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Abstract The purpose of this study was to assess the phar-

macokinetics of dexmedetomidine in the ICU settings during

the prolonged infusion and to compare it with the existing

literature data using the Bayesian population modeling with

literature-based informative priors. Thirty-eight patients were

included in the analysis with concentration measurements

obtained at two occasions: first from 0 to 24 h after infusion

initiation and second from 0 to 8 h after infusion end. Data

analysis was conducted using WinBUGS software. The prior

information on dexmedetomidine pharmacokinetics was eli-

cited from the literature study pooling results from a relatively

large group of 95 children. A two compartment PK model,

with allometrically scaled parameters, maturation of clear-

ance and t-student residual distribution on a log-scale was

used to describe the data. The incorporation of time-dependent

(different between two occasions) PK parameters improved

the model. It was observed that volume of distribution is 1.5-

fold higher during the second occasion. There was also an

evidence of increased (1.3-fold) clearance for the second

occasion with posterior probability equal to 62 %. This work

demonstrated the usefulness of Bayesian modeling with

informative priors in analyzing pharmacokinetic data and

comparing it with existing literature knowledge.

Keywords Dexmedetomidine � WinBUGS � Population

pharmacokinetics � Informative priors

Introduction

The dosage of most drugs in children is based on extrapo-

lation of pharmacokinetic and pharmacodynamic data

obtained from adults using body weight scaling, age and

occasionally other patient’s characteristics, such us gene

polymorphism [1]. Without taking into account the degree

of maturation of various organ in children and neonates in

pharmacokinetic extrapolations, over or under dosing might

occur, which consequently might lead to serious compli-

cations, side effects and lack of expected therapeutic effects

[2, 3]. Therefore, the identification of inter-individual dif-

ferences directly or indirectly affecting pharmacokinetics

(PK) of drugs, is very important for selecting the individual

and the optimal dose, especially in children under severe

conditions. It especially applies to new drugs such as

dexmedetomidine (DEX), for which there is a relatively

small number of studies performed on special population,

like that from pediatric intensive care units (PICU).

DEX as a potent, highly selective and more specific a2-

adrenoceptor agonist [4] has become an interesting alter-

native drug for so far widely used benzodiazepines during

general anaesthesia and sedation in intensive care.

Its unique characteristics makes it an a-adrenoceptor ago-

nist with a2:a1 selectivity ratio of 1600:1, especially for

the a2A subtype, providing increased sedation, anxiolysis
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and analgesia without breathing depression. Dexmedeto-

midine is metabolized in liver with hepatic extraction ratio

of 0.71 and the mean elimination half-life of about 2–2.5 h.

Glucuronidation is the process, which poses one-third of

metabolism. The other pathways involve multiple cyto-

chrome P450 enzymes, especially CYP2A6, but also

CYP1A2, CYP2C19, CYP2D6, and CYP2E1. Approxi-

mately 90 % of administered human drug dose is excreted

as metabolites in urine, and 10 % in feces [5]. Its influence

on brain and spinal cord, mainly via locus coreuleus (LC),

provides effects, which are different from those produced

by other standard drugs (e.g. clonidine). It diminishes

impaired sleep deprivation or poor sleep quality, especially

during long-term sedation. DEX, in contrast to benzodi-

azepines, does not disrupt REM sleep and more closely

resembles natural non-REM phase, as well as regulates the

circadian rhythm by shifting sleep from day to the night [6–

10]. DEX has been effectively used in patients more often

presenting agitation and developing higher risk of delirium

during conventional sedation, allowing shortening of

mechanical ventilation and thus, stay in the PICU [11–14].

Despite increasing number of clinical experiences, phar-

macokinetic and pharmacodynamic characteristics of DEX

still remain unclear, forcing the need for further research,

especially in the youngest patients [15, 16].

The data obtained from routine clinical monitoring are

challenging in terms of interpretation and are often col-

lected in not perfectly-controlled experiments. For such

data, using a full conditional Bayesian modeling approach

with prior’s information is very appealing. In this work we

explore the use of informative priors to analyze the data

obtained during routine hospitalization of children in an

intensive care unit and to identify differences between our

study and the currently established knowledge on DEX

pharmacokinetics. The analysis consisted of several steps

(1) elucidation of prior’s information on the type of model

and its parameters from the literature, (2) development of a

pharmacokinetic model, (3) determination of covariate

relationship which could explain inter-individual and intra-

individual differences in drug PK, and (4) identification of

differences between literature-described patients and those

enrolled in this study.

The possibility of using informative priors is a particular

strength of the Bayesian framework [17]. During this type

of analysis the priors and the newly collected data are

appropriately weighted yielding a posteriori distribution of

parameters and predictions that provide logically consistent

inference conditional on all the explicitly stated assump-

tions, such as structural model and priors. Nevertheless, the

Bayesian inference using Markov chain Monte Carlo

(MCMC) algorithm is not very popular, as generally it is

computer intensive. There are only few population phar-

macokinetic analyses published which used WinBUGS

[18–22]. Informative prior (with relatively high precision)

was rarely used [23–25].

Materials and methods

Patients

In our study, DEX was used in addition to the standard

algorithm of sedation applicable in our PICU which con-

sists of sufentanyl and midazolam administration [26, 27].

Similarly, sedation monitoring was also carried out by the

Cook Scale, which has been routinely used by experienced

and trained nurses’ team in our department [28]. This scale

was originally adapted from Glasgow Coma Scale (GCS)

based on the assessment of four reactions, such as eye

opening, cough reflex, respiration and motor activity, in

response to the stimulus, ranging from minimum of 4 (deep

sedation) to maximum of 18 points (awakening). Decision

on the addition of DEX to the standard sedation and

analgesia was made by a doctor (paediatric intensivist) in

order to prevent delirium and/or facilitate awakening of

patient. The pediatric risk of mortality (PRISM) score was

determined for all patients in the admission to PICU. It is a

physiologically based score used to quantify physiologic

status, and when combined with other independent vari-

ables, it can compute expected mortality risk and expected

morbidity risk [29].

Thirty-eight patients were enrolled in the study.

Informed consent was obtained from the parents or legal

representatives according to the approval of the Institu-

tional Bioethics Committee (no 276/12). Exclusion cri-

teria included the following factors: age [18 years,

known allergy to DEX, previous administration of neu-

romuscular blocking agents and severe renal and/or

hepatic insufficiency with serum bilirubin and creatinine

levels twofold higher than upper limits of normal refer-

ence values.

Continuous intravenous infusion of DEX was routinely

initiated at the rate of 0.8 lg/kg/h. Among the patients

requiring mechanical ventilation, infusion of DEX was

gradually increased or decreased by 0.2 lg/kg/h to main-

tain the level of sedation between 7 and 14 points in the

Cook Scale. Maximum dose of DEX was 1.4 lg/kg/h.

Otherwise, if the doctor decides that the patient could be

awakened, DEX was decreased by 0.2 lg/kg/h to its min-

imum dose, till the end of infusion. At the same time, the

doses of sufentanyl and midazolam were alternatively

reduced to 0.01–0.05 lg/kg/h and 0.01–0.1 mg/kg/h,

respectively, to obtain adequate sedation while maintaining

spontaneous respiration. Sedation for each patient included

in the study was adjusted individually considering the

clinical criteria of intensive therapy.
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Blood samples for PK assessment (2.0 mL) were col-

lected from the arterial catheter according to the protocol

of the study. The first blood sample was collected just

before the initiation of DEX infusion, and further samples

were collected at 1, 4, 8, 12, 16, 20, and 24 h during the

first day (occasion 1). When DEX infusion was stopped,

blood samples were collected just before the cessation, and

then, at 5, 10, 20 min and 1, 2, 4 and 6 h after the infusion

end (occasion 2). All blood samples were centrifuged

immediately after collection, and plasma was stored at

-80 �C until analysis.

Analytical methods

Analytical method description was presented in detail

elsewhere [30]. Briefly, extraction of DEX from 500 ll

plasma was performed with the use of solid-phase extrac-

tion Bond-Elut Plexa cartridges (30 mg, 1 ml, Agilent

Technologies, Inc., Palo Alto, CA, USA). Extracted sam-

ples were evaporated to dryness at a miVac Quattro Sample

Concentrator (Genevac, Suffolk, UK), reconstituted with

100 ll of methanol, and injected onto the chromatographic

system. Analyses were performed with the use of an 1260

HPLC system (Agilent Technologies, Inc., Palo Alto, CA,

USA) composed of degasser (G1322A), binary pump

(G1312B0, thermostated autosampler (G1329B) coupled

with triple-quadrupole mass spectrometer (6430) with

electrospray ionization source (ESI). The separation was

carried out using a Zorbax Eclipse Plus C18

(4.6 9 100 mm, 3.5 lm, Agilent Technologies). The

mobile phase, pumped at a flow rate of 0.5 ml/min, was

composed of a mixture of water and methanol with addi-

tion of 0.1 formic acid (2:8, v/v). The analyses were per-

formed with the use of detomidine as an internal standard

(IS). The total analysis time was 3 min.

The software used for data acquisition and processing

was MassHunter Workstation v. B.07.01. (Agilent Tech-

nologies, Inc., Palo Alto, CA, USA). Ions were detected

using multiple reaction monitoring (MRM) acquisition

mode at the following mass transitions: m/z 201 ? 95

(quantifier), m/z 201 ? 68 (qualifier) for DEX and m/z

187 ? 81 for IS. The quantification of the analyte con-

centration was based on area peak ratios of DEX over IS.

Mass spectrometry parameters: fragmentor voltage, colli-

sion energies and ESI parameters (gas flow, nebulizer

pressure, drying gas temperature and capillary voltage) are

listed in supplementary material.

The developed and optimized method was validated

following the guidelines of the United States Food and

Drug Administration (FDA) for bioanalytical method val-

idation [31]. It was validated in terms of linearity, speci-

ficity, lower limit of quantification, recovery, intra- and

inter-day precision and accuracy, analyte stability during

the sample processing and storage as well as in terms of

matrix effects; all the parameters met the FDA bioanalyt-

ical requirements. Each analytical sequence included dou-

ble blank sample, blank sample, calibration standards (5,

10, 50, 100, 500, 1000, 2500 ng/ml) and quality controls

(20, 200, 2000 ng/ml). The intra- and inter-day precision

ranged between 5 and 7.4 RSD, respectively, and accuracy

of the assay reached an average of 101.6 and 103.0, for

intra- and inter-day tests. LOD, based on S/N ratio 3,

equaled 1.5 pg/ml.

PK model development

Population modeling was performed using WinBUGS

1.4.3. The BUGS language interface was implemented

using WBDev and BlackBox 1.5 compiler as described

elsewhere [32]. Data management, launching WinBUGS,

and analysis of the MCMC samples were done in Matlab

Software (Version 8.1; The MathWorks, Natick, MA,

USA) using the MatBUGS interface. Three MCMC chains

of 6000 iterations were simulated. The first 3000 iterations

of each chain were discarded and every 3rd sample was

retained. Thus 3000 MCMC samples were used for sub-

sequent analyses. Model convergence was assessed by

Gelman-Rubin diagnostics available in WinBUGS. The

MCMC chains were assumed to have reached the station-

ary distribution if Gelman-Rubin values were less than 1.2

for all parameters. Furthermore, the trace history of

MCMC samples for all chains was examined visually for

all parameters, for which ‘fuzzy caterpillar’ suggests that

MCMC chains had reached a stationary distribution [17].

All the codes are available in the Supplementary Materials.

Model selection was based on deviance information cri-

terium (DIC), which is the mean of the deviance distribu-

tion (-2 log likelihood) plus penalty for the effective

number of parameters in the model.

The DEX plasma concentrations were characterized by a

two-compartment model. The following equation were

used:

Vp

dCp

dt
¼ R0ðtÞ � CLCp � QCp þ QCT Cpð0Þ ¼ 0 ð1Þ

VT

dCT

dt
¼ QCP � QCT CTð0Þ ¼ 0 ð2Þ

where CP, CT denotes concentrations of DEX in central and

peripheral compartments. The model was parameterized

with volume and clearance terms. The VP, VT denote vol-

umes of distribution of the respective compartments, CL

denotes metabolic clearance of DEX and Q denotes the

inter-compartmental clearance. The R0 denotes the infusion

rate and all extra boluses that were administered to a

patient. All tested models were parameterized in terms of

the natural log of the parameter values (i.e. ln (CL)).
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Inter-individual variability (IIV) for all PK parameters

was modeled assuming log normal distribution:

lnPi ¼ ln hP þ gP;i ð3Þ

where Pi are PK parameter for the ith subjects, hP is the

typical value of this parameter in the population, and gP is

a random effect for that parameter with mean 0 and vari-

ance xP
2.

Any jth observation of DEX concentration for the ith

individual, CPij at time tj, was defined on a log scale by:

logCP;ij ¼ lnCP þ eC;ij ð4Þ

where CP is defined by the basic structural model (Eq. (1))

and represents the additive (on a log scale) random error for

PK measurements. It was assumed that is t-distributed with

mean 0 and scale of the t-distribution denoted by rC and

degrees of freedom (or normality parameter) m to account for

some outlying measurements present in the dataset.

The effect of body size on all the volume (VC, VT) and

clearance (CL, Q) parameters was included based on

allometric scaling as follows:

lnPi ¼ ln hp þ ln fP þ K ln
BWi

70

� �
þ gP;i ð5Þ

where Pi denotes the individual value of volume and

clearance term; the population estimates of volume and

clearance terms, BWi the individual body weight, where 70

is a typical body weight of adult patients, and K is the

exponent equal to 0.75 for clearance and 1 for distribution

volumes [33]. All parameters were different between

occasions with a fractional change fP for occasion 2 (fP = 1

for occasion 1). Additionally, for clearance an age-depen-

dent maturation was included:

lnCLi ¼ ln hCL þ ln fP þ K ln
BWi

70

� �

þ ln
PMAHill

i

PMAHill
i þ TEHill

50

� �
þ gCL;i ð6Þ

where CLi denotes the individual value of clearance; PMAi

the individual postmenstrual age of the patient; TE50, and

Hill are Hill equation parameter reflecting the slope and the

degree of clearance maturation. Following the WinBUGS

parameterization [17, 23] (uncertainty is described as a

precision, which is an inverse of variance), the stochastic

parts of the model can be represented as:

eij � tð0; r�2
C ; vÞ ð7Þ

logPi �MVNðln hP;X�1Þ ð8Þ

where t denotes t-distribution and MNV is multivariate

normal distribution. The model for the priors is as

follows:

rC �Uniformð0:001; 1000Þ ð9Þ
t� 1 þ Exponentialð0:1Þ ð10Þ

log h�MVNðln �l;
X�1

Þ ð11Þ

X�1 �WishartðqX0; qÞ ð12Þ

The priors consisted of the vector of hyperprior popu-

lation mean parameters,l, its precision, the expected intra-

subject variance X0 and its precision given by Wishart

distribution degrees of freedom q. For the residual error

model sigma (scale of the t-distribution) was assumed to

follow a uniform distribution and m (normality parameter)

was constrained to be larger than one and following an

exponential distribution.

Prior selection

The informative priors for the typical value of PK param-

eters and their inter-individual variability were elucidated

from the work [34] and are presented in Table 1. The priors

were obtained from the pooled analysis of four studies

investigating DEX pharmacokinetics after i.v. administra-

tion to 95 children.

Covariates

The potential effect of various covariates (listed in Table 2)

on DEX PK was assessed in this study in addition to the a

priori assumed effects of body weight and age on PK

parameters. The potential covariate relationships were

assessed by plotting the mean a posteriori values of the PK

parameters against the available covariates (weight, age,

sex, dose, infusion duration, and PRISM) to identify their

potential effects. If any relationship was found, it was

described by means of linear regression or power model

(allometric relationship). The categorical covariates were

included into the model based on indicator variables.

Additionally the difference in PK parameters between

the two occasions was tested during the model building

process. The fraction parameters for all PK parameters

were assumed to be equal to 1 (0 on a log scale) with

precision

log fP �Nðlog 1; r�2
fP
Þ ð13Þ

The selected values of rfP which spanned within a range

from 0.01 to 0.6, were compared. The smallest value cor-

responds to a priori assumption of the lack of difference

between the two occasions, and the latter one corresponds

to a vague prior on the fraction parameter. The models with

the lowest deviance information criterion, the best predic-

tive performance, and the most conservative (with the
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lowest rfP), were selected as final. A clinically significant

difference in the fraction parameters was claimed when

20 % difference was observed.

Posterior predictive check and model assessment

The model performance was assessed by means of a pos-

teriori predictive check. The plots were drawn from indi-

vidual a posteriori PK predictions. In this study the 10th,

50th and 90th percentiles were used to summarize the data

and model predictions. This graph resembles the classical

visual predictive check (VPC) and enables the comparison

between confidence intervals obtained from prediction and

the observed data over time. When the corresponding

percentile from the observed data falls outside the 95 %

confidence interval derived from predictions, there is an

evidence of model misspecification. Since the PK data

deviated from nominal times to some extent, binning across

time was performed. Next, the prediction error (PE) was

calculated for each measurement as PE = 100 (mea-

sured - population predicted)/population predicted, and

was summarized as a median for each individual. The

median prediction error (MDPE) and median absolute

prediction error (MDAPE) were calculated according to the

formulas:

MDPE ¼ medianðPE1;PE2; . . .PEnÞ
MDAPE ¼ medianð PE1j j; PE2j j; . . . PEnj jÞ

ð14Þ

where n denotes the number of individuals. MDPE reflects

the bias of the model, whereas MDAPE reflects the inac-

curacy of the prediction.

Table 1 Prior distributions for h and X as derived from [34]

Parameter, units Description Reported Used in WinBUGS

�l % SE 95 % CI ln 95 % CI Log �l R for ln �la R-1 for ln �l

Fixed effects

CL, L/h 70 kg-1 Total clearance 42.1 4.4 (38.7–45.8) (3.7–3.8) 3.7 0.00185 542

Q, L/h 70 kg-1 Distribution clearance 78.3 14.4 (50.7–98.4) (3.9–4.6) 4.3 0.02862 34.9

V1, L 70 kg-1 Volume of distribution of central compartment 56.3 8.7 (44.5–67.4) (3.8–4.2) 4.0 0.01122 89.2

V2, L 70 kg-1 Volume of distribution of peripheral
compartment

69 8.2 (57.5–80.3) (4.1–4.4) 4.2 0.00726 138

TE50, weeks Age at which clearance is 50 % of
adult value

44.5 6.9 (36.8–50.3) (3.6–3.9) 3.8 0.00636 157

Hill Slope of clearance maturation 2.56 17.6 (1.65–3.78) (0.5–1.3) 0.9 0.04472 22.4

Parameter, units Description Reported Used in WinBUGS

% CV X0
b X0

-1

Between subject variability (diagonal elements)

CL Variability for CL 30.9 0.091 11.0

Q Variability for Q 37 0.13 7.79

V1 Variability for V1 61.3 0.32 3.13

V2 Variability for V2 47 0.20 5.01

qc 30

For R, R-1, X0, and X0
-1 only diagonal elements are provided (the off-diagonal elements are zero)

a Calculated based on (97.5th–2.5th)/2/1.96, where 2.5th and 97.5th are 95 % confidence intervals (on a log scale) from bootstrap
b Calculated based on ln((%CV/100)2 ? 1)
c The value of q was determined empirically for the variance–covariance matrix by simulating from the Wishart distribution in MATLAB

(Version 6.5, The MathWorks, Natick, MA) to ensure 25 % of variability in X0 parameters. The standard errors for %CV were not reported in the

original article

Table 2 Demographic characteristic of patients

Parameter, unit Median [range] or number

Age, months 70 [1.4–188.6]

Weight, kg 18.5 [4.7–60]

Dose, lg 1153.8 [248.8–4732.2]

Infusion duration, h 97.3 [45.0–229.2]

Pediatric risk of mortality (PRISM) 0.5 [0–11]

Male/female 23/15
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Results

This analysis was based on the concentration–time profiles

of DEX collected from 38 PICU children. Thirty-eight

patients, with median (range) age of 70 months (1.4–188.6)

diagnosed in our PICU with acute respiratory failure

(n = 18), severe sepsis or septic shock (n = 10), multiple

or brain trauma (n = 8) and acute cardiac insufficiency

(n = 2), were enrolled in the study. Table 2 lists the

patients’ demographic, clinical laboratory and vital signs

characteristics. The available data consisted of 470 DEX

concentration measurements measured at two occasions as

presented in Fig. 1. In our data few outlying measurements

were evident (with concentrations a few-fold higher or

lower than average) and so, a robust residual error model

was needed. We decided to use a t-distribution on a log-

transformed concentrations.

The modeling was done using Bayesian inference with

informative priors. It was required due to small number of

patients and observational nature of the study design,

which limited the ability to precisely estimate all PK

parameters. The model-building process started with a two-

compartment model, for which after implementation of an

allometric scaling to all clearance and volume of distri-

bution parameters, age maturation of clearance turned out

to be insufficient to describe our data. Without occasion as

a covariate there was an evidence of miss-prediction in the

initial phase after infusion cessation as reflected by MDPE

(-11.50) and posterior predictive check (data not shown).

The inclusion of fractional change for all PK parameters

improved the model as demonstrated by lower DIC value

(DIC changed from 840.86 to 825.68, DDIC = 15.176)

and reduced the bias (MDPE decreased from -11.50 to

-2.2) observed initially in predictive check plots. The

supplementary materials present the influence of prior

precision on the posterior distribution of parameters. The

rfP = 0.2 represents the most parsimonious choice as fur-

ther increase in its values did not improve the accuracy of

model predictions.

The goodness-of-fit plots of the final PK model are

shown in supplemental materials. The individual predic-

tions are very close to that obtained from the experimental

data, indicating good performance of the model, which is

also confirmed by other goodness-of-fit diagnostic plots.

The posterior predictive check for the DEX concentration

was used to assess the simulation properties of the model

presented in Fig. 2. Both the central tendency of the data

and the variability at a particular sampling time were

recaptured well. There are no major misspecifications in

that graph.

Table 3 provides the means and credibility interval for

all PK parameters. The typical value of the volume of the

central compartment (V1) scaled to 70 kg was 52.0 L,

whereas the volume of the peripheral compartment was

slightly higher (V2 = 70.4 L). The typical systemic clear-

ance (CL) of DEX and the distribution clearance (Q) were

41.6 and 56.8 L/h for 70-kg patients. The IIV was esti-

mated for the CL, Q, and V1 and V2, for which it amounted

to 56, 83, 152, 68 % and a strong correlation (0.7) between

Q and V1. Those values are consistent with literature

parameters in children and adults and are very close to the

priors used [34]. The change between mean prior and mean

posterior values was -1.2, -27.5, -7.6, 2.0, -4.5, -4.3

for CL, Q, V1, V2, TE50 and Hill, respectively.

The final model included the difference in PK parame-

ters between two occasions as reflected by the fraction

parameters fP. The posterior probability for inclusion of the

fractional effect on occasion was[0.5 for a 20 % change

in the parameters (Pr = 0.62 for CL and Pr = 1.00 for V1).

For other parameters the probability was lower than 0.5.

The volume of distribution and clearance was 1.5-fold

(with 5th–95th credible interval of 1.33–1.65) and 1.3-fold

(with 5th–95th credible interval of 0.91–1.82) higher at the

second occasion, respectively.

The children enrolled in this study exhibited a large

difference in body weight ranging from 4.7 to 60 kg. In this

study the allometric scaling with theory-based exponents

for all clearance and volume terms was used along with a

clearance maturation model. The actual and body weighted

normalized values of clearance and volume of distribution

in relation to patient age are presented in Fig. 3. None ofFig. 1 The individual dexmedetomidine concentration–time profiles
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the covariate (Table 2) was found to be statistically sig-

nificant in this study (in addition to the a priori assumed

age and body weight effects) as there is no clear relation-

ship between them and individual PK parameter estimates.

The ETA plots (deviation of the individual estimate from

the population mean in relation to covariate) for age,

duration of infusion, PRISM, sex, weight are shown in

supplementary materials.

Fig. 2 The visual a posteriori

predictive plots for final

dexmedetomidine PK model.

The plots show the individual

prediction-based 95 %

confidence intervals around the

10th, 50th, and 90th percentiles

of the PK data (blue areas). The

corresponding percentiles from

the experimental data are

plotted in black color. The raw

data is presented as gray closed

symbol (Color figure online)

Table 3 Summary of the

MCMC simulations of the

marginal posterior distributions

of pharmacokinetic parameters

from the final model of

dexmedetomidine

Parameter, unit Description h, Mean (90 % HDI)

hCL, L/h 70 kg-1 Total clearance 41.6 (39.0–44.3)

hQ, L/h 70 kg-1 Distribution clearance 56.8 (43.5–73.5)

hV1, L 70 kg-1 Volume of distribution of central compartment 52.0 (43.2–59.6)

hV2,L 70 kg-1 Volume of distribution of peripheral compartment 70.4 (63.0–79.8)

hTE50, weeks Age at which clearance is 50 % of adult value 42.5 (61.7–47.8)

hHill Slope of clearance maturation 2.45 (1.72–3.39)

fCL Fractional change of CL 1.31(0.910–1.82)

fQ Fractional change of Q 1.02 (0.722–1.40)

fV1 Fractional change of V1 1.50 (1.33–1.65)

fV2 Fractional change of V2 0.86 (0.630–1.17)

HDI highest density interval
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Discussion

A population pharmacokinetic model was developed based

on the data obtained from PICU in critically ill patients

undergoing prolonged infusion. The available small group

of patients with wide age and weight range and potential

outliers enforced the use of a fully Bayesian approach with

informative prior information on the PK parameters to

increase the stability of the model developed. The priors

were elucidated from one study involving a pooled analysis

of various DEX data obtained in children [34].

An interesting phenomenon from the point of view of

the pharmacokinetic properties of DEX is increasing

clearance during infusion of the drug reported in critically

ill adult patients in the ICU. This observation was noted

in a study by Iirola et al. [5], in which 13 critically ill

patients were treated with constant infusion rate of DEX

for the first 12 h. After the first 12 h, the infusion rate of

DEX was titrated between 0.1 and 2.5 mg/kg/h by using a

predefined dose levels to maintain sedation within the

range between 0 and 3 on the Richmond Agitation-Scale

Sedation. DEX infusion was continued as long as required

to a maximum of 14 days. The authors explain this more

than two-fold increase in drug clearance by general

improvement in the physiological condition of the patients

and improvement in liver flows [5]. Our data show

moderate evidence of a clinically significant increase in

clearance (Pr = 0.62) at the second (post infusion end)

occasion. Addressing the literature observation in adults,

it is reasonable to conclude that this phenomenon is likely

to occur in children.

There is also a strong evidence of an increased volume

of the central compartment after infusion cessation. That is

very likely due to an unavoidable phenomenon that during

the routine administration of the drug, there is a moment

when the drug enters the bloodstream despite the end of

infusion, as a consequence of its presence in the drug

delivery lines. Thus, we observe higher DEX concentra-

tions than expected which in consequence leads to

increased value of V1. This increased value of V1 translates

to the increased half-life of the alpha-phase and decreased

elimination rate of DEX few minutes upon infusion dis-

continuation. Also other explanations cannot be excluded,

such as altered cardiac index during the recovery after

anesthesia, which can alter perfusion rates to tissues and

leads to higher V1 estimates [35, 36].

Fig. 3 The individual mean a posteriori values of clearance and volume of distribution (actual and normalized by body weight) in relation to

patient age. Closed symbols denote males and open symbols denote females
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In this work, the presence of outliers in the data was

handled by assuming a robust t-distribution of residuals.

Our approach was different from the one already presented

for DEX [37]. In the cited work authors used a finite

mixture as the residual error model. Nevertheless, this

particular approach could not be used for our dataset as it

required unrealistic assumption of an additive residual

error model and one compartment disposition model.

The personalized therapy requires the knowledge of

drugs pharmacokinetics and factors affecting inter-indi-

vidual variability in drug response [38]. The elucidation of

those factors seems to be particularly important in the

pediatric population treated in PICU [39]. We think that the

use of Bayesian inference approach might be an effective

tool in addressing the often asked questions on the most

likely differences between the population of patients

investigated and the one that was used to support the cur-

rent dosing paradigm. This post-data questions are often

present when analyzing observational data and can effec-

tively be addressed using Bayesian theory.

In conclusion, a population PK model was successfully

developed to describe the time course and variability of

dexmedetomidine in PICU patients using allometric principles

and clearance maturation model. The disease status described

by PRISM score, duration of infusion, and sex were not found to

be independent significant covariates in this study. A 1.5-fold

increase in the volume of distribution after infusion cessation

was observed. There were also some evidences on increased

clearance, however, more data is needed to fully confirm clin-

ical significance of this phenomenon.

Supplementary material is available and includes mass

spectrometry settings, trace plots of model parameters

along the MCMC chain’s length, details on selection of

fraction parameters (fP), goodness-of-fit plots, ETA plots,

and WinBUGS/Matlab codes of the used models.

Acknowledgments This project was supported by the Grant 2015/17/

B/NZ7/03032 founded by the Polish National Science Centre. We

would like to thank Emilia Daghir-Wojtkowiak for her helpful

comments.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, distri-

bution, and reproduction in any medium, provided you give appropriate

credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

References

1. Allegaert K, Olkkola KT, Owens KH, Van de Velde M, de Maat

MM, Anderson BJ (2014) Covariates of intravenous paracetamol

pharmacokinetics in adults. BMC Anesthesiol 14:77

2. de Wildt SN (2011) Profound changes in drug metabolism

enzymes and possible effects on drug therapy in neonates and

children. Expert Opin Drug Metab Toxicol. 7:935–948

3. Smits A, Kulo A, de Hoon JN, Allegaert K (2012) Pharmacoki-

netics of drugs in neonates: pattern recognition beyond compound

specific observations. Curr Pharm Des 18:3119–3146

4. Hoy SM, Keating GM (2011) Dexmedetomidine: a review of its

use for sedation in mechanically ventilated patients in an inten-

sive care setting and for procedural sedation. Drugs. 71:1481–

1501

5. Iirola T, Ihmsen H, Laitio R, Kentala E, Aantaa R, Kurvinen JP,
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Kaliszan R, Grześkowiak E (2013) Assessing circadian rhythms

during prolonged midazolam infusion in the pediatric intensive

care unit (PICU) children. Pharmacol Rep. 65:107–121

28. Carrasco G (2000) Instruments for monitoring intensive care unit

sedation. Crit Care 4:217–225

29. Pollack MM, Holubkov R, Funai T, Dean JM, Berger JT, Wessel

DL, Meert K, Berg RA, Newth CJ, Harrison RE, Carcillo J,

Dalton H, Shanley T, Jenkins TL, Tamburro R, Eunice Kennedy

Shriver National Institute of Child Health and Human Develop-

ment Collaborative Pediatric Critical Care Research Network

(2016) The pediatric risk of mortality score: update 2015. Pedi-

atr Crit Care Med. 7:2–9

30. Siluk D, Szerkus O, Struck-Lewicka W, Bartosińska E, Korda-
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