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Abstract The characteristic energy of a smooth Jordan curve of length L , defined
as the coefficient in the term proportional to N 2/L in the large-N asymptotics of the
minimal electrostatic self-energy of N unit charges located on the curve in question,
possesses an expansion involving the function ϕ(t) that measures the deviation from
linearity in the dependence of the tangential angle on the arc length. The leading term in
this expansion is given by a functional that is quadratic in ϕ(t). The explicit expression
for this functional can be derived without taking into account the energy lowering due
to relaxation of the particle positions that, being of the order of N 2(ln N )−1 for large
N , does not contribute to the characteristic energy.

Keywords Jordan curves · Electrostatic self-energy · Discrete charge distributions

1 Introduction

Confinement of interacting classical particles gives rise to diverse patterns of parti-
cle positions at equilibrium geometries. The combination of Coulombic interparticle
interactions and two-dimensional confining potentials of cylindrical symmetry usually
produces assemblies of particles positioned on either vertices of polygons inscribed
on concentric rings or nodes of triangular lattice [1–15]. Formation of such patterns,
which is observed both in experimental settings and numerical simulations, occurs in
systems ranging from electrons in quantum dots [2–7] to ions in dusty plasmas [8–10]
and triboelectrically charged objects [11].
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Both the energies and equilibrium geometries of the aforedescribed species are
accurately predicted by approximate shell models [16] with well-understood math-
ematical properties [17]. A generalization of those models to confining potentials
lacking cylindrical symmetry would require derivation of an expression for the elec-
trostatic self-energy of a discrete charge distribution located on an equipotential line,
which is a Jordan curve. A survey of the relevant literature reveals a paucity of stud-
ies on this subject, the seminal work of Martínez-Finkelshtein et al. [18] being the
notable exception. In the present paper, we report on research intended to bridge this
undesirable gap in knowledge.

The organization of paper is as follows: first, the characteristic energy of a Jordan
curve is defined as the coefficient multiplying the ratio N 2/L , where N is the number
of particles and L is the curve length, in the second leading term of the N → ∞
energy asymptotics (the first term being the universal expression derived in ref. [18]).
Second, the perturbative expression for the characteristic energy is derived for curves
slightly deviating from circles. Third, relaxation of the particle positions from the
Martínez-Finkelshtein minimizer is demonstrated to yield a vanishing contribution to
the characteristic energy. Finally, the validity of the derived expressions is demon-
strated for a family of simple test curves.

2 Theory

Consider a set � of N unit point charges located on a smooth Jordan curve � ≡
{x(s), y(s)} conveniently defined by its Whewell representation [19], i.e.

x(s) = x0 +
s∫

0

cos 2πφ(t/L) dt, y(s) = y0 +
s∫

0

sin 2πφ(t/L) dt. (1)

It follows from Eq. (1) that the curvature of � is given by

K (s) = x ′(s) y′′(s) − y′(s) x ′′(s)
[x ′(s)2 + y′(s)2]3/2 = (2π/L) φ′(s/L). (2)

Consequently, the corresponding tangential angle equals [19]

s∫

0

K (t)dt + 2πφ(0) = 2π φ(s/L), (3)

which implies

∀
k∈Z

φ(t + k) = k + φ(t). (4)

The function

ϕ(t) = φ(t) − t (5)
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measures deviation of � from a circle. It follows from Eq. (4) that ϕ(t) is a periodic
function, namely

∀
k∈Z

ϕ(t + k) = ϕ(t). (6)

The necessary and sufficient conditions for closure of � read

1∫

0

cos 2πφ(t) dt =
1∫

0

sin 2πφ(t) dt = 0. (7)

In general, these conditions imply that the period of ϕ(t) is a reciprocal of a natural
number greater than one [20].

The electrostatic self-energy E�(N ) of � (i.e. its minimal discrete Riesz energy)
is given by

E�(N ) = (1/2) min{sk }

N∑
k �=l=1

[d(sk, sl)]−1, (8)

where

d(sk, sl) =
⎛
⎜⎝
⎡
⎣

sl∫

sk

cos 2πφ(t/L) dt

⎤
⎦

2

+
⎡
⎣

sl∫

sk

sin 2πφ(t/L) dt

⎤
⎦

2
⎞
⎟⎠

1/2

=
⎛
⎝

sl∫

sk

sl∫

sk

cos 2π
[
φ(t/L) − φ(t ′/L)

]
dt dt ′

⎞
⎠

1/2

. (9)

According to the Martínez-Finkelshtein theorem [18], the large-N asymptotics of
E�(N ) reads

lim
N→∞

E�(N )

N 2 ln N
= L−1, (10)

the corresponding minimizer {sk} in the RHS of Eq. (8) possessing the property

∀
1≤k≤N−1

sk+1 − sk = N−1L . (11)

Let the characteristic energy C� of � be defined as

C� = lim
N→∞

(
N−2 E�(N )L − ln N

)
. (12)

The characteristic energy of a circle [21],
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Ccircle = γ + ln
2

π
≈ 0.125633, (13)

where γ is the Euler–Mascheroni constant, enters the LDA (local density approxima-
tion) expression

ecoh ≈ −25/2 exp

[
−(1 + Ccircle

2
)

] ∫
[ρ(�r)]3/2 d�r (14)

for the cohesive energy ecoh of a Coulombic system confined by a radially symmetric
potential in two dimensions [17]. It is unclear at present how this expression can be
generalized to less symmetrical species. Understanding the properties of C� consti-
tutes the first step towards elucidation of this problem.

For small deviations of � from a circle, the reciprocal of the distance d(sk, sl) can
be expressed in terms of a power series in ϕ(t),

[d(sk, sl)]−1 = π L−1 sin−1 π |sl − sk |
L

+π3L−2 sin−2 π(sl − sk)

L

|sl−sk |∫

−|sl−sk |
ϕ

(
sk + sl + t

2L

)
sin

π t

L
dt

+π4L−2 sin−2 π(sl − sk)

L

|sl−sk |∫

−|sl−sk |

[
ϕ

(
sk + sl + t

2L

)]2

cos
π t

L
dt

+(π5/2) L−3 sin−3 π |sl − sk |
L

×
⎛
⎜⎝2

⎡
⎢⎣

sl−sk∫

−(sl−sk )

ϕ

(
sk + sl + t

2L

)
sin

π t

L
dt

⎤
⎥⎦

2

−
⎡
⎢⎣

sl−sk∫

−(sl−sk )

ϕ

(
sk + sl + t

2L

)
cos

π t

L
dt

⎤
⎥⎦

2⎞
⎟⎠+ · · · . (15)

The only term that diverges as sl approaches sk is that independent of ϕ(t), which
explains the universality of the asymptotics (10). On the other hand, all the remaining
terms potentially contribute to C�.

The contribution to C� linear in ϕ(t), computed at the minimizer (11), is given by

C (1)
� = lim

N→∞(π3/2) N−2 L−1
N∑

k �=l=1

sin−2 π(l − k)

N
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×
(L/N )|l−k|∫

−(L/N )|l−k|
ϕ

(
k + l

2N
+ t

2L

)
sin

π t

L
dt

= lim
N→∞(π3/2) N−2 L−1

N∑
k=1

N−1∑
j=1

sin−2 π j

N

j L/N∫

− j L/N

ϕ

(
2k + j

2N
+ t

2L

)
sin

π t

L
dt

= lim
N→∞(π3/2) N−2 L−1

N−1∑
j=1

sin−2 π j

N

×
j L/N∫

− j L/N

⎡
⎣

N∫

0

ϕ

(
2k + j

2N
+ t

2L

)
dk

⎤
⎦ sin

π t

L
dt, (16)

as the difference between the sum over k and the respective definite integral decays
exponentially with N thanks to the periodicity of the integrand [22]. Since

N∫

0

ϕ

(
2k + j

2N
+ t

2L

)
dk =

N∫

0

ϕ

(
k

N

)
dk (17)

due to the periodicity of ϕ(t) [compare Eq. (6)], the first-order contribution vanishes.
The second-order contribution reads

C (2)
� = lim

N→∞

N−1∑
j=1

⎧⎨
⎩(π4/2) N−2 L−1 sin−2 π j

N

N∫

0

dk

×
j L/N∫

− j L/N

[
ϕ

(
2k + j

2N
+ t

2L

)]2

cos
π t

L
dt + (π5/4) N−2 L−2 sin−3 π j

N

×
N∫

0

dk

⎛
⎜⎝2

⎡
⎢⎣

j L/N∫

− j L/N

ϕ

(
2k + j

2N
+ t

2L

)
sin

π t

L
dt

⎤
⎥⎦

2

−
⎡
⎢⎣

j L/N∫

− j L/N

ϕ

(
2k + j

2N
+ t

2L

)
cos

π t

L
dt

⎤
⎥⎦

2⎞
⎟⎠
⎫⎪⎬
⎪⎭

= lim
N→∞

N−1∑
j=1

⎧⎨
⎩(π4/2) N−2 L−1 sin−2 π j

N
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×
j L/N∫

− j L/N

⎛
⎝

N∫

0

[
ϕ

(
2k + j

2N
+ t

2L

)]2

dk

⎞
⎠ cos

π t

L
dt

+(π5/4) N−2 L−2 sin−3 π j

N

×
j L/N∫

− j L/N

j L/N∫

− j L/N

⎡
⎣

N∫

0

ϕ

(
2k + j

2N
+ t

2L

)
ϕ

(
2k + j

2N
+ t ′

2L

)
dk

⎤
⎦

×
(

2 sin
π t

L
sin

π t ′

L
− cos

π t

L
cos

π t ′

L

)
dt dt ′

}

= lim
N→∞ N−1

N−1∑
j=1

{
π3 sin−1 π j

N

1∫

0

[ϕ(κ)]2 dκ

+(π5/4) sin−3 π j

N

j/N∫

− j/N

j/N∫

− j/N

⎡
⎣

1∫

0

ϕ

(
k − τ ′ − τ

4

)
ϕ

(
κ + τ ′ − τ

4

)
dκ

⎤
⎦

×
(

2 sin πτ sin πτ ′ − cos πτ cos πτ ′
)

dτ dτ ′
}
, (18)

where the periodicity of ϕ(t) has been exploited again. Further simplification of the
above expression yields

C (2)
� = lim

N→∞(π5/4) N−1
N−1∑
j=1

sin−3 π j

N

×
j/N∫

− j/N

j/N∫

− j/N

(
2 sin πτ sin πτ ′ − cos πτ cos πτ ′

)

×
⎛
⎝

1∫

0

[
ϕ

(
κ − τ ′ − τ

4

)
ϕ

(
κ + τ ′ − τ

4

)
− [ϕ(κ)]2

]
dκ

⎞
⎠ dτ dτ ′

= lim
N→∞(π5/4) N−1

N−1∑
j=1

sin−3 π j

N

×
2 j/N∫

−2 j/N

⎛
⎝

1∫

0

[
ϕ

(
κ − ξ

4

)
ϕ

(
κ + ξ

4

)
− [ϕ(κ)]2

]
dκ

⎞
⎠

×
[(

j

N
− |ξ |

2

)
cos πξ − (3/2) π−1 sin π

(
2 j

N
− |ξ |

)]
dξ
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= (π5/2)

1∫

0

1∫

0

1∫

0

[
ϕ

(
κ − ζ ξ

2

)
ϕ

(
κ + ζ ξ

2

)
− [ϕ(κ)]2

]
ζ 2 sin−3 πζ

×
[
2 (1 − ξ) cos 2πζξ − (3/π) ζ−1 sin 2πζ (1 − ξ)

]
dκ dξ dζ. (19)

Additional insights into properties of C (2)
� are gained from the Fourier representation

of ϕ(t) [note the absence of the terms with p = 1; compare the comment following
Eq. (7)]

ϕ(t) = A0 +
∞∑

p=2

(Ap cos 2πpt + Bp sin 2πpt), (20)

which, when inserted into Eq. (19), produces

C (2)
� = (π2/4)

∞∑
p=2

p2 (p2 − 1)−2

×
[
(8p2 − 6)H2p − (4p2 − 3)Hp − (6p2 − 4)

]
(A2

p + B2
p) ≥ 0, (21)

where Hp is the p-th harmonic number. Thus, as expected, C (2)
� is non-negative.

In the above considerations, the relaxation of the positions of charges from those
given by the minimizer (11) has not been taken into account. In order to estimate the
lowering of the electrostatic self-energy due to this relaxation, one has to compute the
respective leading asymptotic contributions to the energy gradient g(N ) = {gk(N )}
and the Hessian H(N ) = {Hkl(N )}. After some algebra one obtains

gk(N ) = 2π3L−2

⎛
⎝N−1∑

j=1

sin−1 π j

N

⎞
⎠ϕ

(
k

N

)
+ (π4/2) L−3

N−1∑
j=1

sin−3 π j

N

×
j L/N∫

− j L/N

ϕ

(
j + 2k

2N
+ t

2L

)[
3 sin

(
π t

L
− π j

N

)
+ sin

(
π t

L
+ π j

N

)]
dt

(22)

and

Hkl(N ) = N−1
N∑

p=1

ηp(N ) cos
2πp (k − l)

N
, (23)
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where

ηp(N ) = ηN−p(N ) = 2π3L−3
N−1∑
j=1

(
2 sin−3 π j

N
− sin−1 π j

N

)
sin2 πpj

N

= 2π3L−3

⎡
⎣2p2

N−1∑
j=1

sin−1 π j

N
−

p∑
q=1

(2p − 2q + 1)2 cot
π

2N
(2q − 1)

⎤
⎦ .

(24)

Consequently, the leading term in the relaxation contribution to the electrostatic self-
energy equals

�E�(N ) = −(1/2)

N∑
k=1

N∑
l=1

[H(N )]−1
kl gk(N ) gl(N )

= −(1/2)N−1
N−1∑
p=1

ηp(N )−1
N∑

k=1

N∑
l=1

cos
2πp (k − l)

N
gk(N ) gl(N )

= −N
N−1∑
p=1

[ηp(N )]−1
(

[γp(N )]2 (A2
p + B2

p)

+γp(N )γN−p(N ) (Ap AN−p − Bp BN−p)

)
, (25)

where

γp(N ) = π3 (p2 − 1)−1L−2
p∑

q=1

(p + 1 − 2q) (2p + 1 − 2q) cot
π

2N
(2q − 1).

(26)

In Eq. (25), [H(N )]−1 denotes the generalized inverse of H(N ). The identity

N−1∑
j=1

sin−3 π j

N
sin2 πpj

N

= p2
N−1∑
j=1

sin−1 π j

N
− 2

p−1∑
q=1

(p − q) (p + 1 − q) cot
π

2N
(2q − 1) (27)

has been employed in the derivation of Eq. (26).
Since for large N the ratios {γp(N )/N } tend to finite constants whereas ηp(N )

grows like N ln N [21], the leading term in the large-N asymptotics of �E�(N ) is
proportional to N 2(ln N )−1. Consequently, the geometry relaxation does not con-
tribute to the characteristic energy.
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3 An example

The validity of the expressions derived in the preceding section of this paper is readily
illustrated using a family of test curves of unit length with

ϕ(t) = (a/4π) sin 4π t (28)

as an example. The curves � ≡ {I (a, s),−I (−a, (1/4) − s)}, where

I (a, s) =
s∫

0

cos[2π t + (a/2) sin 4π t] dt, (29)

are simple for |a| < acrit ≈ 2.34213. Their shapes change gradually with increasing
|a| from circular to ovoid and ladyfinger-like (Fig. 1); the curves with a and −a being
related by permutation of the x and y axes. Application of the Jacobi–Anger expansion
[23] allows for rapid computation of I (a, s) as

I (a, s) = J0(a/2)
sin 2πs

2π

+
∞∑

n=1

Jn(a/2)

[
(−1)n sin 2π(2n − 1)s

2π(2n − 1)
+ sin 2π(2n + 1)s

2π(2n + 1)

]
, (30)

a b

c d

Fig. 1 The test curve for a a = 0, b a = 0.2, c a = 1.2, and d a = 2.2

123



J Math Chem (2014) 52:2520–2531 2529

Table 1 The values of a−2 N−2[E�(N ) − Ecircle(N )] for a family of the test curves [Eq. (28)]

N a

0.001 0.01 0.1 1.0 2.0

10 0.1011676491 0.1011683902 0.1012425763 0.1094965415 0.1566486509

100 0.1018450054 0.1018457466 0.1019199271 0.1101737723 0.1556763618

1,000 0.1018517909 0.1018525319 0.1019267124 0.1101805575 0.1556831468

10,000 0.1018518589 0.1018525997 0.1019267802 0.1101806253 0.1556832146

100,000 0.1018518598 0.1018526004 0.1019267809 0.1101806260 0.1556832153

where Jn(t) is the Bessel function of the first kind. In practice, sufficient numerical
accuracy is attained with the first 100 terms of the expansion (30), the Bessel functions
being evaluated with Miller’s algorithm [23,24].

Substitution of Eq. (28) into either Eq. (19) or Eq. (21) yields C (2)
� = (11/108) a2 ≈

0.1018518519 a2. Inspection of Table 1, in which the scaled excess energies
a−2 N−2[E�(N ) − Ecircle(N )] for sets of N charges located at the values of {sk}
equal to multiples of N−1 are compiled, reveals several facts. First of all, the unscaled
excess energies are indeed asymptotically proportional to squares of the particle num-
bers. Second, for sufficiently small values of a, they are proportional to a2. Third,
the value of C (2)

� extracted from numerical calculations coincides with the pertinent
theoretical prediction.

Comparison of the predicted relaxation contributions to the electrostatic self-energy
with their numerical counterparts is equally instructive. According to Eqs. (24)–(26),

�E�(N ) = −(π/288) a2 N

(
3 cot

π

2N
− cot

3π

2N

)2

×
⎛
⎝8

N−1∑
j=1

sin−1 π j

N
− 9 cot

π

2N
− cot

3π

2N

⎞
⎠

−1

= −(a2/162) (N 2/ ln N ) + · · · . (31)

Table 2 The values of a−2 N−2 ln N �E�(N ) for a family of the test curves [Eq. (28)]

N a

0a 0.001 0.01 0.1 1.0 2.0

10 −0.0111718091 −0.0111718137 −0.0111722341 −0.0112143970 −0.0164464157 −0.0680969401

100 −0.0079755931 −0.0079755946 −0.0079759090 −0.0080072518 −0.0119730987 −0.0543049725

1,000 −0.0072681916 −0.0072681914 −0.0072684819 −0.0072972827 −0.0109564209 −0.0512516844

10,000 −0.0069594588 −0.0069594609 −0.0069597377 −0.0069874137 −0.0105099478 −0.0498666997

100,000 −0.0067864950 −0.0067864993 −0.0067867675 −0.0068138095 −0.0102590850 −0.0490751108

a See Eq. (31). The data derived from the actual values of �E�(N ) are listed for the non-vanishing a
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The scaled relaxation energies a−2 N−2 ln N �E�(N ) listed in Table 2 closely follow
this prediction for small values of a although their convergence to the limiting value
of −1/162 ≈ −0.006172839506 is rather slow.

4 Conclusions

The characteristic energy C� of a smooth Jordan curve � of length L , defined as
the coefficient in the term proportional to N 2/L in the large-N asymptotics of the
minimal electrostatic self-energy of N unit charges located on the curve in question,
possesses an expansion involving the function ϕ(t) that measures the deviation from
linearity in the dependence of the tangential angle on the arc length. The leading
term in this expansion is given by a positive-valued functional that is quadratic in
ϕ(t). Consequently, at least in the local sense, a circle has the smallest C� among all
smooth Jordan curves.

The explicit expression for this second-order functional can be derived without
taking into account the energy lowering due to relaxation of the particle positions that,
being of the order of N 2(ln N )−1 for large N , does not contribute to the characteristic
energy. However, in light of its complexity, the prospects for derivation of a non-
perturbative closed-form expression for C� remain remote.
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