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Abstract McCormick (Math Prog 10(1):147–175, 1976) provides the framework for con-
vex/concave relaxations of factorable functions, via rules for the product of functions and
compositions of the form F ◦ f , where F is a univariate function. Herein, the composition the-
orem is generalized to allow multivariate outer functions F , and theory for the propagation of
subgradients is presented. The generalization interprets the McCormick relaxation approach
as a decomposition method for the auxiliary variable method. In addition to extending the
framework, the new result provides a tool for the proof of relaxations of specific functions.
Moreover, a direct consequence is an improved relaxation for the product of two functions,
at least as tight as McCormick’s result, and often tighter. The result also allows the direct
relaxation of multilinear products of functions. Furthermore, the composition result is applied
to obtain improved convex underestimators for the minimum/maximum and the division of
two functions for which current relaxations are often weak. These cases can be extended to
allow composition of a variety of functions for which relaxations have been proposed.

Keywords Convex relaxation · Multilinear products · Fractional terms · Min/max · Global
optimization · Subgradients

1 Introduction

Many nonlinear programs (NLPs), in particular in engineering design, are nonconvex and
multimodal. Their global optimization typically relies on the construction of converging
convex/concave relaxations, i.e., convex/concave functions that under-/over-estimate the
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objective function and the constraints. In principle it would be desirable to construct the
convex/concave envelopes, but this is typically not practical.

One approach for the convex relaxations are the so-calledαBB andγ BB relaxations, devel-
oped by Floudas and coworkers [1,2,21]. The methods are applicable to twice-continuously
differential functions and rely on an estimation of the Hessian of the original functions. For
elementary functions, convex/concave envelopes are known or it is possible to calculate tight
relaxations. Note for instance the construction of envelopes of univariate functions described
by Maranas and Floudas [22], the work by Liberti and Pantelides [20] for monomials of odd
degree, and the work of Tawarmalani and Sahinidis [46,47] for a class of fractional and lower
semi-continuous functions.

McCormick [23,24] has provided a framework for the convex/concave relaxations of
factorable functions, i.e., functions that can be represented as a finite recursive composition
of binary sums, binary products and a given library of univariate intrinsic functions. The
relaxations of the univariate intrinsic functions are propagated based on two main theorems,
which essentially allow the relaxation of expressions in the form F1 ◦ f1 + F2 ◦ f2 · F3 ◦ f3.
These relaxations are in general nonsmooth [30]. If all functions involved are smooth and
the convex/concave envelopes of the functions are used in the composition theorem, then
the convergence order is at least quadratic [7] even if natural interval extensions with linear
convergence order are used for the enclosures of functions.

An alternative to McCormick’s relaxation is the auxiliary variable method (AVM) which
employs auxiliary variables for each factor involved [42,48–50]. More precisely, instead of
relaxing the functions, the nonconvex optimization problem is relaxed, i.e., the nonconvex
problem is reformulated introducing auxiliary variables in such a way that the intrinsic
functions are decoupled and can be relaxed one by one. A lower bound to the nonconvex
problem is calculated via a relaxed NLP or linear program (LP).

Mitsos et al. [30] proposed the propagation of relaxations and their subgradients through
procedures, thus extending the McCormick relaxations to the global optimization with algo-
rithms embedded; examples in [30] demonstrate that optimizing in the original dimensional
space can, for a class of problems, result in drastic computational savings compared to the
AVM. The nonsmoothness of the relaxations implies the utilization of non-smooth opti-
mization methods [16] for the calculation of lower bounds to the nonconvex optimization
problem. The McCormick relaxations can be generalized in other ways [38], allowing also the
relaxations of NLPs with dynamics (i.e., an ordinary differential equation or differential alge-
braic system) embedded [11,12,39,40] as well as the relaxation of implicit functions [43].
Recently, Sahlodin and Chachuat [37] also proposed the so-called McCormick-Taylor mod-
els, whereby McCormick relaxations are propagated in addition to interval bounds for enclos-
ing the remainder term. Two implementations of McCormick’s relaxations are MC++ [10]
and modMC [13]; the former is freely available and used herein to calculate the McCormick
relaxations.

While McCormick relaxations are clearly a very important tool, they have the limitation of
only allowing univariate composition, i.e., univariate outer function. Herein, a generalization
to multivariate outer functions is proposed via a reformulation of McCormick’s Composi-
tion theorem in terms of a simple optimization problem. The new theorem directly allows
the relaxation and subgradient propagation through procedures similar to [30] under mild
assumptions. It even gives rules for the propagation of the subdifferential.

Auxiliary variable method has two clear advantages compared to McCormick’s relax-
ations, namely that the relaxations are (i) at least as tight and in some cases tighter and (i i)
differentiable for a larger class of functions [48]. On the other hand, McCormick relaxations
have the advantage that the relaxations are constructed in the original space and allow for
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several generalizations. The generalization of McCormick relaxations presented here, makes
the relationship of the two approaches explicit, yielding a, to the best of our knowledge pre-
viously unknown, interpretation of McCormick Relaxation’s as a decomposition method to
solve the relaxed NLP constructed by AVM. We note that such decomposition methods for
AVM have not been implemented by the global optimization community.

The proposed generalization allows a more direct relaxation of the product of functions,
which proves to be at least as tight and in some cases tighter than McCormick’s product rule.
It also allows the direct relaxation of multilinear product of functions, i.e., without resorting
to recursive application of the bilinear rule. Similarly, the proposed theorem results in at least
as tight and often tighter relaxations for the minimum/maximum and the division of two
functions.

The rest of the paper is organized as follows. In Sect. 2 we review McCormick’s Compo-
sition Theorem and we give its generalization to multivariate outer functions, while in Sect. 3
we provide a way to propagate subgradient information. In Sect. 4 we discuss the relationship
with AVM. We apply our results to compute relaxations of the product of two functions in
Sect. 5, the minimum/maximum of two functions in Sect. 6 and the division of two functions
in Sect. 7. We conclude and discuss future directions in Sect. 8.

2 Convex underestimator theorems

Theorem 1 is the main result in McCormick [23] and constructs convex/concave relaxations
of composite functions where the outer function is univariate. Therein, mid(α, β, γ ) gives the
median of three real numbers; in the trivial case that α = β = γ we have mid(α, β, γ ) = α;
otherwise it is the numerical value that is smaller than the maximum and/or larger than the
minimum.

Theorem 1 (McCormick composition theorem [23]) Let Z ⊂ R
n and X ⊂ R be nonempty

compact convex sets. Consider the composite function g = F ◦ f (·) where f : Z → R,
F : X → R and let f (Z) ⊂ X. Suppose that convex/concave relaxations f cv, f cc : Z → R

of f on Z are known. Let Fcv : X → R be a convex relaxation of F on X and let xmin ∈ X
be a point where Fcv attains its minimum on X. Then ḡcv : Z → R,

ḡcv(z) = Fcv (mid{ f cv(z), f cc(z), xmin}) , (1)

is a convex relaxation of g on Z.

A similar theorem exists for the concave relaxation. Below we give an equivalent, yet
more convenient to generalize, definition of the McCormick relaxation.

Proposition 1 Let gcv : Z → R

gcv(z) = min
x∈X

{Fcv(x)| f cv(z) ≤ x ≤ f cc(z)} (2)

For the function ḡcv defined by (1) there holds

ḡcv(z) = gcv(z)

for all z ∈ Z.

Proof Note that we clearly have f cv(z) ≤ f cc(z) for all z ∈ Z and that since f (Z) ⊂ X
there holds [ f cv(z), f cc(z)] ∩ X �= ∅ for all z ∈ Z . Furthermore, let xmin be the minimum
of Fcv in X .
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We consider all three cases. If

mid{ f cv(z), f cc(z), xmin} = xmin

then we have

gcv(z) = min
x∈X

{Fcv(x)| f cv(z) ≤ x ≤ f cc(z)} = Fcv(xmin) = ḡcv(z).

If on the other hand

mid{ f cv(z), f cc(z), xmin} = f cv(z)

we note that f cv(z) ≤ f cc(z) and thus xmin ≤ f cv(z) ≤ f cc(z). Since Fcv is convex it
must be nondecreasing for x ≥ xmin [30]. In addition we have xmin ≤ f cv(z) ≤ f (z) and
therefore f cv(z) ∈ X . Thus, we have

gcv(z) = min
x∈X

{Fcv(x)| f cv(z) ≤ x ≤ f cc(z)} = Fcv ◦ f cv(z) = ḡcv(z).

Similarly, if

mid{ f cv(z), f cc(z), xmin} = f cc(z)

we have f cv(z) ≤ f cc(z) ≤ xmin. Since Fcv is convex it must be nonincreasing for x ≤ xmin.
In addition we have f (z) ≤ f cc(z) ≤ xmin and therefore f cc(z) ∈ X . Thus, we have

gcv(z) = min
x∈X

{Fcv(x)| f cv(z) ≤ x ≤ f cc(z)} = Fcv( f cc(z)) = ḡcv(z).

��
Theorem 2 gives a generalization of Theorem 1 for multivariate outer functions. Its proof

makes use of Lemma 1, which we will also use in the development of subgradient propagation
in Sect. 3. Note that ∂g(x) denotes the subdifferential of g at x , i.e., the set of all subgradients.

Lemma 1 [17] Let f1, . . . , fm be m convex functions from R
n → R and let F be a convex

and non-decreasing function from R
m → R. Then g(x) = F( f1(x), . . . , fm(x)) is a convex

function. Furthermore

∂g(x) =
{

m∑

i=1

ρi si : (ρ1, . . . , ρm) ∈ ∂ F( f1(x), . . . , fm(x)), si ∈ ∂ fi (x) ∀i = 1, . . . , m

}

.

Theorem 2 Let Z ⊂ R
n and X ⊂ R

m be nonempty compact convex sets. Consider the com-
posite function g = F( f1(z), . . . , fm(z)), where F : X → R and for i ∈ I = {1, . . . , m},
fi : Z → R are continuous functions, and let

{( fi (z), . . . , fm(z)) |z ∈ Z} ⊂ X. (3)

Suppose that convex relaxations f cv
i : Z → R and concave relaxations f cc

i : Z → R of fi

on Z are known for every i ∈ I . Let Fcv : X → R be a convex relaxation of F on X and
Fcc : X → R be a concave relaxation of F on X. Then gcv : Z → R,

gcv(z) = min
x∈X

{
Fcv(x)| f cv

i (z) ≤ xi ≤ f cc
i (z), ∀i ∈ I

}

is a convex relaxation of g on Z and gcc : Z → R,

gcc(z) = max
x∈X

{
Fcc(x)| f cv

i (z) ≤ xi ≤ f cc
i (z), ∀i ∈ I

}

is a concave relaxation of g on Z.
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Proof First we prove that gcv underestimates g on Z . Using (3) and the fact that f cv
i (z) ≤

fi (z) ≤ f cc
i (z) we obtain

gcv(z) = min
x∈X

{
Fcv(x)| f cv

i (z) ≤ xi ≤ f cc
i (z), ∀i ∈ I

}

≤ min
x∈X

{
Fcv(x)|xi = fi (z), ∀i ∈ I

}

= Fcv ( f1(z), . . . , fm(z))

≤ F ( f1(z), . . . , fm(z)) = g(z).

Next we prove that gcv is convex. Consider the function h defined on X × X by

h(χcv,χcc) = min
x∈X⊂Rm

{Fcv(x)| − x ≤ −χcv, x ≤ −χcc}

with Fcv convex.
From convexity of Fcv , the function h is increasing and convex as a perturbation function

of a convex problem [8]. Observing that

gcv(z) = h
(

f cv
1 (z), . . . , f cv

m (z),− f cc
1 (z), . . . ,− f cc

m (z)
)

and applying Lemma 1 we obtain convexity of gcv . Note, that the negative sign at the right
hand side of the second constraint in the definition of h, was chosen conveniently to negate
the concave terms f cc

i and decompose gcv to a convex function of convex functions. The
proof for gcc is analogous. ��

We note that gcv/gcc is not in general the convex/concave envelope of g even if Fcv, f cv

are the convex envelopes and Fcc, f cc the concave envelopes of F, f respectively, see e.g.,
Fig. 1.

The definitions of gcv/gcc at a point z involve the minimization/maximization of the con-
vex/concave relaxation Fcv, Fcc of F , where the convex/concave relaxations are computed
over X and the optimization is over X ∩ B where B is a box defined by f cv

i (z), f cc
i (z).

This is typically a relatively easy convex problem to solve as Fcv , Fcc are usually simple
functions. In many cases, including the binary product of functions (Sect. 5), the solution
can be described as a function of z in closed form.

Similarly to McCormick’s relaxations, nested functions can be handled by recursive appli-
cation of the theorem and do not present any difficulty. The only requirement is the availability
of closed form solutions or reliable algorithms to solve the convex problems.

For the rest of the paper, unless otherwise stated, we assume that
[

f cv
1 (z), f cc

1 (z)
]× · · · × [

f cv
m (z), f cc

m (z)
] ⊂ X. (4)

Note that this is without loss of generality as we can always take

f̄ cv
i (z) = max

{
f cv
i (z), min

x∈X
xi

}
, f̄ cc

i (z) = min

{
f cc
i (z), max

x∈X
xi

}
.

More specifically, if we assume that X is a box defined as
[

f L
1 , f U

1

]×· · ·× [ f L
m , f U

m

]
where[

f L
i , f U

i

]
is an inclusion function of fi on Z we can take

f̄ cv
i (z) = max

{
f cv
i (z), f L

i

}
, f̄ cc(z) = min

{
f cc
i (z), f U

i

}
.

Corollary 3 gives a simplified version of Theorem 2 in the case of monotonicity, which
we also utilize to compute convex/concave relaxations for the minimum/maximum of two
functions, Sect. 6.
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Corollary 3 If in addition to the assumptions of Theorem 2, Assumption (4) holds and

1. Fcv is monotonic increasing then

gcv(z) = Fcv ( f cv
1 (z), .., f cv

m (z)
)

is a convex relaxation of g.
2. Fcv is monotonic decreasing then

gcv(z) = Fcv ( f cc
1 (z), .., f cc

m (z)
)

is a convex relaxation of g.
3. Fcc is monotonic increasing then

gcc(z) = Fcc ( f cc
1 (z), .., f cc

m (z)
)

is a concave relaxation of g.
4. Fcc is monotonic decreasing then

gcc(z) = Fcc ( f cv
1 (z), .., f cv

m (z)
)

is a concave relaxation of g.

The convexity of gcv and concavity of gcc in this case is well known, e.g., [8].

3 Subgradient propagation

Theorem (2) allows the evaluation of the convex/concave relaxation of an arbitrary composite
function at a point z, provided that convex/concave relaxations of the intrinsic functions
are available. As demonstrated in Mitsos et al. [30] the calculation of subgradients of the
convex/concave relaxations is useful. In this section the results of Mitsos et al. [30] are
generalized to multivariate outer-functions and to the entire subdifferential.

Lemma 2 [Adapted from strong duality theorem.] Consider the problem

h(χcv,χcc) = min
x∈X⊂Rm

{Fcv(x)| − x ≤ −χcv, x ≤ −χcc}

with Fcv convex. Then u =
[

λ̂
cv

λ̂
cc

]

is an optimal solution of the dual problem D(χ̂
cv

, χ̂
cc

)

given by

max
(λcv,λcc)

min
x∈X

{Fcv(x) + (λcv)
T
(−x + χ̂

cv
) + (λcc)T (x + χ̂

cc
)}

at χ̂ =
[

χ̂
cv

χ̂
cc

]
with χ̂

cv ≤ −χ̂
cc, if and only if u ∈ ∂h(χ̂

cv
, χ̂

cc
).

Proof The proof is based on the proof of the strong duality theorem in [14]. If u =
[

λ̂
cv

λ̂
cc

]

≥ 0

solves the dual then

min
x∈X

Fcv(x) + uT
[−x + χ̂

cv

x + χ̂
cc

]
= h(χ̂

cv
, χ̂

cc
).
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For any fixed χ̄ =
[

χ̄cv

χ̄cc

]
∈ R

2m , if x ∈ X with

[−x
x

]
≤
[−χ̄cv

−χ̄cc

]
, then there holds

Fcv(x) − uT (χ̄ − χ̂) ≥ Fcv(x) + uT
[−x + χ̂

cv

x + χ̂
cc

]
≥ h(χ̂

cv
, χ̂

cc
).

Thus, for fixed χ̄

−uT (χ̄ − χ̂) + h(χ̄) =
min
x∈X

Fcv(x) − uT (χ̄ − χ̂)

s.t. −x ≤ −χ̄cv

x ≤ −χ̄cc

≥ h(χ̂)

and u ∈ ∂h(χ̂
cv

, χ̂
cc

).

For the converse assume u =
[

λ̂
cv

λ̂
cc

]

∈ ∂h(χ̂
cv

, χ̂
cc

). Noting that h is non-decreasing,

let ei denote the i th unit vector and observe

h(χ̂) ≥ h(χ̂ − ei ) ≥ h(χ̂) − ui

for all i , and thus u ≥ 0 and u is dual feasible. For any x̃ ∈ X let χ̃ =
[

x̃
−x̃

]
. We have

Fcv(x̃) = h(χ̃) ≥ h(χ̂) + uT (χ̃ − χ̂) = h(χ̂) + uT
[

x̃ − χ̂
cv

−x̃ − χ̂
cc

]
.

or rearranging

h(χ̂) ≤ Fcv(x̃) + uT
[−x̃ + χ̂

cv

x̃ + χ̂
cc

]
,

and therefore

h(χ̂) ≤ min
x∈X

Fcv(x) + uT
[−x + χ̂

cv

x + χ̂
cc

]
.

On the other hand, weak duality yields the opposite inequality and thus equality holds and u
is optimal. ��
Theorem 4 The subdifferential of gcv at ẑ is given by

∂gcv(ẑ) =
{ m∑

i=1
ρcv

i scv
i − ρcc

i scc
i |

(
ρcv

1 , . . . , ρcv
m , ρcc

1 , . . . , ρcc
m

) ∈ �(ẑ),
scv

i ∈ ∂ f cv
i (ẑ), scc

i ∈ ∂ f cc
i (ẑ) ∀i = 1, . . . , m

}
,

where

�(ẑ) = arg max
(λcv,λcc)

{
min
x∈X

L(x,λcv,λcc, ẑ)
}

,

L(x,λcv,λcc, ẑ) = Fcv(x) +
m∑

i=1

λcv
i

(−x + f cv
i (ẑ)

)+ λcc
i

(
x − f cc

i (ẑ)
)

Proof The subdifferential of the convex function − f cc
i is given by

∂(− f cc
i )(ẑ) = {

s : −s ∈ ∂( f cc
i )(ẑ)

}
.

Since

gcv(ẑ) = h( f cv
1 (ẑ), . . . , f cv

m (ẑ),− f cc
1 (ẑ), . . . ,− f cv

m (ẑ))
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the result follows from Lemmata 1,2. ��
We note that in some cases, including fractional (Sect. 7) and multilinear (Sect. 5) terms,

a tighter convex relaxation Fcv of F than the ones available in closed form, can be calculated
through a convex optimization problem of the form

Fcv(x) =
{

min
w∈W

r1(x, w)|r2(x, w) ≤ 0

}
,

with W ⊂ R
nw , r1 : X × W → R, r2 : X × W → R

nr . The convex underestimator of g will
be given by

gcv(z) = min
x∈X,w∈W

r1(x, w)

s.t. r2(x, w) ≤ 0
f cv
i (z) ≤ xi ≤ f cc

i (z), ∀i

, (5)

where the defining problem has Lagrangian

L̄(x, w,λcv,λcc,μ) = r1(x, w)+
∑

i∈I

λcv
i

(
f cv
i (z)−xi

)+
∑

i∈I

λcc
i

(
xi− f cc

i (z)
)+μT r2(x, w).

(6)
We can calculate the subgradient of gcv(z) using Theorem 4 using the Lagrangian multipli-

ers associated with the constraints f cv
i (z) ≤ xi ≤ f cc

i (z). This is formalized in Proposition 2.

Proposition 2 If strong duality holds for (5) and
(

x̂, ŵ,
(
λ̂

cv
, λ̂

cc
, μ̂
))

is an optimal primal

dual pair of (5) then
(

x̂,
(
λ̂

cv
, λ̂

cc
))

is an optimal primal dual pair for the problem

gcv(z) = min
x∈X

{
Fcv(x)| f cv

i (z) ≤ xi ≤ f cc
i (z), ∀i ∈ I

}
(7)

with Lagrangian

L(x,λcv,λcc) = Fcv(x) +
∑

i∈I

λcv
i

(
f cv
i (z) − xi

)+
∑

i∈I

λcc
i

(
xi − f cc

i (z)
)
, (8)

where the constraints defining the box X are not dualized.

Proof From strong duality we have

L̄
(

x̂, ŵ, λ̂
cv

, λ̂
cc

, μ̂
)

= r1(x̂, ŵ), (9)

r2(x̂, ŵ) ≤ 0,

f cv
i (z) ≤ x̂i ≤ f cc

i (z) for all i, (10)

μ̂
T r2(x̂, ŵ) = 0, (11)

λ̂cv
i

(
f cv
i (z) − x̂i

) = 0, λ̂cc
i

(
x̂i − f cc

i (z)
) = 0 for all i. (12)

Using (12), (9) we obtain

L
(

x̂, λ̂
cv

, λ̂
cc
)

= L̄
(

x̂, ŵ, λ̂
cv

, λ̂
cc

, μ̂
)

.

Keeping in mind (12) and (10) to show that
(

x̂,
(
λ̂

cv
, λ̂

cc
))

is an optimal point with its

corresponding Lagrangian multipliers of (7) we only need

x̂ ∈ arg min
x∈X

L
(

x, λ̂
cv

, λ̂
cc
)

.

123



J Glob Optim (2014) 59:633–662 641

Assume to the contrary that there exist an x̄ ∈ X with

L
(

x̄, λ̂
cv

, λ̂
cc
)

< L
(

x̂, λ̂
cv

, λ̂
cc
)

and let

w̄ ∈ arg min
w

r1(x̄, w)

s.t. r2(x̄, w) ≤ 0
.

We have r1(x̄, w̄) = Fcv(x̄) and r2(x̄, w̄) ≤ 0. Then we have

L̄
(

x̄, w̄, λ̂
cv

, λ̂
cc

, μ̂
)

= r1(x̄, w̄) +
∑

i∈I

(
λ̂cv

i

(
f cv
i (z) − x̄i

))

+
∑

i∈I

(
λ̂cc

i

(
x̄i − f cc

i (z)
))+ μ̂

T r2(x̄, w̄)

= Fcv(x̄) +
∑

i∈I

(
λ̂cv

i

(
f cv
i (z) − x̄i

))

+
∑

i∈I

(
λ̂cc

i

(
x̄i − f cc

i (z)
))+ μ̂

T r2(x̄, w̄)

= L
(

x̄, λ̂
cv

, λ̂
cc
)

+ μ̂
T r2(x̄, w̄)

< L
(

x̂, λ̂
cv

, λ̂
cc
)

+ μ̂
T r2(x̄, w̄)

≤ L
(

x̂, λ̂
cv

, λ̂
cc
)

= L̄
(

x̂, ŵ, λ̂
cv

, λ̂
cc

, μ̂
)

,

which is a contradiction since

(x̂, ŵ) ∈ arg min
x∈X,w∈W

L̄
(

x, w, λ̂
cv

, λ̂
cc

, μ̂
)

.

��

4 McCormick relaxations and the auxiliary variable method

In this section we revisit the relationship between McCormick relaxations and the AVM
[41,42]. AVM lies at the heart of the state of the art software BARON [35,36], and han-
dles composite functions implicitly by a substitution of argument functions with auxiliary
variables.

While it is well known that both methods provide lower bounding mechanisms for fac-
torable functions, the restatement of McCormick Relaxations in Theorem 1 and the sub-
sequent generalization makes the relationship between the two approaches explicit and the
occasional gap in relaxations smaller.

As mentioned in the introduction, an advantage of AVM compared to McCormick’s
approach is the potentially tighter bounds due to repeated terms. While multivariate
McCormick can provide better bounds than univariate McCormick it can still be weaker
than AVM due to the same reasons. A case where multivariate McCormick can provide
tighter bounds than AVM, is if tighter convex relaxations can be made practically available
through optimization problems as is the case for fractional terms discussed in Sect. 7.
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McCormick’s approach allows for optimization of the bounding problem in the original
space. While there is no general rule dictating that a smaller number of variables will lead to
superior performance, it has been demonstrated that in a class of problems with few variables
and complex expressions, operating in the original space can give a drastic improvement of
CPU time [30].

To illustrate the relationship of the two methodologies, consider the functions f1 : Z1 ⊂
R

2 → R, f2 : Z2 ⊂ R → R, f3 : Z3 ⊂ R → R, f4 : Z4 ⊂ R → R, and the composite
function

g(z) = f1( f3(z), f4(z)) + f2( f3(z)),

z ∈ Z ⊂ R. Assume that for all intrinsic functions fi , convex and concave relaxations f cv
i ,

f cc
i on Zi are available. Furthermore assume that Zi are boxes and that Z ⊂ Z3, Z ⊂ Z4,

f3(Z3) × f4(Z4) ⊂ Z1, f3(Z3) ⊂ Z2. Note that the univariate McCormick theorem cannot
handle this directly.

To solve {minz∈Z g(z)} AVM could formulate the problem in two different ways, depend-
ing on whether it would recognize the common term f3(z).

Formulation 1 Formulation 2
min

z∈Z ,w1∈Z1
w2∈Z2,w3∈Z3
w′

3∈Z3,w4∈Z4

w1 + w2 min
z∈Z ,w1∈Z1

w2∈Z2,w3∈Z3
w4∈Z4

w1 + w2

s.t. w1 = f1(w3, w4) s.t. w1 = f1(w3, w4)

w2 = f2(w
′
3) w2 = f2(w3)

w4 = f4(z) w4 = f4(z)
w3 = f3(z) w3 = f3(z)
w′

3 = f3(z)

. (13)

with corresponding convex relaxations

Formulation 1 Formulation 2
min

z∈Z ,w1∈Z1
w2∈Z2,w3∈Z3
w′

3∈Z3,w4∈Z4

w1 + w2 min
z∈Z ,w1∈Z1

w2∈Z2,w3∈Z3
w4∈Z4

w1 + w2

s.t. f cv
1 (w3, w4) ≤ w1 ≤ f cc

1 (w3, w′
4) s.t. f cv

1 (w3, w4) ≤ w1 ≤ f cc
1 (w3, w4)

f cv
2 (w′

3) ≤ w2 ≤ f cc
2 (w′

3) f cv
2 (w3) ≤ w2 ≤ f cc

2 (w3)

f cv
4 (z) ≤ w4 ≤ f cc

4 (z) f cv
4 (z) ≤ w4 ≤ f cc

4 (z)
f cv
3 (z) ≤ w3 ≤ f cc

3 (z) f cv
3 (z) ≤ w3 ≤ f cc

3 (z)
f cv
3 (z) ≤ w′

3 ≤ f cc
3 (z)

.

(14)
Formulation 2 is tighter and will likely give a better bound. It is not hard to see that

multivariate McCormick will give the same bound with Formulation 1 by solving the problem

min
z

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
ŵ1,ŵ2

ŵ1 + ŵ2

s.t.

⎛

⎜
⎝

min
ŵ3,ŵ4

f cv
1 (ŵ3, ŵ4)

s.t. f cv
3 (z) ≤ ŵ3 ≤ f cc

3 (z)
f cv
4 (z) ≤ ŵ4 ≤ f̂ cc

4 (z)

⎞

⎟
⎠ ≤ŵ1≤

⎛

⎜
⎝

max
ŵ3,ŵ4

f cc
1 (ŵ3, ŵ4)

s.t. f cv
3 (z) ≤ ŵ3 ≤ f cc

3 (z)
f cv
4 (z) ≤ ŵ4 ≤ f cc

4 (z)

⎞

⎟
⎠

(
min
ŵ′

3

f cv
2 (ŵ′

3)

s.t. f cv
3 (z) ≤ ŵ′

3 ≤ f cc
3 (z)

)

≤ ŵ2 ≤
(

max
ŵ′

3

f cc
2 (ŵ′

3)

s.t. f cv
3 (z) ≤ ŵ′

3 ≤ f cc
3 (z)

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(15)
Equation (15) can be interpreted as a decomposition method of the first formulation of

(14). In general all inner problems will be easy to solve analytically and a numerical algorithm
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will only be needed to minimize the resulting relaxation with respect to the original variable
z.

In the multivariate McCormick’s Framework it is possible to introduce just sufficiently
mny artificial variables to improve the resulted relaxation and match the AVM. In our example
this would yield the problem

min
z,w3

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
ŵ1,ŵ2

ŵ1 + ŵ2

s.t.

(
min

ŵ3,ŵ4

f cv
1 (ŵ3, ŵ4)

s.t. f cv
4 (z) ≤ ŵ4 ≤ f̂ cc

4 (z)

)

≤ ŵ1 ≤
(

max
ŵ3,ŵ4

f cc
1 (ŵ3, ŵ4)

s.t. f cv
4 (z) ≤ ŵ4 ≤ f cc

4 (z)

)

f cv
3 (z) ≤ w3 ≤ f cc

3 (z)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(16)
yielding the same bound with AVM while increasing the optimization space by a single
variable.

It is instructive to consider only one level of composition, i.e., a function F( f (z)), to
compare the two methodologies: as it turns out, the use of a cutting plane algorithm to
minimize McCormick relaxations using the subgradient propagation mechanism of Sect. 3,
is strongly related to applying generalized benders decomposition [15], on the lower bounding
problem defined by AVM.

To minimize F( f (z)) AVM would formulate the problem

min
x∈X,z∈Z

{
Fcv(x)| f cv

i (z) ≤ xi ≤ f cc
i (z), ∀i ∈ I

}
. (17)

If we apply (generalized) Benders decomposition on (17) treating z as the “complicating”
variables, the master problem is

min
z∈Z

V (z),

where V (z) = max
λcv≥0,λcc≥0

min
x∈X

{

Fcv(x) +
∑

i

λcv
i

(
f cv
i (z) − x

)+
∑

i

λcc
i

(
x − f cc

i (z)
)
}

for all z.
The restricted master Vr (z) employs a subset � of multipliers. A ẑ obtained by solving

the restricted master will be suboptimal if

Vr (ẑ) < max
λcv≥0,λcc≥0

min
x∈X

{

Fcv(x) +
∑

i

λcv
i

(
f cv
i (ẑ) − x

)+
∑

i

λcc
i

(
x − f cc

i (ẑ)
)
}

. (18)

The cut obtained is

V (z) ≥ min
x∈X

Fcv(x) +
∑

i

λ̂cv
i

(
f cv
i (z) − x

)+
∑

i

λ̂cc
i

(
x − f cc

i (z)
)
, (19)

where

(
λ̂cv, λ̂cc

)
∈ arg max

λcv≥0,λcc≥0
min
x∈X

{

Fcv(x) +
∑

i

λcv
i

(
f cv
i (ẑ) − x

)+
∑

i

λcc
i

(
x − f cc

i (ẑ)
)
}

,
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cutting off ẑ. The generalized-Benders cut (19) can be further relaxed by linearization around
ẑ, yielding,

V (z) ≥ min
x∈X

Fcv(x) +
∑

i

λ̂cv
i

(
f cv
i (ẑ) + scv

i (z−ẑ)−x
)−

∑

i

λ̂cc
i

(
f cc
i (ẑ) + scc

i (z−ẑ)−x
)

=
∑

i

(
λ̂cv

i scv
i − λ̂cc

i scc
i

)
(z − ẑ) + min

x∈X
Fcv(x) +

∑

i

λ̂cv
i f cv

i (ẑ) −
∑

i

λ̂cc
i f cc

i (ẑ)

= gcv(ẑ) +
∑

i

(
λ̂cv

i scv
i − λ̂cc

i scc
i

)
(z − ẑ),

where scv
i , scc

i are subgradients of f cv
i , f cc

i at ẑ. It can be seen that the linearized cut is
equivalent with a subgradient inequality for gcv as obtained by Theorem 4. Note, that the
generalized Benders’ subproblem (18) generating the cut is identical with (the dual of) the
problem solved to provide a function evaluation and generate the subgradient.

Therefore, in the single level composition, applying generalized Benders decomposition
to AVM is equivalent to minimizing g(z) through a first-order algorithm which at iteration
k + 1 chooses point zk+1 for evaluation by solving the linear relaxation

min
w,z

{
w : w ≥ g(zi ) + sT

i (z − zi ), ∀i ≤ k
}

,

where g(zi ), si are the function evaluation and subgradient returned by the oracle at iteration
i . This is not a very efficient algorithm to minimize g(z) and here we use it just to illustrate
the equivalence. More efficient first-order methods can be found, for example, in [31].

We note, that in the (univariate and multivariate) McCormick Relaxation framework, it
is straightforward to apply Theorem 4 recursively to generate subgradients for nested com-
positions of functions, This is not to say that it would be impossible to construct equivalent
nested decomposition schemes for AVM, which has a staircase structure. In the context of
stochastic programming, Birge [6] explores nested decomposition schemes for LPs. In the
presence of NLPs with a staircase structure, O’Neill [32] proposes a decomposition frame-
work combining primal and dual decomposition ideas, which is however rather involved.

Note also that the advantage of retaining the original variable space is important only in
the case of such complex expressions that would need an introduction of a great number of
variables to construct the AVM equivalent. Thus, the above observations on the equivalence
of the two approaches for a single composition are mainly of theoretical interest.

5 Product rule

An interesting example of multivariate composition are products of functions. Note that
bilinear terms and bilinear products of functions are very important in applications, see
for instance the recent articles [19,28]. Let mult(x1, x2) = x1x2. As given in [3,23], the
convex/concave envelopes of mult(·, ·) on

[
x L

1 , xU
1

]× [
x L

2 , xU
2

]
are

multcv = max
{

xU
2 x1 + xU

1 x2 − xU
1 xU

2 , x L
2 x1 + x L

1 x2 − x L
1 x L

2

}
,

multcc = min
{

x L
2 x1 + xU

1 x2 − xU
1 x L

2 , xU
2 x1 + x L

1 x2 − x L
1 xU

2

}
.

Theorem 2 directly gives convex/concave relaxations for the product of two functions.
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Corollary 5 Let g(z) = mult( f1(z), f2(z)), with f1 : Z ⊂ R
n → R, f2 : Z ⊂ R

n → R.
Let also f L

i , f U
i denote bounds for fi , i.e., f L

i ≤ fi (z) ≤ f U
i and f cv

i , f cc
i convex and

concave relaxations of fi on Z respectively.

gcv(z) = min
xi ∈[ f L

i , f U
i ]

max
{

f U
2 x1 + f U

1 x2 − f U
1 f U

2 , f L
2 x1 + f L

1 x2 − f L
1 f L

2

}

s.t. f cv
1 (z) ≤ x1 ≤ f cc

1 (z)
f cv
2 (z) ≤ x2 ≤ f cc

2 (z)

(20)

is a convex relaxation of g on Z and

gcc(z) = max
xi ∈[ f L

i , f U
i ]

min
{

f L
2 x1 + f U

1 x2 − f U
1 f L

2 , f U
2 x1 + f L

1 x2 − f L
1 f U

2

}

s.t. f cv
1 (z) ≤ x1 ≤ f cc

1 (z)
f cv
2 (z) ≤ x2 ≤ f cc

2 (z)

(21)

is a concave relaxation of g on Z.

The convex relaxation for g that McCormick proposed [23] is

ḡcv(z) = max
{
α1(z) + α2(z) − f L

1 f L
2 , β1(z) + β2(z) − f U

1 f U
2

}
(22)

where

α1(z) = min
{

f L
2 f cv

1 (z), f L
2 f cc

1 (z)
}
, α2(z) = min

{
f L
1 f cv

2 (z), f L
1 f cc

2 (z)
}
,

β1(z) = min
{

f U
2 f cv

1 (z), f U
2 f cc

1 (z)
}
, β2(z) = min

{
f U
1 f cv

2 (z), f U
1 f cc

2 (z)
}
.

The equivalent concave relaxation is

ḡcc(z) = max
{
γ1(z) + γ2(z) − f U

1 f L
2 , δ1(z) + δ2(z) − f U

1 f U
2

}
(23)

where

γ1(z) = max
{

f L
2 f cv

1 (z), f L
2 f cc

1 (z)
}
, γ2(z) = max

{
f U
1 f cv

2 (z), f U
1 f cc

2 (z)
}
,

δ1(z) = max
{

f U
2 f cv

1 (z), f U
2 f cc

1 (z)
}
, δ2(z) = max

{
f L
1 f cv

2 (z), f L
1 f cc

2 (z)
}
.

Proposition 3 shows that the proposed relaxations gcv/gcc are always at least as tight as
McCormick’s rule ḡcv/ḡcc, while Fig. 1 shows that they can be tighter.

Proposition 3 gcv(z) ≥ ḡcv(z) for all z ∈ Z and gcc(z) ≤ ḡcc(z) for all z ∈ Z.

Proof Using the well-known fact, e.g., [51], that for any function φ(x, y) defined on X × Y
there holds

min
x∈X

max
y∈Y

φ(x, y) ≥ max
y∈Y

min
x∈X

φ(x, y),

by interchanging the minimization and maximization operators we obtain

gcv(z) ≥ max

⎧
⎪⎨

⎪⎩

min
xi ∈[ f L

i , f U
i ]

f U
2 x1 + f U

1 x2 − f U
1 f U

2

s.t. f cv
1 (z) ≤ x1 ≤ f cc

1 (z)
f cv
2 (z) ≤ x2 ≤ f cc

2 (z)

,

min
xi ∈[ f L

i , f U
i ]

f L
2 x1 + f L

1 x2 − f L
1 f L

2

s.t. f cv
1 (z) ≤ x1 ≤ f cc

1 (z)
f cv
2 (z) ≤ x2 ≤ f cc

2 (z)

⎫
⎪⎬

⎪⎭

(24)

≥ max

⎧
⎪⎨

⎪⎩

min
xi ∈R

f U
2 x1 + f U

1 x2 − f U
1 f U

2

s.t. f cv
1 (z) ≤ x1 ≤ f cc

1 (z)
f cv
2 (z) ≤ x2 ≤ f cc

2 (z)

,

min
xi ∈R

f L
2 x1 + f L

1 x2 − f L
1 f L

2

s.t. f cv
1 (z) ≤ x1 ≤ f cc

1 (z)
f cv
2 (z) ≤ x2 ≤ f cc

2 (z)

⎫
⎪⎬

⎪⎭

= max
{

b1(z) + b2(z) − f U
1 f U

2 , a1(z) + a2(z) − f L
1 f L

2

}
= ḡcv(z). (25)
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Fig. 1 Take Z = [−2, 2] and g, f1, f2 : Z → R, such that f1(z) = z2, f2(z) = z, g(z) = f1(z) · f2(z).
The convex relaxation gcv of f in [−2, 2] proposed in (20) is tighter than McCormick’s relaxation ḡcv given
by Eq. (22)

The proof that gcc(z) ≤ ḡcc(z) for all z ∈ Z is similar and is omitted for brevity. ��

Note that the first inequality in (24) can be strict only if f L
1 < 0 < f U

1 or f L
2 < 0 < f U

2
and the second only if

[
f cv
1 (z), f cc

1 (z)
] �⊂ [

f L
1 , f U

1

]
or
[

f cv
2 (z), f cc

2 (z)
] �⊂ [

f L
2 , f U

2

]
, that

is, only if Assumption 4 does not hold. Scott and Barton [38] have observed that ḡcv can be
tightened by intersecting with the interval bounds. However, from the definition of gcv we
have that gcv is at least as tight and in some cases tighter than the result by Scott and Barton.
If f U

1 = f L
1 or f U

2 = f L
2 , at least one of the functions is constant and the computation of

the convex and concave envelopes of their product is trivial.
The convex relaxations obtained by Eqs. (20), (21) can be represented in closed form. If

f U
1 > f L

1 and f U
2 > f L

2 , gcv(z) can be shown to be given by

gcv(z) = min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
{

f U
2 f cv

1 (z) + f U
1 mid( f cv

2 (z), f cc
2 (z), κ f cv

1 (z) + ζ ) − f U
1 f U

2 ,

f L
2 f cv

1 (z) + f L
1 mid( f cv

2 (z), f cc
2 (z), κ f cv

1 (z) + ζ ) − f L
1 f L

2

}
,

max
{

f U
2 f cc

1 (z) + f U
1 mid( f cv

2 (z), f cc
2 (z), κ f cc

1 (z) + ζ ) − f U
1 f U

2 ,

f L
2 f cc

1 (z) + f L
1 mid( f cv

2 (z), f cc
2 (z), κ f cc

1 (z) + ζ ) − f L
1 f L

2

}
,

max
{

f U
2 mid

(
f cv
1 (z), f cc

1 (z), f cv
2 (z)−ζ

κ

)
+ f U

1 f cv
2 (z) − f U

1 f U
2 ,

f L
2 mid

(
f cv
1 (z), f cc

1 (z), f cv
2 (z)−ζ

κ

)
+ f L

1 f cv
2 (z) − f L

1 f L
2

}
,

max
{

f U
2 mid

(
f cv
1 (z), f cc

1 (z), f cc
2 (z)−ζ

κ

)
+ f U

1 f cc
2 (z) − f U

1 f U
2 ,

f L
2 mid

(
f cv
1 (z), f cc

1 (z), f cc
2 (z)−ζ

κ

)
+ f L

1 f cc
2 (z) − f L

1 f L
2

}

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where

κ = f L
2 − f U

2

f U
1 − f L

1

, ζ = f U
1 f U

2 − f L
1 f L

2

f U
1 − f L

1

.

123



J Glob Optim (2014) 59:633–662 647

Similarly, if f U
1 > f L

1 and f U
2 > f L

2 then gcc(z) is given by

gcc(z) = max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
{

f L
2 f cv

1 (z) + f U
1 mid( f cv

2 (z), f cc
2 (z), κ f cv

1 (z) + ζ ) − f U
1 f L

2 ,

f U
2 f cv

1 (z) + f L
1 mid( f cv

2 (z), f cc
2 (z), κ f cv

1 (z) + ζ ) − f L
1 f U

2

}
,

min
{

f L
2 f cc

1 (z) + f U
1 mid( f cv

2 (z), f cc
2 (z), κ f cc

1 (z) + ζ ) − f U
1 f L

2 ,

f U
2 f cc

1 (z) + f L
1 mid( f cv

2 (z), f cc
2 (z), κ f cc

1 (z) + ζ ) − f L
1 f U

2

}
,

min
{

f L
2 mid

(
f cv
1 (z), f cc

1 (z), f cv
2 (z)−ζ

κ

)
+ f U

1 f cv
2 (z) − f U

1 f L
2 ,

f U
2 mid

(
f cv
1 (z), f cc

1 (z), f cv
2 (z)−ζ

κ

)
+ f L

1 f cv
2 (z) − f L

1 f U
2

}
,

min
{

f L
2 mid

(
f cv
1 (z), f cc

1 (z), f cc
2 (z)−ζ

κ

)
+ f U

1 f cc
2 (z) − f U

1 f L
2 ,

f U
2 mid

(
f cv
1 (z), f cc

1 (z), f cc
2 (z)−ζ

κ

)
+ f L

1 f cc
2 (z) − f L

1 f U
2

}

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where

κ = f U
2 − f L

2

f U
1 − f L

1

, ζ = f U
1 f L

2 − f L
1 f U

2

f U
1 − f L

1

.

In addition to bilinear products of functions, often multilinear products of functions are
used in applications. The class of functions considered herein can be summarized as G(z) =∑

t∈T ct
i∈It fi (z), where T and It ⊂ I are index sets and ct are constants. Such functions
can be handled by recursive application of McCormick’s product rule and these approaches
give weaker than possible relaxations, compare for instance [4,5,9,25]. In contrast, Theorem 2
provides the framework to directly handle such terms and provide tighter relaxations. Herein,
only the convex relaxations are discussed; the concave relaxations are analogous.

Rikun [34] considers F : R
n → R, F(x) = ∑

t∈T ct
i∈It xi on a hypercube X =
X1 × X2 × · · · × Xn , where [x L

i , xU
i ]. He proves that the convex envelope Fcv,env at a point

x can be evaluated by the following optimization problem

Fcv,env(x) = min
λ

∑

k

λk F(xk)

s.t. x =
∑

k

λkxk

∑

k

λk = 1

λ ∈ [0, 1]m

where xk denote the vertices of X . Note that this is a LP, albeit of size m. Note also that
explicit representations exist for subclasses of this function such as the explicit facets of
trilinear terms by Meyer and Floudas [25].

By Theorem 2 a convex relaxation of G on Z can be constructed as

gcv(z) = min
x

Fcv,env(x)

f cv
i (z) ≤ xi ≤ f cc

i (z), i ∈ I.
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Noting that min
y

min
w

h(y, w) = min
y,w

h(y, w) we obtain

gcv(z) = min
x,λ

∑
k λk F(xk)

x = ∑
k λkxk

∑
k λk = 1

f cv
i (z) ≤ xi ≤ f cc

i (z), i ∈ I.

which is still an LP of similar size.
By Proposition 2, Theorem 4 can still be used for the computation of subgradients if we

take into account in the construction of σ cv only the Lagrangian multipliers associated with
the constraints f cv

i (z) ≤ xi ≤ f cc
i (z).

6 Convex/concave envelopes and relaxations of min/max operators

The operators min and max often arise in engineering optimization formulations. It is well-
known that the minimum of concave functions is a concave function, but the same does
not hold in general for convex functions. To the authors’ best knowledge relaxations for
such functions are not available in literature or in most numerical codes. For instance, the
operators min / max are currently not handled by the state-of-the-art general-purpose solvers
BARON [36,49] and ANTIGONE [27–29], while in MC++ [10] they are handled using the
well-known reformulation

min ( f1(z), f2(z)) = 1

2
( f1(z) + f2(z) − | f1(z) − f2(z)|) (26)

and applying the univariate McCormick composition theorem to the negative absolute value.
However, the constructed relaxations are not as tight as the ones proposed here.

Calculating interval enclosures for the function min( f1(x), f2(x)) given interval enclo-
sures for f1 and f2 is straightforward and is also done in MC++ [10].

Proposition 4 Consider Z ∈ R
n and f1, f2 : Z → R. Suppose that interval enclosures are

given for f1 and f2 on Z, i.e., bounds f L
1 , f U

1 , f L
2 , f U

2 such that

f L
1 ≤ f1(z) ≤ f U

1 f L
2 ≤ f2(z) ≤ f U

2

Then we have

min
(

f L
1 , f L

2

)
≤ min( f1(z), f2(z)) ≤ min

(
f U
1 , f U

2

)

It is noteworthy that these bounds are not exact, as shown in the next example

Example 1 Take min(z,−z) with z ∈ [−1, 1]. The range is clearly [−1, 0] and the rule given
in Proposition 4 gives a valid but overestimated enclosure as [−1, 1].

We can utilize Corollary 3 to compute convex/concave relaxations for the mini-
mum/maximum of two functions. The computation of convex/concave relaxations of the
minimum/maximum of two functions by Theorem 2 requires the convex/concave envelopes
of min(x1, x2)/ max(x1, x2) on an arbitrary rectangle, which is easy to derive to the authors’
best knowledge is not explicitly available in the literature.
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Lemma 3 Consider Z = X1 × X2 ⊂ R
2 with X1 = [

x L
1 , xU

1

]
and X2 = [

x L
2 , xU

2

]
and let

z = (x1, x2). The convex envelope of min(x1, x2) on Z is given by mincv : Z → R,

mincv(x1, x2) = max
(
mincv,1(x1, x2), mincv,2(x1, x2)

)
with

mincv,1(x1, x2) = min
(

x L
1 , x L

2

)
+ x1 − x L

1

xU
1 − x L

1

(
min(xU

1 , x L
2 ) − min

(
x L

1 , x L
2

))

+ x2 − x L
2

xU
2 − x L

2

(
min(x L

1 , xU
2 ) − min

(
x L

1 , x L
2

))

mincv,2(x1, x2) = min
(

xU
1 , xU

2

)
+ x1 − xU

1

x L
1 − xU

1

(
min(x L

1 , xU
2 ) − min

(
xU

1 , xU
2

))

+ x2 − xU
2

x L
2 − xU

2

(
min(xU

1 , x L
2 ) − min

(
xU

1 , xU
2

))

and the concave envelope of max(x1, x2) on Z is given by maxcc : Z → R,

maxcc(x1, x2) = min
(
maxcc,1(x, x2), maxcc,2(x1, x2)

)
with

maxcc,1(x1, x2) = max
(

x L
1 , x L

2

)
+ x1 − x L

1

xU
1 − x L

1

(
max

(
xU

1 , x L
2

)
− max

(
x L

1 , x L
2

))

+ x2 − x L
2

xU
2 − x L

2

(
max

(
x L

1 , xU
2

)
− max

(
x L

1 , x L
2

))

maxcc,2(x1, x2) = max
(

xU
1 , xU

2

)
+ x1 − xU

1

x L
1 − xU

1

(
max

(
x L

1 , xU
2

)
− max

(
xU

1 , xU
2

))

+ x2 − xU
2

x L
2 − xU

2

(
max

(
xU

1 , x L
2

)
− max

(
xU

1 , xU
2

))

Proof The proof is in the Appendix. ��
A convex relaxation of the maximum of two functions is trivially given by the maximum

of the convex relaxations of the two functions and a concave relaxation of the minimum of
two functions as the minimum of the concave relaxations of the two functions.

Proposition 5 Consider Z ∈ R
n and g1, g2, f1, f2 : Z → R such that g1(z) =

min ( f1(z), f2(z)), g2(z) = max ( f1(z), f2(z)). Suppose that interval enclosures are given
for f1 and f2 on Z, i.e., bounds f L

1 , f U
1 , f L

2 , f U
2 such that

f L
1 ≤ f1(z) ≤ f U

1 f L
2 ≤ f2(z) ≤ f U

2

and convex and concave relaxations such that

f cv
1 (z) ≤ f1(z) ≤ f cc

1 (z) f cv
2 (z) ≤ f2(z) ≤ f cc

2 (z).

Recall that Proposition 4 gives interval enclosures for f on Z. The following procedure
defines a convex relaxation gcv

1 : Z → R of g1 on Z.
If f U

1 ≤ f L
2 then gcv

1 (z) = f cv
1 (z). Similarly, if f U

2 ≤ f L
1 then gcv

1 (z) = f cv
2 (z).

Otherwise

gcv
1 (z) = max

(
gcv,1

1 (z), gcv,2
1 (z)

)
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where

gcv,1
1 (z) = min

(
f L
1 , f L

2

)
+ f cv

1 (z) − f L
1

f U
1 − f L

1

(
min

(
f U
1 , f L

2

)
− min

(
f L
1 , f L

2

))

+ f cv
2 (z) − f L

2

f U
2 − f L

2

(
min

(
f L
1 , f U

2

)
− min

(
f L
1 , f L

2

))

gcv,2
1 (z) = min

(
f U
1 , f U

2

)
+ f cv

1 (z) − f U
1

f L
1 − f U

1

(
min

(
f L
1 , f U

2

)
− min

(
f U
1 , f U

2

))

+ f cv
2 (z) − f U

2

f L
2 − f U

2

(
min

(
f U
1 , f L

2

)
− min

(
f U
1 , f U

2

))
.

Furthermore, the following procedure defines a concave relaxation gcc
2 : Z → R of g2

on Z. If f U
1 ≤ f L

2 then gcc
2 (z) = f cc

1 (z). Similarly, if f U
2 ≤ f L

1 then gcc
2 (z) = f cc

2 (z).

Otherwise gcc
2 (z) = min

(
gcc,1

2 (z), gcc,2
2 (z)

)
where

gcc,1
2 (z) = max

(
f L
1 , f L

2

)
+ f cc

1 (z) − f L
1

f U
1 − f L

1

(
max

(
f U
1 , f L

2

)
− max

(
f L
1 , f L

2

))

+ f cc
2 (z) − f L

2

f U
2 − f L

2

(
max

(
f L
1 , f U

2

)
− max

(
f L
1 , f L

2

))

gcc,2
2 (z) = max

(
f U
1 , f U

2

)
+ f cc

1 (z) − f U
1

f L
1 − f U

1

(
max

(
f L
1 , f U

2

)
− max

(
f U
1 , f U

2

))

+ f cc
2 (z) − f U

2

f L
2 − f U

2

(
max

(
f U
1 , f L

2

)
− max

(
f U
1 , f U

2

))

Proof Since min(·, ·) and max(·, ·) are monotonic increasing the result follows by Corollary
3. ��

Note that there is no guarantee that the proposed relaxation is the envelope even if the
estimators of the factors are, as shown in Fig. 2.

Reformulating min(·, ·) and max(·, ·) operators using the absolute value of the difference,
results in weak natural interval extensions and also weaker McCormick relaxations as shown
in Proposition 6. Figure 2 shows that the inequality in Proposition 6 can be strict.

Proposition 6 Consider Z ∈ R
n and f1, f2 : Z → R such that g1(z) = min ( f1(z), f2(z)).

Suppose that interval enclosures are given for f1 and f2 on Z, i.e., bounds f L
1 , f U

1 , f L
2 , f U

2
such that

f L
1 ≤ f1(z) ≤ f U

1 f L
2 ≤ f2(z) ≤ f U

2

and convex/concave relaxations such that

f cv
1 (z) ≤ f1(z) ≤ f cc

1 (z) f cv
2 (z) ≤ f2(z) ≤ f cc

2 (z).

For the overlapping case f L
1 < f U

2 , f L
2 < f U

1 , the convex/concave relaxations for min/max
proposed in Theorem 5 are at least as tight as the ones obtained by McCormick’s composition
Theorem applied to the reformulation via the absolute value.

Proof The proof is given in the Appendix ��
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Fig. 2 Take Z = [0, 1] and g1, f1, f2 : Z → R, such that f1(z) = z2, f2(z) = z, g1(z) = min( f1(z), f2(z)).
Note that both f1 and f2 have range [0, 1] and that both are convex and as such f cv

1 = f1 and f cv
2 = f2 are

the convex envelopes. We have g1(z) = z2 and this is its convex envelope. It follows from Proposition 5 that
gcv

1 : Z → R, gcv
1 (z) = max(0, z2 + z − 1) is a convex relaxation of g1 on Z . Note that it does not give the

envelope although envelopes are used for the factors. The reformulation via the absolute value furnish a valid

but less tight relaxation ḡcv,abs
1

Relaxations of min ( f1, . . . , fm) can be computed either recursively, or by direct applica-
tion of Theorem 2 if an envelope/relaxation of min (x1, . . . , xm) is available on the appropriate
domain. In [0, 1]m , for example, it can be shown that the convex envelope of min (x1, . . . , xm)

is max(0,
∑

i
xi − n + 1).

If the relaxation for the multiterm operator is the envelope, direct application of the
multivariate composition will result in at least as tight relaxations. If in contrast the relaxations
for the multiterm operator are weak, it may be advisable to use the bivariate composition
recursively.

7 Fractional terms

Fractional terms f1(z)/ f2(z) often arise in engineering optimization formulations. In
McCormick relaxation framework, e.g., in MC++ [10] they are handled rigorously using
the presentation as f1(z) × ( f2(z))−1, i.e., as a bilinear product with the inverse function
embedded. The multivariate composition theorem can handle the fractional terms more nat-
urally and yields at least as tight and often tighter relaxations. For the rest of this section we
assume that f L

2 > 0 or f U
2 < 0, so that the division is well defined.

Consider the fractional term x1
x2

on X1 × X2 = [
x L

1 , xU
1

]×[x L
2 , xU

2

]
which we will denote

via the division function div(·, ·). Tawarmalani and Sahinidis [47] discuss convex relaxations
and the envelope for the positive orthant, i.e., for x L

1 > 0, x L
2 > 0. One relaxation by Zamora

and Grossmann [53,54] is given by

divcv,Z&G(x1, x2) = 1

x2

⎛

⎜
⎝

x1 +
√

x L
1 xU

1
√

x L
1 +

√
xU

1

⎞

⎟
⎠

2

. (27)
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The function divcv,Z&G is the convex envelope when x L
2 → 0 and xU

2 → ∞. A piecewise
linear relaxation of div [33,47] is given by

divcv,lin(x1, x2) = max

{
x1xU

2 − x L
1 x2 + x L

1 xU
2

(xU
2 )2

,
x1x L

2 − xU
1 x2 + xU

1 x L
2

(x L
2 )2

}

. (28)

Another method to obtain a valid convex relaxation of div(·, ·) on X1 × X2, assuming
that either xU

2 < 0 or x L
2 > 0 is to apply the product rule of McCormick [23] (defined in

Eq. (22)) using the representation x1 × Inv(x2) where Inv(·) = (·)−1. Let InvL , InvU denote
the implied bounds, and Invcv(x2), Invcc(x2) the convex and concave relaxations of Inv on
X2. It is easy to verify that the result is

divcv,mc(x1, x2) = max

{
InvL x1 + min

{
x L

1 Invcv(x2), x L
1 Invcc(x2)

}− x L
1 InvL ,

InvU x1 + min
{

xU
1 Invcv(x2), xU

1 Invcc(x2)
}− xU

1 InvU .

}
(29)

which for the positive orthant reduces to

divcv,mc,+(x1, x2) = max

{
x1

xU
2

+ x L
1

x2
− x L

1

xU
2

,
x1

x L
2

+ xU
1

x2
− xU

1

x L
2

}

, (30)

as computed by Quesada and Grossman [33] following the same procedure. It is shown in
[33] that divcv,lin is a linearization of divcv,mc,+ at x L

2 , xU
2 and thus

divcv,lin(x1, x2) ≤ divcv,mc,+(x1, x2).

The concave envelope for the positive orthant is computed in [46] to be

divcc,mc,+(x1, x2) = 1

x L
2 xU

2

min
{

xU
2 x1 − x L

1 x2 + x L
1 x L

2 , x L
2 x1 − xU

1 x2 + xU
1 xU

2

}
. (31)

Finally, Tawarmalani and Sahinidis [46,47] prove that the convex envelope at a point can
be evaluated by solving an optimization problem

divcv,env(x1, x2) = min
yp,z p,ze

c,λ
ze

c

s.t. z p yp ≥ x L
1 (1 − λ)2

(ze
c − z p)(x2 − yp) = xU

1 λ2

yp ≥ x L
2 (1 − λ)

yp ≥ x2 − xU
2 λ

yp ≤ xU
2 (1 − λ)

yp ≤ x2 − x L
2 λ

x1 = x L
1 +

(
xU

1 − x L
1

)
λ

ze
c ≥ z p

λ ∈ [0, 1], z p ≥ 0 (32)

which can be reformulated as a semi-definite program.
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In MC++ [10] a relaxation for G(z) = f1(z)
f2(z)

is obtained using the representation f1(z) ×
(Inv ◦ f2(z)) and applying first McCormick’s composition theorem to obtain (Inv ◦ f2)

cv(z),
(Inv ◦ f2)

cc(z) and then McCormick’s product rule (22). The resulting relaxation is given by

ḡcv,MC++(z)

= max

⎧
⎪⎪⎨

⎪⎪⎩

min

{
1
f U
2

f cv
1 (z), 1

f U
2

f cc
1 (z)

}
+ min

{
f L
1 (Inv ◦ f2)

cv (z), f L
1 (Inv ◦ f2)

cc (z)
}− f L

1
f U
2

,

min

{
1
f L
2

f cv
1 (z), 1

f L
2

f cc
1 (z)

}
+ min

{
f U
1 (Inv ◦ f2)

cv (z), f U
1 (Inv ◦ f2)

cc (z)
}− f U

1
f L
2

⎫
⎪⎪⎬

⎪⎪⎭
.

Since both Invcv, Invcc are decreasing in (−∞, 0) and (0,∞), by Corollary 3 we have

(Inv ◦ f2)
cv (z) = Invcv( f cc

2 (z)), (Inv ◦ f2)
cc (z) = Invcc( f cv

2 (z)),

and thus

ḡcv,MC++(z)

= max

⎧
⎪⎪⎨

⎪⎪⎩

min

{
1
f U
2

f cv
1 (z), 1

f U
2

f cc
1 (z)

}
+ min

{
f L
1 Invcv( f cc

2 (z)), f L
1 Invcc( f cv

2 (z))
}− f L

1
f U
1

,

min

{
1
f L
2

f cv
1 (z), 1

f L
2

f cc
1 (z)

}
+ min

{
f U
1 Invcv( f cc

2 (z)), f U
1 Invcc( f cv

2 (z))
}− f U

1
f L
1

⎫
⎪⎪⎬

⎪⎪⎭
.

(33)

The multivariate composition theorem provides a direct method to calculate convex relax-
ations:

Corollary 6 Consider Z ∈ R
n and G, f1, f2 : Z → R such that G(z) = f1(z)

f2(z) . Suppose

that interval enclosures are given for f1 and f2 on Z, i.e., bounds f L
1 , f U

1 , f L
2 , f U

2 such that

f L
1 ≤ f1(z) ≤ f U

1 f L
2 ≤ f2(z) ≤ f U

2

and convex/concave relaxations such that

f cv
1 (z) ≤ f1(z) ≤ f cc

1 (z) f cv
2 (z) ≤ f2(z) ≤ f cc

2 (z).

A valid convex relaxation for G on Z is given by gcv

gcv(z) = min
x1∈X1
x2∈X2

divcv
X1×X2

(x1, x2)

s.t. f cv
1 (z) ≤ x1 ≤ f cc

1 (z)
f cv
2 (z) ≤ x2 ≤ f cc

2 (z),

(34)

where divcv
X1×X2

(x1, x2) is any valid convex relaxation of div(·, ·) on X1 × X2.
Similarly, a concave relaxation is obtained by

gcc(z) = max
x1∈X1
x2∈X2

divcc
X1×X2

(x1, x2)

s.t. f cv
1 (z) ≤ x1 ≤ f cc

1 (z)
f cv
2 (z) ≤ x2 ≤ f cc

2 (z),

(35)

Proposition 7 Consider the relaxation gcv constructed in Corollary 6 for G(z) =
f1(z)/ f2(z) and suppose that the relaxations for div(·, ·) on X1 × X2 are at least as tight as
divcv,mc and divcc,mc. Then gcv is at least as tight as ḡcv,MC++ as defined in Eq. (33).

Proof The proof is given in the Appendix. ��
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Fig. 3 Consider the trivial function z/z = 1 on [0.1, 1]. The inequality in Proposition 7 can be strict.
The multivariate McCormick relaxations (by Theorem 6) are the same when the outer function is relaxed via
divcv,Z&G (by Zamora and Grossmann [53]), or via divcv,env (by Tawarmalani and Sahinidis [47]) ; the convex
relaxation obtained is the tightest among the relaxations considered. The univariate McCormick relaxation
ḡcv,MC++(by Theorem 1) is the same as the multivariate using the bilinear relaxation divcv,mc++ and is
weaker than the previous ones. The loosest relaxation is obtained when the linear relaxation divcv,lin (by
Tawarmalani and Sahinidis [47]) is used for the outer function in the multivariate McCormick relaxations

Figure 3 shows that the proposed relaxations can be substantially tighter than the ones
obtained via the McCormick relaxations. Moreover, it shows that if weak relaxations are
used for the outer function in the multivariate composition theorem, the relaxations can be
weaker than the univariate McCormick relaxations.

Implementing Theorem 2 for the division of two functions is straightforward if the outer
function is relaxed via (27), (28) or (29), as these relaxations are given in closed form.
Subgradient computation is also straightforward and Theorem 4 can be utilized to further
propagate them to outer functions.

The use of the convex envelope defined in (32) is more involved but we can use it by
solving

min
x1∈X1
x2∈X2

divcv,env(x1, x2) = min
yp,z p,ze

c,λ
,x1,x2

ze
c

s.t. f cv
1 (z) ≤ x1 ≤ f cc

1 (z) s.t. z p yp ≥ x L
1 (1 − λ)2

f cv
2 (z) ≤ x2 ≤ f cc

2 (z) (ze
c − z p)(x2 − yp) = xU

1 λ2

yp ≥ x L
2 (1 − λ)

yp ≥ x2 − xU
2 λ

yp ≤ xU
2 (1 − λ)

yp ≤ x2 − x L
2 λ

x1 = x L
1 + (xU

1 − x L
1 )λ

ze
c ≥ z p

λ ∈ [0, 1], z p ≥ 0
f cv
1 (z) ≤ x1 ≤ f cc

1 (z)
f cv
2 (z) ≤ x2 ≤ f cc

2 (z)
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which for a given z can be written a semi-definite program. Similarly to the discussion of
multilinear products we can obtain subgradients by using the Lagrange multipliers associated
to the constraints f cv

1 (z) ≤ x1 ≤ f cc
1 (z), f cv

2 (z) ≤ x2 ≤ f cc
2 (z).

If the envelope is not used, one can easily take the maximum of divcv,Z&K and divcv,mc+.
Tawarmalani and Sahinidis [47] show it can be beneficial compared to any of the two terms.

8 Concluding remarks

We presented a multivariate generalization of McCormick’s composition theorem [23].
McCormick’s results for the relaxation of composite functions with univariate outer func-
tion are the basis of so-called McCormick-relaxations, which are one of the key ideas in
constructing convex relaxations in deterministic global optimization. Our generalization to
multivariate outer functions results in tighter relaxations for important classes of functions
including binary product of functions, the division of functions and the minimum/maximum
of functions. Similarly to McCormick’s composition and product theorem, the multivariate
composition can be applied recursively and in fact the implementation of our result is very
similar to McCormick’s relaxations; many of our improvements have been implemented in
both MC++ [10] and modMC [13]. In contrast to the univariate McCormick’s relaxations,
our result also enables the direct relaxation of classes of functions such as multilinear prod-
ucts of functions. This is particularly important since in recent years many relaxations have
been proposed for relatively complicated expressions and it has been shown that using this is
advantageous compared to recursive application of simple rules. For instance, an important
class of functions are the so-called edge-concave functions treated in [26,44,45]; the work
presented herein can be used to obtain tight relaxations for functions that are a composition of
an edge-concave outer function and an arbitrary inner function; the relaxation can be achieved
via a similar reasoning to our theorems for relaxations of bilinear, multilinear and fractional
terms. It would be very useful to collect all these rules and implement them in the proposed
multivariate McCormick relaxations and then perform a thorough computational compari-
son of the advances obtained. Moreover, it would be interesting to consider other important
functions found in applications, such as | f1(z)− f2(z)| and ( f1(z)− f2(z))2 which are found
for instance in parameter estimation. Also, it would be interesting to consider discontinuous
functions as done in [52].

Similarly to univariate McCormick relaxations, our result is also applicable to functions
calculated by algorithms [30]. It is well-known that univariate McCormick relaxations are
nonsmooth and recently subgradient propagation has been proposed [30]. For the proposed
multivariate framework it is also possible to propagate subgradients and in fact, we provide
the framework to obtain, at least in principle, the entire subdifferential.

An alternative to McCormick relaxations is the AVM. Our reformulation and general-
ization of McCormick’s composition theorem makes the connection with this method more
explicit. In particular, it illustrates that the McCormick relaxation framework can be inter-
preted as a decomposition method for AVM. It would be of interest to indeed utilize such
decomposition methods in the AVM. Moreover, we discussed the tightness of relaxations
of the AVM compared to the multivariate McCormick relaxations. In cases that common
subexpressions are recognized in the AVM this can result in tighter relaxations than the
McCormick relaxations [48]; the same holds for the simple recursive application of the pro-
posed multivariate McCormick relaxations. In some cases, it is possible to introduce just
enough auxiliary variables to close this gap, and it would be interesting to explore this oppor-
tunity computationally. Moreover, the proposed multivariate relaxations can result in tighter
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relaxations in specific cases by enabling the use of complicated but tight relaxations of some
functions. It would be interesting to computationally compare the two methods.
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Appendix

Herein, proofs for three results are given.

Proof of Lemma 3

For the proof we make use of the following Lemma:

Lemma 4 ([18] Theorem 1.23) Let T be a convex set and S ⊂ T a simplex. If f is concave on
T and f cv,S, f cv,T are the convex envelopes of f over S, T respectively then f cv,S ≥ f cv,T

on S.

Now we prove Lemma 3

Proof First we note that mincv(x1, x2) is convex in Z as the maximum of two affine functions.
We have

mincv,1 (xL
1 , xL

2

) = min
(

x L
1 , x L

2

)
,

mincv,1 (xL
1 , xU

2

) = min
(

x L
1 , xU

2

)
,

mincv,1 (xU
1 , xL

2

) = min
(

xU
1 , x L

2

)
,

mincv,1 (xU
1 , xU

2

) = min
(

xU
1 , x L

2

)
+ min

(
x L

1 , xU
2

)
− min

(
x L

1 , x L
2

)

and

mincv,2 (xL
1 , xL

2

) = min
(

x L
1 , xU

2

)
+ min

(
xU

1 , x L
2

)
− min

(
xU

1 , xU
2

)
,

mincv,2 (xL
1 , xU

2

) = min
(

x L
1 , xU

2

)
,

mincv,2 (xU
1 , xL

2

) = min
(

x L
1 , x L

2

)
,

mincv,2 (xU
1 , xU

2

) = min
(

xU
1 , xU

2

)
.

Without loss of generality we can assume that either x L
1 ≤ xU

1 ≤ x L
2 ≤ xU

2 , if the bounds
do not overlap or x L

1 ≤ xU
2 , x L

2 ≤ xU
1 , if the bounds overlap. In the former case we have

mincv,1 (xU
1 , xU

2

) = xU
1 + xL

1 − xL
1 = xU

1 = min
(
xU

1 , xU
2

)
,

mincv,2 (xL
1 , xL

2

) = xL
1 + xU

1 − xU
1 = xL

1 = min
(
xL

1 , xL
2

)
.
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In the latter case

mincv,1 (xU
1 , xU

2

) = xL
2 + xL

1 − min
(
xL

1 , xL
2

) = max
(
xL

1 , xL
2

) ≤ min
(
xU

1 , xU
2

)
,

mincv,2
(

xL
1 , xL

2

)
= xL

2 + xL
1 − min

(
xU

1 , xU
2

) ≤ xL
2 + xL

1 − max
(
xL

1 , xL
2

) ≤ min
(
xL

1 , xL
2

)
.

Since min(x1, x2) is concave, mincv,1, mincv,2 affine and mincv,1(x1, x2) ≤ min(x1, x2),
mincv,2(x1, x2) ≤ min(x1, x2) for all vertices of the box Z , it follows that mincv,1, mincv,2,
and thus also mincv are convex underestimators of min(x1, x2) on Z .

Also, if S1 is the simplex defined by the points
{(

x L
1 , x L

2

)
,
(
x L

1 , xU
2

)
,
(
xU

1 , x L
2

)}
and

since mincv,1(x1, x2) = min (x1, x2) for all vertices of S1, it follows, see for example [18],
that mincv,1(x1, x2) is the convex envelope of min(x1, x2) in S1. Similarly if S2 is the sim-
plex defined by the points

{(
x L

1 , xU
2

)
,
(
xU

1 , x L
2

)
,
(
xU

1 , xU
2

)}
and since mincv,2(x1, x2) =

min(x1, x2) for all vertices of S2, it follows that mincv,2(x1, x2) is the convex envelope of
min(x1, x2) in S2.

From Lemma 4, if Fcv
Z is the convex envelope of min(x1, x2) on Z , then we have

Fcv
Z (z) ≤ mincv,1(z) for all z ∈ S1,

Fcv
Z (z) ≤ mincv,2(z) for all z ∈ S2.

Thus

Fcv
Z (z) ≤ max

(
mincv,1(z), mincv,2(z)

)
for all z ∈ S1 ∪ S2 = Z

and mincv is the convex envelope of min(x1, x2) on Z .
The proof for the concave envelope of max(x1, x2) is similar and is omitted. ��

Proof of Proposition 6

Proof Since the negative absolute value is concave and piecewise affine linear, its envelope
is the secant. Thus, application of McCormick’s composition Theorem 1 as reformulated
in (2) gives

ḡcv,abs
1 (z) = min

w
mincv,abs(z, w)

s.t. f cv
1 (z) − f cc

2 (z) ≤ w ≤ f cc
1 (z) − f cv

2 (z) (36)

wL ≤ w ≤ wU ,

where wL = f L
1 − f U

2 and wU = f U
1 − f L

2 , with

mincv,abs(z, w) = 0.5

(
fcv
1 (z) + fcv

2 (z) + |wL| + −|wU| + |wL|
wU − wL

(
w − wL)

)
.

On the other hand, Theorem 2 gives a convex relaxation for g1 on Z

gcv
1 (z) = min

x
mincv(x)

s.t. f cv
i (z) ≤ xi ≤ f cc

i (z) (37)

x L
i ≤ xi ≤ xU

i , i = 1, 2,

where x L
i = f L

i , xU
i = f U

i and mincv is the convex envelope of min(·, ·) on X = (
x L

1 , xU
1

)×(
x L

2 , xU
2

)
. We will show that (36) has an optimal value smaller or equal to the optimal value

of (37) for an arbitrary but fixed z, and thus mincv,abs(z) ≤ mincv(z). To do so, first we
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reformulate (36) by introducing two new variables x1, x2 with w = x1 − x2 and eliminate
w obtaining

ḡcv,abs
1 (z) = min

x1,x2
mincv,abs(z, x1 − x2)

s.t. f cv
1 (z) − f cc

2 (z) ≤ x1 − x2 ≤ f cc
1 (z) − f cc

2 (z) (38)

wL ≤ x1 − x2 ≤ wU .

which is equivalent with (36). Next we show that the optimization problem at the right hand
of (38) is a relaxation of the optimization problem at the right hand of (37) and thus has a
smaller optimal value.

First we will show that any feasible point of (37) is also feasible in (38). Indeed, take any
feasible (x1, x2). By feasibility we have

f L
1 ≤ x1 ≤ f U

1 , f L
2 ≤ x2 ≤ f U

2

and thus

f L
1 − f U

2 ≤ x1 − x2 ≤ f U
1 − f L

2 .

Similarly by feasibility

f cv
1 (z) ≤ x1 ≤ f cc

1 (z), f cv
2 (z) ≤ x2 ≤ f cc

2 (z)

and thus

f cv
1 (z) − f cc

2 (z) ≤ x1 − x2 ≤ f cc
1 (z) − f cv

2 (z)

and (x1, x2) is also feasible in (38).
It remains to show that the objective function of (38) is an underestimate of (37). Take

any (x1, x2) which is feasible in (37). By construction of mincv,abs we have

mincv,abs(z, x1 − x2) ≤ 0.5
(
fcv
1 (z) + fcv

2 (z) − |x1 − x2|
)
.

By feasibility of (x1, x2) in (36) we also have

f cv
1 (z) ≤ x1, f cv

2 (z) ≤ x2

and thus combining the last two inequalities we also obtain

mincv,abs(z, x1 − x2) ≤ x1 + x2 − |x1 − x2| = min(x1, x2)

or mincv,abs(z, ·) underestimates min(·, ·) on X . Moreover, mincv,abs(z, ·) is affine linear and
thus also convex on X . Since mincv is the convex envelope of min(·, ·) on X we directly
obtain

mincv,abs(z, w = x1 − x2) ≤ mincv(x1, x2),

and the result follows.
The result for the concave envelope is analogous and so are the results for the max. ��
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Proof of Proposition 7

Proof Assume first that divcv,mc is used for divcv
X1×X2

. In that case the relaxations are obtained
by

gcv(z) = min
x1∈X1
x2∈X2

divcv,mc(x1, x2)

s.t. f cv
1 (z) ≤ x1 ≤ f cc

1 (z)
f cv
2 (z) ≤ x2 ≤ f cc

2 (z)

or substituting (29) for divcv,mc(x1, x2) and the implied bounds on which the relaxation is
computed f L

1 ≤ x1 ≤ f U
1 , f L

2 ≤ x2 ≤ f U
2 we obtain

gcv(z) = min
x1∈X1
x2∈X2

max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

f U
2

x1 + min
{

f L
1 Invcv(x2), f L

1 Invcc(x2)
}

− f L
1

f U
2

,

1

f L
2

x1 + min
{

f U
1 Invcv(x2), f U

1 Invcc(x2)
}

− f U
1

f L
2

.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

s.t. f cv
1 (z) ≤ x1 ≤ f cc

1 (z)
f cv
2 (z) ≤ x2 ≤ f cc

2 (z)

≥ max

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min
x1∈X1
x2∈X2

x1

f U
2

+ min
{

f L
1 Invcv(x2),

f L
1 Invcc(x2)

}− f L
1

f U
2

,

s.t. f cv
1 (z) ≤ x1 ≤ f cc

1 (z)
f cv
2 (z) ≤ x2 ≤ f cc

2 (z).

,

min
x1∈X1
x2∈X2

x1

f L
2

+ min
{

f U
1 Invcv(x2),

f U
1 Invcc(x2)

}− f U
1

f L
2

s.t. f cv
1 (z) ≤ x1 ≤ f cc

1 (z)
f cv
2 (z) ≤ x2 ≤ f cc

2 (z)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

where the inequality was obtained (similarly to the proof of proposition 3) by interchanging
the min and max operators.

Since the inner problems are separable in x1, x2 we have

gcv(z) ≥ max

{

ζ1(z) + ζ2(z) − f L
1

f U
2

, ζ3(z) + ζ4(z) − f U
1

f L
2

}

(39)

with

ζ1(z) = min
x1∈X1

1

f U
2

x1

s.t. f cv
1 (z) ≤ x1 ≤ f cc

1 (z)
,

ζ2(z) = min
x2∈X2

min
{

f L
1 Invcv(x2), f L

1 Invcc(x2)
}

s.t. f cv
2 (z) ≤ x2 ≤ f cc

2 (z)

ζ3(z) = min
x1∈X1

1
f L
2

x1

s.t. f cv
1 (z) ≤ x1 ≤ f cc

1 (z)
,

ζ4(z) = min
x2∈X2

min
{

f U
1 Invcv(x2), f U

1 Invcc(x2)
}

s.t. f cv
2 (z) ≤ x2 ≤ f cc

2 (z)

We have

ζ1(z) = min

{
1

f U
2

f cv
1 (z),

1

f U
2

f cc
1 (z)

}

, ζ3(z) = min

{
1

f L
2

f cv
1 (z),

1

f L
2

f cc
1 (z)

}

. (40)

Also, we have

ζ2(z) = min

{
min

x2∈X2
f L
1 Invcv(x2)

s.t. f cv
2 (z) ≤ x2 ≤ f cc

2 (z)
,

min
x2∈X2

min f L
1 Invcc(x2)

s.t. f cv
2 (z) ≤ x2 ≤ f cc

2 (z)

}

.
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We treat separately the cases f L
1 ≥ 0 versus f L

1 < 0. If f L
1 ≥ 0 since both Invcv, Invcc are

decreasing monotonically we have

ζ2(z) = min

{
f L
1 Invcv( f cc

2 (z)),
f L
1 Invcc( f cc

2 (z))

}
= f L

1 Invcv( f cc
2 (z))

But

f L
1 Invcv( f cc

2 (z)) ≤ f L
1 Invcv( f cv

2 (z)) ≤ f L
1 Invcc( f cv

2 (z))

and therefore

ζ2(z) = min

{
f L
1 Invcv( f cc

2 (z))
f L
1 Invcc( f cv

2 (z))

}
.

If on the other hand f L
1 < 0 since both −Invcv,−Invcc are increasing monotonically we

have

ζ2(z) = min

{
f L
1 Invcv( f cv

2 (z)),
f L
1 Invcc( f cv

2 (z))

}
= f L

1 Invcc( f cv
2 (z)).

In this case due to negativity of f L
1 there holds

f L
1 Invcc( f cv

2 (z)) ≤ f L
1 Invcc( f cc

2 (z)) ≤ f L
1 Invcv( f cc

2 (z))

and we obtain again

ζ2(z) = min

{
f L
1 Invcv( f cc

2 (z))
f L
1 Invcc( f cv

2 (z))

}
. (41)

Therefore, we have established that Eq. (41) holds independently of the sign of f L
1 . By a

similar reasoning we deduce that

ζ4(z) = min

{
f U
1 Invcv( f cc

2 (z))
f U
1 Invcc( f cv

2 (z))

}
. (42)

From inequality (39) and Eqs. (33),(40),(41),(42) we obtain

gcv(z) ≥ ḡcv,MC++(z).

If the available relaxations of div(·, ·) on X1 × X2 are tighter than divcv,mc and divcc,mc

the resulting relaxation has to be even tighter. ��
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