is highly
important for transport phenomena in nanosystems. The role of resonances in the scattering
process in one-dimensional quantum dots has been also investigated [15].

In this paper, we consider a system of two Coulombically interacting particles that
are strongly confined laterally and weakly confined by the longitudinal potential which
supports both bound and continuum stationary states. The system is modelled by a quasi-
one-dimensional Hamiltonian with the parameters describing the shape of the confining
potential and the interparticle interaction strength. We discuss the energy spectrum and
study how the presence of autoionizing resonances depends on the system parameters. In
particular, studying the dependence of the lifetime of the resonant state on the lateral con-
finement range, we will establish its influence on the stability properties of the quantum
dot.

2 The Model

Our model approximates a two-electron system in an axially symmetric anisotropic trap,
where the lateral confinement is much stronger than the longitudinal one, so that the
assumption that all excitations occur only in the longitudinal direction is justified and the
system can be effectively described by a quasi-one-dimensional Hamiltonian

Ĥ =
2∑

i=1

[
−1

2

∂2

∂x2
i

− V0e
−x2

i

]
+ V δ(|x1 − x2|). (1)

The effective interaction potential is taken in the truncated Coulomb form [16]

V δ(|x1 − x2|) = g
√

(x1 − x2)2 + δ
, (2)

where g is the strength of the interaction. The parameter δ is related to the lateral confine-
ment range which determines the lateral radius of the quasi-one-dimensional quantum dot.
The simplified form (2) has the same behavior at large interparticle distances as the bare
Coulomb potential (see Fig. 1) and is convenient to apply in numerical calculation based
on exact diagonalization of the Hamiltonian. The limit of δ → 0 corresponds to the strictly
one-dimensional system.

The longitudinal confinement in the considered system (1) is taken in the form of an
attractive Gaussian potential of the depth V0, which is commonly used to model quan-
tum dots [6, 8, 17]. The two-particle Hamiltonian (1) spectrum is continuous above the
threshold energy ε

(2)
th = ε(1), where ε(1) is the one-particle energy. The bound-states are

associated with the solutions of the Schrö dinger equation under vanishing boundary con-
ditions, the eigenenergies of which are real and less than ε

(2)
th . The autoionizing resonances
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Fig. 1 The behavior of the truncated Coulomb interaction (2) for different δ parameters compared to the
Coulomb bare potential where x = |x1 − x2|

correspond to the discrete solutions that satisfy outgoing boundary conditions. The reso-
nance eigenvalues are complex numbers

E = ε − i
�

2
, (3)

which determine the binding energy ε and the inverse of the resonance lifetime �. In
the present work we investigate both singlet (spatially symmetric) and triplet (spatially
antisymmetric) states.

3 The Method

Since the eigenvalue problem of the Hamiltonian (1) does not admit analytical solutions,
calculations must be performed numerically. In order to obtain both the bound and resonant
states, we apply the configuration interaction (CI) expansion

�s,t (x1, x2) =
∑

i,j

aijψ
±
ij (x1, x2), (4)

where

ψ±
ij (x1, x2) = cij

(
φi(x1)φj (x2) ± φj (x1)φi(x2)

)
, (5)

where

cij =
{

1√
2

i �= j

1
2 i = j

,
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which ensures the proper symmetry under permutations of the particles, so that (+) and (−)

correspond to the singlet (s) and triplet (t) states, respectively. Here we choose the single
particle orbitals as the harmonic oscillator (HO) eigenfunctions

φj (x) =
(

1√
π2j j !

)1/2

Hj(x)e− x2
2 , (6)

where the functions Hi(x) are the Hermite polynomials. The whole spectrum of the system
is determined by exact diagonalization of the infinite Hamiltonian matrix, the elements of
which are given by

Hnmij =
∫ ∞

−∞
ψnm(x1, x2)Ĥψij (x1, x2)dx1dx2. (7)

Diagonalization of truncated matrices [H ]M×M yields Mth order approximations to wave
functions and the corresponding energies of M states. The accuracy of the method can
be systematically improved by increasing the number M of basis functions, obtaining
successive approximations to the larger and larger number of states. In the strictly one-
dimensional limit of δ → 0 the direct calculation for symmetric wave function become
divergent. Fortunately, the ground state of the strictly one-dimensional interacting sys-
tem (g �= 0) can be determined avoiding divergences by mapping its wave function onto
the lowest energy antisymmetric wave function ψF via the Bose-Fermi mapping relation
ψ(x1, x2) = |ψF (x1, x2)| [18].

The CI method can be generalised to determine resonant states by using the complex
scaling transformation U(θ) : x �→ xeiθ . The spectrum of the complex-rotated Hamiltonian

Ĥθ = U(θ)ĤU−1(θ) (8)

is described by the Balslev-Combes theorem [19], which states that the real bound-state
eigenvalues, the complex resonance eigenvalues and the thresholds are the same as those
of the original Hamiltonian, but the eigenvalues of the continuous spectrum are rotated
about the thresholds by an angle 2θ into the lower energy half-plane, exposing complex
resonance eigenvalues. The theorem is proven for dilatation analytic potentials [19, 20].
However, the application of the complex scaled CI method for potentials that do not have
this property [21–24] appeared successful and it has been argued [25] that such an approach
can be viewed as finite matrix approximation to the mathematically precise exterior complex
scaling [26].

Based on this findings, we apply the complex scaled CI method to the model system (1),
where the soft Coulombic potential (2) is non dilatation analytic. We determine the eigen-
states of the system through diagonalization of the truncated Hamiltonian matrix [H ]ηM×M ,
the elements of which are obtained as

H
η
nmij =

∫ ∞

−∞
ψnm(x1η, x2η)Ĥψij (x1η, x2η)dx. (9)

The Hamiltonian matrix elements (9) are analytical function of η and therefore we can
analytically continue them to the complex plane by substituting η = e−iθ as first proposed
by Moiseyev and Corcoran [22]. The resonance eigenvalues are determined through the
stabilization procedure [8] as stationary solutions in the complex space

dEθ
k

dθ

∣∣∣
θ=θopt

= 0. (10)

The Fig. 2 shows how the exemplary solutions of (10) are connected with a cusp in θ

trajectories in the complex energy plane.
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Fig. 2 The θ trajectories for two lowest energy resonances for exemplary values of the system parameters
g = 8, V0 = 10, δ = 0.01. Different points represent different values of θ from 0.1 to 0.75 in steps of 0.05
radians

4 Results: Energy and Lifetime

First, we study how the energy spectrum of the two-particle Hamiltonian (1) depends on the
longitudinal potential, the lateral confinement range and on the interaction strength g. The
calculations were performed with the number of basis functions M = 342 in the singlet
case and M = 324 in the triplet case, which proved sufficient to obtain convergent results.

4.1 Dependence on the Longitudinal Confinement Depth

The analysis of the effect of the depth of the longitudinal trapping potential on the spectrum
of the Hamiltonian (1) will be performed at fixed lateral confinement range with the related
parameter δ set to 0.01. In Fig. 3 the energies of the lowest singlet and triplet state are
presented as functions of the interaction strength g at five different depths V0 of the trapping
potential. As one can see, the depth of the trap has an important effect on the critical value
of the interaction strength gth at which the bound state is transformed into a resonance,
namely the larger is the value of V0, the larger is gth. Generally, the energies of singlet
states lie below the corresponding triplet ones and the singlet-triplet degeneracy is achieved
in the limit of g → ∞. The dependence of the triplet energies on g is much weaker and the
thresholds are lower than the ones of the singlet states.

Above the autoionization thresholds, the energy eigenvalues acquire an imaginary part
which determines the width � of the corresponding resonance state. We observe in Fig. 4
that the widths of resonant states are monotonically increasing functions of g that start at
the thresholds gth. The slope of the functions decreases and the singlet and triplet curves
approach each other when the depth of the Gaussian trap V0 increases. This means that the
lifetime of resonant states increases with increasing V0 and decreasing g. The singlets decay
faster than the corresponding triplets, but the differences diminish with increasing depth of
the trap.
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Fig. 3 The energies of the singlet (solid curve) and triplet (dashed curve) states as functions of the interaction
strength g for different depths V0 of the trap. The black points represent the thresholds gth which separate
the bound states from resonances

4.2 Dependence on the Lateral Radius

The influence of the lateral confinement range on the energy spectrum will be studied by
varying the δ parameter for a trap of fixed depth V0 = 10. In Fig. 5, the energies of the
singlet and triplet states are presented as functions of the interaction strength g. For the
pure Coulomb interaction δ = 0, the singlet and triplet energies are degenerate, except
at the point g = 0 where the singlet curve is discontinuous. Both the singlet and triplet
energies monotonically decrease when δ increases. However, the behavior of the curves in

Fig. 4 The widths of the resonant singlet (solid curve) and triplet (dashed curve) states as functions of the
interaction strength g for the same values of V0 as in Fig. 3
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Fig. 5 The energies of the singlet (left) and triplet (right) states in the trap of depth V0 = 10 for different
values of δ. The thresholds are marked by black points

the vicinity of g = 0 is markedly different, the triplet one approaches the continuous pure
Coulomb curve, reaching the value about −12.2 at g = 0, while the singlet one tends to the
discontinuous pure Coulomb curve, reaching the value about −15.9 at g = 0. The threshold
values of the interaction strength gδ

th, which separate bound states from resonances, being
(g0.1

th ≈ 4.55, g0.01
th ≈ 3.7, g0.001

th ≈ 3.51, g0
th ≈ 3.43) in the singlet case, and (g0.1

th ≈ 3.82,
g0.01

th ≈ 3.49, g0.001
th ≈ 3.44, g0

th ≈ 3.43) in the triplet case are marked Fig. 5. In both cases
the thresholds get smaller with decreasing δ.

In order to examine more closely the dependence on the lateral confinement, the system
with effective interaction (2) at a given value of the parameter δ will be compared with the
purely Coulombically interacting system. For the singlet (s) and triplet (t) states, we define
the energy differences

�εδ
s,t = ε0 − εδ

s,t , (11)

where the value of ε0 is obtained for pure Coulomb interaction. In Fig. 6 we can see that
�ε0.001

s,t ≤ �ε0.01
s,t ≤ �ε0.1

s,t irrespective of the interaction strength. For singlet state, we
observe a significant influence of the parameter δ on the energy differences in the vicinity
of g = 0, which is related to the discontinuity of the energy curve at this point in the
case of pure Coulomb interaction. Interestingly enough, in the triplet case we observe that
the energy differences are maximal in the vicinity of autoionization thresholds, which are
marked by dots in Fig. 6. In both the singlet and triplet cases, the energy differences �εδ

s,t

decrease at large g, but the decrease rates are smaller for larger δ. We observed that the

Fig. 6 The energy differences �εδ
s,t of the singlet (left) and triplet (right) states in the trap of depth V0 = 10

for different values of δ
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Fig. 7 The width differences ��δ
s,t of the singlet (dashed lines) and triplet (solid lines) states in the trap of

depth V0 = 10

widths of the singlet and triplet resonances are monotonically increasing functions of the
interaction strength g. In both cases they approach the pure Coulomb interaction curve from
below when δ parameter decreases. This means that the resonance lifetimes are the shortest
in the case of strictly one-dimensional systems. In Fig. 7, we show the differences of the
resonance widths

��δ
s,t = �0 − �δ

s,t , (12)

where �0 is obtained for pure Coulomb interaction. After initially increasing, the differences
��δ

s,t go through the maxima and then slowly decrease with increasing g. For smaller δ

the differences from the case of pure Coulomb interaction are smaller, being invisible in the
scale of Fig. 7 already for δ = 0.001.

5 Conclusion

The stability properties of the quasi-one dimensional two-electron quantum dot depend
strongly on the shape of the confining potential and the interaction strength g. At fixed
lateral confinement range, the critical value of the interaction strength gth at which the
bound state is transformed into a resonance, increases with the depth of the longitudi-
nal potential V0. The energies of singlet states lie below the triplet ones, becoming equal
in the limit g → ∞. The lifetime of resonant states increases with increasing V0 and
decreasing g.

The lateral confinement range also influences the energies and the stability properties.
For the strictly 1D system, the singlet and triplet energies are degenerate, except at the point
g = 0 where the singlet curve is discontinuous. When the lateral radius increases, both the
singlet and triplet energies monotonically decrease. At small values of g, its influence for
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singlets is much stronger than for triplets. For triplet states, the dependence on the lateral
radius is the most visible near the ionization thresholds. Whereas, the resonance lifetimes
of singlets and triplets monotonically increase with increasing lateral radius of the quantum
dot.
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3. Jacak, L., Hawrylak, P., Wójs, A.: Quantum Dots. Springer, Berlin (1997)
4. Giavaras, G., Jefferson, J.H., Fearn, M., Lambert, C.J.: Singlet-triplet filtering and entanglement in a

quantum dot structure. Phys. Rev. B 75, 085302 (2007)
5. Ciftja, O., Faruk, M.G.: J. Phys.: Two interacting electrons in a one-dimensional parabolic quantum dot:

exact numerical diagonalization. Condens. Matter 18, 2623 (2006)
6. Xie, W.: Two interacting electrons in a Gaussian confining potential quantum dot. Solid State Commun.

127, 401–405 (2003)
7. Bylicki, M., Jaskólski, W., Stachów, A., Diaz, J.: Resonance states of two-electron quantum dots. Phys.

Rev. B 72, 075434 (2005)
8. Sajeev, Y., Moiseyev, N.: Theory of autoionization and photoionization in two-electron spherical

quantum dots. Phys. Rev. B 78, 075316 (2008)
9. Genkin, M., Lindroth, E.: Effects of screened Coulomb impurities on autoionizing two-electron

resonances in spherical quantum dots. Phys. Rev. B 81, 125315 (2010)
10. Kar, S., Ho, Y.K.: Doubly excited P, D and F unnatural parity states of hydrogen negative ion using

correlated wavefunctions, J. Phys. B: At. Mol. Opt. Phys. 42, 185005 (2009); Cherkes, I., Moiseyev, N.:
Electron relaxation in quantum dots by the interatomic Coulombic decay mechanism. Phys. Rev. B 83,
113301 (2011)

11. Zhou, S.-G., Meng, J., Zhao, E.-G.: A spherical-box approach for resonances in the presence of the
Coulomb interaction. J. Phys. B: At. Mol. Opt. Phys. 42, 245001 (2009)

12. Masui, H., Ho, Y.K.: Resonance states with the complex absorbing potential method. Phys. Rev. C 65,
054305 (2002)

13. Pont, F.M., Serra, P., Osenda, O.: Real stabilization of resonance states employing two parameters: basis-
set size and coordinate scaling. J. Phys. B: At. Mol. Opt. Phys. 44, 135003 (2011)

14. Chakraborty, S., Ho, Y.K.: Autoionization resonance states of two-electron atomic systems with finite
spherical confinement. Phys. Rev. A 84, 032515 (2011)

15. Selsto, S.: Scattering in a quantum dot: the role of resonances. J. Phys.: Condens. Matter 25, 315802
(2013)
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